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PIEZOELECTRIC FINITE ELEMENT BEAM FOR SMART
STRUCTURES

V. Kutiš1, J. Murı́n2, J. Paulech3, G. Gálik4, V. Goga5

Abstract: The paper deals with finite beam element with piezoelectric layers and functionally graded material of core. In
the process of homogenization of FGM core and piezoelectric layers direct integration method and multilayer method is used.
There is also presented the derivation of individual submatrices of local stiffness and mass matrix, where concept of transfer
constants is used.
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1 Introduction
Smart materials and structures belong between rapidly growing research area. This area is characte-

rized by the strong influence of different subjects like material science, mathematical modeling, sensors,
actuators, control, electronics and software engineering. Smart structures are from mathematical point
of view systems with continuous parameters like beams and shells with locally distributed sensors and
actuators. Typical representatives of such systems are elastic beam structures where piezoelectric sensors
and piezoelectric actuators are located in order to reduce vibration of such structures excited by external
loading. Mathematical modelling of the system is the first step in the process of reduce and control such
system.

2 Constitutive equations of piezoelectric material
Piezoelectric constitutive equations describe the relationship between mechanical and electrical quan-

tities [1, 2]. This relationship is derived in tensor notation, but for practical usage it can be rewritten into
matrices notation.

The constitutive equations can be expressed by strain tensor components εkl and vector components
of electric field intensity Ek and has a form

σij = cEijklεkl − eijkEk (1)

Di = eiklεkl + εεikEk (2)

where σij are mechanical stress tensor components, Di are components of electric displacement vector,
cEijkl are components of stiffness tensor under constant electric intensity, εσik are components of permit-
tivity tensor under constant mechanical stress and eijk are components of piezoelectric modulus tensor.

If we use symmetric properties of individual tensor in constitutive tensor equations, we can rewrite
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constitutive equations into matrix notation [3]. Then equations (1) and (2) have a form

σp = cEpqεq − epkEk (3)

Di = eiqεq + εεikEk (4)

Di and Ek are vectors with three components, σq and εq are vectors with six components, matrices sEpq
and cEpq have dimension 6× 6, matrices diq and epk have dimension 3× 6 and matrix εεik has dimension
3× 3.

Constitutive equations (3) and (4) written in a component form can be rewritten as

σ = cEε− eTE (5)

D = eε+ εεE (6)

3 Finite element equations of piezoelectric material
To obtain basic FEM equations for piezoelectric structure, the Hamilton’s principle is used and can

be expressed in the form ∫ t2

t1

(δL+ δW ) dt = 0 (7)

where L is Lagrangian, W is work of external mechanical and electrical forces and t1 and t2 defined
considered time interval.
Lagrangian of piezoelectric structure is given by

L =T − U +We =

=

∫
V

1

2
ρu̇T u̇dV −

∫
V

1

2
εTσdV +

∫
V

1

2
ETDdV

(8)

where T is kinetic energy of structure, U is potential energy of structure and We is electric energy stored
in piezoelectric material. In kinetic energy term u̇ represents velocity vector.
Virtual work of external mechanical and electrical forces can be expressed as

δW =
∑(

δuTF
)
−
∑(

δφTQ
)

(9)

where F and Q represents discrete forces and electric charges, respectively and u andφ are displacement
vector and scalar electric potential, respectively.

Using classical shape functions for solid (2D or 3D) finite elements and previous defined constitutive
piezoelectric law, equations (7)-(9) can be expressed in matrix form[

Me
uu 0
0 0

] [
üe

φ̈e

]
+

[
Ce
uu 0
0 0

] [
u̇e

φ̇e

]
+

[
Ke
uu Ke

uφ

Ke
φu Ke

φφ

] [
ue

φe

]
=

[
Fe

Qe

]
(10)

where ue, u̇e and üe is vector of nodal displacement, velocity and acceleration, respectively, φe is vector
of nodal electric potential, Fe is vector of nodal structural forces and Qe is vector of nodal electric charge.
Individual submatrices represent the mass, damping, stiffness, permitivity and piezoelectric coupling of
finite element.

4 FEM equations of piezoelectric beam element
2D beam element with piezoelectric layers, where beam core is made from functionally graded

material is shown in Figure 1, where all degrees of freedom are depicted. Mechanical degrees of freedom
in each node are two displacements (in direction x a y) and rotation (in plane x−y) [4]. Electric degrees
of freedom are electric potentials φi on 4 electrodes. The height of beam core made from FGM is h, the
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Figure 1: Electric DOF in 2D beam element

height of piezoelectric layer is hp, the depth and the length of the beam element are b and L, respectively.
Material properties of FGM core are function of longitudinal and transversal coordinate x and y, material
properties of piezoelectric layers are constants.

In order to derive individual submatrices of the beam element with piezoelectric layers and FGM
core, two steps in homogenization process have to be performed. At first, homogenization of material
properties of FGM core have to be performed, where direct integration method is used [4]. In the next
step, homogenization of piezoelectric layers and homogenized FGM core (from step one) is performed.
After these two operations, homogenized material properties of the beam vary through the length of the
beam as a function of longitudinal coordinate x and are constant in transversal direction.

4.1 Equations for structural analysis

The structural submatrix Ke
uu for the beam element with piezoelectric layers can be expressed in a

form

Ke
uu =



k
′
u 0 0 −k′

u 0 0

k
′
v2 k

′
v3 0 −k′

v2 kv2
S k

′
v33 0 −k′

v3 kv3
Y k

′
u 0 0

M k
′
v2 −kv2

kv23


(11)

where individual components contain the influence of FGM core stiffness and also the influence of piezo-
electric layers stiffness. The calculation of components is identical for classical multilayer or FGM beam
without piezoelectric layer and is described in [4]. Mass matrix Me

uu can be calculated numerically using
classical shape functions and homogenized density of FGM beam with piezoelectric layers.

4.2 Equations for electric analysis

Electric field intensity in piezoelectric layer is constant and for top layer can by expressed as [5, 6]

E1 = −∂φ
∂y

=
φ2 − φ1
hp

(12)

and for bottom layer as

E2 = −∂φ
∂y

=
φ4 − φ3
hp

(13)
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Both components of electric field intensity can be written in a form

E =

[
E1

E2

]
= −

[
1/hp −1/hp 0 0
0 0 1/hp −1/hp

]
φ1
φ2
φ3
φ4

 = −Bφφ
e (14)

For 1D problems the matrix of material properties for electric field – permittivity is reduced to only one
material property εε, but because the beam element contains two identical layers, we can write

εε =

[
εε 0
0 εε

]
(15)

Then the perimitivity submatrix has a form

Ke
φφ = −

∫
V
BT
φε

εBφdV = −
∫
L
BT
φε

εBφApdx (16)

where Ap is cross-section of one piezoelectric layer, i.e. Ap = bhp.
After some mathematical manipulations the equation (16) can be expressed as

Ke
φφ =



−ApLε
ε

h2p

ApLε
ε

h2p
0 0

ApLε
ε

h2p
−ApLε

ε

h2p
0 0

0 0 −ApLε
ε

h2p

ApLε
ε

h2p

0 0
ApLε

ε

h2p
−ApLε

ε

h2p


(17)

4.3 Coupling of structural and electrical analysis

Piezoelectric material properties express coupling between mechanical and electrical field - matrices
e or d. The relationship between these two matrices can be expressed by elasticity matrix. In 1D problem
in x− y plane (in index notation x1 − x2) we have only one material property – e21 or d21, where index
2 represents direction of piezoelectric layer polarization and also the direction of electric field intensity
vector and index 1 defines direction of mechanical deformation. The relationship between these two
quantities is reduced to expression e21 = d21Ep [7, 8], where Ep is Young modulus of elasticity of
piezoelectric material. In reality, relationship between matrices e and d is more complicated and the
quantity e21 computed from matrix d and elastic matrix for 3D system and the quantity e21 computed
from d21 andEp have different values. Therefore if we have quantities e21 and d21 computed from matrix
relationship, it is better to used them then simplified relationship.
Piezoelectric material properties of both piezoelectric layers are defined as

e =

[
e21 0 −ye21
e21 0 −ye21

]
(18)

The expression eTE defines mechanical stress caused by piezoelectric effect. In the beam elements,
internal quantities are not mechanical stress but internal forces and moments, then the first and the third
column of matrix (18) multiplied by corresponding components of Bu and Bφ as well as corresponding
components of displacement u and potential φ represents axial forces and bending moments, respec-
tively.
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Description of piezoelectric behaviour by e21 is more suitable for sensor equation – matrix Ke
φu, descrip-

tion by d21 is more suitable for actuator equation – matrix Ke
uφ, i.e.

e =

[
d21Ep 0 −yd21Ep
d21Ep 0 −yd21Ep

]
(19)

Using equations (18) and (19) we can write piezoelectric coupling submatrices in form

Ke
uφ =



−Apd21Ep
hp

Apd21Ep
hp

−Apd21Ep
hp

Apd21Ep
hp

0 0 0 0
Ayd21Ep

hp
−Ayd21Ep

hp

Ayd21Ep
hp

−Ayd21Ep
hp

Apd21Ep
hp

−Apd21Ep
hp

Apd21Ep
hp

−Apd21Ep
hp

0 0 0 0

−Ayd21Ep
hp

Ayd21Ep
hp

−Ayd21Ep
hp

Ayd21Ep
hp


(20)

and

Ke
φu =



−Ape21
hp

0
Aye21
hp

Ape21
hp

0 −Aye21
hp

Ape21
hp

0 −Aye21
hp

−Ape21
hp

0
Aye21
hp

−Ape21
hp

0
Aye21
hp

Ape21
hp

0 −Aye21
hp

Ape21
hp

0 −Aye21
hp

−Ape21
hp

0
Aye21
hp


(21)

where parameter Ay represents first moment of cross-section of piezoelectric layer

Ay =
1

2
Ap(h+ hp) (22)

4.4 FEM equations for the beam element with piezoelectric layers

FEM equations for beam element with piezoelectric layers and FGM core for transient analysis have
classical form [

Me
uu 0
0 0

] [
üe

φ̈e

]
+

[
Ce
uu 0
0 0

] [
u̇e

φ̇e

]
+

[
Ke
uu Ke

uφ

Ke
φu Ke

φφ

] [
ue

φe

]
=

[
Fe

Qe

]
(23)

where individual submatrices are defined by (11), (17), (20) and (21), vector of nodal unknowns is
defined as [

ue

φe

]
=
[
ui vi ϕi uj vj ϕj φ1 φ2 φ3 φ4

]T (24)

and vector of nodal loads is defined as[
Fe

Qe

]
=
[
Fxi Fyi Mi Fxj Fyj Mj Q1 Q2 Q3 Q4

]T (25)

where Q1, Q2, Q3 and Q4 are electric charge on electrodes 1, 2, 3 and 4, respectively.
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5 Conclusions
The paper presents new beam finite element with piezoelectric layers, where core of the beam can be

made of FGM materials. Such combination of materials is very attractive for mechatronic applications,
because material composition of FGM core can be optimized for design stress state and deformation can
be controlled by voltages on electrodes. The beam finite element can be used for analysis of such systems
very effectively and accurately.
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