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THE ELECTRO-THERMAL LINK FINITE ELEMENT FOR 
MULTIPHYSICAL ANALYSIS WITH 3D SPATIAL 

FUNCTIONALLY GRADED MATERIAL PROPERTIES 
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Abstract: The paper presents homogenization process of electric and thermal material properties in link structure 
made of Functionally Graded Material (FGM) with functionally prescribed change of these material properties in 
all three orthogonal directions inside the bar. Numerical experiment with developed link finite element (Finite 
Element Method – FEM) for this class of composite materials is also presented. 

Keywords: homogenization; FGM; FEM; link element; electro-thermal analysis 

1 Homogenization process of real FGM bar 
Let us consider a bar according to Figure 1. Its length is 퐿 [m], height ℎ [m] and depth 푏 [m] 

(rectangular cross section area 퐴 [m2]). Let the FGM bar consists of two material components – matrix 
(denoted by index 푚) and fibre (index 푓) where fractions of individual constituents through the volume 
of the bar are functionally graded. We can consider matrix volume fraction 푣 (푥, 푦, 푧) and fibre volume 
fraction 푣 (푥, 푦, 푧) for every point (푥, 푦, 푧) of the bar, so the change of material properties is 3D change. 
Moreover, let this change has polynomial character in every orthogonal direction  
푣 (푥, 푦, 푧) = ∑ 휀 푥 푦  푧 ; 푢 = max(푟, 푠, 푙), 푛 = {0; 푟}, 푚 = {0; 푠} and ℎ = {0; 푙},  
푣 (푥, 푦, 푧) = 1 − 푣 (푥, 푦, 푧), where grades of the polynomial changes 푟, 푠 and 푙 are for longitudinal 
and lateral directions and through the depth of the bar, respectively (휀  represents constant coefficients 
for individual coefficients of the polynomial). Figure 1 also shows change of fibre volume fraction 
through height (h = 6.67 mm) and length (L = 200 mm) of the bar, where change through the depth of 
the bar is shown using parametric plot of surfaces. Thick lines in this Figure 1 represent fibre volume 
fraction in chosen layers through height and depth of the bar that are necessary for calculation of 
homogenized material properties (for electric and thermal fields) using extended mixture rule [1] and 
laminate theory [2]. 

 

                                                 
1 Juraj Paulech, Vladimír Kutiš, Justín Murín, Vladimír Goga, Gabriel Gálik, Tibor Sedlár; Institution of 
Automotive Mechatronics, Faculty of Electrical Engineering and Information Technology, Slovak University of 
Technology in Bratislava, Slovakia; juraj.paulech@stuba.sk, vladimir.kutis@stuba.sk, justin.murin@stuba.sk, 
vladimir.goga@stuba.sk, gabriel.galik@stuba.sk, tibor.sedlar@stuba.sk 



94

 
Figure 1: FGM bar with spatial change of material properties (left), change of fibre volume fraction through the 

length, height and depth of the bar (right). 

The process of homogenization using division of the bar into layers (in lateral direction) and 
sublayers (through the depth of the bar) is shown in Figure 2. The result of such homogenization process 
is equivalent homogenized material property with polynomial change only in longitudinal direction 
(through height and depth of the bar the material property has constant value derived from longitudinal 
change). For steady-state electro-thermal analysis, the homogenization process need to be performed 
separately for final homogenized electric conductivity of the bar and for final homogenized thermal 
conductivity of the bar (both based on electric or thermal conductivities of fibre and matrix constituents 
of the FGM material, respectively). 

 
Figure 2: Homogenization process of FGM bar using layers and sublayers. 

2 Semi-analytical method for solution of linear differential equations with 
variable coefficients and right-hand side 
Procedure for solving differential equations with variable coefficients and right-hand side, which is 

presented in [3] is described in this chapter. General formula of such differential equation is: 
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 ∑ 휂 (푥)푦( )(푥) = ∑ 푞 푎 (푥), (1) 

where: 
푚 – order of the differential equation 
푦(푥) – unknown function of independent variable 푥 
푦( )(푥) – uth derivative of the unknown function 
휂 (푥) – polynomial variable coefficient for uth derivative on the left-hand side of the 

differential equation 
푔  – order of a polynomial on the right-hand side of the differential equation 
푞  – constant coefficient for jth power of the right-hand side polynomial 

푎 (푥) =
!
 – auxiliary function for the right-hand side polynomial formulation 

at which 푥 ∈ 〈0; 퐿〉, where 퐿 is the length of considered interval of unknown solution. 
The solution of the differential equation with variable coefficients has the form according to [3]: 

 푦( )(푥) = ∑ 푦( )푐 ( )(푥) + ∑ 푞 푏( ) (푥), (2) 

The solution of the differential equation (2) lies in determining the transfer functions generally 
labelled 푐(푥) and 푏(푥) that appear in the solution. First, the functions 푏( ) (푥) are calculated using 
power series and recursive process, considering 푢 = {0; 푚} and 푗 = {0; 푔}. It is necessary to guarantee 
the convergence of the series for a given interval 푥 ∈ 〈0; 퐿〉 for successful calculation of these functions. 
This is always true only for constant coefficients 휂  of the differential equation. It is often necessary to 
divide the interval of 푥 into the shorter sections (in our case the independent variable is geometric 
variable, for example 푥 = 퐿 is the length of the bar) for variable coefficients 휂 (푥), and thus determine 
the solution also for inner region of the bar (where 푥 ∈ (0; 퐿)). Calculation of the transfer functions and 
also automatic division of the interval for non-convergence behaviour of the series is included in a 
computer code and listed in [3]. 

The differential equations suitable for presented semi-analytical solution method must fulfil the 
following requirements: 
– one independent variable of the function 
– polynomial variable coefficients of the differential equation  
– polynomial character of the right-hand side of the differential equation  
– known interval of the independent variable where the solution of the differential equation needs to be 
determined 
The order of the differential equation and the order of the right-hand side are arbitrary. 

The described procedure of calculation such differential equations is suitable for calculation of 
electric and / or thermal field within the bar (1D task with only one independent variable), where change 
of material properties (electric and / or thermal conductivity) has polynomial (therefore variable) 
character. 

3 Numerical experiment – electro-thermal analysis of FGM conductor 
In this chapter there will be one example of calculation of electric and thermal field in given FGM 

link conductor presented. The task will be calculated using our new approach and also by commercial 
FEM code ANSYS [4] and by numerical solver for differential equations in software Mathematica [5] 
due to comparison reasons. 

Let us consider electro-thermal conductor with rectangular cross section, see Figure 1. Let the nodes 
are symbolically denoted “0” (origin of the coordinate system) and ”L” (end of the bar). Its length is 
퐿 = 200 [mm], its height is ℎ = 6.67 [mm] and depth is 푏 = 4 [mm]. Let the conductor consists of 



96

mixture of two component materials – matrix (index 푚) with constant electric conductivity 휎 (푥, 푦) =
100 [Sm ] and thermal conductivity 휆 (푥, 푦) = 1.33 [Wm K ], and fibre (index 푓) with electric 
conductivity 휎 (푥, 푦) = 2000 [Sm ] and thermal conductivity 휆 (푥, 푦) = 450 [Wm K ]. Volume 
fraction of individual components is functionally changed according to Figure 1.  

Number of layers for homogenization process is 푁 = 11 through the height of the bar and there are 
7 sublayers through the depth of the bar. After homogenization process the homogenized electric and 
thermal conductivities (superscript 퐻) are polynomial functions only in one (longitudinal) direction 푥: 

  휎 (푥) = 1130.4 − 39 332.1푥 + 131 107푥  [Sm ] 
  휆 (푥) = 244.65 − 9287.9푥 + 30 959.6푥  [Wm K ] 

We assume steady-state for electro-thermal analysis. For electric analysis, in node 0 there is electric 
current specified (the entering current density 퐽(0) is calculated and defined). In node L there is electric 
potential 휑(퐿) specified. For thermal analysis, there is the temperature 푡(0) and the heat flux 푞(퐿) 
specified for the nodes 0 and L, respectively (the heat is entering the node L). We assume also non-
constant (polynomial) internal heat generation 푄(푥), convection from the link surface with polynomial 
convective coefficient 훼(푥) and constant ambient temperature 푡  (the change of convection 
coefficient was chosen artificially very high to demonstrate accuracy of our new link finite element also 
under the limiting conditions).  Then the boundary conditions (see Figure 3) are: 
  퐼(0) = 1 A  
  휑(퐿) = 11 [V] 
  푡(0) = 10 [°C] 
  푞(퐿) = 15 600 [Wm ] 
  푄(푥) = 10 + 3 × 10 푥 − 75 × 10 푥  [Wm ] 
  훼(푥) = 100 + 223 125푥 − 4 568 750푥 + 30 546 875푥 − 66 406 250푥  [Wm K ] 
  푡 = 10 [°C] 

 
Figure 3: Boundary conditions for electro-thermal steady-state analysis. 

We also created 3D model in code ANSYS, we used over 550 000 SOLID69 elements. Total number 
of nodes were over 570 000. The task was also solved in software Mathematica, where the differential 
equations for electric and thermal fields with homogenized material properties and specified boundary 
conditions were numerically solved. Finally, the task was also solved by our new developed two-nodal 
link element using derived FEM equations [6] for nodes of the link and using supplemental equations 
[6] for chosen points in the region of the link (41 points together). In Figure 4 we can see calculated 
longitudinal distribution of the electric potential and temperature in the conductor and in Figure 5 there 
is distribution of the electric current densities and heat fluxes for chosen layers (1st, 6th and 11th) of the 
1st and 6th sublayer. 
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Figure 4: Longitudinal distribution of the electric potential and temperature in the conductor. 

 
Figure 5: Electric current densities (left) and heat fluxes (right) for 1st, 6th and 11th layers within the 1st (top) and 

the 6th (bottom) sublayers. 

4 Conclusion 
We can see that obtained results correspond to ANSYS 3D simulation very well. But there is notable 

difference for current densities and heat fluxes results near the nodes of the bar where appropriate 
boundary condition was applied. It is caused due to the fact that 3D ANSYS model has to fulfil these 
boundary conditions for every element in this nodal area (curves of current densities and heat fluxes 
actually meet in one point). But our new developed finite thermal element is 1D system and the current 
density and heat flux are secondary variables, so the mentioned boundary conditions are fulfilled only 
on global level (for homogenized values 퐽 (푥) and 푞 (푥)), not for layers. This behaviour and difference 
in results is classic example of local effect caused by simplification of the real system into a 1D system. 
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