
99

201
8

APPLIED MECHANICS 2018
April 9 - 11, 2018, Myslovice, Czech republic 

FLOWPRO - MULTIPURPOSE CFD SOFTWARE
WRITTEN IN JAVA
A. Pecka1, O. Bublı́k2, J. Vimmr3

Abstract: FlowPro is a multipurpose open-source CFD software, which is being developed by the researchers of the Depart-
ment of Mechanics of the Faculty of Applied Sciences at the University of West Bohemia. FlowPro is designed to solve various
non-linear systems of hyperbolic-parabolic partial differential equations in one, two or three dimensions. It is also capable of
solving fluid-structure interaction problems. The computational core is based on the discontinuous Galerkin method, a numeri-
cal method capable of obtaining high-order accurate solutions. In order to achieve a high performance the distributed computing
is also possible. FlowPro is implemented in the Java programming language in order to simplify the use on various platforms.
A notable strength of FlowPro is the possibility to implement new mathematical models via a well documented API. Another
advantage is the option to automate complex computations via the Matlab/Python interface.

Keywords: FlowPro; discontinuous Galerkin method; CFD

1 Introduction
FlowPro is a software designed to solve a wide range of non-linear hyperbolic-parabolic partial

differential equations in one, two or three dimensions. Let Ω ⊂ RD be a time-dependent domain in
general and let D be the dimension. We consider the following system of M equations

∂u

∂t
+
∂fα
∂xα

(u, ∂u) = s(u, ∂u), (1)

where α = 1, . . . , D is the summation index, u is the unknown vector, fα is the total flux and s is the
source term. The total flux can be separated into the advection and diffusion as follows

fα(u, ∂u) = fAα (u)− fDα (u, ∂u). (2)

The advection and diffusion terms are dealt with differently from the numerical point of view. The
concrete mathematical model is determined by the flux functions. FlowPro contains an API called Flow-
ProAPI, which enables the user of FlowPro to define new or modify existing mathematical models by
implementing the advection and diffusion fluxes and the production term as well as boundary and initial
conditions according to the well documented interface.

The main purpose of FlowPro is to simulate compressible fluid flow problems, hence there are a num-
ber of predefined fluid flow mathematical models, e.g. compressible Euler and Navier-Stokes equations,
the shallow water equations and the ideal magnetohydrodynamics equations. FlowPro is also capable of
solving problems with moving mesh and the fluid-structure interaction problems. For this reason, Flow-
ProAPI contains an interface for the definition of the structure model. The structure model consisting of
particles connected by springs and dampers is already available in FlowPro, but just as before a user can
defined new structure models.

The underlying algorithm for the solution of the system (1) is based on an implicit discontinuous
Galerkin scheme, which is to be described in the upcoming section. The discontinuous Galerkin method
[1, 2] is a substantially stable and robust method that naturally offers an arbitrary high order of spatial
accuracy by choosing basis polynomial of appropriate order.

1 Aleš Pecka; KME, FAV, University of West Bohemia in Pilsen; pecka@kme.zcu.cz
2 Ondřej Bublı́k; NTIS, FAV, University of West Bohemia in Pilsen; obublik@ntis.zcu.cz
3 Jan Vimmr; NTIS, FAV, University of West Bohemia in Pilsen; jvimmr@ntis.zcu.cz



100

2 Implicit discontinuous Galerkin scheme
Let T = {Ω1, Ω2, . . . , ΩK} be the partition of the domain Ω. Note that the domain Ω = Ω(t) and

the individual elements Ωk = Ωk(t) are time dependent in general although we do not always explicitly
write that. The discontinuous Galerkin discretisation [1, 2] is based on replacing the infinite-dimensional
space with its finite-dimensional subspace, which we choose as

Sh = {w ∈ L2(Ω) : w|Ωk
∈ P q(Ωk), ∀Ωk ∈ T }, (3)

where P q(Ωk) is the space of polynomial of degree up to q on Ωk. Taking the dot product of each side of
(1) with a test function φ ∈ [Sh]M , integrating it over a mesh element Ωk and applying the divergence
theorem yields∫

Ωk

∂u

∂t
· φ dΩ−

∫
Ωk

fα ·
∂φ

∂xα
dΩ +

∮
∂Ωk

F(u±, ∂u±, ~n) · φ− dS −
∫

Ωk

s · φ dΩ = 0. (4)

In case of the discontinuous Galerkin method we allow discontinuities at the boundary of each element
Ωk and so the value in not known on ∂Ωk. Therefore, we approximate the normal total flux fα(u)nα by
the total numerical flux F on ∂Ωk. The advection and diffusion parts are approximated separately as

fAα (u)nα ≈ FA(u±, ~n),

fDα (u, ∂u)nα ≈ FD(u±, ∂u±, ~n),

whereF = FA−FD. We use the Lax-Friedrich flux as the advective numerical flux and for the diffusion
part we use the interior penalty method.

Both the test function φ = φ(x, t) and the elements Ωk = Ωk(t) are time dependent in general.
Hence, we need to employ the Reynolds transport theorem to bring the time derivative outside the inte-
gral. Reynolds transport theorem along with the assumption that the test function moves with the mesh
velocity yields

d
dt

∫
Ωk

u · φ dΩ−
∫

Ωk

(fα − Vαu) · ∂φ
∂xα

dΩ−
∫

Ωk

s · φ dΩ

+

∮
∂Ωk

[
F(u±, ∂u±, ~n)− Vαnα{{u}}

]
· φ− dS = 0, (5)

where {{u}} = 1
2(u− + u+) denotes the average value. It remains to choose basis functions ϕki for each

element Ωk, substitute the basis functions for the test function φ and expand the solution as a linear
combination of basis functions

uh(x, t)
∣∣∣
Ωk

=
∑
j

u
(k)
j (t) ϕ

(k)
j (x, t). (6)

In FlowPro the Lagrange basis functions are used.
The semi-discrete scheme can be written in the matrix form as the following system of ordinary

differential equations

d(MU)

dt
= R(U), (7)

where M is the global mass matrix, U is the global vector of basis coefficients and R is the global
residual vector. The semi-discrete scheme is discretised by the backward difference formula (BDF).
Applying BDF of order R results in the non-linear system of equations

1

∆tn

R∑
r=0

ar(MU)n+1−r −R(Un+1) = 0, (8)



101

with given coefficients a0, . . . , aR. Applying Newton’s method to the non-linear system of algebraic
equation (8) we acquire the following iterative procedure

A︷ ︸︸ ︷[
a0

∆tn
Mn+1

s − ∂R

∂U
(Un+1

s )

] x︷︸︸︷
∆U =

b︷ ︸︸ ︷
R(Un+1

s )− 1

∆tn

[
R∑
r=1

ar(MU)n+1−r + a0(MU)n+1
s

]
,

Un+1
s+1 = Un+1

s + ∆U, (9)

which is initiated by Un+1
0 = Un. The linear system (9) is solved by the GMRES algorithm with the

block diagonal preconditioner.

3 Implementation
One of the strengths of FlowPro is that the algorithm is written in a hight level programming lan-

guage, Java to be specific, using object oriented programming including inheritance in many occasions.
This makes the solver of FlowPro very flexible. For instance the mathematical model or the structural
model for the FSI simulation can be defined by the users with the aid of FlowProAPI. A couple of ba-
sic fluid and structure models are available in FlowPro. Furthermore, the solver is capable of solving
problems in one, two or three dimensions without code duplicity. This flexibility is heavily dependent
on Java’s inheritance. Below are examples of available mesh elements in one, two and three dimensions
each with a sample computation.

Each element has its associated quadrature points. New mesh elements can also be defined, e.g.
mesh elements with curved boundary.

FlowPro is capable of utilising all of the CPU’s computational power by employing multiple threads
for computing. In particular, the subject for parallelisation is the linear solver. A majority of the compu-
tational time during execution of an iterative linear solver is spent on matrix-vector multiplications Av,
where A is a sparse matrix that appears in the linear system and v is a given column vector. The parallel
implementation lies in performing the products of rows of A with the vector v in parallel. Other vector
operations involved in the algorithm are parallelised in the same manner. This type of implementation
is suitable to be performed among CPU cores of each computational node since the CPU cores share



102

memory. On the other hand, inefficient for parallel computing among nodes in the computer network, as
the data transfer among nodes would be too frequent.

FlowPro also supports distributed computing, that is parallel computing on the level of a computer
network. For this purpose the overlapping Schwarz method [3] is used. For this purpose an analogy to an
MPI library was implemented using Java socket. It is designed not only for computer clusters, but also
for a heterogeneous computer networks.

4 Example simulations
As it has been already mentioned, FlowPro has a couple of mathematical models available and on the

top of that it supports creation of new models. Below are sample simulations for a couple of mathematical
models obtained by FlowPro.

Shallow water equations

The system of shallow water equations reads

∂h

∂t
+
∂(huj)

∂xj
= 0,

∂hui
∂t

+
∂

∂xj

(
huiuj +

gh2

2
δij

)
= 0. (10)

We choose a water drop simulation as an example. The water level at various times is plotted in Figure 1.

Figure 1: Shallow water equations - water drop simulation.

Euler/Navier-Stokes equations

The system of compressible Euler/Navier-Stokes equations can be written in the dimensionless form
as follows

∂%

∂t
+
∂(%uj)

∂xj
= 0,

∂%ui
∂t

+
∂

∂xj
(%uiuj + pδij) =

1

Re
∂τij
∂xj

, (11)

∂E

∂t
+
∂(E + p)uj

∂xj
=

1

Re
∂

∂xj

[
τijui +

κ

κ− 1

1

Pr

∂

∂xj

(
p

%

)]
,



103

which is completed by the following relations

p = (κ− 1)

[
E − 1

2
%

2∑
i=1

u2
i

]
, (12)

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

. (13)

Here we choose three sample simulations, namely an inviscid flow around MIG21, Kármán vortex street,
which is viscous internal flow and finally a viscous flow around NACA0012 aerofoil. These examples
are respectively show in Figures 2, 3 and 4.

Figure 2: Euler equations - flow around MIG15 with the free-stream Mach number 0.5.

Figure 3: Navier-Stokes equations - Kármán vor-
tex street with the Reynolds number 3000 and
free-stream Mach number 0.2. Figure 4: Navier-Stokes equations

- flow around NACA0012 aerofoil
with the Reynolds number 5000 and
free-stream Mach number 0.75.



104

Ideal magnetohydrodynamics equations

The system of ideal magnetohydrodynamics equations reads

∂%

∂t
+
∂(%uj)

∂xj
= 0,

∂%ui
∂t

+
∂

∂xj
(%uiuj + pδij +

1

2
BkBk −BiBj) = 0,

∂Bi
∂t

+
∂

∂xj
(uiBj −Biuj) = 0, (14)

∂E

∂t
+

∂

∂xj

[
(E + p+

1

2
BkBk)uj −Bj(ukBk)

]
= 0,

∂Bj
∂xj

= 0.

Here we choose a classical magnetohydrodynamics rotor test problem [4], where the initial condition is a
rotating cylinder with density ten times that of the surrounding environment. A snapshot of the solution
at time t = 0.15 is shown in Figure 5.

density Mach number thermodynamic pressure magnetic pressure

Figure 5: Ideal magnetohydrodynamics equations - rotor test problem at time t = 0.15.

Acknowledgement
This work was supported by the project SGS-2016-038.

References

[1] COCKBURN, Bernardo and Chi-Wang SHU. The Local Discontinuous Galerkin Method for Time-
Dependent Convection-Diffusion Systems. SIAM Journal on Numerical Analysis. 1998, 35(6),
2440-2463.

[2] DOLEJŠÍ, V., M. HOLÍK and J. HOZMAN. Efficient solution strategy for the semi-implicit discon-
tinuous Galerkin discretization of the Navier-Stokes equations. Journal of Computational Physics.
2011, 230(11), 4176-4200.

[3] SCHWARZ, H. A. Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der
Naturforschenden Gesellschaft, 1870, 15, 272-286.

[4] TÓTH, Gábor. The ∆ ·B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes. Jour-
nal of Computational Physics. 2000, 161(2), 605-652.


