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ABSTRACT 

Dimensionality reduction by feature extraction is commonly used to project high-dimensional data into a low-

dimensional space. With the aim to create a visualization of data, only projections onto two dimensions are 

considered here. Self-organizing maps were chosen as the projection method, which enabled the use of the U*-

Matrix as an established method to visualize data as landscapes. Owing to the availability of the 3D printing 

technique, this allows presenting the structure of data in an intuitive way. For this purpose, information about the 

height of the landscapes is used to produce a three dimensional landscape with a 3D color printer. Similarities 

between high-dimensional data are observed as valleys and dissimilarities as mountains or ridges. These 3D 

prints provide topical experts a haptic grasp of high-dimensional structures. The method will be exemplarily 

demonstrated on multivariate data comprising pain-related bio responses. In addition, a new R package 

“Umatrix” is introduced that allows the user to generate landscapes with hypsometric tints.  

Keywords 
Self-Organizing Map (SOM), Multivariate Data Visualization, Dimensionality Reduction, High Dimensional 

Data, 3D Printing, U-Matrix. 

1. Introduction 
Some large data sets possess a high number of 

variables with a low number of observations. 

Projection methods reduce the dimension of the data 

and try to represent structures present in the high 

dimensional space. If the projected data is two 

dimensional, the positions of projected points do not 

represent high-dimensional distances. Therefore, low 

dimensional similarities could lead to incorrect 

interpretations of the underlying structures.  

A certain solution for this problem is the self-

organizing map (SOM) [Kohonen, 1982] with high 

number of neurons used as a projection method 

[Ultsch, 1999]. SOM is an unsupervised neural 

learning algorithm. If used as a projection method, 

the picture of high-dimensional data is uniformly 

distributed on the neural grid. This distribution 

makes a direct interpretation demanding. The 

standard approach for this problem lies in generating 

a 2D visualization for SOM, because, for high-

dimensional data, the SOM remains a reference tool 

for 2D visualizations [Lee/Verleysen, 2007, p. 227]. 

In literature, there are many approaches, which 

require experienced interpretations (e.g.[Kadim 

Tasdemir/Merényi, 2012; Vesanto/Alhoniemi, 

2000]). Here, we focus on the method of U*matrix, 

which is able to visualize distance and density based 

structures. The U*matrix leads to a topographic map 

with hypsometric tints (for details see section 5), 

which seems like a 3D landscape for the human eye. 

But every 3D visualization still has to be viewed 

from multiple viewpoints and is often subject to 

serious occlusion, distortion and navigation issues 

[Jansen et al., 2013] cites [Shneiderman, 2003]. But 

[Jansen et al., 2013] showed that physical 
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visualizations can improve the user’s efficiency at 

information retrieval tasks, because physical touch 

seems to be an essential cognitive aid. Three-

dimensional printing addresses this important point 

through generating a haptic form. To facilitate this 

visualization of high-dimensional data for experts in 

the data’s field, we propose the usage of colored 

three-dimensional printing. 

3D printing is currently a quickly evolving technique. 

It represents a technical change from spraying toner 

on paper to adding up layers of materials to a 3D 

object [Sachs et al., 1993]. By enabling a machine to 

produce objects of any shape it has the potential to 

impact many production areas [D'aveni, 2013]. Main 

biomedical applications were so far 3D printing 

vascular implants, aerosol delivery technologies, 

cellular transplantation, endo-prosthetics, tissue 

engineering, biomedical device development and 

pharmacology including techniques such as 

individualized drug delivery formulations 

[Pillay/Choonara, 2015]. 3D printing is also 

employed for the visualization of biomedical data, 

for example to produce graspable three-dimensional 

objects for surgical planning [Rengier et al., 2010]. 

This work proposes the application of 3D printing to 

the enhancement of knowledge discovery in high-

dimensional data transferring them into 3D haptic 

physical models with the goal of physical grasping a 

visualization of projections.  

The results are shown using the example of pain data. 

Blue and green valleys indicate clusters of pain types 

and the brown or white watersheds of the U*matrix 

point to borderlines of clusters (Fig. 4). Other SOM 

visualizations fail to display the information in an 

easily understandable form and do not allow the 

usage of 3D printing (see section 3).  

We enable the user to achieve every step until the 3D 

printing using software: The tasks of SOM 

generation, visualization and supervised clustering 

can be performed interactively by the R package 

Umatrix [Version 2.0.0; Thrun et al., 2016]. The 

package also enables the usage of other SOM 

algorithms or comparing classifications with the 

U*matrix visualization. 

2. Emergent SOM 
The first step for structure visualization is to project 

high-dimensional data in a two dimensional space. 

One approach is using self-organizing maps (SOM), 

which project to a fixed grid of neurons. Originally, 

the SOM algorithm was introduced by [Kohonen, 

1982]. However, to exploit emergent phenomena in 

SOMs [Ultsch, 1999] argued to use a large number of 

neurons (at least 𝑛 = 4000). The self-organization of 

many neurons allows emergent structures to occur in 

data. By gaining the property of emergence through 

self-organization this enhancement of SOM is called 

Emergent SOM (ESOM).  

Let 𝑀 = {𝑚1, … , 𝑚𝑛} be the positions of neurons on 

a two dimensional grid (map) and 𝑊 = {𝑤(𝑚𝑖) =
𝑤𝑖|𝑖 = 1, … 𝑛} the corresponding set of weights or 

prototypes of neurons, then the SOM learning 

algorithm constructs a nonlinear and topology 

preserving projection of the input space I by finding 

the bestmatching unit (BMU): 

𝐵𝑀𝑈(𝑙) = argmin
𝑚𝑖∈𝑀

{𝐷(𝑙, 𝑤𝑖)}, 𝑖 ∈ {1, … , 𝑛}  (1) 

 ∀𝑙 ∈ 𝐼, if 𝐷 denotes a distance between input space 

I. Hence, the location of a given data point on the 

resulting map is depicted by the corresponding BMU. 

The topology of the map is toroid if the borders are 

cyclically connected [Ultsch, 1999]. If the map was 

planar, the neighborhood of neurons at the edges 

would contain much less neurons compared to the 

middle of the map space. This would lead to 

undesired seam effects in the SOM algorithm 

[Ultsch, 2003a].  

In each step the SOM learning is achieved by 

modifying the weights in a neighborhood with 

𝛥𝑤(𝑅) = 𝜂(𝑅) ∗ ℎ(𝐵𝑀𝑈(𝑙), 𝑚𝑖 , 𝑅) ∗ (𝑙 − 𝑤(𝑚𝑖)) 

        (2). 

The cooling scheme is defined by the neighborhood 

function ℎ: 𝑀 × 𝑀 × ℝ+ → [−1,1] and the learning 

rate 𝜂: ℝ+ → [0,1], where the radius R declines until 

𝑅 = 1 through the definition of the maximum 

number of epochs. 

3. Other visualizations of SOMs 
The result of Kohonen SOM algorithm are neurons, 

which are located on a map with a set W of 

prototypes corresponding to a set M of positions. In 

general, the positions on M are restricted to a grid, 

but a few approaches exist which change the 

positions in M, like Adaptive Coordinates 

[Merkl/Rauber, 1997]. Because these approaches are 

not based on a grid, they are not considered further.  

BMUs define locations of input points on the map. 

However, they exhibit no structure of the input space 

for a SOM [Ultsch, 1999]. But the goal is to grasp the 

structure of the high dimensional data and maybe 

even visualize cluster boundaries. Therefore, post-

processing of the neurons is required for an 

informative representation of high dimensional data. 

Three standard approaches are found in literature:  

The first approach projects the prototypes of the set 

W with Multidimensional Scaling (MDS) [Torgerson, 

1952] or some of its variants to a two dimensional 

space [Kaski et al., 2000; Sarlin/Rönnqvist, 2013]. 

The result is mapped into the CIELab color space 

[Colorimetry, 2004]. This uniform color space is 

defined so that perceptual differences in colors 
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correspond to Euclidean distances in the map space 

as well as possible [Kaski et al., 2000]. The next two 

approaches visualize either distances or density of the 

prototypes. 

The second approach defines receptive fields around 

each position in M. The unified distance matrix 

(Umatrix) [Ultsch/Siemon, 1990] or variants 

[Kraaijveld et al., 1995] [Häkkinen/Koikkalainen, 

1997] [Hamel/Brown, 2011] represent distances of 

prototypes (see section 4 for details) by using 

proportional intensities of gray shades, color hues, 

shape or size. In [Kraaijveld et al., 1995] every 

neuron corresponds to a pixel. The gray value of each 

pixel is determined by the maximum unit distance 

from the neuron to its four neighbors (up, down, left, 

right). The larger the distance, the lighter the gray 

value. In [Häkkinen/Koikkalainen, 1997] additional 

visualization approaches for unit distances are 

explained. The shape and size of the receptive fields 

describe the dissimilarity of the corresponding 

neurons. Apart from the U-matrix, visualizations of 

receptive fields in three dimensions or specific 

components of prototypes with receptive fields in 

two dimensions were tried [Vesanto, 1999]. Also, 

SOM quality measures can be added to the receptive 

fields in a third dimension, e.g. [Vesanto et al., 

1998]. 

The third approach connects the positions M by way 

of a specific scheme. In [Hamel/Brown, 2011] 

additional to a U-matrix neurons are connected with 

lines along the maximum gradient. The authors claim 

that clusters are the always connected components of 

the graph defined by the Umatrix .  

[Merkl/Rauber, 1997] omitted the receptive fields 

approach by only connecting map positions with 

lines, where the intensity of the connections reflects 

the similarity of the underlying prototypes. [K. 

Tasdemir/Merenyi, 2009] proposed the CONNvis 

technique, which visualizes the grid by connecting 

the neurons, whose corresponding prototypes are 

adjacent in the space of input dimensionality, which 

is equal to the high dimensional data. The width of 

the connection line is proportional to the strength of 

the connection [K. Tasdemir/Merenyi, 2009]. 

In sum, all visualizations of large SOMs described 

above require an expert in the field for interpretation. 

In addition, a 3D print may not give a desirable 

result: in most cases the 2D visualization would have 

to be enhanced to 3D. But research indicates that 3D 

does not improve 2D visualizations [Cockburn, 2004; 

Cockburn/McKenzie, 2002; Sebrechts et al., 1999], 

and, to our knowledge, there are no 3D visualizations 

of ESOMs based on a 2D grid currently in use, 

besides the approach proposed in section 5. 

4. U*matrix based on data distances and 

density 
The Umatrix displays a folding of high-dimensional 

space, where each receptive field is called a U-

height. Let N(j) be the eight immediate neighbors of 

𝑚𝑗 ∈ 𝑀, let 𝑤𝑗 ∈ 𝑊  be the corresponding prototype 

to 𝑚𝑗, then the average of all distances between 

prototypes 𝑤𝑖  is called U-height regarding the 

position 𝑚𝑗: 

𝑢(𝑗) =
1

𝑛
∑ 𝐷(𝑤𝑖 , 𝑤𝑗)𝑖∈𝑁(𝑗) , 𝑛 = |𝑁(𝑗)|  (3). 

The Umatrix is a display of proportional intensities 

of grey shades of all receptive fields [Ultsch, 2003a]. 

By formalizing the displayed structures 

[Lötsch/Ultsch, 2014] showed that the Umatrix is an 

approximation of Voronoi borders of the high-

dimensional points in the output space: 

Let bmu(l) and bmu(j) be BMUs of data points l and 

j, where bmu(j) and bmu(l) have bordering Voronoi 

cells. On the borderline there is a vertical plane (AU-

height), which is the distance D(l,j) > 0 between the 

data points in the input space. In sum, the abstract 

Umatrix, (AU-matrix) is the Delaunay graph of the 

BMU’s weighted by corresponding Euclidean 

distances in the input space. 

In addition to the Umatrix, [Ultsch, 2003a] 

introduced the high-dimensional density visualization 

technique called P-Matrix, where P-heights on top of 

the receptive fields are displayed. The P-height 

𝑝(𝑚𝑖) for a position 𝑚𝑖 is a measure of the density of 

data points in the vicinity of 𝑤(𝑚𝑗): 

𝑝(𝑚𝑗) = |{𝑖 ∈ 𝐼|𝐷(𝑖, 𝑤(𝑚𝑗)) < 𝑟 > 0, 𝑟 ∈ ℝ }|  (4). 

The P-height is the number of data points within a 

hypersphere of radius r. Here, we choose the interval 

𝜚 of the radius with 

𝜚 ∈  [𝑚𝑒𝑑𝑖𝑎𝑛(𝐶(𝐷)), 𝑚𝑒𝑑𝑖𝑎𝑛(𝐴(𝐷))],  (5) 

where D are all input space distances and A(D) is the 

group A of distances calculated by the ABCanalysis 

[Ultsch/Lötsch, 2015]. ABCanalysis tries to identify 

the optimum information that can be validly retrieved 

by using concepts developed in economical sciences. 

In particular, concepts are used in the search for a 

minimum possible effort that gives the maximum 

yield [Ultsch/Lötsch, 2015]. The distances are 

divided into three disjoint subsets A, B and C, with 

subset A comprising largest values (“outer cluster 

distances”), subset B comprising values where the 

yield equals the effort required to obtain it, and the 

subset C comprising of the smallest values (“inner 

cluster distances”). We suggest the choice for the 

specific radius r through the proportion v of inter- 

versus intra-cluster distances estimated by 

𝑣 =
𝑚𝑎𝑥(𝐶(𝐷))

𝑚𝑖𝑛(𝐴(𝐷))
  (6). 
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The radius r is estimated by 𝑟 = 𝑣 ∗ 𝑝20(𝐷), where 

𝑝20(𝐷) is 20-th percentile of input distances [Ultsch, 

2003b]. From this starting point the user may search 

interactively for the empirical Pareto percentile, 

which defines the radius r (see R package Umatrix). 

The combination of a Umatrix and a Pmatrix is called 

U*matrix [Ultsch et al., 2016]: It can be formalized 

as pointwise matrix multiplication: 𝑈∗ = 𝑈 ∗ 𝐹(𝑃), 

where F(P) is a matrix of factors f(p) that are 

determined through a linear function f on the P 

heights p of the Pmatrix. The function f is calculated 

so that f(p) = 1 if p is equal to the median and f(p) = 

0 if p is equal to the 95-percentile (p95) of the heights 

in the Pmatrix. For p(j) > p95: f(p) = 0, which 

indicates that j is well within a cluster and results in 

zero heights in the U*matrix. 

5. Visualization as a 3D landscape 
We concur with [Koikkalainen, 1997] that the 

content of information should be displayed in an 

understandable way. Hence, in the following section 

we formalize the idea of [Ultsch, 2003a] to  visualize 

the U*matrix as a landscape. We define a 

topographic map with hypsometric tints 

[Patterson/Kelso, 2004]. Hypsometric tints are 

surface colors which depict ranges of elevation. Here, 

a specific color scale is combined with contour lines. 

The color scale is chosen to display various valleys, 

ridges and basins: blue colors indicate small 

distances (sea level), green and brown colors indicate 

middle distances (small hilly country) and white 

colors indicate high distances (snow and ice of high 

mountains). The valleys and basins indicate clusters 

and the watersheds of hills and mountains indicate 

borderlines of clusters (Fig. 1 and Fig. 4).  

The landscape consists of receptive fields, which 

correspond to intervals of U*heights edged by 

contours. This paper proposes the following 

approach: First, the range of U*heights is assigned 

uniformly and continuously to the specific color scale 

above by robust normalization [Milligan/Cooper, 

1988] and by splitting it up into intervals. In the next 

step, the color scale is interpolated by the 

corresponding CIELab colors space [Colorimetry, 

2004]. The largest possible contiguous areas of 

receptive fields, which are in the same U*height 

interval, are summarized and outlined in black as a 

contour. In sum, a receptive field is the display of 

one color in one particular place of the U*matrix 

visualization within a height dependent contour. Let 

u(j) be the U*height, q01 the one-percentile and q99 

the 99-percentile of U*heights, then the robust 

normalization of U*heights u(j) is defined by 

𝑢(𝑗) =
𝑢(𝑗)−𝑞01

𝑞99−𝑞01
  (7). 

The number of intervals in is defined by 

1

𝑖𝑛
=

𝑞01

𝑞99
.  (8). 

The resulting visualization consists of a hierarchy of 

areas of different height levels with corresponding 

colors (see Fig. 4). The visualization of SOMs using 

the tool Umatrix is consistent with a 3D landscape 

for the human eye, therefore one sees data structures 

intuitively. Contrary to other SOM visualizations, 

e.g. [K. Tasdemir/Merenyi, 2009], the 3D landscape 

enables layman to interpret the results of a SOM. 

Using a toroid map for the ESOM computation 

requires a tiled display of the landscape in the 

interactive tool Umatrix [Version 2.0.0; Thrun et al., 

2016] which means that every receptive field is 

shown four times. So in the first step the 

visualization consists of four adjoining pictures of the 

same Umatrix [Ultsch, 2003a] (the same for the 

U*matrix after loading of a SOM or computing one). 

To get the 3D landscape this paper proposes to cut 

the tiled U*matrix visualization rectangular:  

Let 𝑣𝐿𝑖𝑛𝑒𝑠 be the vector of row sums, 𝑣𝐶𝑜𝑙𝑢𝑚𝑛𝑠  be the 

vector of column sums of the U*heights and let 

𝑏𝐿𝑖𝑛𝑒𝑠 be the number of BMU’s of the corresponding 

row line of 𝑣𝐿𝑖𝑛𝑒𝑠 (for 𝑏𝐶𝑜𝑙𝑢𝑚𝑛𝑠,  𝑣𝐶𝑜𝑙𝑢𝑚𝑛𝑠), then we 

define the upper border up = max (𝑣𝐿𝑖𝑛𝑒𝑠/𝑓(𝑏𝐿𝑖𝑛𝑒𝑠)), 

the left border by lb = max(𝑏𝐶𝑜𝑙𝑢𝑚𝑛𝑠/𝑓(𝑣𝐶𝑜𝑙𝑢𝑚𝑛𝑠)) 

and the other two borders by the length and width of 

the U*matrix, if the vector f(b) is the addition 𝑓(𝑏) =

�̂� + 𝑏 + �̆� with �̂� = (𝑏𝑛, 𝑏1, … , 𝑏𝑛−1) and �̆� =
(𝑏2, … , 𝑏𝑛+1), where the grid is toroid. For better 

comprehensibility see the axes in Fig 1, which are 

defined from one to 𝑚𝑎𝑥(𝐿𝑖𝑛𝑒𝑠) and from one to 

𝑚𝑎𝑥(𝐶𝑜𝑙𝑢𝑚𝑛𝑠). 

6. 3D Printing of pain phenotypes 
3D landscapes can be better grasped when viewed 

from multiple perspectives. This can be easily 

achieved with a haptic form. As an example of a 

haptic 3D presentation of biomedical data, complex 

pain phenotypes composed of responses to four 

different types of nociceptive stimuli are used. 

Nociceptive stimuli activate nociceptors, which are 

sensory nerve cells responding to pressure 

(mechanic), electric, cold or heat. Data was acquired 

with the help of 206 healthy volunteers as described 

previously in detail [Flühr et al., 2009; 

Lötsch/Ultsch, 2013; Neddermeyer et al., 2008]. Data 

was projected using the ESOM algorithm and 

clusters were identified by interpreting its U*matrix 

visualization (Fig 1). In a last step, pain sub-

phenotypes were identified by interpreting the 

clusters using classification and regression tree 

classifiers (Cart) [Lötsch/Ultsch, 2013]. By way of 

extracting decision rules through the conditional 

information of the GINI impurity [Hill et al., 2006], 

the interpretation based on measured stimulus 

intensities evoking pain at threshold level. Eight 
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different pain phenotypes were observed, involving 

individuals who shared complex pain threshold 

patterns across five variables. Subsequently, the 

specific properties of each phenotype could be 

interpreted clinically. Three main pain sensitivity 

groups were identified: high-pain sensitivity (HPS), 

average pain sensitivity (APS) and low-pain 

sensitivity (LPS) [Lötsch/Ultsch, 2013]. HPS was 

divided into two clusters (1,2), APS into four (3-6) 

and LPS into two (7,8). All clusters were 

interpretable (further details see [Lötsch/Ultsch, 

2013]). From this data set, a 3D Landscape could be 

generated (Fig. 1 top view and Fig. 4) and printed by 

means of a 3D color printer (Fig. 2). Due to technical 

limitations, printing is restricted to three colors blue, 

green and white, while the digital 3D landscape 

consists of many more different height dependent 

colors (Fig. 2. and Fig. 4). On the other hand, 

contrary to Fig 1, Fig. 4 had to be reworked manually 

by using a graphics editor program. Otherwise the 

structures on the borders of the island would be 

difficult to interpret. Note, that the 3D print of Fig. 2 

was generated using Fig. 1 and not Fig 4. 

Data processing was done using the interactive tool 

Umatrix [ Ver s ion  2 .0 .0 ;  Thr un  e t  a l . ,  201 6]  

with the freely available R software [Version 3.2.5; 

R Development Core Team, 2008] for Windows 7 

64bit, and the graphical interface by the open source 

web application framework shiny [Version 0.13.2; 

RStudio, 2014]. To our knowledge, the 3D print of an 

U*matrix is the first application of 3D printing 

techniques used directly for data mining and 

knowledge discovery in high-dimensional data in a 

haptic form. In addition, the political map of the eight 

clusters is shown in Fig 3. The political map of an 

ESOM is the coloring of the Voronoi cells of the 

BMUs with different colors for each cluster 

[Lötsch/Ultsch, 2014].  

7. Summary 
Projection methods visualize the structures of high-

dimensional data in a low-dimensional space. The 

unsupervised neural learning algorithm, which is 

called self-organizing map (SOM), may be used as a 

non-linear projection method. In that case SOM 

projects high-dimensional data onto a two 

dimensional grid, where the positions of projected 

points do not represent high-dimensional distances. 

The standard approach to this problem is the 

generation of a visualization for SOM. Because 

common SOM visualizations fail to display the 

information in an easily understandable form and do 

not allow the usage of 3D printing, we combined a 

large SOM with the U*matrix visualization 

technique. The U*matrix is able to visualize distance 

and density based structures. This 3D visualization is 

a topographic map with hypsometric tints and 

representable as a 3D landscape. The details of 

creating the 3D landscape were introduced in the 

paper in section 5. The tasks of SOM generation, 

visualization and supervised clustering can be 

performed interactively by the published R package 

Umatrix [Version 2.0.0; Thrun et al., 2016]. We 

allow the user to choose a different SOM based 

projection method, on which our visualization 

techniques still can be used. The package also 

enables comparing of classifications to the U*matrix 

visualization.  

The main step forward presented in this paper is the 

color 3D printing of landscapes based on the 

visualization originating from the U*matrix. Through 

its haptic form, the 3D print makes high-dimensional 

structures more understandable for experts in the 

data’s field. Structural features of high-dimensional 

data were depicted with the use of 3D printing (Fig 

2) and pain data. Blue and green valleys indicate 

clusters of pain types and the brown or white 

watersheds of the U*matrix visualization point to 

borderlines of clusters. In our opinion, the task of 

height depending 3D color printing is still very 

trying. Automatically cutting a non-rectangular 

island defined by curved borders remains also an 

unsolved problem. 

To our knowledge, this 3D print is the first 

application of 3D printing techniques used directly 

for data mining and knowledge discovery in high-

dimensional data in a haptic form. 

Future work will include the abstract U*matrix 

[Ultsch et al., 2016] into the current visualization 

techniques and allow the height dependent 3D print 

of an U*matrix in more than three colors. 
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Figure 1: Top view of the 3D landscape of the pain data generated with the Umatrix 

tool: After the rectangular cut (section 5), the cutting lines of visualization of the 

U*matrix were improved interactively. The points are the BMU’s with different 

colors as cluster labels. The top view was used for 3D printing. 
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Figure 2: The 3D print of Fig 1 in three height dependent colors white, green and 

blue. The valleys indicate clusters of pain types and the watersheds of the U*matrix 

borderlines of clusters. 

 

Figure 3: AU*-clustering based on the Voronoi cells formalizes the distance and 

density based structures and leads from Fig 1 to a political map (further details in 

[Ultsch et al., 2016]). Above the 3D print of this political map is shown. Every color 

indicates one cluster as described in section 6.
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Figure 4: 3D landscape of the pain data generated with the Umatrix tool: After the 

rectangular cut (section 5), the cutting lines of visualization of the U*matrix were improved 

interactively with shiny in R. The points are the BMU’s with different colors as cluster 

labels. Contrary to Figure 1, the borders around the island had to be reworked manually 

using graphics editor program afterwards. Otherwise the borders of the island would be 

difficult to interpret. 
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