
Surfaces for Point Clouds using Non-Uniform Grids on the
GPU

Daniel Schiffner
Goethe Universität

Robert-Mayer-Strasse 10
60054, Frankfurt, Germany

schiffner@gdv.cs.uni-frankfurt.de

Claudia Stockhausen
Goethe Universität

Robert-Mayer-Strasse 10
60054, Frankfurt, Germany

stockhausen@gdv.cs.uni-frankfurt.de

Marcel Ritter
AHM, Universität Innsbruck

Technikerstrasse 21a
6020, Innsbruck, Austria

marcel.ritter@uibk.ac.at

ABSTRACT

Clustering data is a standard tool to reduce large data sets, such as scans from a LiDAR, enabling real-time ren-
dering. Starting from a uniform grid, we redistribute points from and to neighboring cells. This redistribution is
based on the properties of the uniform grid and thus the grid becomes implicitly curvilinear, which produces better
matching representatives. Combining these with a polygonal surface reconstruction enables us to create interactive
renderings of dense surface scans. Opposed to existing methods, our approach is running solely on the GPU and
is able to use arbitrary data fields to influence the curvilinear grid. The surfaces are also generated on the GPU to
avoid unnecessary data storage.
For evaluation, different data sets stemming from engineering and scanning applications were used and have been
compared against typical CPU based reconstruction methods in terms of performance and quality. The proposed
method turned out to reach interactivity for large sized point clouds, while being able to adapt to the point clouds
geometry, especially when using non-uniform sampled data.

Keywords
Surface reconstruction, point clouds, clustering, curvilinear grids

1 INTRODUCTION
With the increasing use of laser light detection and
ranging (LiDAR), applications easily generate sev-
eral billions of points measurements [PMOK14]
[OGW+13]. If semi-automated algorithms are to be
applied, interactive rendering of such large data sets
becomes important. However, such large amounts of
geometry data do not fit into the graphic hardware’s
memory as they easily reach hundreds of giga-bytes.
While out-of-core mechanisms are used, the generation
of the needed information cannot be solely computed
on the graphics card.
Our approach addresses one part of the overall problem
by generating a representation that allows interactive
rendering. We want to avoid as many pre-processing
steps as possible, and thus use a clustering algorithm
as our base method for data reduction. We leverage
the final grid definition to modify the grid using per-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

cell information, resulting in a curvilinear representa-
tion. Following these steps, we are then able to use
these curvilinear cells to produce better fitting surface-
representations based on cell-only information. In this
work, we enhance our previous definition and con-
tribute the following:

• Refined and more precise definition of the curvilin-
ear grid.

• Simple and robust surface normal estimation

• Different, dynamic reconstruction methods, ranging
from cells to surfaces

After providing some background information, we
gather related and previous work in section 2. The
approach is described in-depth in section 3 followed
by an evaluation and results in section 4. Here, the
main results regarding to timing and visualization are
presented and discussed. The article concludes in
section 5, and closes with thoughts on future work in
section 6.

2 RELATED AND PREVIOUS WORK
The application of vertex clustering recently has grown
in interest due to its fast processing capabilities. Linear

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 107 ISBN 978-80-86943-66-4

methods, such as grid based clustering methods, are es-
pecially well suited for large data sets that may contain
several million or even billion data points. By reducing
the input set, such as presented by DeCoro [DT07] or
Willmot [Wil11], the rendering of large data is possi-
ble again with a little overhead at the initial clustering
phase. In the latter case, individual attributes of an in-
put data set are stored separately to increase detail after
reduction.

Promising results have also been achieved by Peng and
Cao [PC12], as they are able to provide frame-to-frame
coherence when applying their reduction method. Their
approach is based on an edge collapse algorithm, which
was presented by Garland and Heckbert [GH98]. They
apply the computation of the quadric error metric in
parallel and then decide where to reduce and restruc-
ture the output triangles.

The selection of individual level of details is also a cru-
cial part and often includes offline processing methods.
In [SK12], we used a parallel approach to dynamically
update the current representation while retaining inter-
activity. This is done by first computing a raw estimate
of the object that is being refined during processing. In
our previous work [SRB14], we have used the cluster
move paradigm to enhance clustering of unstructured
point clouds. In Limper et al. [LJBA13], the so-called
POP Buffer has been introduced. The authors make use
of a simple clustering followed up by a sorting on the
CPU. This allows fast LOD exchange, as solely VBOs
are created that can also be instanced. None of the pre-
sented approaches makes use of the processing capabil-
ities provided by modern GPUs.

A comparison of two clustering algorithms has been
presented by Pauly [PGK02]. In this case, a hierarchi-
cal and an incremental clustering method are applied to
reduce and refine point-set-surfaces[ABCO+01]. Both
approaches showed good results regarding reduction
quality and run-time performance. Clustering, espe-
cially in the context of SPH data sets, has been utilized
by [FAW10] with a perspective grid. They include a hi-
erarchy (octree) in the data organization and apply tex-
ture based volume rendering in front to back order of
the perspective grid for drawing.

[PGK02] use a covariance technique in the point neigh-
borhood to compute a reconstructed ’surface normal’
and to measure a distance from a cluster point to the
original surface. A similar method based on the same
dyadic product, called the point distribution tensor, was
introduced in our previous work [RB12]. However, the
product also includes distance weighting functions and
the analysis based on the tensor’s Eigenvalues is dif-
ferent. Three scalar fields are derived from the sec-
ond order tensor called linearity, planarity, and spheric-
ity. These describe the geometric point neighborhood
and are normalized between 0 and 1. If points are dis-

P

M
d d

c

n

i
cb

Figure 1: Left: Detailed view of the marked cell in Fig-
ure 2. This graphic illustrates how a point is "moved"
from one cell to its neighbor below. A point P of the cell
c is assigned to a different cell if the largest component
di of the direction vector ~d from the cell center M to P
is larger than a certain cell bound cb which depends on
parameters of cell c and the neighboring cell n. Right:
Curvilinear grid after moving the points. Note that the
curvilinear grid is not computed explicitly. It is indi-
rectly defined by the points being assigned to the cells.

tributed on a straight line, linearity is high, and if points
are distributed on a plane planarity is high, respectively.
We pre-computed the planarity for some of the data sets
used in the benchmarks and include it in the clustering
process, such that variations in planarity are preserved
and homogeneous planar regions are clustered.

Besides the area of workstations the problem has
also been addressed for mobile devices. Rodríguez et
al. [RGM+12] presented a method for interaction with
giga-sample-sized point clouds on mobile devices. The
solution is based on a server-client framework, with
a previous pre-processing step. In the pre-processing
step, the data is partitioned as a kd-tree and reduced to
a target point size. The points are reduced by merging
points with their closest neighbor with compatible
normals. For a further overview of 3D graphics on
mobile devices we refer to Koskela et al. [KVA15]

3 OUR APPROACH
Our approach makes use of a simple vertex clustering
that can be computed and generated on the graphics
card. This initial clustering is used in a second itera-
tion to resize individual cells. The available informa-
tion hereby ranges from simple density distributions up
to more complex scenarios, where planarity is being
computed.

We enhance our previous definition [SRB14] by pro-
viding a more complex, but more powerful function to
compute the cell boundaries. We also pass surface in-
formation gathered during the clustering-stages to later
stages of the pipeline to allow dynamic reconstruction
of surfaces. The resulting surfaces are only created
within the graphics card, but can also be retrieved us-
ing transform feedback mechanics.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 108 ISBN 978-80-86943-66-4

It is noteworthy, that the source data is not altered dur-
ing the computation of the cell boundaries. The pro-
cessed vertex is only passed to a different cell within
the second iteration.

The presented approach works in multiple steps: clus-
ter, move, reduce, and reconstruct. Cluster and move
as well as reduce and reconstruct are pairwise related.
For this reason, they will be introduced together in the
following sections.

3.1 Cluster and Move
The cluster operation applies a classical vertex cluster-
ing, but we also accumulate information required for
the move operation. The incoming points are mapped
to a uniform grid. The grid might be warped via an
affine transformation as shown in figure 2. The point
position is converted to an cell index that is used in fur-
ther computations.

The move operation then identifies whether a point
needs to be placed in a neighboring cell. Based on
the accumulated information, e.g the number of points
inside a cell and the position, curvilinear cell bounds
are derived. If the current point is located outside the
curvilinear cell bound, it is emitted as being part of this
neighbor.

The given definition of the cell boundaries is curvilin-
ear, as a formula is given that modifies the actual bor-
ders. This is also illustrated in figure 1. In the follow-
ing, we provide the formula given by [SRB14]:

~d = P−M (1)
∆i = max

j=1..3
{|d j|} (2)

w(c,n) = min
(

lb,
(

dens(c)
dens(c)+dens(n)

)γ)
(3)

cb = w(c,n) (4)

∆i > cb

{
true, move P to n
f alse, skip

, (5)

Figure 2: Points are transformed into a local coordi-
nate system of the camera view frustum. Initial cells
are defined by a uniform grid. The clustering algorithm
operates in this coordinate system. The grid’s geometry
preserves more detail close to the camera and reduces
detail far way.

with M the center point of the current cell c, P a point
in c, i the index of the maximal component of vector ~d,
n the neighbor cell, lb a lower bound of the cell size of
c, cb the cell boundary in direction of the component i,
and γ a non-linear scaling factor.

For a point P, its direction vector ~d from the cell’s cen-
ter is computed. The maximal absolute component of
this vector is chosen, see Equation 1 and 2. Then, a
weight dependent on the current cell c and its neigh-
bor n, a lower bound and a non-linear scaling factor is
computed, defining a new theoretical cell bound cb, see
Equation 3 and 4. If the maximal component is larger
than this new cell bound, the point is assigned to the
neighbor cell, see Equation 5.

The dens(x) function operates on information available
inside a cell x and returns a scalar value. For data
sets having only point coordinates available, we use
the number of points inside a cell as density. Any data
available per point can be included in the density func-
tion. We also experimented using a pre-computed pla-
narity field [RB12]. This field describes a local geo-
metric property of the point cloud, influencing the move
operation.

The computational complexities of the cluster and move
operations scale with the size of the input data O(N).
Each cell, identified by the index, is processed and data
is accumulated per cell.

To apply this function to 3d objects, we enhance the
definition by replacing them by

∆ = P−M (6)

f (c,n) = 2
dens(c)

dens(c)+dens(n)
(7)

w(c,n) = clamp
(
(f (c,n))γ , lb,1− lb

)
(8)

idxc +=
3

∑
i=0

(w(c,ni)< ∆i) · idxni (9)

The function expands the current relative weights to the
range of [0,1] and limits it to the resulting range of
the lower bounds. The delta is used to relate the new
boundaries with the current location of the inspected
point. The resulting index of the current point (idxc) is
computed by the current index plus the possible offsets
(idxni). A Boolean value of false is "0", while a Boolean
value of true is "1", like in C.

In either case, a piecewise-linear shift for each cell
boundary is created. However, due to the fact, that each
cell has its own relative weights, these boundaries are
still curvilinear.

3.2 Reduce and Compute Normals
The reduce operation emits an representative for each
cell that has been previously computed. Thus, the out-
put is a reduced set of points. Any accumulated data can

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 109 ISBN 978-80-86943-66-4

be emitted and visualized as well. As the single cells
are iterated, the computational complexity is bound lin-
early with the number of cells O(C). After this reduc-
tion, the visualization of the reduced data set can be
done using classical splatting techniques.

To reconstruct surfaces, we derive a surface normal
along with the boundaries of the current cell. We are
able to approximate the surface normals by using two
different approaches. The first method leverages the
point-distribution tensor, whereas the second uses the
cell neighborhood. In the former case, the reconstruc-
tion operation computes the minor eigenvector and uses
it as the surface normal.

The surface normal approximation based on the cells
uses the density information gathered in the move op-
eration. We hereby assume, that the surface normal
will be oriented from a cell towards empty cells. Thus
we iterate the neighboring cells, and add up directions,
where the neighboring cells are empty. This yields a
surface normal, which points outwards from the current
cell. If all neighboring cells are empty, no normal can
be derived (which is correct).

Independent of the used approach, the estimated normal
vector has no preferred direction and has to be oriented.
We therefore use the positive-z axis in eye space, favor-
ing normal vectors that are facing towards the observer.

3.3 Dynamic Reconstruction
Based on the averaged cell position, the bounding box
and the optional estimated normal vector, we create ge-
ometric representatives for each cell. We use three dif-
ferent geometric objects: boxes, oriented splats, and
cell-filling-quads. One such geometric representative
is generated per cell. The boxes can the created from
the position and the bounding box, whereas the oriented
splats and the cell-filling-quads require the estimated
normal vector for correct vertex orientation.

The splats are given the radius based on the distance to
the neighboring cells, which can easily be derived to the
fixed relationship of the cells. Along with the estimated
surface normal, a perspective correct splatting can be
achieved.

In the case of the oriented surfaces, we use the surface
normal, to map 4 vertices in the bounding box. The
resulting positions are thus limited by the bounding box
of the current cell.

All methods share, that the created geometry is created
on the GPU, and no transfer or storage of this data is
required. By leveraging geometry shaders, the genera-
tion of new primitives can be achieved efficiently, as the
maximal number of primitives is limited by the grid res-
olution used during the vertex clustering stage. Thus,
we can derive a maximal number of vertices and ensure
interactive visualizations by limiting the grid size.

4 RESULTS
To create test results, we have implemented our ap-
proach with openGL using compute shader capabilities
that are available since version 4.3. We did not use an
openCL approach, as the data will be rendered directly
after the processing. This way, we have direct con-
trol on the results of the cluster algorithm when altering
the individual parameters. In the core specification, no
floating point atomic operations are specified but can be
added by using an extension from nVidia. When using
other vendors, one could emulate this feature, by con-
verting the float value to an integer. For further details,
the reader may be referred to [CCSG12].

As our approach consists of a cluster and a move step,
we can simply omit the latter to allow an evaluation
of the overhead generated. Thus, this algorithm ap-
plies a basic clustering to the input data set. A top-
down octree has been implemented using the CPU. Ob-
viously, the octree will not be able to compete in terms
of computation speed, but the reduced cells are used
for a visual comparison. We opted to use an octree
because the clustering methods presented in the back-
ground section either require heavy precomputations
([PGK02], [FAW10]) or use a hierarchical clustering
([DT07],[Wil11]). In the latter case, especially regard-
ing the work of [Wil11], we do not have several at-
tributes for our data, thus we cannot make use of the
advantages of this algorithm.

While processing large data sets, one must take special
considerations into account. One being the limitations
of the used graphics card. The compute shader capa-
bilities have several, graphics card dependent factors,
such as maximal work group size or maximal buffer
size. The latter is especially important for large data
sets, as a streaming of individual data is necessary. The
approach is able to compute partial solutions, as the grid
can be constructed in a streaming fashion. In the case of
the largest data set (refer to 1), the computation times
partially reached a Windows specific timeout (TDR),
where the driver is shutdown and restarted. We use a
swap of the back buffer to circumvent such an time-
out after each step. While not being optimal, as the
graphics is busy swapping a buffer, it allows to keep
the driver alive. Similar problems are known when us-
ing expensive shaders of any type, CUDA and OpenCL
applications. Additionally, an out-of-core mechanism
is required, if the used data exceeds the maximal buffer
size of the GPU. However, this is not taken into account
yet.

4.1 Time Measurement Results
Based on our application, several benchmarks have
been conducted. They vary in terms of input size, grid
size and used graphics card. In general, a test has been
repeated 10 times and the median time values are given.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 110 ISBN 978-80-86943-66-4

Timings are reported in milliseconds. Each test was run
with varying input parameters, i.e. the object and the
grid size. These benchmarks were executed on 3 dif-
ferent PC’s, running on Windows 7 and Linux. The
results are listed in table 1. The first system (1) uses
an i5-670 and a nVidia GeForce 680 GTX. The second
(2) uses an i5-333 with a GTX 780 Ti. The last ma-
chine (3) consists of an i5-3450 and a nVidia GeForce
GTX 460 with 1GB RAM. All systems operate on a
MS-Windows platform.

The results in table 1 are split into two sections, the grid
based operations and the visualization. The latter uses
a standard view, to be comparable among the different
tests. The number of reduced elements is given in the
first row of each data set. Note, that the test system 3
is running at its maximum capabilities, due to the avail-
able memory, and could not process the last data set
trivially. For this reason, we have excluded it from the
benchmark, as an out-of-core strategy needs to be used.

The individual timings indicate an overhead due to the
additional processing step of our approach. We have
an increase of approximately 100% if the move opera-
tion is used. Note, however, that our compute shader
has not been optimized and leaves room for further im-
provements. Currently, the move operation does a com-
plete reclustering of the source data instead of using the
results of the first stage.

A visualization of the presented timings using a differ-
ent grid size can be seen in Figure 3. Interestingly, the
computation times reduce, as the grid increases in size.
This is mainly due to the fact, that an atomic counter
is required, once an element is emitted into a cell. The
smaller the overall cell count, the more atomic writes
into an individual cell are required. This results in more
sequential writes in this case.

As one can easily see in Figure 3, the GeForce 460 GTX
is not able to compete with the newer generations. This
may be due to the limited memory as well as being the
first generation supporting compute shader capabilities.

To further emphasize the influence of each individual
processing step, i.e. cluster, move and reduce, we cre-
ated a visualization of these steps in figure 4. The move
operation uses approximately the same time as the clus-
tering. The influence of the neighborhood size, i.e.
zero, one or three, is negligible. The reduction in this
case uses the point-tensor reconstruction, which may be
opted out for an rougher and faster approximation.

4.2 Visual Results
The visualization technique draws either oriented
splats using elliptical weighted average (ewa) splatting
[ZPvBG02], a cell representation based on boxes or
a surface approximation, as described in section 3.3.
In figure 5 some results generated with our surface

25
50
75

100

200

300

400

500

75x75x15 150x150x50 200x200x100 275x275x100

T
im

e
 [

m
s
]

Grid Size

GTX 780
GTX 680
GTX 460

Figure 3: The influence of the grid size on the overall
performance of our algorithm. The GeForce 780 GTX
outperforms the other graphics cards. The 460 GTX is
not able to compete with any of the newer versions. We
used the GasTank data set for computation.

0

20

40

60

80

100

120

Cluster Only 1-Neighborhood 3-Neighborhood

T
im

e
 [

m
s
]

Method

Cluster
Move

Reduce

Figure 4: Timing values for each processing step of our
algorithm. The reported values are the median of all
runs. For this values, the medium sized object with
a grid size of 200x200x100 has been used. Measure-
ments were taken on the Test System 1.

reconstruction method are shown. We used the prior
mentioned data sets to apply a clustering. The number
of generated primitives is significantly lower than the
input count, thus achieving (in general) much higher
frame rates (refer to table 1).

The different methods of visualizations are generated
using a geometry shader using information stemming
from the bounding boxes and the normal estimation. In
case of the boxes representation, the normal estimation
step can be skipped. The other methods require a sur-
face normal for orientation. An overview of the results
using the Small River data set can be seen in figure 6.

As mentioned before, we use an octree implementa-
tion to show differences in restruction quality of our
approach. We selected an octree level, which approx-
imately generates the same number of primitives as our
approach, as seen in figure 7. Our algorithm is able to
create similar results, but is much more flexible and can
be solely computed on the GPU, which is not trivial to
achieve with the octree approach.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 111 ISBN 978-80-86943-66-4

Model Sys Our Cluster CPU Original Splat Boxes Surfaces
SmallRiver # 2.075.993 # 75.173 # 902.076 # 150.346

1 62.8 46.7 873.0 7.6 2.3 10.2 3.8
2 63.1 46.6 180.0 4.1 2.8 11.0 5.0
3 68.3 52.0 790.0 7.7 46.6 77.9 48.1

GasTanks # 11.133.482 # 67.993 # 815.916 # 135.986
1 65.7 49.3 4753.2 30.3 2.2 9.5 3.8
2 64.3 43.5 940.0 18.3 3.1 11.0 5.0
3 318.7 267.5 4110.0 37.0 46.3 79.7 48.4

RiverDam # 26.212.555 # 79.099 # 949.188 # 158.198
1 123.9 89.2 11006.6 71.8 2.2 9.3 3.8
2 97.9 65.1 2234.9 45.6 2.8 13.7 5.1

Table 1: Benchmark results of our GPU algorithm, a basic cluster approach, an CPU and an octree implementation.
All shown tests have been performed with a grid size of 150x150x50. Timings are reported in ms, the numbers in
the first row of each data set denote the number of elements used for visualization. Note that the test system 3 was
not able to perform the clustering due to hardware limitations, which may be the reason for the bad timings in the
visualization, despite the low number of vertices used.

(a) (b) (c)

(d) SmallRiver (e) GasTank (f) RiverDam

Figure 5: Top row: The used three point cloud data sets used for testing. Different sizes and different geometrical
distributions are benchmarked. The points in the LiDAR data sets are mainly distributed on surfaces with small
volumetric regions in vegetation and water. The point density varies relatively little over the whole data set.
Bottom row: Visual results of the surface reconstruction using clustering for the different data sets illuminated
using a headlight. The grid size is set to 150×150×50.

Both methods used for normal estimation provide sta-
ble results. The raw approximation based on the re-
duced cell set has a significant lower processing time
(about 40%), but the tensor method provides much
smoother and higher quality normals. A comparison of
the achieved results can be seen in figure 8. The holes
in both images method appear, as the cell-filling quads
are aligned on the surface normal.

We lastly tested the influence of the move operator and
the number of neighbors used, show in figure 9. As
seen in the timing measurements, the number of neigh-
bors does not significantly changes the processing time
of the move operator. The quality of the surfaces in-
creases with the larger number of neighbors used in
the curvilinear grid computation. In the case of 3-
neighbors, the discontinuity in the scan can better be
represented due to the better matching cells, than in the
other two cases. While the gaps between the individ-
ual quads disappear, there are still misplaced patches.

These arise do to missing neighborhood information in
these regions. Thus, the normal computation fails to
derive an unambiguous direction, yielding these mis-
placed patches. By increasing the neighborhood, these
cases can be avoided but with the cost of more expen-
sive computations.

5 CONCLUSION

We have presented a new approach to reconstruct sur-
faces by leveraging a non-linear clustering to arbitrary
objects. We are able to use multiple information from
the current geometry and are not limited any prepro-
cessing. The applied reduction is made selectively, due
to a restructuring of individual cells. Currently, our data
sets are point based and do not incorporate connectiv-
ity information. However, an extension to triangles or
polygons can easily be achieved, as shown by other re-
searchers ([PC12] [Wil11]).

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 112 ISBN 978-80-86943-66-4

(a) ewa splats (b) boxes

(c) surface

Figure 6: The small river data set geometrically reconstructed on the GPU. A geometric object is created per cell
based on its information, i.e. center point, density, cell-size, and normal vector. The top row illustrated ewa splats
and boxes. The bottom figure shows result of our surface reconstruction method. The model is illuminated using
a headlight.

(a) Our (b) Octree

(c) Octree high detail

Figure 7: Comparison of our approach and an octree reconstruction. The achieved quality is very similar, while our
approach is created solely on the GPU and does not require any precomputations. The high detail representation is
included to show the desired result. Note that the high detail representation fails to create a closed surface, as the
leaf-level of the octree does not fill the resulting gaps.

The computation times of the cluster move operations
are interactive for medium sized point clouds and has
a good performance with large data sets. Our imple-
mentation has not been optimized and leaves room for
further enhancements.
We have shown the differences between classical clus-
tering and our curvilinear implementation. Due to the
dynamic cells, details in an object are better preserved.
This increases the quality during a rendering and repre-
sents the topology of the basic object more accurately,
while still reducing the input data set.
The reconstruction of a surface based on the geomet-
ric properties of an individual cell allows different vi-
sualizations without the need of re-computation. We
use accumulated information of the cluster cells to cre-
ate simple per-cell geometric elements to approximate

a surface. We demonstrated three different elements on
a LiDAR data set, allowing to reconstruct a polygonal
digital surface model in real-time.

6 FUTURE WORK
The high performance of the compute shader drives us
to further investigate streaming of big data. This in-
cludes a fast discard of unnecessary data, as well as se-
lective reloading of individual fragments of a rendered
object. Especially, the efficiency of the move allows
repetitive execution (more iterations) or more complex
grid modifications. The current restrictions to direct
neighbors can be removed with the cost of additional
lookups during the move operation. We assume that this
will further improve the quality of the clustering.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 113 ISBN 978-80-86943-66-4

(a) Normals using empty cells (b) Normals using point tensors

Figure 8: Comparison of our normal computations based on the reduced cells. The surface normals based on
the tensor are more stable and produce more smooth approximations, but has significantly higher computational
complexity. As one can see, the planar regions show less jitter in the tensor case. Both images were created using
the cell-filling quads for visualization.

(d) Cluster only (e) Single neighbor (f) Three neighbors

Figure 9: Comparison of the different neighborhood computations. On the left, the move operation has been
skipped, i.e. cluster only), where as the middle image shows the single neighbor result. In the right picture, 3
neighbors were taken into account, resulting in less gaps in the visualization. The outliers arise due to the surface
normal estimation, which is performed in an online manner. The lower row shows an overview of the data set.

As the cell-filling quads are an interesting starting point,
to polygonalize a surface, we think, that curved sur-
faces, such as Bézier or NURBS patches, do better
match the underlying geometry. However, further test-
ing needs to be done, how these patches can be utilized
without any larger pre-processing of the data set. Fur-
thermore, these patches could be controlled in terms of
level of detail by a tessellation-shader, further enhanc-
ing the dynamic reconstruction.

An interesting topic is the dynamic construction of
reusable information by defining a maximal footprint
of GPU memory to use. In this case, LoD algorithms
need to be applied, to ensure correct selection and evic-
tion of primitives for display.

We will improve the quality of the tensor computation,
especially by investigating better points of reference

than the center point of a cluster cell. We intent to rep-
resent more information gathered in the tensor in the
geometrical reconstruction. We will enable the recon-
struction of linear structures besides planar ones. We
want to improve the cell-filling-quads generation to bet-
ter represent partially smooth closed surfaces.

Acknowledgements. This work was supported by the
Austrian Ministry of Science BMWF as part of the Kon-
junkturpaket II of the Focal Point Scientific Computing at
the University of Innsbruck and as part of the UniInfrastruk-
turprogramm of the Research Platform Scientific Computing
at the University of Innsbruck and funded by the Austrian
Science Fund (FWF) DK+ project Computational Interdisci-
plinary Modeling, W1227-N16. We like to thank Frank Stein-
bacher [ahm15] to provide the LiDAR data sets.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 114 ISBN 978-80-86943-66-4

7 REFERENCES
[ABCO+01] Marc Alexa, Johannes Behr, Daniel Cohen-Or,

Shachar Fleishman, David Levin, and Cláu-
dio T. Silva. Point Set Surfaces. In Thomas
Ertl, Kenneth I. Joy, and Amitabh Varshney,
editors, IEEE Visualization. IEEE Computer
Society, 2001.

[ahm15] 2015 (accessed March 9, 2015).
http://ahm.co.at.

[CCSG12] Cyril Crassin and Simon Green. Octree-Based
Sparse Voxelization Using the GPU Hardware
Rasterizer. In Patrick Cozzi and Christophe
Riccio, editors, OpenGL Insights, pages 303–
319. CRC Press, July 2012. http://www.
openglinsights.com/.

[DT07] Christopher DeCoro and Natalya Tatarchuk.
Real-time Mesh Simplification Using the GPU.
In Proceedings of the 2007 Symposium on In-
teractive 3D Graphics and Games, I3D ’07,
pages 161–166, New York, NY, USA, 2007.
ACM.

[FAW10] Roland Fraedrich, Stefan Auer, and Rüdi-
ger Westermann. Efficient high-quality vol-
ume rendering of sph data. Visualization and
Computer Graphics, IEEE Transactions on,
16(6):1533–1540, 2010.

[GH98] Michael Garland and Paul S. Heckbert. Sim-
plifying surfaces with color and texture using
quadric error metrics. In IEEE Visualization,
pages 263–269, 1998.

[KVA15] Timo Koskela and Jarkko Vatjus-Anttila. Op-
timization techniques for 3d graphics deploy-
ment on mobile devices. 3D Research, 6(1):1–
27, 2015.

[LJBA13] M. Limper, Y. Jung, J. Behr, and M. Alexa.
The pop buffer: Rapid progressive clustering
by geometry quantization. Computer Graphics
Forum, 32(7):197–206, 2013.

[OGW+13] Johannes Otepka, Sajid Ghuffar, Christoph
Waldhauser, Ronald Hochreiter, and Norbert
Pfeifer. Georeferenced Point Clouds: A Survey
of Features and Point Cloud Management. IS-
PRS International Journal of Geo-Information,
2(4):1038–1065, 2013.

[PC12] Chao Peng and Yong Cao. A GPU-based Ap-
proach for Massive Model Rendering with
Frame-to-Frame Coherence. Comp. Graph.
Forum, 31(2pt2):393–402, May 2012.

[PGK02] Mark Pauly, Markus Gross, and Leif P.
Kobbelt. Efficient Simplification of Point-
sampled Surfaces. In Proceedings of the Con-
ference on Visualization ’02, VIS ’02, pages
163–170, Washington, DC, USA, 2002. IEEE
Computer Society.

[PMOK14] N. Pfeifer, G. Mandlburger, J. Otepka, and
W. Karel. OPALS - A framework for Airborne
Laser Scanning data analysis. Computers, En-
vironment and Urban Systems, 45(0):125 –

136, 2014.

[RB12] Marcel Ritter and Werner Benger. Recon-
structing Power Cables From LIDAR Data
Using Eigenvector Streamlines of the Point
Distribution Tensor Field. Journal of WSCG,
20(3):223–230, 2012.

[RGM+12] Marcos Balsa Rodriguez, Enrico Gobbetti,
Fabio Marton, Ruggero Pintus, Giovanni Pin-
tore, and Alex Tinti. Interactive exploration
of gigantic point clouds on mobile devices. In
VAST, pages 57–64, 2012.

[SK12] Daniel Schiffner and Detlef Krömker. Parallel
treecut-manipulation for interactive level of de-
tail selection. In 20th International Conference
in Central Europe on Computer Graphics, Vi-
sualization and Computer Vision, volume 20,
2012.

[SRB14] Daniel Schiffner, Marcel Ritter, and Werner
Benger. Using curvilinear grids to redistribute
cluster cells for large point clouds. Proceedings
of SIGRAD 2014, pages 9–16, 2014.

[Wil11] Andrew Willmott. Rapid Simplification of
Multi-Attribute Meshes. In High-Performance
Graphics 2011, August 2011.

[ZPvBG02] Matthias Zwicker, Hanspeter Pfister, Jeroen
van Baar, and Markus H. Gross. Ewa splatting.
IEEE Trans. Vis. Comput. Graph., 8(3):223–
238, 2002.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 115 ISBN 978-80-86943-66-4

