
Analysis of 3D Mesh Correspondences Concerning Foldovers

Johannes Merz
TU Darmstadt

Darmstadt,
Germany

johannes.merz@
gris.tu-darmstadt.de

Roman Getto
TU Darmstadt

Darmstadt,
Germany

roman.getto@
gris.tu-darmstadt.de

Tatiana von Landesberger
TU Darmstadt

Darmstadt,
Germany

tatiana.von.landesberger@
gris.tu-darmstadt.de

Dieter W. Fellner
TU Darmstadt &
Fraunhofer IGD,

Darmstadt,
Germany

dieter.fellner@
gris.tu-darmstadt.de

ABSTRACT
Foldovers (i.e., folding of triangles in a 3D mesh) are artifacts that cause problems for morphing. Mesh morphing
uses vertex correspondences among the source and the target mesh to define the morphing path. Although there
exist techniques for making a foldover-free mesh morphing, identification and correction of foldovers in existing
correspondences is still an unsolved issue.
This paper proposes a new technique for the identification and resolution of foldovers for mesh morphing using
predefined 3D mesh correspondences. The technique is evaluated on several different meshes with given corre-
spondences. The mesh examples comprise both real medical data and synthetically deformed meshes. We also
present various possible usage scenarios of the new algorithm, showing its benefit for the analysis and comparison
of mesh correspondences with respect to foldover problems.

Keywords
Foldover, Correspondence, Morphing, Mesh Comparison

1 INTRODUCTION
Mesh morphing is commonly used in various computer
graphic applications for interactively showing animated
correspondence between two meshes – the source mesh
and the target mesh. Mesh morphing can be described
as the continuous deformation from a graphical object
to another one [Gom99]. During the deformation the
points from the first mesh move to their corresponding
points on the second mesh along the correspondence
path.

Morphing methods using linear paths between mesh
correspondences can show problems if the source
triangle folds over during the morphing process. It
means that a triangle t with a positively-oriented area
is mapped to a triangle f (t) with a negatively-oriented
area [Ebk+13] (see Figure 1). Foldovers often occur,
for example, when morphing between complex meshes
like an automatically segmented and expert-segmented
liver from 3D medical images. Foldovers can produce
unnaturally looking morphing sequences. Moreover,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the foldover problem can lead to undesirable blending
of neighboring textures when using texture mapping
algorithms. Therefore, we need to identify and to
resolve such foldovers.

(a) No foldover. (b) Foldover.

Figure 1: (a): no foldover. During the morphing
from the source mesh (blue) to the target mesh (green)
the center point does not leave the neighboring region.
However in (b) this is the case, causing the positive area
of the brown triangle to become negative: a foldover.

Mesh morphing may rely on point-to-point mesh cor-
respondences, which are used for defining morphing
paths. There are various methods for defining mesh cor-
respondences [Tam+13; Tam+14; van+11]. One pos-
sibility is to use the correspondences determined by
local mesh distance measures such as the surface dis-
tance or the extended surface distance [CRS98; GJC01;
GKL15] . The (Extended) Surface Distance relates one

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 149 ISBN 978-80-86943-66-4

point of the first mesh to one point of the second mesh
and thus creates correspondences. However, not all
distance measures can be used for determining corre-
spondences. For example, the Fréchet Distance [VH01]
is based on a parameterization and thus requires pre-
known correspondences.

Depending on the method of determining the corre-
spondences, the points on the meshes that are associ-
ated with each other may differ and often the quality
is application-dependent. The differences between sets
of correspondences can lead to qualitatively different
morphing results. Thus, we also need to analyze and to
compare correspondences with regard to foldover prob-
lems.

We would like to emphasize, that we focus on iden-
tification and solution of foldovers for predefined cor-
respondences. Although there are techniques that can
produce foldover-free mesh morphing [MZX14] they
cannot use the existing correspondences. The usage of
correspondences, however, is required in many cases
such as the assessment of segmentation quality or mesh
registration quality in 3D medical image segementation
applications. As current foldover identification meth-
ods are not suitable for such 3D mesh correspondence-
based problems (see Section 2), the identification and
correction of foldovers for a given set of correspon-
dences remains an open research question.

Contribution & Application Benefit
We propose a new technique for identifying foldovers
given a mesh and correspondences to another mesh (see
Section 3). This enables the evaluation of correspon-
dences concerning foldovers as well as the comparison
of different sets of correspondences for a given mesh.
Moreover, we automatically determine corrections to
the foldover errors. The hereby obtained correction can
be used to draw inferences about the used correspon-
dence estimation method.

Our method can be applied to the analysis of 3D mesh
correspondences in the evaluation of 3D medical image
segmentation results, to the evaluation of surface dis-
tances creating correspondences, to the assessment of
mesh deformations or to enable texture-enabled morph-
ing using predefined correspondences. In the evaluation
section, we show the benefit of our method for the first
two usage scenarios (see Section 4).

2 RELATED WORK
This section discusses related work in the area of
foldover handling. Foldover handling is most present
in areas such as mesh morphing, texture mapping or
mesh merging.
Regarding mesh morphing, Fujimura and Makarov
[FM98] developed a technique for foldover-free image

n

(a)

n

(b)

n

(c)

n

(d)

Figure 2: During the image warping the point n moves
along its correspondence path and leaves its surround-
ing polygon. A foldover occurs.

warping. They propose an approach, that uses a time-
dependent triangulation of the image. The triangulation
of the image is changed, when the foldover occurs.
This happens, when a point leaves its surrounding
polygon during warping. At this point in time the
structure of the triangulation changes by removing
unneeded edges and inserting new ones. Figure 2
shows an example of their approach. The moments of
the foldover events can be precalculated by computing
the intersection of the correspondence path. Although
it produces foldover-free warping despite of erroneous
correspondences, it does not represent a method to
detect and correct foldovers in existing correspon-
dences. This merely avoids foldovers. Furthermore it
is developed for 2D images, not 3D meshes.
Lee et al. [LYY08] used a similar approach for
addressing the foldover problem in texture mapping.
To resolve foldovers they also use edge swaps at
precalculatable moments.
Also working on foldover-free image warping, Ma et
al. [MZX14] presented a technique, that maintains the
triangulation of the source mesh. Instead of precalcu-
lating the foldover events along the correspondence
path, their technique uses the help of radial basis
functions (RBF). The first main step is to prepare the
trajectories (correspondence paths) Ci for the warping.
The Ci are piecewise linear polylines that are con-
structed iteratively out of the nodes C j

i , j = 0,1, . . . ,m,
where C0

i is the source point and Cm
i is the correspond-

ing point: {C0
i } → {C1

i } → ·· · → {Cm
i }. Moreover

they may not intersect. Following, the interpolation is
executed over the span {C j

i } → {C
j+1
i } with a stepsize

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 150 ISBN 978-80-86943-66-4

δ j,l . To ensure local bijectivity, the stepsize has to be
a compromise of the RBF stepsize and the maximum
stepsize until a foldover occurs. Other than in [FM98]
this method does not adapt the triangulation to avoid
foldovers, but the correspondence paths. Thus it also
avoids foldovers during the warping process and is no
method to analyze the data and perform corrections.
Furthermore it cannot be precalculated.
Mocanu et al. [MTT13] developed a technique for
mesh deformations that also makes use of radial basis
functions. They observed, that an increased number
of intermediate steps reduces the amount of foldovers.
Similar to the previously mentioned techniques it aims
at avoiding foldover rather than correcting it as well.
Looking into mesh merging, Alexa addressed the
foldover problem [Ale00; Ale02]. He proposed an
algorithm to merge genus 0 (without holes) meshes.
While merging meshes, it is possible to introduce
foldovers in the resulting mesh. The following function
is used for the mapping:

f (x) =
{

x+ c(d−‖x−v‖)(w−v) ‖x−v‖< d
x ‖x−v‖ ≥ d .

The function describes a point x moving from v to w.
If the mapping results in foldovers, the factor c = 0.5
can be adapted to modify the influence of both meshes
on the result. Altering d changes the influence radius,
resulting in smaller steps. Although the proposed algo-
rithm works with 3D meshes, it again aims at avoiding
foldovers during the merging process.
The discussed work proposes multiple ways of han-
dling the foldover problem, but none focuses on identi-
fying existing foldovers and suggesting a corrected cor-
respondence or works on 3D meshes.

3 APPROACH

3.1 Overview
The main idea of our approach is to extend the
algorithm of [FM98] for detecting error points (i.e.
foldovers) in three-dimensional space. We extend the
algorithm of Fujimura as it is a one-step technique.
However, its extension to 3D is not trivial. We need
to solve several problems, such as possible rotations,
skew lines or non-planarity of quads.

The core of our approach is the detection of error points
leading to foldovers and their correction. This core ap-
proach is described in Section 3.2. As some error points
detected by this algorithms can be false positives (e.g.,
due to rotations or non-planarity), we need to avoid
them. For this purpose, we present several algorithms
detecting these problems, thus extending our core ap-
proach (see Section 3.3). This also includes an extended
error correction using weighting of errors.

3.2 Core Approach
In this section, we describe our core algorithms for de-
tecting and correcting foldover error points.

3.2.1 Detection of Error Points
Fujimura and Makarov described the detection of
foldover events in two-dimensional meshes in [FM98].
They state that the problem appears when a point leaves
the neighboring polygon while being moved along its
correspondence path (see Figure 3).

v6
v7

v'7

(a) Source mesh.

v6

v7

v'7

(b) Target mesh.

Figure 3: We show a two-dimensional polygon with a
translation of the point v7. From (a) to (b) v7 moves
along its correspondence path outside of the polygon.
Hence, the correspondence intersects the edge v1− v2
of the polygon.

We use the same concept in 3D. For a foldover to be
detected, the correspondence path no longer needs to
intersect an edge of the points neighboring region. The
correspondence path cp(t) rather has to intersect one
of the sides S of the area between the source and the
target area (see Figure 4). In this case, the area of the
affected triangle becomes negative:

∃s ∈ S : (cp(t)−−→vs) ·−→ns = 0 , t ∈ [0,1].

Figure 4: In the case of a foldover, the correspondence
path cp(t) intersects one of the sides S (light blue) of
the area between the source mesh (blue) and the target
mesh (green).

Each side is put up by two source points and two tar-
get points. A surface that contains four points in three-
dimensional space does not need to be planar, which
makes it hard to calculate intersections. Therefore, the
sides are approximated by two planes, each using the

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 151 ISBN 978-80-86943-66-4

for all v ∈V do
f oldover← f alse
for all s ∈ S do

if cp(t) intersects s1 or s2 then
f oldover← true

if f oldover then
errors.append(v)

Algorithm 1: Detect errors

(a) Non-planar quad.
(b) Approximation using
two planes.

Figure 5: A quad that is build around four points does
not need to be planar (a). However with the help of two
planes that are made out of three points each, this side
can be approximated (b).

two points from the source mesh M and one of the
points from the target mesh M̃ (see Fig. 5):

s1 :−→x = (v2− v1)+ tṽ1

s2 :−→x = (v2− v1)+ tṽ2.

The core error detection algorithm is in Algorithm 1.
The prerequisite for this technique is that the source
mesh is 2-manifold. Otherwise the correspondence path
may not intersect with any side even though a foldover
exists. Furthermore the source mesh has to be foldover
free, which should be ensured by a suitable parameter-
ization. Holes in the mesh on the other hand do not
interfere with the functionality, as the technique only
depends on the direct neighbors of the current point and
also works if the point is on the border of the mesh.

3.2.2 Correction of Error Points

With the detection Algorithm 1, it is possible to find
vertices with correspondences that lead to foldovers.
These problems are corrected by moving the target
point to a valid area, so that the correspondence path
does not leave the three-dimensional volume that is
spanned by the neighboring region of the source and
the target point and the area of the triangles that became
negative turn positive again.

To satisfy this condition, various possible new positions
can be used. Our algorithm moves the target point to

for all v ∈ errors do
Find neighboring region r on the target mesh M̃

correctedPoint← r.ComputeCentroid()
ṽ← correctedPoint

Algorithm 2: Correct errors

the centroid c of its neighboring region with the points
[v0, ... ,vn]:

c =
∑

n
i=0 vi

n
Using the centroid as the corrected point is not only
easy to compute, it has the advantage that it has the
optimal distance to the neighboring points. Thus the
probability of a neighboring error affecting the current
point is minimal. Algorithm 2 illustrates the sequences
of steps for the correction.

3.3 Extension: Avoiding False Positives
We extend our core error detection algorithm, as it may
lead to false positives. For example rotation, mesh over-
lap or degenerated triangles can result in false positive
error detections. In the following, these false positive
errors are systematically filtered from the detected er-
rors, leaving only relevant errors. Finally, the filtered
errors are corrected using an extended correction algo-
rithm, which orders the error correction according to
the errors’ severity.

3.3.1 Detecting Rotations

When comparing differently shaped meshes, it can hap-
pen that the corresponding regions on the source and the
target mesh are rotated to one another by 90◦ or more.
While morphing, the source region approaches the tar-
get region as shown in Figure 6.

Theoretically, the conditions for the detection of a
foldover in rotated regions are the same as in the
standard scenario described above. Nevertheless, the
detection algorithm may mark a correct point as an
error, because an intersection with one of the sides
is identified. Figure 7a shows a scenario, where the
detection algorithm incorrectly finds an error in a cor-
rect region, because the correspondence path crosses a
side plane. In contrast, Figure 7c is an example for a
correct error identification, despite of rotation. Hence
both results are possible. To filter the false positive
results, we first rotate the triangles before running the
detection algorithm. Figures 7b and 7d show that the
false positively detected error is resolved, whereas
the correctly detected error remains. We perform the
following three steps for this purpose:

1. Approximate the surface normals of the source and
target normals:
To determine the rotation matrix we need to calculate

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 152 ISBN 978-80-86943-66-4

(a) Step 1: start (b) Step 2

(c) Step 3 (d) Step 4: finish

Figure 6: The example shows how a region (blue) can
rotate from the source mesh to a target mesh. In such a
case a foldover does not have to occur.

(a) Original (b) After rotation: no foldover

(c) Original (d) After rotation: foldover

Figure 7: Errors with and without rotation before the
morphing. (a) and (b) represent a false positive error,
whereas (c) and (d) show a real error.

the normals of both regions. With their help the ro-
tation between two vectors can be computed. As the
region that surrounds the current point is not a two-
dimensional polygon, the surface consists of several
triangles with different rotations in three-dimensional
space. To determine one surface normal for the region,
the surface normals of all triangles that are contained
in the region are calculated and averaged. In our case,
the surface normals were weighted by the area of the
triangles. To ensure a correct addition of the single sur-
face normals, they need to have the same orientation.
This can be reached by ordering the points of the re-
gion in a constant manner. For this, we first discard all
edges that contain the current point and then choose an

arbitrary point. From this point, we iterate along the
remaining edges to the next point and gain a sorted list
of points (see Figure 8a). With the help of this list, we
can now ensure a consistent orientation of all triangles.
Each triangle starts at the center point and uses the pre-
vious and the next point in the sorted list (see Figure
8b). The surface normal N can now be calculated as
follows:

∀4i(v1,v2,v3) : Ni = (v2− v1)× (v3− v1)

⇒ NRegion =
∑

n
i=0 Ni

|∑n
i=0 Ni|

.

2. Calculate the rotation matrix between normals:

...

(a) Overall point ordering

v6
v7

(b) Point ordering within tri-
angles.

Figure 8: To ensure that all surface normals have the
same orientation, the points are ordered along the edges
of the region (a). Figure (b) shows the order of the
points per triangle.

Now that we are able to calculate the surface normals
of the source and the target region, it is possible to cal-
culate the rotation matrix for a transformation from the
source to the target normal. In three-dimensional space
the rotation between two vectors can be described by
three rotation angles α,β ,γ . A way to retrieve them
is to use quaternions, which are generalized complex
numbers:

q = s+ xi+ yj+ zk = (v,s).

Using unit quaternions |q̂|=(sin(θ)r, cos(θ)) it is pos-
sible to calculate the rotation matrix as:

R(θ ,r) = q̂p̂q̂−1,

where p̂ is the unit quaternion of the point p that
is to be rotated by θ around the axis r. According
to Tomas et al. [AMHH08] this can be reduced to

R(n1,n2) =

e+hv2

x hvxvy− vz hvxvz + vy 0
hvxvy + vz e+hv2

y hvyvz− vx 0
hvxvz− vy hvyvz + vx e+hv2

z 0
0 0 0 1

 ,

where v = n1×n2, e = n1 ·n2 and h = 1
1+e .

3. Execute detection Algorithm with transformed
source region:
We now perform the detection algorithm 1 on the
transformed region.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 153 ISBN 978-80-86943-66-4

3.3.2 Detection of Overlaps, Sideward Move-
ments and Degenerated Triangles

Similar to the problems with rotated regions, mesh
overlap or sideward movement as seen in Figure 9 can
lead to false diagnosis. Because of the side movement
the angles of the side planes to the mesh regions are
extremely sharp. Moreover the mesh overlap results
in correspondence paths, that point in different direc-
tions. We use a similar technique as with the rotations.
During the handling of the rotation we already calcu-
lated the normal vectors. Thus it is possible to translate
all points of the source region in the direction of the
target normal. The result is that the movement is not
sidewards anymore, which prevents overlap during the
movement.

(a) Before (b) After

Figure 9: These images illustrate a scenario, where a
source region (blue) moves sidewards towards the tar-
get region (green). As a result of the three-dimensional
structure of the meshes, they can overlap.

When creating mesh-correspondences not every source
point is associated with a distinct target point. To
the contrary, correspondences can be surjective. Such
a many-to-one correspondence can create degenerated
triangles if two points have the same correspondence.
Furthermore a triangle can degenerate, when one point
moves onto the egde between the other two points. Our
algorithm tests, whether a triangle degenerates and dis-
cards an error that resulted from these conditions. This
is done by calculating the distance between the corre-
spondence points and between the points and the edges,
respectively.

3.3.3 Correction using Error Weighting

Up to now, only isolated errors of one point were con-
sidered. The detection algorithm uses the neighboring
points to span the side planes. If one of these neighbor-
ing points is itself faulty, the side planes lead to miscal-
culations of the detection algorithm. Thus a correctly
detected error can imply false positive detections at the
neighboring points as Figure 10 shows.
In order to distinguish the error categories, the influence
of a detected error on the involved points is calculated.
We define the influence of an error as the proportion the
error has on the Euclidean distance d(x,y) between the
original correspondence point and the corrected corre-
spondence point. This is possible, because a corrected
correspondence point can even be calculated for false

Figure 10: On the depicted target mesh, the point that
results in a foldover is marked red. Due to this error
correct neighboring points are mistakenly identified as
errors. They are marked orange.

errors.sort(DESCENDING)
for all v ∈ errors do

if v.isStillError() then
Find neighboring region R on the target mesh
M̃

correctPoint← R.ComputeCentroid()
ṽ← correctPoint

else
errors.remove(v)

Algorithm 3: Correct errors in the order of their sever-
ity (i.e. error weight).

positive errors. Regarding Figure 10 error C has di-
rect influence on the Euclidean distance between the
original correspondence point and the corrected corre-
spondence point, because it is the actual error. Both A
and B are neighboring errors that result from error C.
However they do not have a direct influence on the er-
ror, because the neighboring points that span the region
around the error only have an influence of 1

N , where N
is the amount of neighboring points. Hence, it is possi-
ble to order the detected errors by their influence, also
called error weight. Table 1 shows weights for Fig. 10.

Error Error Weight
C 22.50
B 2.01
A 1.25

Table 1: Errors from Figure 10 sorted in descending
order by error weight. The actual error C is at the top
of the list, before the resulting false positive errors.

Then the correction algorithm corrects all errors. It
starts with the first error in the list. The possibility for it
to be before all its resulting false positive errors is very
high. Hence, repeating the test for errors should yield
no more false positive results. The correction algorithm
can thus be extended to retest each error prior to the
correction as described in Algorithm 3. The effect of
the error ordering by error severity (error weights) can
be seen in Figure 11.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 154 ISBN 978-80-86943-66-4

(a) Without weighting. (b) With weighting.

Figure 11: Figure (a) shows the result of the correc-
tion without error weighting. All errors are corrected,
regardless of whether they were actual errors or false
positives. With weight-based ordering, (b) only the cor-
respondence point that actually leads to a foldover is
corrected.

The previous example showed false positive errors that
result from neighboring real errors. However, the cor-
rection using error weighting also works with neighbor-
ing real errors. Figure 12 shows the correction of neigh-
boring real errors. The resulting false positive errors are
hereby filtered by the error weighting.

(a) Before the correction. (b) Weighted correction.

Figure 12: In (a) two neighboring real errors are
marked red. The resulting false positive errors are
marked yellow. (b) shows the example after the cor-
rection with error weighting. Only the real errors were
corrected.

4 EVALUATION
With the help of several example meshes, we evaluate
the analysis of mesh correspondences with regard to
foldovers. We also discuss the advantages and demon-
strate possible applications of the analysis as well as the
limitations.

We present foldover analysis of two sets of data. First,
correspondences of automatic and expert 3D medical
image segmentations, and, second, correspondences
between original and deformed 3D meshes. Note
that we used simple not foldover-free correspondence
estimation methods for the evaluation of our approach.

The first case analyzes foldovers in the correspondences
resulting from the comparison of two meshes: an auto-
matic 3D medical image segmentation and a segmen-
tation performed by an expert. As medical image seg-
mentation experts are interested in detecting segmenta-

tion errors (i.e., large distances between the automatic
and expert segmentations), we use local distances for
defining mesh correspondences. In particular, we em-
ploy and compare two distance measures: a commonly
used Surface Distance [GJC01] and its recent improve-
ment – the Extended Surface Distance [GKL15]. We
analyzed the correspondences of segmentations of six
livers and one carotid artery. The data stems from real
images.

Second use case analyzes foldovers in the cor-
respondences between original and deformed
banchmark datasets: The Stanford Bunny
(http://graphics.stanford.edu/data/3Dscanrep/), the
Frog and the Buste (Both http://www.aimatshape.net/).

Table 2 shows the amount of vertices and triangles of
the data sets.

Example # Vertices # Triangles
Liver 1 2562 5120
Liver 2 6002 12000
Liver 3 3996 8000
Liver 4 4000 8000
Liver 5 4002 8000
Liver 6 3996 8000

Carotid artery 30674 61344
Bunny 2533 5062
Frog 5002 10000
Buste 5002 10000

Table 2: The table shows the amount of vertices and
triangles of the organ segmentation examples.

The presented foldover analysis and correction tech-
nique aims at detecting existing correspondences that
result in foldovers and correcting them by moving the
correspondence to a foldover free position.

To evaluate the technique, we first look at the identified
foldover errors in the data visualizations. Figures 13a -
13c show the foldover result of a liver mesh comparison
using SD. An isolated error is highlighted by marking
the neighboring region red. Figure 13b clearly shows
that, prior to correction, the correspondence point lies
outside of the triangulation of the neighboring points,
thus results in a foldover. After the correction, the er-
roneous correspondence point is moved inside the valid
area (see Figure 13c).
Analogously, Figures 13d - 13f display the same sce-
nario on the artery mesh using SD.

For deeper evaluation, Figure 14 displays two cases
with large areas, where many errors exist. Both exam-
ples show the area before and after the correction is ex-
ecuted.
Figure 15 shows a comparison of a morphing sequence
with foldover correction to one without foldover correc-
tion using ESD. In the uncorrected morphing it is visi-

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 155 ISBN 978-80-86943-66-4

(a) Liver SD. (b) Foldover. (c) Correction.

(d) Artery SD. (e) Foldover. (f) Correction.

Figure 13: After the analysis of the SD of a liver mesh
(a) and an artery mesh (d), the errors are marked red.
Pictures (b) and (e) show obvious foldovers. In c) and
(f) they are corrected.

ble, that during the sequence foldovers occur. The cor-
rected morphing sequence stays foldover-free, without
harming the global structure of the correspondences.
Alongside the sole correction of foldover problems, the
analysis was also developed to be able to assess differ-
ent sets of correspondences concerning their degree of
foldover or characteristic foldover regions and compare
them with others. In the following example (see Fig-
ure 16) a mesh of an automatic liver segmentation is
shown. Marked with yellow is the region with the most
detail of the mesh. It represents the porta hepatis (entry
of artery and vein) of the liver. It is noticeable that the
analysis detects several errors forming a ring around the
area. This indicates, that the correspondences are prone
to foldovers in high detail areas.

By now, we have used the foldover analysis to evalu-
ate a given correspondence. Now, we look at differ-
ent sets of correspondences and compare them with the
help of the foldover analysis. Table 3 shows the results
of the foldover comparison of SD and ESD on five dif-
ferent liver segmentation data. We report the amount of
errors detected as well as their percentage in all trian-
gles. This evaluation provides us with the insight, that
the ESD produces more foldover problems than the SD.
However the result is only valid for liver meshes, as dif-
ferent correspondences perform differently on varying
mesh structures.

5 LIMITATIONS
Our approach corrects the found errors by moving the
faulty correspondence points and thus resolving the
foldover. This results in a slight change of the position
of the corresponding point in the mesh. Because of the
fact that the target mesh is constructed out of points on
the second mesh of the comparison with the triangula-
tion of the first mesh, the corrected correspondences do

Surface Distance Extended S. Distance
Liver # Errors % # Errors %

1 60 2,342% 122 4,762%
2 162 2,7% 187 3,12%
3 122 3,053% 118 2,953%
4 145 3,363% 134 3,35%
5 122 3,048% 194 4,85%
ø 2,9012% 3,807%

Table 3: Based on the five examples, the probability of
a foldover in the category of liver segmentations of SD
compared to ESD is evaluated.

Errors
ε Z ZK

10−2 27 21
10−3 59 53
10−4 62 59

Table 4: Depending on the chosen ε-precision the
amount of leftover false positive errors changes. By
repeating the algorithm it can be minimized. Z is the
result of the first and ZK the output of the second cor-
rection.

not necessarily lie on the second mesh. However, the
correction is designed to draw inferences about the cor-
respondence estimation method. It could thus be used
as an indicator for the method. Moreover, the corre-
spondence estimation can easily be repeated after the
correction, to iteratively find foldover-free correspon-
dences that completely lie on the second mesh.
Furthermore it must be noted that the correction algo-
rithm only corrects foldover errors. If the underlying
correspondences are not expressing a meaningful rela-
tion between the two meshes, the algorithm cannot im-
prove that, but merely make it foldover-free.
The algorithm was also not designed to detect foldovers
that were introduced through self collision of the mesh.
Even if some parts of the mesh touch during morphing
this is not a foldover, as the triangulation does not de-
fine the overlapping points as neighboring.
Due to inaccuracies in some parts of the algorithm a
small amount of false positive errors can still remain.
For example the approximation of the surface normal
can be inaccurate, if one triangle of the region is very
different from the rest. Additionally the computation of
the intersections and the test for degenerated triangles
works with an ε-precision. Depending on the chosen
ε the amount of remaining false positive errors can be
adjusted. To reduce this amount the algorithm can be
repeated by reanalyzing the corrected correspondences.
Table 4 illustrates this issue.

6 CONCLUSION & FUTURE WORK
We proposed a new method to identify foldovers in 3D
mesh correspondences. The method also offers a cor-

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 156 ISBN 978-80-86943-66-4

(a) Frog ESD. (b) Neighboring errors. (c) Correction.

(d) Buste ESD. (e) Neighboring errors. (f) Correction.

Figure 14: ESD of the mesh of the frog (a) and the buste (d) are analyzed and corrected.

(a) Uncorrected ESD. (b) Morphing at 0%. (c) Morphing at 50%. (d) Morphing at 100%.

(e) Corrected ESD. (f) Morphing at 0%. (g) Morphing at 50%. (h) Morphing at 100%.

Figure 15: This figure compares a morphing sequence without foldover correction ((a) - (d)) to one with foldover
correction ((e) - (h)) using ESD. The global structure of the correspondences is not harmed by the correction. For
better visibility only the morphed mesh is shown in the steps, leaving out the source and target mesh.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 157 ISBN 978-80-86943-66-4

Figure 16: Around the area with the most detail of the
mesh, an increased number of foldovers occur.

rection of the correspondences. It extends the work
of Fujimura and Makarov [FM98] to 3D meshes and
avoids false positive error detections.
The proposed algorithm is able to detect single and mul-
tiple foldover errors. Furthermore the correction pro-
vides a meaningful suggestion for the correspondences,
provided the correspondences are of sufficient quality.
With the obtained information it is possible to evaluate
the given correspondences and compare them to others.
The detection of false positive errors could be further
improved with more reliable surface normals, as the
surface normal calculation is not stable to outliers.

In the future, we will include the analysis into the devel-
opment of a new distance measure, to ensure foldover-
free correspondences during their generation. More-
over the amount of approximation regarding the side
planes and the rotation will be reduced.

7 ACKNOWLEDGMENTS
The authors would like to thank Meike Becker,
Matthias Kirschner and Georgios Sakas at TU Darm-
stadt as well as Stefan Wesarg at Fraunhofer IGD for
providing us with the 3D medical image segmentation
data and helping with the evaluation. The work was
supported by DFG within a SPP 1335 project.

8 REFERENCES
[Ale00] Marc Alexa. “Merging polyhedral shapes

with scattered features”. English. In: The
Visual Computer 16.1 (2000), pp. 26–37.

[Ale02] Marc Alexa. “Recent advances in mesh
morphing”. In: Computer Graphics Fo-
rum. Vol. 21. 2. Wiley Online Library.
2002, pp. 173–198.

[AMHH08] Tomas Akenine-Möller, Eric Haines, and
Naty Hoffman. Real-Time Rendering,
Third Edition. Taylor & Francis, 2008.
ISBN: 9781439865293.

[CRS98] Paolo Cignoni, Claudio Rocchini, and
Roberto Scopigno. “Metro: Measuring
error on simplified surfaces”. In: Com-
puter Graphics Forum. Vol. 17. 2. Wiley
Online Library. 1998, pp. 167–174.

[Ebk+13] Hans-Christian Ebke et al. “QEx: robust
quad mesh extraction”. In: ACM TOG
32.6 (2013), p. 168.

[FM98] Kikuo Fujimura and Mihail Makarov.
“Foldover-free image warping”. In:
Graphical models and image processing
60.2 (1998), pp. 100–111.

[GJC01] Guido Gerig, Matthieu Jomier, and
Miranda Chakos. “Valmet: A new vali-
dation tool for assessing and improving
3D object segmentation”. In: MICCAI.
Springer. 2001, pp. 516–523.

[GKL15] Roman Getto, Arjan Kuijper, and Ta-
tiana von Landesberger. “Extended
surface distance for local evaluation
of 3D medical image segmentations”.
English. In: The Visual Computer
(2015), pp. 1–11. ISSN: 0178-2789. DOI:
10.1007/s00371-015-1113-z.

[Gom99] J. Gomes. Warping and Morphing of
Graphical Objects. Computer Graphics
and Geometric Modeling Series Bd. 1.
Morgan Kaufmann Publishers, 1999.

[LYY08] Tong-Yee Lee, Shao-Wei Yen, and I-
Cheng Yeh. “Texture Mapping with Hard
Constraints Using Warping Scheme”. In:
IEEE TVCG 14.2 (2008), pp. 382–395.

[MTT13] Bogdan Mocanu, Ruxandra Tapu, and
Ermina Tapu. “Mesh deformation with
hard constraints”. In: Signals, Circuits
and Systems (ISSCS), 2013 International
Symposium on. IEEE. 2013, pp. 1–4.

[MZX14] Y. Ma, J. Zheng, and J. Xie. “Foldover-
Free Mesh Warping for Constrained
Texture Mapping”. In: IEEE TVCG 21.3
(2014), pp. 375–388.

[Tam+13] Gary KL Tam et al. “Registration of 3D
point clouds and meshes: a survey from
rigid to nonrigid”. In: IEEE TVCG 19.7
(2013), pp. 1199–1217.

[Tam+14] Gary KL Tam et al. “Diffusion pruning
for rapidly and robustly selecting global
correspondences using local isometry.”
In: ACM Trans. Graph. 33.1 (2014), p. 4.

[VH01] Remco C Veltkamp and Michiel Hage-
doorn. State of the art in shape matching.
Springer, 2001.

[van+11] Oliver van Kaick et al. “A survey on
shape correspondence”. In: Computer
Graphics Forum. Vol. 30. 6. Wiley
Online Library. 2011, pp. 1681–1707.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Short Papers Proceedings 158 ISBN 978-80-86943-66-4

