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ABSTRACT 
Estimating the volume of a 3D model of an object is an actual task in many scientific and engineering fields (for 

example, CAD systems, biomedical engineering tasks etc.). Spline surfaces is one of the most powerful and 

flexible methods used to describe a 3D model. At the same time, it is rather difficult to estimate the volume of an 

object described by spline surfaces. A model of a Bézier triangle is a simple type of a spline surface, but it is 

practically advantageous. 

This paper describes a method of estimating the volume for 3D objects that are described by a set of Bézier 

triangles. The proposed method was tested on 3D models of objects of biomedical origin. A theorem is presented 

in this paper for volume estimation, based on different properties of researched models, acquired by a projection 

of a set vertices of a Bézier triangle onto a coordinate system axis. The proposed approach is based on using 

methods of differential geometry: surface integrals of scalar fields, Euler’s integral of the first kind and Beta 

functions. Experimental results prove the accuracy of presented theorems. The proposed method can be 

successfully used to calculate the volume of different 3D models, including objects of biomedical origin. 

Keywords 
Beta function, Bézier triangles, volume estimation. 

1. INTRODUCTION 

Determining the volume of a three-dimensional 

surface can be a very complex task, depending on 

the object’s description method. There are different 

ways a 3D model of an object can be described. 

Most commonly used approaches are: 

approximation by primitives, polygonal mesh 

approximation or use of parametrical surfaces 

[Sun13a, Wro06a]. While different methods exist 

for model description, it should be noted that spline 

surfaces have a significant role in 3D modeling of 

complex objects, because they can describe curved 

models with high precision. At the same time, the 

problem of precise volume estimation can be very 

critical in many areas. For example, exact volume 

estimation of biomedical objects can significantly 

increase the accuracy and reliability of medical 

diagnosis. Therefore, the use of a precise model and 

its volume estimation can have a significant impact 

on biomedical engineering. In work [Sis09a] the 

author describes a volume estimation method for 

models of biomedical objects bounded by Bézier 

surfaces. In [Duer03a] several quantification 

methods for calculating the volume of soft tissues 

are discussed that include Geometric Best-Fitting, 

based on shape assumptions and stereological 

procedures. In [Matt87a], [Mich88a], [How93a], 

[McNul00a], the Cavalieri method is discussed 

which is a quantification method that is commonly 

used for unbiased estimation of the volume of a 

variety of biological objects from serial histological 

sections. In [Mor98a], [Duer00b] a different 

method is proposed that is used to calculate the 

volume of a reconstructed 3D model. In these 

works, two algorithms (Isocontouring and Surface 

Tiling) for 3D surface reconstruction were tested. 

These algorithms were used to construct an accurate 

wireframe surface of a biological object and 

calculate its volume [Baj96a]. The provided results 

showed minor quantitative differences between the 

Isocontouring, Surface Tiling and other standard 

qualitative approaches [Duer00b]. 

Calculating the volume of solids bounded by Bézier 

Surfaces in analytical form, based on integral 

calculations, was discussed in [Juh00a].  
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A similar idea was described in [Zha01a], but it was 

used to calculate the area of a closed 2D mesh and 

the volume of a bounded 3D mesh. 

Approximation of a solid object (that is represented 

as a triangle mesh) by a bounding set of spheres to 

minimize the sum of the volume of the sphere and, 

subsequently, the approximation of the object’ 

volume was discussed in [Wan06a]. A variational 

approach to computing an optimal segmentation of 

a 3D shape for estimating a union of tight bounding 

volumes was described in [Lu07a]. 

In this paper, an approach for calculating the 

volume of three-dimensional objects described by a 

set of Bézier triangles is proposed. 3D models of 

biomedical origin are considered as the object of 

study, but the proposed method can be used on any 

model that is described by Bézier triangles. 

2. BÉZIER TRIANGLES AS 

ELEMENTS OF 3D MODELING 
One of the topical problems, when analysing an 

object, is its volume estimation. In this paper, a 

method is proposed that can be used to calculate the 

volume of an object by means of integral 

calculations. Input data for this method is a 3D 

model that is described by a set of Bézier triangles. 

An example of constructing such 3D models, based 

on biomedical objects can be seen in [Sis12a]. 

A Bézier triangle is described as follows: 
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where: i,j,k – indexes of sum; 

u,v,w – parameters; 

pi,j,k – control points 
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To calculate the volume, the Bézier triangle is 

transformed as follows: 
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where: 
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In this case partial derivatives of base functions 

could be described as: 
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and  
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3. THE PROPOSED METHOD OF 

VOLUME ESTIMATION 
Let’s consider that the volume of an object is a sum 

of volumes of curvilinear prisms: 

 prismobj VV .  (6) 

where:  objV  – volume of an object; 

  prismV  – volume of a curvilinear prism. 

The method of estimating the volume of curvilinear 

prisms is described in Theorem 1. 

 

 

Figure 1. Examples of a curvilinear prism.
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Theorem 1 
If a curvilinear prism was constructed by projecting 

the vertices of a Bézier triangle onto coordinate 

axis, its volume could be calculated as follows: 
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where: 
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When projecting onto the Oz axis (Fig.1a.), the 

matrix takes the following form: 
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Accordingly, when projecting onto the Oy axis 

(Fig.2b.): 
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And, accordingly. on the Ox axis (see Fig.2c.): 
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A similar method was described in [Sis13a], except 

it is used for rational Bezier surfaces. The approach 

that is proposed in Theorem 1 is a logical 

continuation of ideas described in [Sis09a] and 

[Sis13a] and is used in this work for the case of 

Bezier triangle. 

The method of calculating the integral I in symbol 

form, is described in Theorem 2. 

Theorem 2 
Beta function is used to calculate the values of 

integral I. Historical overview of Beta function with 

detailed description of its mathematical properties 

can be found in [Mas09a]. If the argument values of 

the Beta function are natural numbers ( Nba , ), 

the Beta function could be described as follows: 
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The method of calculating the value of integral I 

depends on the values of coefficients that are 

calculated as follows: 
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The integral I is calculated using the formulas 

described below. 
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3) for case ( 04 i ; 04 j ; 14 k ): 
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4) for case ( 04 i ; 04 j ; 04 k ): 
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8) for cases ( ni 34  ; 04 j ; 04 k ), 

( 04 i ; nj 34  ; 04 k ) and ( 04 i ; 

04 j ; nk 34  ): 

0I .     (25) 

Proof of Theorem 1 
To find the differential volume of a prism dVprism , 

as seen on Fig.2, in the case where vector r


 is 

perpendicular to *dS , the differential volume 

could be calculated using the following formula: 

*
2

1
dSrdVprism 


,   (26) 

where: r


 – perpendicular vector from Oz axis to 

a point on a surface. 

Considering that infinitely small values are used in 

the calculations, it can be assumed that the 

following expression is valid: 

prismdSdS  cos* ,   (27) 

where:  – the angle between the vector r


 and 

the normal vector n


 on prismdS . 

 

Figure 2. Differential volume calculation. 

We calculate cos value using the following 

formula: 
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differential equation can be obtained from (26), 

(27) and (28): 
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To solve this differential equation, both sides of 

(29) are integrated with a surface integral: 
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In order to solve the surface integral of scalar fields 

(30), it is necessary to convert into a double 

integral. The following values also need to be 

considered: 
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where: ),(),,(),,( vuSvuSvuS ZYX   are 

coordinates of function (1). 

Considering the A, B and C values it can be 

concluded that the normal vector could be described 

as follows: 
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In this case the vector n


 module can be calculated 

as follows: 
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By placing (35) in (30) and transforming (30) to a 

double integral (using the transition properties from 

surface integral of the first kind to double integral), 

we get: 
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Considering the nature of vector r


 it could be 

described as follows:  
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Considering the range of parameters u and v, the 

final integral of volume estimation of a curvilinear 

prism could be described as follows: 
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By substituting the values (2) into (39) and after 

transforming we get: 
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where MZ is described in (9) 

It is easy to see that if the curvilinear prism is 

constructed by projecting the points of Bézier 

triangle onto the coordinate axis Oy or Ox (Fig.6b 

and Fig.6c.), the matrices in formula (9) take the 

form (10) and (11).  

By placing (3)-(5) into (39) and after transforming 

the volume estimation integral could be described 

as follows: 
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Solving the integral (44) is described in the Proof of 

Theorem 2. 

Proof of Theorem 2. 

1) for case ( 04 i ; 04 j ; 14 k ) the 

integral (44) after simplifying and transforming 

takes the following form: 
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where the C1 – C6 values are described in (15). The 

separate integral (45) is solved using binomial 

theorem: 
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








 




24

0

44

1

0

14

24

0

24

1

0

2414

24

124
1

1
24

1

1

k

q

jk
q

u

qj

k

q

qkq

u
kj

qj

u

q

k

dvv

u
q

k

dvvuv

. (46) 

Similarly, the other integrals in (45) can be solved. 

Substituting the results in (43), after 

transformations, we get: 

 

 

 

 

 

 



































1

0

24414

36

1

0

2444

35

1

0

24414

34

1

0

14414

23

1

0

1444

22

1

0

4414

11

1

1

1

1

1

1

duuuDC

duuuDC

duuuDC

duuuDC

duuuDC

duuuDCI

kji

kji

kji

kji

kji

jki

b

 (47) 

where D1 - D3  are described in (16). Some of the 

integrals in (47) are Euler’s integrals of the first 

kind. They can be solved with a Beta function, 

described in (12). The solution of (47) is (14). 

2) for case ( 04 i ; 04 j ; 14 k ) integral 

(44) takes the following form: 

 

 

  























u
kj

u
kj

u

dvvuvk

dvvuvj

kuI

1

0

244

1

0

1414

13

13

2

  (48) 

Some of the integrals in (48) can be solved similarly 

as in (46). The result of integrating (48) is as 

follows: 

 

 42

144

2332

1

DkjDkk

uuI
kj

u






,  (49) 

Where D4 is described in (18). By placing (49) into 

(43) after integration we get (17). 

3) for case ( 04 i ; 04 j ; 14 k ) integral 

(44) takes the following form: 

 

 

  

  4

14

1

0

14

1

0

24

1
4

32

1
14

32

132

132

k

k

u
k

u
k

u

u
k

ki

uu
k

kk

dvvuki

dvvukkuI




























 (50) 

By placing (50) into (43) after integration we get 

(19). 

4) for case ( 04 i ; 04 j ; 04 k ) integral 

(44) takes the following form: 

  4
1

0

14 1
4

32
32

j
u

j

u u
j

ji
dvvjiI 


 



 . (51) 

By placing (51) into (43) after integration we get 

(20). 

5) for case ( 04 i ; 04 j ; 14 k ) the value 

of (44) is calculated for three sub cases: 

a) for case 11k  and 032  kk : 

 


 

u

j

u dvvuvjiI

1

0

14 132  (52) 

b) for case 01k , 12 k  and 03 k : 
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 
















u

j

u

j

u

dvvuj

dvvuvjiI

1

0

14

1

0

14

3

132

 (53) 

c) for case 01k , 02 k  and 13 k : 

 














u

j

u

j

u

dvvi

dvvuvjiI

1

0

4

1

0

14

2

132

 (54) 

Combining (52)-(54) after transformations we get: 

 

  





















u

j

u

j

u

j

u

dvvkiji

dvvukj

dvvujiI

1

0

4

1

0

14

1

0

14

3232

23

132

, (55) 

After substituting the integration results (55) into 

(43) we get (21). 

6) for case ( 134  ni ; 04 j ; 14 k ) the 

value of (44) is calculated for three sub cases: 

a) for cases ( 11k  and 032  kk ) and 

( 01k , 12 k  and 03 k ): 

0uI ;     (56) 

b) for case 01k , 02 k  and 13 k : 

 uidviI

u

c  


122

1

0

.  (57) 

Combining (56) and (57) after transformations we 

get: 

 ukiIu  132 .   (58) 

After substituting the integration results (58) into 

(43) we get (23). 

7) for case ( 04 i ; 134  nj ; 14 k ) the 

value of (44) is calculated for three sub cases: 

a) for cases ( 11k  and 032  kk ) and 

( 01k , 02 k  and 13 k ): 

0uI ;     (59) 

b) for case 01k , 12 k  and 03 k  






u

n

u dvvujI

1

0

233 ;   (60) 

Combining (59) and (60) after transformations we 

get: 

  












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







13

23
1

23

13

1

0

23

n

kj
uu

dvvukjI

n

u

n

c

.  (61) 

After substituting the integration results (61) into 

(43) we get (24). 

8) for cases ( ni 34  ; 04 j ; 04 k ), 

( 04 i ; nj 34  ; 04 k ) and ( 04 i ; 

04 j ; nk 34  ): 

It is necessary to consider that in the described 

cases the value of the determinant from the formula 

(8) takes the values: 

      0detdetdet  XYZ MMM . (62) 

In this case the value of integral I does not affect the 

value of Q (from (8)): 

  RIIM Z  0det .  (63) 

For the convenience of software implementation of 

the method, the integral I can take the zero value as 

in (25). 

An illustration of cases with different values of i4, 

j4 and k4 can be seen in Fig.4 in Appendix. 

Numerical integration 
To check the accuracy of symbolic integration, the 

numerical integration was also used to calculate the 

approximate value of integral I.  

The range of parameters u and v is divided into m 

parts. In this case, the volume of the curvilinear 

prism could be approximated as follows: 

  

 













































 















1

01

121

1

01

12

02

2122

),(
2

1

),(
1

m

q

qmqb

m

q

qm

q

qqb

vuf

vuf
m

I

, (64) 

where: 

m

q
uq






2

112
1 ,   (65) 

and 
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m

q
vq






2

122
2 ,   (66) 

and 

   

  
  313

212

1,
241414

2

kvvuj

kuvui

vuvuvuf
kji








. (67) 

4. EXPERIMENTS 
To test the accuracy of the proposed method, the 

volume was estimated for a 3D model of an 

antiprism (Fig.3a.), with an approximately known 

volume in a range from 9351487,18 to 9732392,24. 

The proposed volume estimation method was also 

used to calculate the volume of 3D models of real 

biological objects. Three models were acquired 

through 3D scanning (foot, hand, human torso), and 

two models of the head, that were automatically 

generated through processing Computed 

Tomography images (Fig 3e.) and regular 

photographs (Fig. 3f.), these objects can be seen on 

Figure 3. A method, described in [Sis12a], was used 

to create spline models of biomedical objects. 

 

Figure 3. 3D models of scanned biological 

objects, a) Antiprism, b) scanned foot, c) 

scanned hand, d) scanned torso, e) head (from 

CT), f) head (from photographs) 

The volume was estimated using both the symbolic 

and numerical integration (m=10). The error of 

numerical integration was also calculated. The 

results can be seen in Table 1.  

Object Numerical Symbolic 
Error, 

% 

Antiprism 9632649,96 9614998,57 0,1832 

foot 3391616,27 3391342,52 0,0081 

hand 374145,34 374030,57 0,0307 

body 54876035,86 54870496,04 0,0101 

head 

(CT) 
21059419,31 21055516,85 0,0185 

Head 

(photo) 
7951163,16 7949147,47 0,0254 

Table 1. Volume estimation of biological objects 

The results of the experiments show that the 

estimated volume of the antiprism falls within the 

known volume range (9351487,18 to 9732392,24). 

The proposed algorithm has also managed to 

estimate volume of all the other 3D models.  

The error of the numerical integration was very low 

(below 0,2%). The highest error appeared when 

estimating the volume of the antiprism, due to the 

size of the triangles relative to full 3D model size.  

The size of the antiprism triangles was considerably 

greater compared to the other models. 

To evaluate the proposed method, it is also 

necessary to consider the time of calculation of 

volumes, as well as the models. The calculation 

times were measured on a computer with the 

following specifications: Processor - Intel Core i7-

3770K 3.50GHz, RAM - 8GB, OS - Windows 7 

64bit. The acquired calculation times can be seen in 

Table2. 

Object 
Numerical, 

s. 

Symbolic, 

s. 

Number 

of Bezier 

triangles 

Antiprism 0,2646 0,0204 92 

Foot 5,7684 0,4435 1996 

Hand 5,7181 0,4395 1979 

body 5,7910 0,4455 1996 

Head 

(CT) 
43,3005 3,3389 14695 

Head 

(photo) 
8,0820 0,6228 2794 

Table 2. Calculation times of volume estimation  

As can be seen in Table 2 the calculation time of 

volume estimation using symbolic integration is 13 

times faster than using the numerical integration. In 

addition, when using symbolic integration, an 
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average of 4481 Bezier triangles are processed in 1 

second. However, when numerical integration is 

used, an average of 345 Bezier triangles are 

processed in 1 second. 

5. CONCLUSIONS 
In this paper, a volume estimation method was 

proposed, for objects described by a set of Bézier 

triangles. This proposed approach is based on 

integral calculations methods: Surface integrals of 

scalar fields, Euler’s integral of the first kind and 

Beta function for natural arguments. 

The proposed method was tested on several models: 

an etalon object and five biomedical objects that 

were generated in different ways. Two volume 

estimation approaches were used in the 

experiments: symbolic integration and numerical 

integration where the value of the parameter m was 

10. The results of the experiments can be seen in 

Table 1. The experiments have proved the accuracy 

of the proposed volume estimation method. Based 

on the results of the experiments it is possible to 

conclude that using the numerical integration the 

error was bellow 0,2%. 

The proposed method could be used to estimate 

volume of objects that are described by spline 

surfaces (in our case - Bezier triangles). If the 

model of the object is described using different 

kinds of patches (for example, triangular + 

rectangular), then the proposed method will only 

estimate a part of the object's volume. If the object 

is more precisely described with a polygonal mesh, 

then the volume can be estimated using the 

proposed method (in particular cases) or using the 

approach from [Zha01a]. 

Further research on this subject would be related to 

optimizing the volume estimation functions to 

decrease the number of necessary calculations and 

decrease the calculation time.  
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8. APPENDIX 

 

Figure 4. Possible values of i4, j4, k4 when n=3 
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