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Abstract: This study shows a methodology to estimate mechanical parameters of thin films by means of a bulge 

test and a numerical approach. The methodology is based on the combination of finite element analysis with a  

classical analytical method. Finite element modelling was conducted for monolayer (Si3N4) membranes of 

2x2mm with the aim to approximate both the load-deflection curves experimentally measured and the classical 

load-deflection analytical model. Error functions were constructed and minimized to delimit a coupled solution 

space between Young’s modulus and Poison’s ratio. In a traditional bulge test analysis only one of the elastic 

properties can be determined due to that there is not unique solution in the estimations of these parameters. 

However, both elastic parameters were determined through the proposed numerical procedure which compares 

the deformed surfaces for a specific set of optimal elastic parameters computed. Results show that the estimated 

elastic properties agree with corresponding values determined by other methods in the literature.  
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1 Introduction 

Thin films are used in several engineering fields especially those related to microelectronics (ultra 

large scale integrated circuits), microelectromechanical systems (MEMS), nano-devices, coating 

applications, biomedical devices among others [1]. Integrated functionality has forced the processing 

of these structures to micro and nanometer scales. In this way, thin films require controlled processes 

and robust instrumentation to achieve the geometric conditions required for each application. 

However, the control of its mechanical behaviour presents additional challenges if intrinsic mechanical 

properties of thin films are unknown since it is not a trivial task to identify it till this time. Different 

experimental techniques have been developed to estimate mechanical properties of thin films, such as 

indentation, diffraction-based techniques, Raman spectroscopy, deflection techniques among others [2-

3]. In contrast to the techniques mentioned above, a bulge test (deflection technique) can be 

highlighted and in comparison, with the other methods it presents several advantages that are 

mentioned and discussed in [3]. 

The bulge test technique consists of applying pressure on a membrane for measuring the 

displacement field [4-5]. Experimental load-deflection curve was analysed using different techniques 

to determine the elastic parameters that satisfy the measurements, in which we can point out fitting 

techniques and finite element analysis [6-8]. These techniques assume that the elastic parameters are 

decoupled or these are mechanically independent since in some cases, Poisson’s ratio is fixed to obtain 

a solution for Young’s modulus. 
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This paper shows that the coupling conditions of Young’s modulus and Poisson’s ratio can be used 

for determining both elastic parameters combining finite element analysis with the classical 

identification method. 

2 Materials and Methods 

2.1 Experimental setup 

A bulge test apparatus was constructed for thin films testing as shown in Figure 1a. The 

differential pressure is applied using an industrial grade piston that presses the air by a computer-

controlled syringe pump. The pressure is measured by a low-pressure transmitter with maximal error 

0.02% FS which is connected to a data acquisition system. The shape of the membrane is captured by 

an interferometric system (Twyman-Green-type interferometer) in which the light source is composed 

by a fiber-coupled HeNe laser with wave-length of 633 nm. The beam is split into a measuring beam 

that reflects off the measured sample and a reference beam that reflects off a reference mirror with 

high surface flatness λ/10.  The measuring beam then interferes with the planar reference beam at the 

output of the interferometer forming interference fringes that are projected onto the camera sensor 

using a camera lens (Nikon 50mm f/1.4 NIKKOR G). Interference signals captured on each camera 

pixel are then used to determine the displacement field at the z position which is normal to the surface 

of the thin film. Number of points for which the z position was evaluated is dependent on the size, but 

usually exceeds 40 000. In a left part of Figure 1b, the scheme of the setup is shown. Right part of 

Figure 1b presents interference pattern corresponding to the tested membrane deformation. The device 

is also equipped with sensors to measure the ambient temperature, pressure and humidity required for 

air refractive index calculation. Detailed information about the experimental setup can be found in [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: a. Experimental setup of bulge test. b.  Scheme of the experimental setup and image of the membrane. 

2.2 Classical analytical equation for estimation of mechanical parameters 

Let’s considers a rectangular thin film 2 2a b   pre-stressed by 
r

   and made of an isotropic elastic 
material that satisfies a linear stress–strain relationship. Under pressure conditions P ,  the shape of the 
thin film is defined by the surface deformation.  In those conditions, [6] reported a classical analytical 
equation that relates the maximum deflection 

0
w  and pressure P  as follows 
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where 
1

C  and 
2
( )C v   are constants that depend on geometric and material parameters, different models 

and numerical estimations have been proposed for both constants as described by [5], [7-8]. 
r

  

represents the residual stress, t is the thickness and E  Young’s modulus.  In real applications, 

experimental data  obtained  for 
0

w  and P   are fitted with the aim to determine  
r

 , E  and Poisson’s 

ratio . However, the values of 
1

C  and 
2

C   are assumed according to the chosen approximation 

techniques as can be seen in [8], [10]. In a practical sense, these constants should take fix values but 

those depend on the techniques developed for each problem which in turn affect the identification 

process of properties.  The coupling of the Young’s modulus and Poisson’s ratio have been neglected 

in the load-deflection analysis since one of the parameters should be fixed to estimate one of the 

elastic properties. To overcome these challenges, the combination of the analytical model with finite 

element analysis shows that an estimation of both elastic parameters can be carried out, as it will be 

described in the next sections.  

2.3 Numerical approach for determining elastic properties 

To determine Young’s modulus and Poisson’s ratio a sequential numerical procedure is presented 

in Figure 2 by means of a flow diagram. It consists in a set of 10 steps that permit to obtain both 

parameters combining finite element analysis with the classical analytical solution (see Equation 1).  

Initially, a finite element model with the required geometric dimensions should be performed 

including its boundary conditions which are considered clamped in the external domain of the thin 

film as illustrated both in Figure 1b and Figure 2.  

 The bulge test modelling by finite element analysis is a well-known practice for many years ago 

(see [6-10]) since the geometries are very simplified and in practice the numerical analysis is not a 

complex engineering task considering that mechanical parameters are known. However, for the 

analysis it is important to take into account large deformations since the thicknesses are very thin 

(nanometric scale). Large deformations mean that the stiffness changes with the level of input load.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Sequential procedure for estimating Young’s modulus and Poisson’s ratio. 



160

 Following the proposed method, first three steps deal with the estimation of 
1

C  and  
r

  

parameters from the finite element model and experimental data. 
1

C  is dependent on the residual stress 

r
  as described in [3]. Therefore, if with the finite element model a set of output data m  is created 

with input parameters known ( , , 1, 2 , ..
j r j j

E v j m   ), it is possible to determine 
1

C   adjusting those 

output data in Equation 1. Posteriorly,  
1

C  is used to compute the residual stress 
r

  using the 

experimental data for any Young’s modulus chosen in Equation 1. We suggest to choose a value close 

to materials with similar mechanical characteristics since for the true solution is an initial value. 

In the steps 4, 5 and 6 the main objective is to establish a model for 
2
( )C v  constant only from the 

simulations.  According to analytical solutions described by [6-10],  
2
( ) 1C v v v     function is 

presented here, considering that different values of  ,   have been determined with numerical and 

analytical approximations as summarized by [3]. In our case, we propose numerical estimations 

obtaining a set of two parameters 
i

E  and , 1, 2
i

v i   that satisfy the load-deflection curve obtained 

experimentally. Then, with all parameters determined (
1

, ,
i r

E C ) and experimental data, 
2 ( )i

C  is 

obtained with both Poisson’s ratio found. So, parameters ,   are calculated as follows 
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Using   and   values, we can calculate any value of 
2
( )C v  with values of v  known. With all 

parameters calculated until the step 7, the following error function can be mapped such as 
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where subscript k  means a set of parameters 
k

E  and 
k

v  determined for each load-deflection curve 

with n  data. The result of Equation 3 is an error surface in which the minimum errors should be in the 

places where a set of E  and v  satisfy the experimental measurements. According to previous 

exploratory data analysis done in our study, it was found that a linear approximation can define the set 

of optimal solutions for 
k

E  and 
k

v  such as described in the step 8. Until this step, we found a set of 

parameters that approximate the analytical equation and the finite element model, this is due to that 

between both parameters elastic coupling exists. To compute a unique solution the following index is 

created  
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Equation 4 was established to compare a 30% of the displacement field between the finite element 

models and the measured data. The minimum value  
( )

m in , 1, 2 ...,
c k

e k p   indicates that the elastic 

parameters ( *
E  and *

v ) are the best approximations for the load-deflection curves obtained 

experimentally.  

3 Results 

For the application of proposed methodology, experimental tests were conducted for commercial 

silicon nitride films (
3 4

S i N )  with 2 2m m  of surface and 500nm  of thickness. The tests were carried 

out in the apparatus described in Section 2.1, detailed information about it can be reviewed in [9].  
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Applying the procedures described until the step 6 (see Section 2.3), the following constants were 

determined; 
1

166 2 .5 , 3 .373, 1 .9690
r

M P a C      and 0 .4 5 9 4   .  Figure 3a shows the error 

function ( , )
p

e E v  established in Equation 2 which in turn was computed with the parameters anteriorly 

expressed in the domains (200, 280 )E M P a  and (0 .2 , 0 .4 )v  . It is observed that there is a region in 

which the elastic values minimize the function ( , )
p

e E v . As we proposed, these values listed in Table 1 

are approximated by a linear relationship. The values indicate that all pairs satisfy load-deflection 

curve with good accuracy since these are mechanically coupled.  

 

E  [MPa] v  

 220.7 0.322 

230.4 0.286 

232.4 0.278 

235.4 0.267 

240.0 0.250 

245.1 0.230 

250.2 0.211 

Table 1: Elastic parameters that minimize ( , )
p

e E v . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3: a. ( , )
p

e E v  error function. b. RMS cubic error scheme of the experimental setup. c.  Load-deflection 

curve comparisons. 

  

As described in step 9, values listed in Table 1 are used to perform finite element simulations to find 

an optimal solution inside the chosen values.  These values represent a specific case of the 

experiments. Then, an optimal solution is found in the minimum of ( , )
c

e E v , for our test, it was 
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determined as 232.45 3E M Pa  and 0.278 0.01v    with five experiments analysed. The results are 

shown in Figure 3b.  

In Figure 3c, it can be observed that the numerical solutions agree with the experimental data, 

computations were done to verify that calculated solution adjusts the measured data. Additionally, for 

the maximum state of pressure (9.57 KPa), the absolute error between finite element solution and 

experimental displacement field is evidenced. It is seen that results agree very well with the 

measurements since displacement errors are less than 1% in the majority of the bulge domain. 

Conclusions 

 

A numerical approach for identifying the elastic properties of thin films was described and applied, it 

based on bulge test analysis, classical analytical methods and finite element analysis. The main benefit 

lies in the determination of both properties Young’s modulus and Poisson’s ratio since in a traditional 

bulge test analysis only one of these can be determined. The proposed numerical procedure showed 

that comparing the deformed surfaces optimal elastic parameters can be found. Results showed that the 

estimated elastic properties agree with corresponding values reported by other methods in the 

literature.  
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