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ABSTRACT
Feature matching is one of the fundamental issues in computer vision. The established methods, however, do
not provide reliable results, especially for extreme viewpoint changes. Different approaches have been proposed to
lower this hurdle, e. g., by randomly sampling different viewpoints to obtain better results. However, these methods
are computationally intensive.
In this paper, we propose an algorithm to enhance image matching under the assumption that an image, taken in
man-made environments, typically contains planar, rectangular objects. We use line segments to identify image
patches and compute a homography which unwraps the perspective distortion for each patch. The unwrapped
image patches are used to detect, describe and match SIFT features.
We evaluate our results on a series of slanted views of a magazine and augmented reality markers. Our results
demonstrate, that the proposed algorithm performs well for strong perspective distortions.

Keywords
Projective Transformation, Perspective Distortion, Feature Detection, SIFT

1 INTRODUCTION
Feature matching is one of the fundamental issues in
computer vision. It was successfully applied in a va-
riety of applications, e. g., Recognition [18], Track-
ing [6], Stitching [2] or Visual Odometry [23]. These
feature matching algorithms are typically divided into
three steps: detection, description, and matching.

There exists a variety of methods to detect features,
e. g., Maximally Stable Extremal Regions [8], Scale In-
variant Feature Transform (SIFT) [19], or Speeded Up
Robust Features [1]. After that, during the descrip-
tion phase, spacial information of features is extracted -
SIFT is one of the most popular methods. In the match-
ing step, features descriptors of two images are com-
pared by calculating the distance, e. g., the Euclidean
distance for SIFT features. The goal is to find corre-
sponding features

If the viewpoint change is reasonable small, all of the
above-mentioned methods typically produce good re-
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Figure 1: A planar square is viewed from two differ-
ent viewpoints ψ1 and ψ2. Sorig represents a frontal
view of a square. S1 and S2 demonstrate the projec-
tion of the square to different viewpoints. The square
has been projected to two different quadrilaterals de-
pending on the longitude φ and latitude θ values of the
view-sphere [26].

sults. However, if the viewpoint change is large enough,
the problem of detecting, describing, and matching fea-
tures becomes challenging. An example is illustrated
in Fig. 1. There, a square S is viewed from two differ-
ent viewpoints ψ1 and ψ2. The resulting images depict
two different quadrilaterals: one for every viewpoint.
State-of-the-art descriptors do not compensate perspec-
tive distortion as the projective transformation, wrap-
ping Sorig to S1 or S2, is unknown in advance. Morel
and Yu [22, 26] demonstrated that the established meth-
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ods, e. g., SIFT, do not provide suitable results, if the
viewpoint change |θ1−θ2| is larger than 60◦.
In this paper, we extend the well-known SIFT [19]
framework. We increase the capabilities of SIFT by
inverting the projective transformation introduced
through a slanted view. Therefore, we focus on planar
objects in man-made environments. Typically, objects
in man-made environments represent some sort of
structure, e. g., walls, windows or pictures - these
structures form rectangular objects. This is especially
the case for indoor environments. We exploit that
observation to increase the capabilities of SIFT. We
search for quadrilaterals, determined by a set of four
non-collinear line segments. Given a valid quadrilat-
eral, we determine the homography, that projects the
quadrilateral into a square to unwrap the projective
transformation. Finally, we utilize the SIFT framework
to find correspondences. We evaluate our algorithm by
matching different slanted views of a planar magazine
and compare our approach with a well-known affine
invariant extension of SIFT [22, 26].
The paper is structured as follows: In Sec. 2 related
work of different authors is presented. We describe
our approach in Sec. 3 and evaluate its performance in
Sec. 4.

2 RELATED WORK
In this section, we summarize existing approaches aim-
ing at detecting features in perspective distorted scenes.
Morel and Yu proposed an affine invariant feature
matching approach - an extension of the well-known
SIFT approach - called Affine SIFT (ASIFT) [22, 26].
ASIFT is designed to cope with viewpoint changes
larger that 60◦. To achieve this, different viewpoints
of the original images are simulated by sampling the
longitude and latitude of the view-hemisphere. SIFT
features of two simulated images are matched and the
highest amount of matches represents the result.
However, ASIFT is computationally intensive. For ev-
ery parameter simulation features have to be detected,
described and matched. To speed up the simulation,
the authors proposed a two-resolution procedure. The
parameter simulation is done with two low-resolution
versions of the input images. In the case of success, the
best set of parameters is used to compute SIFT Features
on the original resolution images.
Cai et al. proposed an approach quite similar to ASIFT,
called Perspective SIFT (PSIFT) [3]. The authors used
a similar two-resolution procedure to increase the effi-
ciency. In contrast to ASIFT, PSIFT unwraps perspec-
tive distortion by calculating a homography according
to the longitude and latitude parameters of the view-
hemisphere. The authors double the amount of param-
eters that have to be sampled, which additionally in-
creases the computational effort.

To relax with the computational intensity, an itera-
tive approach, iterative SIFT (ISIFT), has been pro-
posed [28]. ISIFT is quite similar to ASIFT: the ap-
proach transforms one image to another view, more
similar to the other image, by simulating viewpoint
changes. First, features in both images are detected,
described and matched. A homography is estimated
which maps points in one image to points in the other
image. Then, a view is simulated, by inverting the ho-
mography matrix, such that it is more similar to the
other image. Additionally, illumination differences are
detected and eliminated. This process is repeated until
it converges to a stable amount of matches.

This approach has a significant drawback: its success
is based on the initial matching of the two images. If,
e. g., because of a strong viewpoint change, the feature
matching stage fails, the algorithm is not able to pro-
duce reliable results. Thus, other authors used regions
to increase the performance of SIFT.

Chen et. al. proposed to extract regions with the popu-
lar maximally stable extremal region (MSER) [20] de-
tector and fitted them into ellipses [4]. These ellipses
are assumed to be circular in a frontal view. Thus, they
are transformed into circular areas according to the el-
lipses parameters and their second-order moment. Fi-
nally, the authors used SIFT to detect, describe and
match features in the circular area. However, we be-
lieve circular areas are not common in man-made en-
vironments. In our opinion, man-made environments
are more likely to contain line segments. Many lines in
the scene are typically parallel and others are orthog-
onal [24]. This is satisfied, e. g., for doors, windows,
shelves, buildings, and signs. This assumption led us to
the approach, proposed in this paper. A key concept is
the detection of quadrilaterals.

Different authors tackled the problem of quadrilateral
detection. Typically, a set of constraints is used to de-
tect if line segments form a quadrilateral [30, 17, 9].
Leung et al. proposed an algorithm to detect a planar
quadrilateral in order to project an image on a squared
surface. The authors measured the overlap of a de-
tected line segment and segments of the quadrilateral
hypothesis. Further, they imposed different constraints:
e. g., opposite sides are of similar lengths or the angles
of adjacent line segments are within a specific range.
In [30, 9] the authors required opposite sides to be al-
most parallel. However, these approaches are too re-
strictive to serve as quadrilaterals detectors for strong
viewpoint changes. If the camera moves to a position
nearly parallel to the planar rectangle, most of the con-
straints do not hold, as illustrated in Fig. 4.

3 QUADSIFT: QUADRILATERAL SIFT
Feature detection algorithms have been a subject of sci-
entific research for decades. Although there has been a
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Figure 2: QuadSIFT: we detect quadrilaterals in two
slanted views of a planar rectangle to compute two
homography matrices that project the quadrilaterals to
squared patches and finally detect, describe and match
SIFT features.

lot of progress in that area, most feature detection algo-
rithms suffer from the same problem: A strong view-
point change results in a dramatic decrease of matching
performance [22, 26]. This is because existing methods
do not adhere to the perspective distortion introduced
by a viewpoint change.

In this paper, we propose an extension of the well-
known SIFT framework to revert the perspective distor-
tion. To achieve this goal, we rely on additional infor-
mation: rectangular structures. We make the following
assumption to make that possible: The images used to
detect, describe, and match features contain man-made
objects. Based on the observation that objects in man-
made environments typically contain line segments, we
can assume that such an object most likely represent
some rectangular structure, e. g., windows, walls or pic-
tures. Given a perspective distorted rectangular object,
we can revert the perspective distortion by wrapping the
quadrilateral to a rectangle. Therefore, we propose an
algorithm as illustrated in Fig. 2. We detect perspec-
tive distorted rectangles - quadrilaterals - in an image
taken by a camera. We estimate the perspective distor-
tion by calculating the homography that wraps a quadri-
lateral into a rectangular patch. In specific, we wrap
the quadrilateral into a square as the aspect ratio of
the physical rectangular structure is not known in ad-
vance. We detect, describe and match SIFT features in
the squared patches.

Different problems have to be solved to reach this goal.
First, we need to detect straight, linear contours: line
segments. Second, scattered straight lines have to be
grouped. Third, a quadrilateral has to be selected and
a homography, unwrapping it into a squared patch, has
to be computed. Finally, the unwrapped image area can
be used to detect, describe and match SIFT features.
We tackle every problem individually in the following
sections.

A
B

C D

hABC hCDB
hABD

hCDA

LAB

LCD

Figure 3: The line segment collinearity distance metric
is defined as the absolute sum of the line segment end-
points heights to another line. The sum of all Euclidean
distances (heights) hABC + hABD + hCDA + hCDB defines
the total absolute error.

3.1 Line Segment Detection
In the recent years, the scientific community made a
huge progress in line detection algorithms - they be-
came fast and reliable. There exists a variety of algo-
rithms to detect lines and line segments, e. g., Hough
Lines [7], probabilistic approaches [16], the Binary
Descriptor [29], or Line Segment Detector [10, 11].
Choosing an appropriate detection algorithm is typi-
cally up to the specific use-case. Through a preliminary
empirical evaluation, we found that the LSD detector
yields better results than others with respect to the com-
putation time for the given purpose. Thus, we used its
OpenCV implementation to detect line segments longer
than 75 pixels.

3.2 Detecting Scattered Line Segments
The detected line segments shall be used to rectify a
quadrilateral. Therefore, we need to detect valid quadri-
laterals from the set of line segments by selecting four
line segments and evaluating their geometrical feasibil-
ity. However, if we view a perfectly rectangular object,
e. g., a sheet of paper, from a viewpoint nearly collinear
to the surface, its surface might be bent and thus, the
line segments might be scattered into smaller segments
or hidden by other objects.

To gain robustness for a quasi-planar object, we group
nearly collinear line segments. We use an agglomera-
tive clustering algorithm [5] to group the line segments.
For this bottom-up approach, we need to define a dis-
tance metric specifying that two clusters have to be
merged together. We use the relaxed collinearity prop-
erty of two line segments as the distance metric.

We derive the distance metric as follows: Determining
the collinearity of two line segments is a boolean oper-
ation. Either the line segments are collinear or not. We
have to relax the collinearity property to use it as a dis-
tance metric, such that it is unaffected by the length,
absolute positions and collinear distances of the line
segments. Relying on the slope of a line segment does
not account to parallel segments. Further, we cannot
rely on the convex area defined by four endpoints of
two line segments as it is affected by the length of the
segments. Instead, we consider every combination of
three endpoints as a triangle: If two line segments are
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nearly collinear, the height of the four triangles, defined
by line segments as its base and another line segments
endpoint, becomes close to zero. Thus, we sum up the
absolute heights of every triangle defined a line segment
endpoints and another line segment endpoint.

An example for the proposed distance metric is de-
picted in Fig. 3. AB and CD represent two line segments
with the endpoints A,B,C,D. LAB and LCD are the two
lines, defined by the finite line segment. The endpoints
define four triangles ABC,ABD,CDA and CDB. Note,
that every triangle has to have one of the lines LAB or
LCD as its base. The total distance is distAB CD = hABC+
hABD + hCDA + hCDB If distAB CD is suitable small, we
consider these line segments as collinear and group
them to a single segment.

3.3 Quadrilateral Detection
The next step is to select a valid perspective distorted
rectangle - a not self-intersecting convex quadrilateral.
A convex quadrilateral is defined by four line segments.
However, if we view a perfectly rectangular object un-
der an extreme viewpoint, especially if we position
the camera nearly collinear to the surface as shown in
Fig. 1, we experience a series of problems.

Figure 4: Slanted view of a sheet of paper. Note that, al-
though the sheet is perfectly rectangular, opposite edges
are not similar in length. The angles of two adjacent
line segments vary strongly. Further, the edges of the
paper are scattered into smaller line segments.

First, we detect quadrilaterals in man-made environ-
ments, based on line segments. Typically, quadrilater-
als are detected with line segments, grouped by their
vanishing points [25, 21]. However, if the set of line
segments is sparse or includes a large set of outliers,
these algorithms yield insufficient results. Given a min-
imal example, as shown in Fig. 4, vanishing point based
grouping algorithms would fail, because there are only
four line segments present. Reliably calculating two
vanishing points is not possible given four line seg-
ments. Thus, we can not rely on vanishing points.

Second, we cannot impose constraints, that are typi-
cally used to detect quadrilaterals [15, 17, 12], e. g.,
opposite segments are of similar length, the angle of
two intersecting line segment is within a specific range
or two line segments have a similar slope. These con-
ditions do not hold if the camera moves to a position
nearly collinear to the planar surface. An example is
depicted in Fig. 4.

To account for these difficulties, we evaluate the inter-
sections of the lines, defined by the detected line seg-
ments. Other approaches simply evaluate intersection

C

BA

D

E
LS1 LS2

LS3

LS4

LAB

LBC

LDC

LAD

LSABˆ
 

LSBEˆ
 

LSAEˆ
 

Figure 5: Given four line segments LS1, ..,LS4 in gen-
eral order: we compute their intersections A,B,C,D,E
and eliminate outliers by evaluating the overlap ratio of
detected line segments LS1, ..,LS4 and virtual line seg-
ments, e. g., L̂SAB, L̂SAE , L̂SBE .

points within a line segment or rely on vanishing points.
While using intersections within a line segment restricts
to rely on perfectly planar objects, detecting two or
more vanishing points requires a sufficient amount of
line segments. Our algorithm succeeds even for the
minimum set of line segments and is robust against bent
surfaces. The algorithm to detect valid self-intersecting
convex quadrilaterals is summarized as follows: First,
select four lines from the set of detected line segments.
Second, compute the intersections of the lines to cope
with scattered lines segments. Finally, remove outliers
if there are more than four intersection points, by evalu-
ating the overlap of line and line segments to eliminate
invalid intersection points.

To demonstrate our approach we depict an example in
Fig. 5. We selected four line segment LS1, ..,LS4 from
the set of all detected line segments. Then, based on
their collinear lines (LAB,LBC,LDC,LAD), we can calcu-
late the five intersections A, B, C, D and E. It is clearly
visible that ABCD represents the valid quadrilateral de-
fined by LS1, ..,LS4. This, however arises a problem:
there exist multiple subsets of four intersection points
describing a quadrilateral, e. g., ABEC. Thus, we have
to detect the invalid intersection point E.

Other algorithms try to calculate vanishing points to
rectify a given image [25, 21]. Given vanishing points
it is possible, to cluster the line segment according to
their geometrical feasibility. Then, one can detect valid
quadrilaterals. However, as we have a set of exactly
four line segments, where every intersection is defined
by two lines, e. g., LAB×LBC = B and LAB×LDC = E,
it is not possible to reliably calculate vanishing points.
Thus, we evaluate the feasibility of intersection points
by maximizing the overlap ratios of detected line seg-
ments and their virtual line segments. We will use the
example configuration depicted in Fig. 5 to describe the
approach.

We identify valid quadrilateral points with the overlap-
ping ratio of a detected line segment and a virtual line
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segment. Virtual line segments are defined by their in-
tersection points on a line collinear to a detected line
segment and other lines. We exemplary depict the three
virtual line segments for LS1 in Fig. 5 L̂SAB, L̂SAE
and L̂SBE . It is visible that L̂SAB and L̂SAE overlap
LS1 whereas L̂SBE does share an overlapping region
with LS1. Thus, L̂SBE does not represent a candidate.
Further, we observe the order OLS1,L̂SAB

> OLS1,L̂SAE
whereas OLS,L̂S is the overlap ratio. This indicates that
L̂SAB with its intersection points A and B represent a
possible quadrilateral candidate. Four candidates are
required to detect a quadrilateral. For the given ex-
ample we found that L̂SAB, L̂SBC, L̂SCD and L̂SAD with
the points A, B, C and D share the largest overlap with
LS1, ...,LS4 and thus, ABCD describes the valid quadri-
lateral.

3.4 Homography Estimation
In order to unwrap an image, we need to estimate a ho-
mography that transforms a given set of at least four
points to into another set of points [13]. Given a valid
quadrilateral in an image, defined by four points, we
need to find four rectangular points.

To determine four rectangular points with the help of
a quadrilateral, Hua et al. [14] estimated a rectangle,
whereas the aspect ratio of the physical rectangle is
known. However, it is impossible to determine the as-
pect ratio for a quadrangle if the physical rectangle is
unknown in advance. It is not possible to estimate the
physical aspect ratio directly from a single image. The
measured aspect ratio in an image can differ from the
physical aspect ratio, especially in slanted views.

To overcome this issue, we chose to unwrap a detected
quadrangle to a square. This eliminates the need of de-
tecting the aspect ratio of an arbitrary quadrangle. We
empirically chose to unwrap quadrangles into squares
with 500-pixel length on each side.

Given four corner points of a detected quadrilateral and
four corner points of a square, we calculate the ho-
mography mapping the quadrilateral to a square [13].
We use SIFT [19] to detect and describe features in
two squared patches. We employ a brute force match-
ing strategy [19]. To detect weather a descriptor in
one squared patch matches some descriptor in the other
squared patch we apply Lowe’s ratio test: If the near-
est distance of the best match for a descriptor is smaller
than k times the second best match for that descriptor,
the best match is considered to be valid, with k=0.8.
Finally, we remove duplicated matches.

4 EVALUATION
We evaluate our method with the test set used by Morel
and Yu [22]. We chose this test set because it is com-
monly used by other works in the domain. The test

(a) Exemplary view of a
magazine Φ = 0◦ (t2)

(b) Rotated magazine with
Φ = 90◦ (t2)

(c) Exemplary view of a
magazine Φ = 0◦(t4)

(d) Rotated magazine with
Φ = 90◦ (t4)

Figure 6: Examples from the database: (a) depicts a
slanted view of a magazine from t2. In (b) the magazine
was rotated. (a) and (b) shall be matched later - SIFT is
unable to detect matching features. (c) depicts a view of
the magazine from t4. In contrast to (a), the camera was
moved nearly collinear to the planar object. (d) depicts
a rotated version of (c). (c) and (d) shall be matched
later. Again, SIFT is unable to detect matching features.

set consists of different slanted and zoomed views of
a magazine and other objects. As an evaluation on
scale invariance of SIFT is not in the scope of this pa-
per, we omit the zoomed views. We focus on the dif-
ferent slanted views of a magazine - resulting in two
different test sets called t2 and t4. Fig. 6 depicts ex-
amples from the database. We determine the quality of
our approach by determining the total number of feature
correspondences found with the SIFT framework. The
better our framework corrected the perspective distor-
tion introduced through a viewpoint change the higher
is the total number of correspondences. We compare
the proposed approach with a well-known affine invari-
ant extension of SIFT: ASIFT [22]1.

We implemented our method, described in Sec. 3, with
OpenCV in C++. We used the OpenCV implemen-
tation of the Line Segment Detector [11] to find line
segments in the images. With these segments, we de-
tect quadrilaterals as described in Sec. 3.3. We used a
greedy strategy to select a single quadrilateral by maxi-
mizing the quadrilateral area in an image. Then, we un-
wrapped the perspective distortion, introduced through
a slanted view, by mapping the detected quadrilateral
to a squared patch. We detect, describe and match
SIFT features in the squares. We used a brute force
matching algorithm, an outlier suppression proposed
by Lowe [19] with k=0.8 and eliminated duplicated

1 Implementation available online: http://demo.ipol.
im/demo/my_affine_sift/
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Φ SIFT ASIFT QuadSIFT
10◦ 284 3496 1457
20◦ 22 2185 1399
30◦ 0 1729 1339
40◦ 0 1264 1215
50◦ 0 964 1142
60◦ 0 961 1054
70◦ 0 921 984
80◦ 0 879 918
90◦ 0 789 933

Table 1: Evaluation based on the test set t2 taken
from [22]. Every row represents another rotation of the
magazine denoted by Φ. We depict the number of cor-
respondences when matched with Fig. 6(a) for every
approach.

matches. Finally, we wrapped the matches to the origi-
nal images and displayed the results.

We evaluate our algorithm by matching slanted views of
a magazine. Examples of the test set t2 are depicted in
Fig. 7. Table 1 depicts the result for test set t2. The first
column depicts the rotation angle Φ of the magazine
- every rotated magazine is matched against Fig. 6(a)
with Φ = 0◦. The second column presents the total
matches with the SIFT algorithm. The third column de-
picts ASIFT results. The last column depicts the results
of QuadSIFT.

QuadSIFT is more efficient: QuadSIFT requires six
seconds per image for the given test set on average.
ASIFT required nearly ten seconds on average. For
a rotation of the magazine from Φ = 10◦ to Φ = 30◦

ASIFT provides better results than QuadSIFT. This ob-
servation is present in every test set evaluated in this pa-
per. This is because the implementations of ASIFT and
QuadSIFT differ. While Morel and Yu used a pure C++
implementation of SIFT, we used the implementation
available in OpenCV. If the rotation of the magazine is
large enough QuadSIFT produces slightly more corre-
spondences than ASIFT. In combination with the first
observation, this means that QuadSIFT produces better
results than ASIFT, if the perspective distortion is large
enough.

The test set t4 is quite similar to t2. The major dif-
ference is that the camera moved to a viewpoint nearly
collinear to the magazine plane - the perspective distor-
tion is higher than the distortion in the test set t2. Ex-
amples from the test set are depicted in Fig. 6 (c) and
(d). The results of the tests are shown in Tab. 2 and ex-
amples in are shown Fig. 8. Starting from Φ = 40◦ the
number of correspondences calculated with QuadSIFT
is higher than those calculated with ASIFT. Taking the
differing implementations into account, this means, that
QuadSIFT outperformed ASIFT. Again, ASIFT pro-
duces better results than QuadSIFT if the rotation angle
is small.

(a) Φ = 70◦, ASIFT, 921
correspondences

(b) Φ = 70◦, QuadSIFT,
984 correspondences

(c) Φ = 90◦, ASIFT, 789
correspondences

(d) Φ = 90◦, QuadSIFT,
933 correspondences

Figure 7: Evaluation based on the dataset t2 from [22].
Every row depicts the matching results of Fig. 6(a) and
a rotated magazine. SIFT (not shown) found 0 corre-
spondences.

Finding nearly twice as many correspondences, for the
two images of the magazine with a rotation of Φ = 90◦,
we gain the following observation: If the distorted ob-
ject is of a nearly quadratic shape, we achieve better
results. We believe, that this observation is clarified if
we consider the aspect ratio of the planar object. While
ASIFT does not directly affect the aspect ratio of the

Φ SIFT ASIFT QuadSIFT
10◦ 15 1079 380
20◦ 0 589 341
30◦ 0 310 293
40◦ 0 232 262
50◦ 0 130 198
60◦ 0 98 150
70◦ 0 74 120
80◦ 0 70 106
90◦ 0 43 104

Table 2: Evaluation based on the test set t4 taken
from [22]. Every row represents another rotation of the
magazine denoted by Φ. We depict the number of cor-
respondences when matched with Fig. 6(c) for every
approach.
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(a) Φ = 70◦, ASIFT, 74
correspondences

(b) Φ = 70◦, QuadSIFT,
120 correspondences

(c) Φ = 90◦, ASIFT, 43
correspondences

(d) Φ = 90◦, QuadSIFT,
104 correspondencess

Figure 8: The matching results of Fig. 6(c) and a rotated
magazine from testset t4. SIFT (not shown) did not
produce correspondences.

planar object, our approach is designed to map an ob-
ject into a square. If we now consider quadratic ob-
jects captured by the camera, e. g., augmented reality
markers, this drawback is negligible. If we consider
non-quadratic objects, we can overcome this drawback
if the aspect ratio is known in advance.

To clarify these claims, we evaluate our approach on
an additional test set. We took ten images of a squared
marker in a similar manner as Morel and Yu. We ro-
tated the marker in between every image by 10◦. In
a similar manner, we took ten images of a rectangu-
lar marker with an aspect ratio of 3:1. We executed
the proposed approach on both markers whereas the as-
pect ratio of the objects is unknown. The results are de-
picted in Tab. 3 and Tab. 4. Additionally, we used our
approach with a known aspect ratio on the rectangular
marker. We compared the results with ASIFT.

Tab. 3 depicts the number of correspondences calcu-
lated with SIFT, ASIFT, and QuadSIFT for the squared
marker. We depicted an example in Fig. 9. It is
clearly visible, that QuadSIFT produces better results
than ASIFT. Comparing these results to the results of
the test set t4, we come to the following observation:
Increasing the rotation of the non-squared magazine
from Φ = 0◦ to Φ = 90◦ decreases the number of found
correspondences by 73%. Increasing the rotation of the
squared marker from Φ = 0◦ to Φ = 90◦ decreases the

φ SIFT ASIFT QuadSIFT
10◦ 498 4712 2681
20◦ 201 3778 2563
30◦ 23 2710 2418
40◦ 0 2424 2307
50◦ 0 2202 2189
60◦ 0 2080 2121
70◦ 0 1832 2073
80◦ 0 1701 2076
90◦ 0 1711 2021

Table 3: Evaluation based on a squared marker: Φ

denotes the rotation of the marker. The markers are
matched to Φ = 0 (Shown in Fig. 9(a)). We depict
the number of correspondences calculated with SIFT,
ASIFT, and our approach.

φ ASIFT QuadSIFT (1:1) QuadSIFT (3:1)
10◦ 5450 1616 2469
20◦ 3702 1487 2410
30◦ 2382 1270 2145
40◦ 2292 1239 2065
50◦ 1885 1266 2006
60◦ 1530 1230 1827
70◦ 1379 1260 1815
80◦ 1257 1197 1641
90◦ 1348 1267 1727

Table 4: Evaluation based on a rectangular marker: Φ

denotes the rotation of the marker. Further, we depict
the number of correspondences calculated with SIFT,
ASIFT, and the proposed approach with unknown (we
assume an aspect ratio of 1:1) and a known aspect ratio
(here 3:1).

number of found correspondences by only 25%. This is
because of the squared shape of the marker. If the pla-
nar objected is close to a physical square our algorithm
is superior.

To determine the influence of the aspect ratio, we cal-
culated the absolute number of correspondences of a
non-squared marker with known and unknown aspect
ratio. The results are depicted in Tab. 4. Φ denotes
the amount of rotation applied to the marker in between
two images. The second column depicts the absolute
number of correspondences calculated with ASIFT. The
third and the fourth column depict the results of the pro-
posed approach, once with an unknown aspect ratio -
mapping the quadrilateral to square - (cf. third column)
and one with known aspect ratio - mapping the quadri-
lateral into a 500x1500px rectangle (cf. fourth column).
It is visible, that if the aspect ratio of the object is known
in advance, the results of QuadSIFT are superior if the
viewpoint change is large. However, if the aspect ratio
is unknown in advance and the object is not of a squared
shape, ASIFT produces slightly better results.

Based on the different tests evaluated in this paper we
can formulate the following observations. Detecting
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(a) A rotated, squared
marker with Φ = 60◦

(b) ASIFT, 2080 Corre-
spondences found

(c) QuadSIFT, 2121 Cor-
respondences found

Figure 9: A comparison of ASIFT and QuadSIFT using a squared object. QuadSIFT produces more correspon-
dences as ASIFT.

(a) A rotated, rectangular
marker with Φ = 60◦

(b) 1530 ASIFT Corre-
spondences

(c) QuadSIFT (1:1), 1230
Correspondences

(d) QuadSIFT (3:1), 1827
Correspondences

Figure 10: A comparison of ASIFT and QuadSIFT using a rectangular object. QuadSIFT produces more corre-
spondences as ASIFT if the aspect ratio is known in advance.

quadrilateral objects to unwrap the perspective dis-
tortion enhanced feature matching results for extreme
viewpoints. QuadSIFT performs similarly to ASIFT if
the viewpoint change is reasonably large. If the view-
point change is small, ASIFT outperforms QuadSIFT
in terms of found correspondences. If perspective dis-
tortion is large enough QuadSIFT outperforms ASIFT.
QuadSIFT seems to be more efficient than ASIFT.
Knowing the aspect ratio in advance is beneficial. If the
aspect ratio is unknown QuadSIFT performs similarly
to ASIFT.

5 CONCLUSION
In this paper, we proposed a new method to enhance
feature matching in slanted views of planar rectangu-
lar objects. Planar rectangular objects are transformed
into quadrilaterals due to the perspective distortion in-
troduced by a slanted view. We designed a method to
revert the perspective distortion: Based on line seg-
ments, we detected valid quadrilaterals, select a sin-
gle quadrilateral, and unwrapped the perspective dis-
tortion by computing a homography mapping a quadri-
lateral to a square. Finally, we detect, describe and
match features using SIFT. We want to point out, that
the feature extraction method is not restricted to SIFT.

QuadSIFT can be realized with other feature matching
frameworks.
As shown in the evaluation, our algorithm is capable
of detecting, describing and matching features, espe-
cially in slanted views of planar rectangular objects.
We found that QuadSIFT produces results comparable
to the state-of-the-art algorithm ASIFT. If the physical,
planar object is of a squared form, our approach is su-
perior. Further, our results indicate that QuadSIFT is
more efficient than ASIFT.
The proposed approach is designed to detect quadri-
laterals. If an image does not contain line segments,
e. g., in nonman-made environments, it will fail. Fur-
ther, we restricted the quadrilateral selection to a greedy
approach. We always select the largest quadrilateral.
However, we plan to extend the proposed approach: we
want to detect multiple quadrilaterals. This is especially
interesting if there are multiple planar objects on differ-
ent planes, e. g., in a corridor with planar objects on the
walls or floor. Thus, we plan to incorporate a better
quadrilateral detection, e. g., using an approach as de-
scribed in [27].
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