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Abstract

A lot of geometric objects in computer simulations of physical systems
and computer graphics are approximated by a set of spheres. The Voronoi
diagram has been widely used to solve applied problems in many of those
disciplines due to its properties. One of the general uses of the Voronoi
approach in physics is disordered packing of balls and models of liquid and
gasses. The Voronoi-Delaunay technique is a useful tool for analysis of voids,
e.g., empty spaces between atoms, where the Voronoi network represents the
navigation map.

The primary objective of the diploma thesis has been to experiment with
the Voronoi diagrams of spheres (balls) in granular models. As a proposed
solution it was suggested to test the Voronoi diagrams in sphere packing
problem and granular motion simulation. The main application uses the
library of Voronoi diagram of balls implemented by Ing. M. Maňák and
Smoothed Particle Hydrodynamics open source to solve the physics issue.

The work has been divided into two main parts, a survey of the Voronoi
diagram of spheres, introduction into its geometry primitives and topology.
The second part proposes two types of the diagram application, sphere
packing and dynamic fluid simulation. The main application is implemented
in C] programming language since the tested dynamic library was written in
C] , the physics library has been added as a DLL library.
All experimental results were obtained on an Intel(R) Core(TM) i5 CPU,
240GHz, 4GB RAM using C], Windows 7.
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Chapter 1

Introduction

A lot of geometric objects in areas such as computer simulation of physical systems,
mechanical engineering, computer graphics, are approximated by spheres. The Voronoi
diagram has been widely used to solve applied problems in many of those disciplines due
to its natural descriptive and manipulative properties[1]. One of the uses of the Voronoi
approach in physics is disordered packing of balls and models of liquid and gasses. The
Voronoi-Delaunay technique is a useful tool for analysis of voids, e.g. empty spaces
between atoms, where the Voronoi network represents the navigation map.

The primary objective of the present work has been to experiment with the use of
the Voronoi diagrams of spheres (balls) in granular models. As a proposed solution
it was suggested to test the Voronoi diagrams in sphere packing problem and granular
motion simulation. The main application uses the library of Voronoi diagram of balls
implemented by M. Maňák[2] and Smoothed Particle Hydrodynamics open source[3] to
solve the physics issue.

Overview of the work

In this section we take a tour of the things discussed in the following chapters of the
present work.

Chapter 2 - Euclidean Voronoi Diagrams of 3D Balls - explains what the Voronoi
diagram of 3D balls is, describes the geometrical and topological properties. This section
also contains the description of dual representation of Voronoi diagrams of spheres - Quasi
Triangulation, its topological representation and a brief overview of two fundamental
algorithms of Voronoi diagrams construction, i.e. Edge tracing and Region expansion
algorithms.

Chapter 3 - Application of Voronoi Diagrams of 3D Balls - contains the known
solutions of packing of balls. The first part of the chapter contains the description
of M. Gavrilova’s approach of free volume analysis of packing of balls in a cylinder.
The second part describes another algorithm by C. H. Rycroft, he uses a different
technique of applying a cutting plane.

Chapter 4 - Voronoi Diagram of 3D Balls Library - introduces the Voronoi library
implemented by M. Man̆ák and contains a brief report of the properties of the library.
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Chapter 5 - Smoothed Particle Hydrodynamics - since the issue of physics is a complex
problem, which involves a lot of time and understanding, it was decided to use an external
source for granular motion. Hence, this section shortly presents the instructions for the
use of SPH.

Chapter 6 - Granular models - explains the algorithms for packing spheres in
geometrical (cube, cylinder) and triangle models. The given chapter also discusses
the problem of granular motions. The last section briefly introduces the implemented
application and a a pipeline of processing.

Chapter 7 -Results - contains achieved results, time measurements and reveals the
situations when the Voronoi diagram of spheres was successful or failed.

Chapter 9 - Conclusion - this chapter contains the conclusion of the work done.

2



Chapter 2

Euclidean Voronoi Diagrams of 3D Balls

The Voronoi diagrams for spheres or 3D balls1 are also known as Voronoi diagrams of
3D balls2. This chapter defines the Voronoi diagram of balls, describes geometrical and
topological properties, contains a brief overview of duality between Voronoi diagrams
of spheres and Quasi Triangulation[9], geometrical and topological representation and
description of two fundamental algorithms of the Voronoi diagram construction such as
Edge tracing and Region expansion.

2.1 Definition

Definition 2.1.1. Let S = {s1, s2, ..., sn} be a set of generators (spheres) for a Voronoi

diagram where si = (ci, ri) is a three dimensional sphere with a center ci = (xi, yi, zi) and

a radius ri. No sphere can be completely contained inside another sphere, but intersections

between spheres are allowed. Then the additively weighted distance of a point p ∈ R3 to

a sphere si ∈ S is

daw(p, si) = ||p − ci|| − ri (2.1)

The additively weighted Voronoi region of si ∈ S is the set of points

VR(si) = {p ∈ R3 : ∀s j ∈ S , s j , si, daw(p, si) ≤ daw(p, s j)} (2.2)

The additively weighted Voronoi diagram of S is the set of regions

VD(S ) = {VR(s1),VR(s2), ...,VR(sn)} (2.3)

Figure 2.1 illustrates the 2D additively weighted diagram, Figure 2.2 demonstrates the
3D Voronoi region. The definition assumes non-negative radii, since adding a constant

1The input set is a set of spheres or balls.
2The input is a set of weighted points.
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2.1 Definition

value to all radii does not change the diagram. There are situations when the function
daw(p, si) has negative values, which cannot be a solution in this case. That is why the
another function can be used:

Figure 2.1: 2D additively Voronoi diagram - Illustration of the aw-distance, taken from

[11]

u(p, si) = 1 + max(daw(p, si), 0) +
min(daw(p, si), 0)

rmax
(2.4)

i ∈ {1, 2, ..., n}, p ∈ R3, rmax = max{ri|i ∈ {1, 2, ..., n}} and daw(p, si) ∈ [−rmax,∞). The
u(p, si) function converts all negative values of daw(p, si) from [−rmax, 0] to [0, 1] and shifts
all positive values by one.

In the case when all balls degenerate to points (all radii are zero), the distance function
is the standard Euclidean distance, hence the resulting diagram is the ordinary Voronoi
diagram.

The following definition of the Voronoi diagram will be useful in the context of a dual
structure (quasi triangulation, see section 2.2).

Definition 2.1.2. Let VD(S ) denote as the Voronoi diagram of the sphere set S. Then

VD(S ) = (Vv, Ev, Fv,Cv), where Vv = {vv1, v
v
2, ...}, Ev = {ev1, e

v
2, ...}, Fv = { f v1 , f v2 , ...} and

Cv = {cv1, c
v
2, ...} denote the set of Voronoi vertices, Voronoi edges, Voronoi faces, Voronoi

regions (cells), respectively.

Figure 2.2: 3D Voronoi region - VR(s1)- Voronoi region of a sphere s1, e1, e2, e3 - edges, v1,

v2- vertices, taken from [11]

4



2.1 Definition

2.1.1 Properties of the Euclidean Weighted Voronoi Diagram in Rd

Property 2.1.1. The bisector B(P,Q) of an Euclidean Weighted Voronoi diagram is one

half of the hyperboloid with poles P and Q and parameter l = |rp − rq| (see Figure 2.3)

[19].

P Q

B(P,Q)

Figure 2.3: The Euclidean bisector - .

Note. If rp = rq then the bisector is a hyperplane (i.e. a hyperboloid with parameter
l = 0).

Property 2.1.2. Each Euclidean region VR(S ) is a connected region in Rd space,

containing the whole sphere S. The region is a star-shaped relative to the center S.

Note: The Euclidean region is not necessarily convex. The boundary of the Euclidean
region is formed by bisectors, which in general are hyperboloids, then the concave side
of such a bisector belongs to a non-convex Euclidean region.

Definition 2.1.3. The Voronoi vertex v is the common intersection of exactly d + 1

Euclidean regions.

Definition 2.1.4. A sphere S = {c, r} inscribed among d + 1 spheres S 1, S 2, ..., S d+1 in

the Euclidean metric is a sphere with a center c = (c1, c2, ..., cd) and a radius r, such that

r = dist(c, P1) = dist(c, P2) = ... = dist(c, Pd+1).

Definition 2.1.5. An inscribed sphere S is called empty in the Euclidean metric if no

sphere from S intersects its interior.

Property 2.1.3. (The nearest neighbour property) If Q ∈ S is the nearest neighbour of

P ∈ S then the Euclidean regions VR(Q) and VR(P) has a common facet.
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2.2 Quasi Triangulation

2.1.2 Geometrical and Topological Properties

Using definitions and properties from previous section the following geometrical and
topological properties for 3D have been derived. Each Voronoi region in Voronoi
diagrams of spheres is star-shaped with a respect to the center of the corresponding
spherical generator. The boundary of region is constructed by faces and the boundary
of faces consists of edges, while edges are defined by vertices. A Voronoi face is
defined by two immediately neighbouring generators and represented as a part of plane
or a hyperboloid. When a Voronoi face intersects another Voronoi face, the Voronoi edge
is formed, which is a conic section[12]. Respectively, when Voronoi edges intersect, the
Voronoi vertex is defined. A Voronoi vertex is a center of an empty sphere tangent to all
four nearby balls, see Figure 2.4. Kim [12] denotes that the degree of a Voronoi vertex is
four, since it is formed by four generators. A Voronoi edge is formed by the intersection
of three Voronoi faces, thus only three generators define an edge.

Figure 2.4: Geometry and topology interpretations - on the left side - a vertex v as a center

of an empty sphere, on the right side - an elliptic edge without any vertices

Some regions, faces or edges could be unbounded (continue to infinity), what usually
leads to problems of the diagram representation. The other problem of a construction of
the diagram could be elliptic edges without any vertices, see Figure 2.4 (right illustration).

2.2 Quasi Triangulation

The duality between Voronoi diagrams and triangulations is a very important property.
For example, the dual for Voronoi diagram is Delaunay triangulation. Similarly to
the ordinary Voronoi diagram, a dual representation for additively weighted Voronoi
diagrams exists. A duality maps diagram elements to simplices. In 1993 A. Mirzaian[20]
described in his work a 2D case of duality for Voronoi diagrams, and defined the dual
as a multigraph, where the edge is represented as a common face of two neighbouring
Voronoi cells. Two neighbouring cells can have more faces that lead to more edges
in a graph. In 2006, Kim [9] studied the duality, that dual structure was called quasi
triangulation. However, the dual does not have to be a valid triangulation due to
anomalies. Based on the properties of a quasi-triangulation a data structure was proposed,
called an interworld data structure IWDS, eIWDS. The quasi-triangulation is defined from
a Voronoi diagram of balls via a duality operator described below.

6



2.2 Quasi Triangulation

2.2.1 Simplex, Simplicial Complex, Triangulation

Boissonnat and Yvinec[4] presented in their approach the concept of a complex.

Definition 2.2.1. A simplex of dimension k ≤ d in d-dimensional Euclidean space is the

convex hull of k+1 affinelly independent points.

Often 0-simplices are called points, 1-simplices are line segments, 2-simplices are
triangles and 3-simplices are tetrahedrons.

Definition 2.2.2. A simplicial complex is a finite collection of simplices K such that

σ ∈ K and τ ≤ σ implies τ ∈ K, and σ,σ0 ∈ K implies σ ∩ σ0 is either empty or a face

of both.

Definition 2.2.3. A complex K is homogeneously d-dimensional if and only if any lower-

dimensional simplex in K constitutes a face of some d-dimensional simplex in K. Then

d-triangulation is a homogeneously d-dimensional complex, which is connected and is

without singular faces.

2.2.2 Quasi Triangulation

Definition 2.2.4. Let a quasi− triangulation QT(S) for a sphere set S in three dimensions

be defined as QT (S ) = {VQ, EQ, FQ,CQ}, where VQ = {vQ
1 , v

Q
2 , ..., v

Q
n }, EQ = {eQ

1 , e
Q
2 , ...},

FQ = { f Q
1 , f Q

2 , ...}, CQ = {cQ
1 , c

Q
2 } denote the sets of vertices, edges, faces, regions in the

quasi triangulation, respectively1 [9].

Let us denote D as a dual operator. Then D maps a Voronoi diagram VD(s) to a quasi
triangulation QT(S):

• D : cv → vQ: maps a Voronoi cell to a dual quasi vertex. The vertex vQ corresponds
to the center c of a generator ball s corresponding to a Voronoi cell cv.

• D : f v → eQ: maps a Voronoi face to a dual quasi edge. The edge eQ is a line
segment bounded by vQ

i and vQ
j , where the balls si, s j define the Voronoi face f V .

• D : ev → f Q: maps a Voronoi edge to a dual quasi face. The f Q is a triangle whose
vertices are vQ

j , v
Q
i , v

Q
k , where the balls s j, si, sk define the Voronoi edge eV .

1there is one-to-one correspondence between a vertex vQ
1 and a generator sphere si

7



2.2 Quasi Triangulation

• D : vv → cQ: maps a Voronoi vertex to a dual quasi cell. The cQ is a topological
tetrahedron bounded by four vertices vQ, where the vQ corresponds to the four balls
defining the Voronoi vertex vv.

Figure 2.5 illustrates a Voronoi diagram of seven balls: two big balls (a1, a2), one
small ball (a3) placed between two big balls and four balls with the identical radii (a4,
a5, a6, a7). Let us consider a Voronoi face defined by two big balls. The Voronoi face
is bounded by Voronoi edges defined by two big balls and one of the four balls (e.g.,
a1, a2 and a5). A Voronoi region of a small ball is bounded only by two Voronoi faces,
each of which is defined by the small ball a3 and one of the two big balls a1, a2. This
situation implies that the small ball defines a hole in the face defined by two big balls.
The boundary of the hole is defined by the big balls and the small ball. Hence, there is no
edge connection. Thus, the quasi-face formed by balls a1, a2 and a3 is not a part of any
tetrahedral quasi-cell, which means that there can be anomalies in the triangulation.

Figure 2.5: Voronoi diagram and its corresponding quasi-triangulation - taken from [11]

The dual structure QT(S), which is called quasi-triangulation, has some drawbacks,
it is not always a valid triangulation in Euclidean space. Those anomalies are caused by
elliptic Voronoi edge (degeneracy), which is defined without any Voronoi vertex. Hence,
quasi-faces in QT(S) being not a part of any quasi-cell. Another anomaly is a hole in
Voronoi faces(singuarity), which in dual spaces occurs between two quasi-cells, sharing
a quasi-edge (singular). This anomaly tends to break the definition of triangulation. And
the last anomaly corresponds to doubled Voronoi vertices (multiplicity), when in dual
space two quasi-cells share more than one quasi-face, see Figure 2.6.

Figure 2.6: Anomalies - (a), (b) - example of multiplicity anomaly. (a) Two common

triangular faces between two small-tetrahedra, and (b) three common triangular faces between

two small-tetrahedra. (c) example of singularity anomaly.

Voronoi diagram is represented as face-connected, while quasi triangulation is edge-
connected. Voronoi faces can have topological holes, thus the Voronoi diagram is edge-

8



2.3 Geometry and Topology Representation

disconnected, what leads to QT face-disconnection. Considering this situation of face-
connectedness, the whole QT can be divided into face-connected component, called
worlds.

The disconnection causes problems, that is why it is important to make some
connectivity between them. The connectivity is realized via quasi-edges. There is only
one quasi-edge, which connects two worlds - gate edge. A gate edge is an intersection of
two neighbouring worlds, which result is a pair of quasi-vertices1.

A world, which contains other worlds is called a big world, otherwise it is a small
world. Big and small are relative terms, i.e., a small world can be big for some other
world. The hierarchy creates a tree connected by gates. A gate always connects one big
world with all small worlds, which are directly beneath it.

2.3 Geometry and Topology Representation

First structure to store VD data was a radial edge structure RED. This structure has been
developed for storing non-manifold models[10], see Figure 2.7. The idea of RED was
to represent all elements in VD (e.g. edges, vertices, faces, regions or cells) and two
supplementary entities - L f for holding the holes in faces and Fr for dealing with the
adjacency of faces to an edge. Nevertheless, using of this structure was not memory
efficient since the VD are not so general.

In 2006 quasi triangulation and interworld data structure were suggested, known as
IWDS or eIWDS. The idea of this structure is based on Delaunay triangulation. Each quasi
cell references to its four quasi vertices and four neighboring cells, which share a common
quasi-face. Degeneracy is solved as a special case of a quasi-cell. Each quasi-vertex
references one of its incident quasi-cell, remaining incident quasi-cells can be obtained by
a topology traversal algorithm. Quasi-faces and quasi edges are not represented explicitly,
thus the gates have to be represented explicitly, see Figure 2.8(left scheme). A gate
references 1 + mS M quasi-cells (1 - big world, mS M - small worlds belonged to a given
gate). A gate references two vertices creating the corresponding edge.

1there can be more than one quasi edge defined for on a same pair of quasi-vertices
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2.3 Geometry and Topology Representation

Region

Vertex

Face

Edge

|Fr|

2

22

1

Loop

partial edge

Generator

Surface

Curve

Point

1

|Lf|

1

1 1

2 loop cycle

radial cycle

primitive entity supplementary entity

Geometry Topology

Figure 2.7: Data structure for topology representation of a Quasi triangulation - IWDS

representation on left the side and eIWDS representation on the right side

Cell

Vertex

Face

Edge

4

2

22

1

13 Msm

Cell

Vertex

Gate4 1
2

1+Msm

Figure 2.8: Geometry and Topology - Topological representation of Euclidean Voronoi

diagram of spheres, Fr - number of faces bounding the corresponding region, Lf - number of

loops in the corresponding face.

IWDS is useful in storing quasi triangulation. Its implicit representation of quasi edges
and quasi faces saves memory.

When it is required to have an explicit representation during the processing then this
is the case of eIWDS (gate is represented implicitly), see Figure 2.8 (right scheme).
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2.4 Algorithms of VD(S) Construction

2.4 Algorithms of VD(S) Construction

This section briefly describes the existing algorithms of the Voronoi diagram of spheres
construction.

2.4.1 Edge Tracing

One of the techniques of a construction of the Voronoi diagram is edge tracing[2, 12]. The
main idea of the edge tracing is quite simple. The algorithm first locates a true Voronoi
vertex v0 by computing an empty tangent sphere defined by four appropriate nearby balls.
The edges e0, e1, e2 and e3 are emanated from a given Voronoi vertex v0, and then pushed
into a Edge-stack. In other words, the starting vertex for all of these edges is v0. After
popping the edge from the stack, the algorithm finds the end vertex of the popped edge.
The end vertex can be found by calculating an empty sphere tangent to four balls (three
balls, which define the edge and one of the (n−3) candidate balls). When an empty sphere
is found, its center can be announced as the end vertex of the popped edge. Once the end
vertex is found, it is possible to define another three new edges emanating from this new
vertex. Thus, this new edge starts from the new vertex (which was just computed) and
pushed into Edge-stack. The algorithm continues until the stack is empty.

The Edge tracing algorithm runs in O(mn) time in the worst case, where m is the
number of edges and n is the number of balls. The number of algorithm iterations is
O(m) since it is required to trace each edge. For each edge it is necessary to check all n
candidates, to find a valid tangent sphere.

Luchnnikov[7] introduced an algorithm based on the computation of the trajectory of
an empty sphere moving inside the system and variable in size. Medvedev[8] published
another algorithm for construction of Voronoi S-network using a dual representation.
M. Man̆ák presented algorithm for fast discovery of Voronoi vertices in the construction
of Voronoi diagram of 3D balls[11] using Delaunay triangulation.

2.4.2 Region Expansion

Figure 2.9: Region expansion algorithm[6] - Scheme of region expansion in 2D.
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2.4 Algorithms of VD(S) Construction

Kim[6] presents a region expansion algorithm for construction of the Voronoi diagram.
The proposed algorithm first constructs the Voronoi diagram of the centers of spheres
(Voronoi diagram of points). Consider the centers as a shrunk spheres, the algorithm gets
each sphere one after another and expands to its full size. While a sphere expands, the
Voronoi region corresponding to the given sphere expands simultaneously, see Figure 2.9.
By repeating this procedure for all spheres, the correct topology of the Voronoi diagram
is obtained. The Voronoi diagram here is represented as a variation of radial edge data
structure since the diagram is a cell structure, one of the common nonmanifold models,
bounded by faces where a face may have an arbitrary number of vertices and it can even
have some topological holes inside[6]. Author also mentioned that edge-disconnectedness
is no more a special case.

The computation required to expand a Voronoi region (starting from a center point to
a complete ball) takes O(n2 log n) time in the worst case. Lets note that there can be O(n2)
number of edges in the Voronoi diagram of spheres and sorting all events is necessary
in the algorithm. Therefore, the construction of the whole Voronoi diagram using this
algorithm takes O(n3 log n) time in the worst case.

12



Chapter 3

Application of Voronoi Diagram of 3D

Balls

The Voronoi diagrams are well-known in mathematics and computer graphics due to their
properties, and are widely used in solving physical problems. Originally, the Voronoi-
Delaunay approach in physics was applied to study the structure of disordered packing of
balls. Another application is empty spaces detection between atoms, where the Voronoi
diagram represents a navigation map. This section provides a brief overview of the
application of additively weighted Voronoi diagrams.

Free volume analysis of a packing of balls in a cylinder

V.A. Luchnikov and M.L. Gavrilova introduce in [7] the Voronoi-Delaunay approach for
the free volume analysis of a packing of balls in a cylinder. They used the generalized
Voronoi diagram as a data structure. They solve two problems: efficient construction of
the Voronoi diagram inside a cylindrical boundary and the analysis of the Voronoi network
to study a distribution of empty spheres in the system.

The algorithm is based on the idea of the empty sphere. Let us assume that the empty
sphere is moving inside the system, so it touches at least three objects at any moment of
time, thus in that case the center of the sphere is moving along the edge of the 3D Voronoi
diagram/network. The distance from any point in the space to any object is expressed
by an explicit function d, and the trajectory of the center of the Delaunay empty sphere
can be computed numerically by performing a series of small shifts along the edge. The
direction of the shift v is calculated :

(∇di · v) = (∇d j · v) = (∇dk · v) (3.1)

where i, j, k are the indices of the objects touched by the sphere. For a cylindrical wall
(for simplicity authors assume a vertical cylinder) the following distance equation is used:

dc = Rc −
√

(x2 + y2) (3.2)

where Rc is the radius of a cylinder, x, y are the coordinates of a point inside the cylinder,
providing the origin on the axis of the cylinder. Distance function dc is a differentiable
function of the coordinates, except for the axis of the cylinder[1]. The main advantage of
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this algorithm is its simplicity and it can be used for constructing the Voronoi network for
the system of any convex non-spherical objects, which do not have an explicit formula to
compute the coordinates of the Voronoi vertex.

The goal is to inscribe a sphere between cylinder boundary and three not-intersecting
balls inside a (vertical) cylinder. Let us denote the sphere with the smallest radius as
(x4, y4, z4, z4, r4), and choose the origin at the center of this sphere. Then shrink all balls
by radius r4 and increase the cylinder radius by r4. Hence, we obtain the set of equations
representing the condition when the sphere (x, y, z, r) touches all three spheres and the
cylinder.

(x − x1)2 + (y − y1)2 = (r − r1)2 (3.3)
(x − x2)2 + (y − y2)2 + (z − z2)2 = (r − r2)2

(x − x3)2 + (y − y3)2 + (z − z3)2 = (r − r3)2

x2 + y2 + z2 = r2

where (x1, y1, r1) are the coordinates of the axis of the cylinder and its radius, and
(xi, yi, zi, ri), i = 2, 3 are the coordinates and radii of two remaining spheres. Then we
subtract the last equation from the first three and obtain the following system:

2xx1 + 2yy1 − 2rr1 = x2
1 + y2

1 − r2
1 − z2

1 (3.4)
2xx2 + 2yy2 + 2rr2 = x2

2 + y2
2 + z2

2 − r2
2 − 2zz2

2xx3 + 2yy3 + 2rr3 = x2
3 + y2

3 + z2
3 − r2

3 − 2zz3

x2 + y2 + z2 = r2

The first three equations from (3.4) are used to express (x, y, r) through z:

A

x
y
r

 = b (3.5)

A =

x1 y1 −r1

x2 y2 z2

x3 y2 z3


b =

 x2
1 + y2

1 − r2
1 − z2

x2
2 + y2

2 + z2
2r2

2 − 2zz2

x2
3 + y2

3 + z2
3r2

3 − 2zz3


Let’s denote l1 = x2

1 + y2
1 − r2

1, l2 = x2
2 + y2

2 + z2
2r2

2 and l3 = x2
3 + y2

3 + z2
3r2

3.
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By solving the equation below we obtain:

x =
1

2|A|

∣∣∣∣∣∣∣∣
l1 − z2 y1 −r1

l2 − 2zz2 y2 r2

l3 − 2zz3 y3 r3

∣∣∣∣∣∣∣∣ (3.6)

y =
1

2|A|

∣∣∣∣∣∣∣∣
x1 l1 − z2 −r1

x2 l2 − 2zz2 r2

x3 l3 − 2zz3 r3

∣∣∣∣∣∣∣∣
r =

1
2|A|

∣∣∣∣∣∣∣∣
x1 y1 l1 − z2

x2 y2 l2 − 2zz2

x3 y3 l3 − 2zz3

∣∣∣∣∣∣∣∣
where |A| is determinant of the matrix. If |A| = 0 then it is the case of degeneracy, i.e.,

infinitely many spheres to inscribe. Then let us assume |A| , 0 and substitute obtained
equations (3.6) into the last equation of the system (3.4): x2 + y2 + z2 − r2 = 0 and the
polynomial of 4th degree:

az4 + bz3 + cz2 + dz + e = 0 (3.7)

where:

a = A2
x + A2

y − A2
r (3.8)

b = 2(AxBx + AyBy − ArBr)
c = B2

x + 2AxCx + b2
y + 2AyCy + 4|A|2 − B2

r − 2ArCr

d = 2(BxCx + byCy − BrCr)
e = C2

x + C2
y −C2

r

and where:

Ax =

∣∣∣∣∣∣∣∣
−1 y1 −r1

0 y2 r2

0 y3 r3

∣∣∣∣∣∣∣∣ , Bx = −2

∣∣∣∣∣∣∣∣
0 y1 −r1

z2 y2 r2

z3 y3 r3

∣∣∣∣∣∣∣∣ ,Cx =

∣∣∣∣∣∣∣∣
l1 y1 −r1

l2 y2 r2

l3 y3 r3

∣∣∣∣∣∣∣∣ (3.9)

Ay =

∣∣∣∣∣∣∣∣
x1 −1 −r1

x2 0 r2

x3 0 r3

∣∣∣∣∣∣∣∣ , By = −2

∣∣∣∣∣∣∣∣
x1 0 −r1

x2 z2 r2

x3 z3 r3

∣∣∣∣∣∣∣∣ ,Cy =

∣∣∣∣∣∣∣∣
x1 l1 −r1

x2 l2 r2

x3 l3 r3

∣∣∣∣∣∣∣∣
Ar =

∣∣∣∣∣∣∣∣
x1 y1 −1
x2 y2 0
x3 y3 0

∣∣∣∣∣∣∣∣ , Bx = −2

∣∣∣∣∣∣∣∣
x1 y1 0
x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣ ,Cx =

∣∣∣∣∣∣∣∣
x2 l1 l1

x2 l2 l2

x3 l3 l3

∣∣∣∣∣∣∣∣
(3.10)

Then the equation (3.7) is solved for z, the final answer1 for the empty sphere has the

1The solutions with imaginary or negative r are non-physical and excluded.
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following form:

x f =
(Axz2 + Bxz + Cx)

2|A|
+ x4 (3.11)

y f =
(Ayz2 + Byz + Cy)

2|A|
+ y4

r f =
(Arz2 + Brz + Cr)

2|A|
− r4

z f = z + z4

The result of the algorithm is illustrated in Figure 3.1.

Figure 3.1: The Voronoi - Delaunay approach for the free volume analysis of a packing

of balls in a cylindrical container - Model of 300 Lennard-Jones atoms obtained by Monte

Carlo relaxation with the fixed diameter of a cylinder.

The Voronoi cell algorithm

Another solution of sphere packing is represented by Christopher H. Rycroft[5] in his
Ph.D. thesis about multiscale modelling in granular flow. The author uses the method
of cell-by-cell construction, which allows to handle non-standard boundary conditions,
since the Voronoi cells can be individually tailored by applying additional plane cuts. The
author suggests a mechanism for adding walls to the container class that creates additional
plane and cuts during the cell computation.

In a 3D random packing, the Voronoi cell of a particular particle will be a convex
irregular polyhedron, the faces of which are the perpendicular bisectors of its neighbours.
It is expected that the Voronoi cell will be a simple polyhedron, while in general situation
there are no limits of how the shape can be complicated.

Let us assume a single particle surrounded by a densely packed spherical shell of
particles, all at some large radial separation R. The Voronoi cell will be approximately
a sphere with radius R/2, with many facets due to the particles in the shell. If R increases,
the number of facets increases too. Thus, the algorithm is targeted to handle the situations
with an arbitrary convex polygon.

The approach suggests to compute the Voronoi cell for a particle with position xp as
follows[5]:

1. Surround the particle with an initial Voronoi cell consisting of the entire container
volume.
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2. Set rtest = d/2 (d- diameter of a bead (represented by a sphere)).

3. Find all the neighbouring particles with positions x in the spherical shell defined by
rtest < |xp − x| < rtest + d.

4. For each of these particles, cut the Voronoi cell by the plane which is the
perpendicular bisector between x and xp.

5. Compute the maximal distance R of a vertex of the Voronoi cell to its center xp.

6. If 2R > rtest, then increase rtest by d, and go back to step 3. If 2R ≤ rtest, the
computation is complete.

By looping over concentric spherical shells, it is efficient to test those particles nearest
xp which will most likely create the facet of the Voronoi cell[5]. When we know that all
particles which are left in the packing are further than 2R from the particle, then we can
be sure that the cutting planes of those particles (which at the very least are a distance of
R from xp) would not intersect the Voronoi cell, and thus do not need to be tested[5].

The challenging problem comes out from item 4, when it is required to represent
an arbitrary convex polyhedron and the following recomputing based on cutting off

an arbitrary plane. To solve this problem the author defines a structure to represent
polyhedra: a list of polyhedron vertices x1, x2, x3, a table of edges (for each vertex store
the three connected vertices) and relational table describing how vertices are connected
back to each other. This approach assumes that the vertices always have three edges, the
case of four or more edges are treated as degenerated.

This paragraph will shortly describe the main idea of a plane cutting (Figure 3.2), the
full and detailed approach could be found in [5], Chapter 4. The process starts by picking
a vertex, and moving across the polyhedron to search for an edge which intersects the
plane. If the plane intersects the cell, then one of the three neighbours to a vertex will
be closer to the plane1. Once the intersected edge is found, the algorithm traces around
intersected facets and find all intersected edges. On each intersected edge, a new point is
created at the intersection point, and those intersection points create a new facet. Then
all old vertices are removed. Figure 3.3 illustrates the stages of a cylinder packing by
applying a method described above.

Figure 3.2: Computing Voronoi cell - (left) Irregular polyhedron cut by a plane, (right) An

example result of the Voronoi cell algorithm, looking up at particles falling out of a conical

funnel from below.

1The only time this fails is if the cell and the plane are disjoint
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Figure 3.3: Computing Voronoi cell - Packing balls with the same radii in a cylinder
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Chapter 4

Voronoi Diagram of 3D Balls Library

This section describes the tested VDS library and contains a short example showing how
to compute the Voronoi diagram of 3D balls with concurrent explanation.

4.1 M. Maňák’s Voronoi Diagram of Spheres Library

Figure 4.1: VDs library - The output diagram of a given set of balls, taken from VDS library

documentation[2].

The author implemented the library, which constructs the Voronoi diagram of 3D balls as
a single connected component, thus the diagram can be incomplete for some kind of data.
Usually it is caused by the data, where the difference in the radii of balls is great. The
example of the Voronoi diagram is illustrated in Figure 4.1.

The created diagram does not represent elliptic edges without any vertices. The library
does not solve the concept of infinite vertex, i.e infinite edges have only one reference to
the end vertex. That is why it is suggested to enclose the input set by four more balls,
sufficiently distant from the input set, which forms an outer tetrahedron. This construction
allows to avoid problems with edges going to infinity. The library has the following
assumptions:
• there does not exist a sphere fully contained in another sphere

• every face is defined by exactly two spheres

• every edge is defined by exactly three spheres

• every vertex is defined by exactly four spheres
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4.1 M. Maňák’s Voronoi Diagram of Spheres Library

The library uses the edge-tracing algorithm, where the input is a set of generators and
the output is a diagram. Diagram represents only Voronoi vertices and edges. Each vertex
stores indices to its four defining generators and the position of a Voronoi vertex. Each
edge contains references to its two end vertices and stores indices to its three defining
generators.

The brute force edge tracing algorithm has the quadratic execution time. That is why
M. Maňák developed a new approach for fast discovery of Voronoi Vertices with using
a Delaunay triangulation of ball centers and presents a definition of a feasible region.
The full algorithm description can be found in [2]. This approach works well when the
maximal difference in balls radii is small.

The library is implemented in C] programming language as a black box object. To
use this library it is required to set references to it.

4.1.1 Example

Before we start a discussion about a Voronoi diagram construction let us take a look at
the balls data structure, see Code 4.1.

Code 4.1: Generator structure

1 Generator (double x, double y, double z, double radius)
2 Generator (Vector3d center, double radius)

where x, y, z are the coordinates, r is the radius and ceter is the center of the sphere.
At the beginning it is necessary to initialize some auxiliary, see Code 4.2

Code 4.2: The multiplication factor and list of balls

1 double factor = 4.0;
2 List<Generator > generators = new List<Generator >();

Code 4.2 represent the multiplication f actor for the construction of the outer tetrahedron
and initialize the list of balls.

Code 4.3: Adding an outer tetrahedron.

1 Generator[] ouTetrahedron;
2 Generator.ComputeOuterTetrahedron(generators , factor, out

ouTetrahedron);
3 generators.AddRange(outerTetra);

Code 4.3 illustrates how to add an outer tetrahedron to the input set of spheres to avoid
the issue of infinity edges. Simply, the balls are enclosed into a bounding sphere, its
radius is multiplied by a f actor, and then this sphere is inscribed to the sides of the outer
tetrahedron.

Code 4.4: Edge-tracing.

1 EdgeTracing algo = new EdgeTracing();
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4.1 M. Maňák’s Voronoi Diagram of Spheres Library

The next step is to create an object which implements the edge-tracing algorithm for
a diagram construction, see Code 4.4.

The library allows to use two strategies of Vertex search, Code 4.5(line 1) suggests the
slow quadratic algorithm and Code 4.5(line 3) performs the significantly faster Delaunay
vertex search. Lines 5 set up the input balls, line 6 performs the diagram construction and
line 7 get the result.

Code 4.5: Searching the Voronoi vertex

1 algo.VertexSearch = new DefaultVertexSearch();
2

3 algo.VertexSearch = new FeasibleRegionVertexSearch();
4

5 algo.DefineGenerators(generators);
6 algo.ConstructDiagram();
7 ETDiagram diagram = algo.ReleaseDiagram();

Optionally we can compute the geometry of Voronoi edges. A curve is represented as
a Bézier quadratic curve, see Code 4.6.

Code 4.6: Computing the geometry of Voronoi edges

1 Factory geometryFactory = new Factory(diagram);
2 foreach (ETEdge edge in diagram.Edges)
3 edge.Curve = geometryFactory.ProduceGeometry(edge);

4.1.2 Other properties of VDS

The constructed diagram contains the information about generators, vertices, edges, facets
and regions. To let these data call the following methods, see Code 4.7.

Code 4.7: ETDiagram properties

1 diagram.Generators - return a set of generators
2 diagram.Vertices - return an array of Voronoi vertices
3 diagram.Edges - return an array of edges
4 diagram.Faces - return an array of faces
5 diagram.Regions - return an array of regions

Vertices of the diagram are stored in ETVertex structure, it defines the topology and
the geometry in the edge tracing algorithm, see Code 4.8 (position stores the position
coordinates, and G4 creates a group of indices of generators which define the Voronoi
vertex).

Code 4.8: ETVertex structure

1 ETVertex (G4 gens, Vector3d position)
2 ETVertex (G4 gens)
3 ETVertex ()

The other very important structure is ETEdge, see Code 4.10 (startVertex and
endVertex define the edge).
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4.1 M. Maňák’s Voronoi Diagram of Spheres Library

Code 4.9: ETEdge structure

1 ETEdge (ETVertex startVertex , ETVertex endVertex)

The ETEdge support the following methods, showed in Code 4.10

Code 4.10: ETEdge methods

1 edge.StartVertex - return ETVertex that starts the edge
2 edge.EndVertex - return ETVertex that finishes the edge
3 edge.QuadraticBezierCurve - return rational quadratic Bezier curve
4 edge.G3 - return three gens defining the edge
5 edge.IncidentFaces - return incident face

ETFace contains references to child edges (Code 4.11, line 1), to its two generators
defining the face (Code 4.11, line 2) and its incident regions (Code 4.11, line 3).

Code 4.11: ETFace structure

1 face.Edges - return a set of edges
2 face.G2 - return gens defining the face
3 face.IncidentRegions - return incident regions

In Code 4.11 (line 2) G2 contains indices of generators defining the face.
ETRegion: A region is defined by exactly one generator (Code 4.12, line 1). It has

references to child faces (Code 4.12, line 2).

Code 4.12: ETRegion structure

1 region.G1 - return gens defining the region
2 region.Faces - return faces

The VDS library allows to construct the topology over edges (Code 4.13). The method
runs in O(n) time.

Code 4.13: Construction of a higher topology

1 diagram.CreateHigherTopology();

One of the most interesting method in the library is a neighbours search (Code 4.14),
genId is a specified index of a generator and f oundGens is a list of indices of
neighbouring balls.

Code 4.14: Neighbours search

1 diagram.FindNeighbors(int genId, ICollection <int> foundGens)

Since there is no higher topology than vertices and edges, this search runs in O(M)
time, where M is the number of all edges in the diagram. Note than M can be even O(N2).

Table 4.1 illustrates the comparison results of the nearest neighbour search by using
a brute force algorithm and a Voronoi diagram of spheres (t[s] time in seconds). All results
were obtained on Intel(R) Core(TM) i5 CPU, 240GHz, 4GB RAM, C].
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4.1 M. Maňák’s Voronoi Diagram of Spheres Library

count of balls Brute force t[s] VDS t[s]
4086 0.002 16
8171 0.005 49.73

16342 0.005 91.55

Table 4.1: Brute force versus Voronoi Diagram of spheres in nearest neighbour search.
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Chapter 5

Smoothed Particle Hydrodynamics

In everyday life we usually do not think about the complexity of ordinary fluids (liquids,
gases) behaviour, for example, ocean waves, turbulence, rising smoke. Those phenomena
seem to be ordinary, but they represent a tough computational problem. Since Smoothed
Particle Hydrodynamics used to solve this problem, it was decided to use an external
library for my diploma thesis. I would like to thank Věra Skorkovská for her cooperation
and help with the choosing of a SPH library. After research and studying the properties of
different libraries the sph library from R.C. Hoetzlein[3] was chosen. The author suggests
an easy-to-use open source SPH ( Fluids v.2) library implemented in C++ programming
language.

5.1 FLUIDS v.2

Figure 5.1: FLUIDS v.2 - A Fast, Open Source, Fluid Simulator - A fluid simulation

screenshot

The library uses a Smoothed Particle Hydrodynamics for achieving a real time effect.
The SPH method utilizes a novel and innovative form of local field approximation to
differentials and functions making it possible to solve a differential field equation using
an intuitive and extensible particle method. The core of the method is to use a smoothing
kernel, i.e. function with certain properties, which are used to approximate value of the
field function from the surrounding particles. The SPH method is also known as a mesh -
free method. Mesh-free methods are generally growing in popularity since they are both
computationally and numerically efficient and also easy to implement and use.
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5.1 FLUIDS v.2

The source code itself was not aimed to be used as an external library, it was targeted
on the users who want to expand or rewrite the code, see the original scene generated by
Fluids v.2 in Figure 5.1. The application also suggests two versions of implementations,
CPU and GPU (tested with Visual Studio 2008), however, we used only a CPU version
since the VDS library was not oriented for dynamic computations. This library is available
for Windows and Linux users. Because the tested VDS was written in a C] programming
language, it was decided to convert the source code of the SPH into a dynamic library.

The SPH provides some basic examples, which could be in future modified as
necessary. It is possible to set parameters for a required fluid motion, e.g., gravitation
direction, bounds, viscosity, particle mass, rest density, emit position and its angle, smooth
radius, etc. The SPH itself contains its own tool for a scene visualization, however, it was
not used in my C] application. Basically, the SPH computes the whole particle motion:
acceleration, control velocity limiting and boundary condition.

The full approach description can be found in[? ],
http://www.rchoetzlein.com/eng/graphics/fluids.htm.

5.1.1 Example

The communication between sph and main application is provided by the code showed in
Code 5.1.

Code 5.1: Export and import of SPH

1 extern "C"__declspec(dllexport) method() // for export from c++
2

3 [DllImport("CppDll.dll")] // access to dll from c#
4 public static extern Method();

Initialization of SPH starts with the method, see Code 5.2.

Code 5.2: Initialization

1 C_Initialize(BFLUID, nmax);

BFLUID is a constant, which defines the type of particle or fluid motion and nmax
defines the number of particles (balls) in fluid. C Initialize() calls SPH Setup() in c++

sph library with the following parameters, see Code 5.3.

Code 5.3: Initialization parameters

1 m_Param [ SPH_SIMSCALE ] = 0.004; // unit size
2 m_Param [ SPH_VISC ] = 0.0001; // pascal-second (Pa.s) = 1 kg mˆ-1 s

ˆ-1
3 m_Param [ SPH_RESTDENSITY ] = 600.0; // kg / mˆ3
4 m_Param [ SPH_PMASS ] = 0.205; // kg
5 m_Param [ SPH_PRADIUS ] = 0.04; // m
6 m_Param [ SPH_PDIST ] = 0.0059; // m
7 m_Param [ SPH_SMOOTHRADIUS ] = 0.01; // m

The second method which has to be called is showed in Code 5.4
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5.1 FLUIDS v.2

Code 5.4: Create SPH with nmax numbers of particles (balls).

1 CreateSph(nmax);

Code 5.4 is responsible for computing a smoothing kernel, grid setup and inserting
particles into fluid. After all initialization procedures were performed, the fluid motion
can be computed, this is performed by methods in Code 5.5.

Code 5.5: Pointer on fluid data

1 G_GetStart(); // hold pointer to fluid data
2 C_Run(); // provides the main computation of a fluid motion(insert

particels , force grid, pressure grid, calculate acceleration , new
position of a particle, test boundary conditions).

Since the SPH has their own structures for a fluid, it was necessary to implement them
in the main application, see Code 5.6.

Code 5.6: Fluid and GeomBuf structures

1 [StructLayout(LayoutKind.Sequential)] //Fluid
2 public struct {
3 public Vector3 pos;
4 public uint clr;
5 public int next;
6 public Vector3 vel;
7 public Vector3 vel_eval;
8 public short age;
9 public float pressure;

10 public float density;
11 public Vector3 sph_force;
12 public (Vector3 pos, uint clr, int next, Vector3 vel,
13 Vector3 vel_eval, short age, float pressure, float

density,
14 Vector3 sph_force)
15 {
16 this.pos = pos;
17 this.clr = clr;
18 this.next = next;
19 this.vel = vel;
20 this.vel_eval = vel_eval;
21 this.age = age;
22 this.pressure = pressure;
23 this.density = density;
24 this.sph_force = sph_force;
25 }
26 }
27

28 [StructLayout(LayoutKind.Sequential)] //GeomBuf
29 public unsafe class
30 {
31 public byte dtype;
32 public uint num;
33 public uint max;
34 public int size;
35 public ushort stride;
36 public sbyte* data;
37 public GeomBuf()
38 {
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5.1 FLUIDS v.2

39 dtype = 0;
40 num = 0;
41 max = 0;
42 stride = 0;
43 data = (sbyte*)0;
44 }
45 }

Fluid stores fluid data, and GeomBu f is responsible for accessing to fluid data, this
operation is showed below, see Code 5.7.

Code 5.7: Example of accessing to fluid

1 GeomBuf mBuf = bufWrapper(0); // wrapper: pointer to structure
2 int count = C_NumPoints(); // return number of particles
3 sbyte* end = mBuf.data + count * mBuf.stride;
4 sbyte* n;
5 for (n = mBuf.data; n < end; n += mBuf.stride) //go through each

particle in fluid
6 {
7 ...
8 f = (Fluid*)n;
9 f->pos;

10 f->vel;
11 //TODO
12 ...
13 }

27



Chapter 6

Granular models

6.1 Sphere Packing

Packing problems are a class of optimization problems in mathematics or computer
graphics, which involves attempting to pack objects together (usually inside a container),
as densely as it is possible. Generally, Voronoi-Delaunay approach is applied to models
with an open boundary conditions, e.g., molecules. However, in most physical problems
the boundary plays the determinative role.

This chapter proposes to use the Voronoi diagram of 3D balls in disordered packing of
3D balls (of different and equal radii) in a container, since the Voronoi network is a helpful
tool for analysis of voids, empty spaces between spherical particles, where the Voronoi
diagram plays the role of a navigation map.

This approach is dealing with packing of spheres in models like a cube, a cylinder and
the objects constructed from a set of triangles. This section will describe the algorithms
used in a sphere packing problem.

I often leave out the word ”Voronoi” from the terms, e.g., I will use ”diagram”, ”edge”,
”vertex” instead of ”Voronoi diagram”, ”Voronoi edge”, ”Voronoi vertex”, respectively.

6.1.1 The outline of packing spheres in a container

Let us denote gi = {g1, g2, ...} a set of generators (spheres or balls), vi = {v1, v2, ...} Voronoi
vertices, ei = {e1, e2, ...} Voronoi edges and ci = {c1, c2, ...} a set of candidates, a set of
empty spheres, which could be inserted into a container.

The goal of my thesis is to pack different containers by spheres using the Voronoi
Diagram of 3D Balls Library, see Chapter 4. The Voronoi diagram (constructed by
Voronoi Diagram of 3D Balls Library) plays the role of the map of insertions of new
balls. The algorithm uses the idea of empty sphere with a center in a Voronoi vertex. The
balls are inserted one by one and a new diagram is constructed. If the diagram was not
built, the ball is rejected because we need to have a valid diagram for detecting other voids
for inserting new balls.

Figure 6.1 (left) illustrates the principle of using the vertices as potential spots for
insertions, where g1 − g7 are generators, v1 − v7 are the Voronoi vertices, c1 − c7 are
candidates, i.e., possible positions for inserting of new spheres. Figure 6.1 (right)
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6.1 Sphere Packing

illustrates the use of vertices and edges of the diagram, e1 − e5 are middle points of edges
and c1 − c3 are candidates.

As the edges of Voronoi diagrams of spheres could be presented as a Bézier curve,
defined by three control points, we can use the definition of a quadratic Bézier curve to
find a point on a curve the center of which is the center of an empty sphere. A quadratic
Bézier curve is the path traced by the function B(w),

B(w) = (1 − w)2P0 + 2(1 − w)wP1 + w2P2, w ∈ [0, 1] (6.1)

where P0, P1, P2 are control points and w is a weight of a ball.
This method generates much more candidates than using only vertices.
The radius of the empty sphere is calculated with respect to the nearby balls, defining

a Voronoi vertex/edge. Since the intersections between spheres are prohibited, the
resulting radius will be the distance from the center of a Voronoi vertex or point on
a Voronoi edge to the center of the generator minus its radius.

rcadidate =

√
(xv − xg)2 + (yv − yg)2 + (zv − zg)2 − rg (6.2)
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Figure 6.1: Illustration of candidates to insert into the object - 2D diagram: on the left

side is the scheme of using Voronoi vertices, on the right side is the example of using Voronoi

edges, where we denote a point on a curve as a possible position of empty spheres.

Packing spheres makes sense when we are packing them into containers, e.g. box,
cylinder, triangle mesh models. Thus, we have to perform additional computations for
boundaries, one of the solution of a packing of spheres in a cylinder was proposed by
M. Gavrilova[1], described in a previous section.

The approach of this thesis uses the Voronoi Diagram of 3D Balls Library which
constructs the diagram, bounded by four generators, which create a tetrahedron. This
option allows us to avoid the problems with infinities in edges. Hence, the Voronoi
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6.1 Sphere Packing

diagram is not strictly constructed inside a container, the edges and vertices could intersect
the container.

After the radius rcandidate has been found, we calculate the distance from the Voronoi
vertex to bounds, then the smallest distance is picked and used as a radius of a new sphere.
This operation processes all vertices which are inside the container, other vertices are not
taken into consideration, see Figure 6.2 (left), on the left side the 2D slice of a cylinder is
illustrated, where only Voronoi vertices are used, v8 and v9 does not satisfy the condition
of bounds, thus they are not used as possible positions of new spheres. Figure 6.2 (right)
illustrates the cube, where the edges and vertices are used as potential spots for inserting
new spheres, but again vertices v8, v9 and points on edges e8 − e16 do not satisfy the
boundary conditions, thus they are not in a set of candidates.
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e4

Figure 6.2: Packing into a container - 2D scheme, from left to right: cylinder, cube

If the order of inserts is important (in case of different balls packing), i.e., large spheres
have to be inserted first and the smallest last, then it is required to sort the candidates
with the radii consideration. In case we are packing a container with equal spheres, the
calculations of radius are unnecessary since the size of sphere is already defined.

To perform the packing, we need an initial Voronoi diagram, which provides us with
start vertices or points on edges as new positions for candidates. Cube and cylinder have
automatically calculated generators, which define the start of the Voronoi diagram, see
Figure 6.3.
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6.1 Sphere Packing

Figure 6.3: An initial diagram - Cube example

Algorithm 6.1.1 and Algorithm 6.7 illustrates the pseudocode of packing containers
by equal and different balls respectively.

Algorithm 6.1.1 Equal radii
Input: a geometrical model (cube, cylinder)

Output: a container packed by equal balls, the Voronoi diagram of an expanded set of

balls

• Define start generators for a given model (for construction the start diagram).

• Initialize the start diagram and find all Voronoi vertices vi inside a container.

while count of generators changed do

• Find new candidates c

Process each candidate ci (a vertex vi with a given radius r).

for each ci do Insert ci into a set of generators and construct the diagram.

if diagram is not constructed then ci is rejected (see Chapter 2).

else

if there is any intersection with other balls from the set g then the candidate

ci is rejected.

else it is accepted.

end if

end if

end for

end while
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6.1 Sphere Packing

Algorithm 6.1.2 Different radii
Input: a geometrical model (cube, cylinder)

Output: a container packed by different balls, the Voronoi diagram of spheres

• Define start generators for a given model (for construction the start diagram).

• Initialize the start diagram and find all Voronoi vertices vi inside a container.

while count of generators changed do

• Find new candidates c

for each ci do

• Calculate the radii (ri, i ∈ {1, 2, ...}) with respect to defining generators and

boundaries. Filter by radius (in case if we defined the smallest and largest balls).

end for

• Sort candidates with respect to the radii sizes (from larger to smaller).

for each ci do Insert ci into a set of generators and construct the diagram.

if diagram is not constructed then ci is rejected (see Chapter 2).

else

if there is any intersection with other balls from the set g then the candidate

ci is rejected.

else it is accepted.

end if

end if

end for

end while
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6.1 Sphere Packing

Triangle mesh model

Packing spheres into triangle mesh objects requires more precise definition of initial
generators. If the edges or vertices are constructed outside our model they do not have
a value for us. These points are rejected in the preprocessing part (tests if points are
inside a model). For more tangled objects (or objects with a hole inside) is preferably to
define the start Voronoi diagram with a larger number of generators or have a uniform
distribution of generators. This helps to avoid a poor filling performance.

Figure 6.4: Bunny partition - Divide the bunny into two parts: the top part is more complex,

it contains more initial generators, the bottom part is simpler and there is no need to have it

so precise.

A model of the Stanford Bunny is a good example, it consists of a pretty bulky body,
a head and small long ears. Filling of the main body and the head is not complicated, but
the ears involve more attention. Using a uniform distribution of start generators leads to
a situation, where the large number of existing vertices and edges are out of the model.
The details with higher complexity cannot be filled properly. To avoid this problem of
”empty ears” in a given example, I suggest to divide the model into several parts with
respect to its complexity. More complicated parts (ears) should be defined by more initial
generators, see Figure 6.4. Why more generators? The idea is similar to building the
medial axes inside the object (see Figure 6.5), to achieve as much vertices inside a mesh
as possible.

Figure 6.5: 2D Voronoi based medial axis - taken from [18]

Since the construction of the Voronoi diagram of spheres is not adapted to a dynamic
computation, I denote the parts inclined to be troublesome in packing problems and define
the start generators more precise. The rest of the object which can be formed easily by
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6.1 Sphere Packing

a smaller number of start generators and does not need pointless increasing of number of
initial balls, because it leads to a slower computation, see Figure 6.6.

In that case the initial generators can be chosen up from the set of vertices, which
forms the triangle mesh, e.g., every Nth vertex for ears and every Mth for the body are
chosen. An even distribution of initial generators to partial components (e.g., an ear)
results in better packing.

Figure 6.6: Bunny mesh - Bunny mesh with initial generators

The radius of the empty sphere is calculated with respect to its defining generators.
Boundaries in that case are more complicated, since it is represented as a set of triangle
faces. The ray-triangle intersection test is performed. When the intersection point of a ray
and a triangle mesh is found, then the distance from Voronoi vertex to intersection point is
tested. In case the distance is smaller than the previous smallest radius, then it is is saved
as a new radius. The ray is moving around X, Y and Z axes with a given angle.

A Voronoi edge is defined by three generators and start(end) vertices are defined by
four generators. Using this property of VDS reduces the computation of radii, since there
is no need to control the whole set of spheres.

It is expected that packing containers by different balls will perform faster, since the
empty space is filled by the sphere with the maximal radius which could be inscribed.
Inserting larger balls will not greatly increase the number of candidates as it happens with
equal spheres.
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6.2 Granular simulation

6.2 Granular simulation

Granular animations are very popular in computer graphics. Physically-based simulation
algorithms are usually preferred over manually modelling behaviour. Granular interac-
tions with other materials or with itself can be very complex.

In my case I used both libraries Voronoi Diagram of 3D Balls and SPH. SPH
library provides simple boundaries, but additional methods were implemented to simulate
a bounce from cube walls, cylinder coat and bounce from a nearby granule or triangle face.

6.2.1 Proposed Application of VDS in Granular Simulation

The motion of particles is based on fluid forces. The SPH (Fluid v.2) supports only
a simple bounding box to limit the particle flow. In this approach the particle movement
is performed in different bounding models, that is why the code had to be modified for
correct interaction of faces of models with the particles. The motion is effected by forces
of gravity and by faces with respect to a particle radius.

The FLUID v.2 uses a uniform grid spatial division to speed up the calculations of the
particle forces. The size is given a double value of the smoothing radius of a particle,
thus the grid resolution is calculated with respect to the size of the scene. This work for
particles of the same radii size.

The use of the VDS simplifies the neighbours search, since the diagram stores
information about vertices, edges and generators. The drawback of using the VDS is that
sometimes it may cause an error in motion. The ball can move only in case the diagram
was successfully constructed (it happens in a rare cases, see Chapter 2), otherwise the
ball stays on a previous place, thus there are situations, when one ball is suddenly frozen,
while others continue in motion, observing such an event looks really odd.

Figure 6.7: Illustration of balls behaviour - Bouncing

At the beginning all granules have the same direction of motion (along the Oy axis),
but during the move the direction could change. That happens when the ball collide with
other balls or with the boundaries of the model. Using the law of reflection the angle of
impact is equal to the angle of rebound, see Figure 6.7.
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6.2 Granular simulation

The diagram could be constructed several times during one iteration. The application
saves the last version of the diagram for the situations when the diagram was not
successfully constructed. This little option saves the time, when the diagram is defined by
a large number of generators.

6.2.2 Plane, Cylinder

Fluid simulation on a plane, the simplest one due to absence of boundaries except the
plane on which the ball set is falling on. Let us assume bi = {b1, b2, ...} as a set of balls
in a fluid. Using the VDS library the appropriate diagram for a given set of balls bi is
constructed. The particle motion is performed by SPH (Fluid v.2) library. The VDS helps
to find neighbours and calculate a new position of a particle in case of balls collision.

Algorithm 6.2.1, Algorithm 6.2.2 illustrates the pseudocode of particles motion with
respect to the plane p and a container, respectively.

Algorithm 6.2.1 Plane
Input: a set of particles (balls), cylinder

Output: new positions of particles in space with respect to a given plane

for each bi ∈ Fluid do

if bi is above the plane p then

• get the new position of a ball (calculated by SPH, see Chapter 5, Code 5.7)

and construct the diagram.

if the diagram is constructed then find neighbours and detect intersections

if there are intersections with neighbours then change the velocity

direction1.

else the new position is accepted.

end if

else the new position is rejected.

end if

else calculate the point of intersection of bi trajectory with the given plane and

change the new position to the intersection position (with respect to the particle radius).

end if

end for

text1 Figure 6.8 illustrates motion on a plane.

1The value of a new direction depends on a normal vector of the intersected ball, then the vector of
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6.2 Granular simulation

Algorithm 6.2.2 Cylinder
Input: a set of particles (balls), plane

Output: new positions of particles in space with respect to a given container

for each bi ∈ Fluid do

if the line given by bi’s actual and previous positions (calculated by SPH, see

Chapter 5, Code 5.7) does not intersect the container then

• get the actual position of a ball and construct the diagram.

if the diagram is constructed then find neighbours and detect intersections

if there are intersections with neighbours then change the velocity direction

and compute new position (described below).

else the new position is accepted.

end if

else the new position is rejected.

end if

else calculate the point of intersection of bi trajectory with the given container and

change the new position to the intersection position (with respect to the particle radius)

and calculate the new velocity direction.

end if

end for
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6.2 Granular simulation

Figure 6.8: Granules falling on plane - Simulation of falling on a plane

Figures 6.9-6.10 illustrates the Algorithm 6.2.2.

Figure 6.9: Granules motion - Simulation of falling particles in a cube

Figure 6.10: Granular motion - Simulation of falling particles in a cylinder

The idea of motion does not allow ball intersections. The SPH library assume balls
with the same radii of balls, hence a code was implemented to find a point on a ball
trajectory when the balls touch and inflicts the change of the velocity direction. Let us
assume we have a situation similar to the scheme illustrated in Figure 6.11.

rebound is calculated using the following equation: R = V − 2 ∗ (V ·N) ∗N, where R is the reflecting vector,

N is the normal vector to sphere and V is the velocity vector.

38



6.2 Granular simulation

a1

a3

a2

n1

n2

n3

n4d1

d2

d3

d4

A

B

C

D

b

Figure 6.11: Balls intersection - Computation of a new position.

Let us suppose that a new position of a ball b is located at the point D. Before we
accept a new position, we check intersections with the neighbour balls (n1, n2, n3, n4), if
the distance distdi f f < 0 (Eq. 6.3) then there is an intersection between b and ni.

distdi f f = (bx − nix)2 + (by − niy)2 + (bz − niz)2 − br − nir (6.3)

Using the Sine and Cosine theorems we obtain the |BC| distance. Knowing the |BC|
and |BD| we can calculate the coordinates of C, a new correct position at which no
intersection occurs.

Triangle Mesh

For testing motions in more complex objects it was suggested to use a triangle mesh since
it is the most ubiquitous rendering primitives in use and most of non-trivial objects are
represented by a set of triangles. Let assume we have a triangle mesh T , then check each
particle p in a fluid F with respect to the triangle mesh in the following manner:

r
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p
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n

v’

Figure 6.12: Segment triangle intersection - Computing a new position of a particle flow.
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Algorithm 6.2.3 Triangle mesh
Input: a set of particles (balls), a triangle mesh

Output: new positions of particles in space with respect to a given triangle mesh

• Check the line going through the positions (O, O′) of a particle, and test for

intersection of this line with a triangle ti(V1,V2,V3) ∈ T .

if there is no intersection between a segment OO′ and a triangle ti then then construct

a new Voronoi diagram with a new position at O′.

if the diagram is not constructed then the new position is rejected (the diagram was

not changed, because the point stayed at the old position).

else check intersections between nearby balls

if there are intersections then recalculate the new position and the velocity

direction and check the validity of a newly constructed diagram again, if it fails then

use the previous position, otherwise the new position is accepted.

else the new position is accepted.

end if

end if

else

• get a point of intersection A and calculate a new position with the respect to

particle radius r since our particle is not degenerated to a point. This is performed by

moving the center of a particle along OA and stops at B, where the distance |AB| = r.

• Construct the diagram

if the diagram was constructed then and check intersections between nearby balls.

if there are intersections then recalculate the new position and the velocity

direction and check the validity of a newly constructed diagram again, if it fails then

use the previous position, otherwise the new position is accepted.

else the new position is accepted. Use the normal in the intersection point A

and calculate a new velocity direction v′ using the reflection low.

end if

else use the previous position (the diagram was not changed).

end if

end if
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6.3 Application

The fundamental stones of the application(see Figure 6.13) are external VDS and SPH
libraries, whose properties were used in the proposed solution to solve the issue of
sphere packing in a container and granular simulations. As a native programming
language C] was chosen since the tested VDS library is implemented in it. The SPH was
originally implemented as an open source C++ application, hence it was changed and the
appropriate interface for communication was proposed as a dynamic (*.dll) library and
integrated into the main application. As a graphics platform OpenGL(+TaoFramework)
was chosen, the application also uses Microsoft Windows platform.

Figure 6.13: Application - screenshot

Scheme captured in Fugure 6.14 illustrates the outline of packing containers and fluid
motions. Packing spheres unit performs a preprocessing before running the algorithm.
Initialization depends on the type of the model to pack. The algorithm runs until there are
new balls to insert into a container. Granular motion does not need a preprocessing since
the number of balls stays constant.
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INPUT:

- SPHERE PACKING: simple geometric model(cube, cylinder)

triangle mesh model(ply)

-GRANULAR FLOW: generators(XYZR)

+ boundaries(simple geometric model

or triangle mesh)

VDS

SPH

Packing spheres Granular simulation

cube, cylinder, triangle

mesh

(each with individual

preprocessing model)

plane, cube, cylinder,

triangle mesh
do until the

object is filled N-times

Pack cube by equal balls

Pack cube by different balls

Pack cylinder by equal balls

Pack cube by different balls

Pack triangle mesh

by different balls

Plain

Cylinder

Triangle Mesh

Figure 6.14: The scheme of application - The pipeline of processing of spheres

The testing application allows to read the input data in a format ∗.data1 and the
triangle mesh models in a format ∗.ply. In case of packing spheres into simple geometric
containers no input is required.

However, most of the computations could not be visualized in real time, that is why it
is recommended to use the option of saving of scenes (default state is ”turn on”). Other
options are to turn on/off the visualization of diagram itself, balls, or the boundaries in
case if we would like to have a preview of only specific elements on a scene.

The use of the main application is easy and intuitive. There were implemented
some prepared examples for tests. In case of packing it is necessary to pick the model
(cube/cylinder/ or import a triangle mesh), set the value of the minimal (maximal) radius,
the radius of a cylinder or the size of a side of a cube. As for fluid simulation it is also
necessary to import particles and set the model (plane/cylinder or import a triangle mesh).
All results saves into results directory.

1∗.data store XYZR information, where x, y, z are coordinates and r is a radius.
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Chapter 7

Results

The goal of my diploma thesis was to test the ”Voronoi Diagram of 3D Balls Library” and
this chapter presents the results I have achieved during the process. The VDS library has
been tested on two types of data, the sets of balls with the same sizes and different sizes
of radii, both examples are discussed in this section.

All experimental results were obtained on an Intel(R) Core(TM) i5 CPU, 240GHz,
4GB RAM using C]. All radii and container sizes are presented in dimensionless units.

7.1 Sphere Packing

The first idea was to use only vertices of the diagram as candidates to insert new balls,
but in cases when the vertices are outside of a container it was suggested to use Voronoi
edges as guidelines for new spheres, which increases the number of candidates. The
drawback is that this option slows down the computation since the number of edges grows
significantly. Sometimes in the cases when the difference between radii is large it becomes
troublesome for Voronoi diagram construction (see anomalies, Chapter 2).

The diagram is generated at least N-times, where N-is the number of possible
candidates. After each iteration the N value is increased since new candidates were
accepted.

Let us denote algorithms with using Voronoi vertices, Voronoi edges and Voronoi
vertices as V-algorithm, VE-algorithm, respectively.

7.1.1 Cube

One of the examples of application of VD is filling a cube by spheres. The packing was
tested on vertices and vertices with edges. The bigger is the smallest radius the more
imprecisely the object is filled, see Figure 7.1.

Figure 7.2 illustrates how many Voronoi vertices were generated in VDS (blue), how
many of them were rejected in preprocessing (orange), how many candidates we actually
had to test (yellow) and how many spheres with Voronoi vertices were actually accepted
(green) in a given iteration.
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Figure 7.1: Filling the cube - The smallest allowed radius is 7. Iterations: 2, 4, 9, 12.

Figure 7.2: The V-algorithm diagram - The diagram of Voronoi vertices acceptance.

Figure 7.3 is a result of packing of the same balls in a cube, in this example it is tested
if a Voronoi vertex center is inside a container without radius consideration. Hence if the
size of the ball is small enough due to the size of a container, the packing performs great.
The set of the same balls does not tend to have anomalies, thus most of candidates are
accepted, but they could be rejected with regard to intersections with other balls in the
set.

Figure 7.3 illustrates the process of a cube packing by identical balls (iterations:
2,4,5,6,7,8,9,11). The yellow balls show the candidates, four candidates on each edge.
The red small balls represent the start generators.
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7.1 Sphere Packing

Figure 7.3: Cube with identical balls - (in lines, left to right) The radius of each ball is r =

2, the box size is 30x30x30, EV - algorithm.

Different Radii

The next paragraph analyses the V- and VE-algorithms. Using the vertices in a packing is
faster, but if it is desired to achieve a higher quality, it is suggested to use edges in addition
to vertices. However in some situations VE-algorithm generates less balls in a container,
which can be caused by anomalies, see Chapter 2.

In Table 7.1 the results of V-algorithm packing are shown, where ball2, ball3 are balls
with minimal radii 2, 3, respectively. The size of a cube is given as side × side × side,
the time t2, t3 of packing cubes by balls of radii 2, 3 is presented in seconds, respectively.
Cubes were packed by using a V-algorithm, it is obvious that a smaller minimal radius
guarantees more densely packing, but the execution time increases significantly.

size of a cube ball2 t2 ball3 t3

20 × 20 × 20 39 3.168 23 0.995
30 × 30 × 30 64 14.819 48 6.645
40 × 40 × 40 131 73.569 68 36.839
50 × 50 × 50 163 157.030 110 65.256
60 × 60 × 60 314 1135.712 224 417.513
70 × 70 × 70 492 4073.949 138 328.245

Table 7.1: Time execution of packing spheres into a cube, where spheres have different radii,

V-algorithm

Table 7.2 contains results of using VE-algorithm (notationas are the same as in the
previous table). The packing algorithm uses edges in addition to vertices. The results
illustrated in Table 7.2 shows that the VE-algorithm of packing (where the minimal radius
is 3) is better than V-algorithm in Table 7.1.
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7.1 Sphere Packing

size of a cube ball2 t2 ball3 t3

20 × 20 × 20 49 5.580 19 0.560
30 × 30 × 30 108 82.699 43 4.112
40 × 40 × 40 248 600.971 64 7.167
50 × 50 × 50 62 45.539 81 22.375
60 × 60 × 60 99 168.742 71 23.8623
70 × 70 × 70 463 9458.011 160 131.678

Table 7.2: Time execution of packing spheres into a cube, where spheres have different radii,

VE-algorithm

Figure 7.4 illustrates V and VE algorithms. It is obvious that at the beginning the
VE-algorithm is better than V-algorithm, but with increasing of volume the difference
becomes negligible.

Figure 7.4: The chart of V and VE algorithms - Comparison of V with VE. r2−V - a count

of balls packed by using V-algorithms, where the smallest allowed radius of a ball is 2, r3−V

- a count of balls packed by using V-algorithm, where the smallest allowed radius of a ball is

3, r2−VE, r3−VE - counts of balls packed by using VE-algorithm, where the smallest radii

of a ball are 2, 3, respectively.

Figure 7.5 illustrates a cube packing using V-algorithm (Figure 7.5(a,c)) and VE-
algorithm (Figure 7.5(b,d)). The minimal radii in both algorithms are equal, but the
difference in performed results is obvious. Thus, the final result strongly depends not only
on a chosen algorithm, but on ball positions in a container, which affects the construction
of diagrams.
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7.1 Sphere Packing

Figure 7.5: Cube packing by using V- and VE- algorithms - (a)- V-algorithm, 71 balls. (c)

- V-algorithm, 160 balls. (b) - VE-algorithm, 224 balls, (d) - VE-algorithm, 138 balls. (a),

(b) - the box size is 60×60×60, (c), (d) - the box size is 70×70×70. The top part of boxes is

unbounded.

Equal Radii

The packing by the same balls is tested only on V-algorithm, since it meets the
requirements and it is unnecessary to complicate the computations by increasing the
number of candidates as equal balls do not generate anomalies, with the exception when
there are more than four balls on a plane.

The following Table 7.3 shows the achieved results, it is obvious that the smaller the
ball the more precise packing is, see Figure 7.6 with the ball radius = 3.

size of a box ball3 t3 ball4 t4

20 × 20 × 20 26 1.227 19 0.514
30 × 30 × 30 63 24.43 36 3.354
40 × 40 × 40 160 437.658 63 27.556
50 × 50 × 50 339 1941.351 122 281.807
60 × 60 × 60 606 100031.398 227 1065.883

Table 7.3: Time execution of packing spheres into a box, balls of the same radii, V -

algorithm. The size of a box is given as side × side × side, balls3, balls4 - are sets of balls,

where the smallest allowed radii are 3, 4, respectively. t3, t4 - execution time in seconds for

ball3, ball4.
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7.1 Sphere Packing

Figure 7.6: Packing spheres into a cube - Illustration of a cube packing by stages, radius of

a ball is 3. In lines, from left to right, iterations: 2, 5, 7, 13.

The difference in packing by identical and different balls is the time of execution and
the count of balls in a container. Tables 7.1, 7.2, 7.3 illustrates that the packing by different
balls is significantly faster (the minimal radius in packing by the same balls is 3, 4 and 2,
3 in packing by different balls). The packing by equal balls inserts the balls of the same
size even if the detected empty space endure a larger ball, while the void in packing by
different balls is filled by the largest ball, which can be inscribed between the spheres.
Hence, the diagram of different balls is less complicated, less vertices, less edges, thus,
less candidates to test. The packing by identical spheres usually tends to perform good
results with a right definition of a ball diameter. And last but not least, even if the count
of balls in a container in case of different packing is less than the count of balls in equal
packing, it does not mean that the quality is lower, see Figure 7.7.

Figure 7.7: Packing spheres into a cube - in lines, from left to right, the left cube is packed

by 160 different balls, the right cube is packed by 385 identical balls (with exception of initial

generators (blue))

7.1.2 Cylinder

Another example is a cylinder model. Cylinder packing is very similar to cube packing,
the difference is a boundary test. Figure 7.8 illustrates packing by equal balls, where
the candidate centers are tested against boundaries, the results seem to be pleasing, the
cylinder is fully packed.
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7.1 Sphere Packing

Figure 7.8: Cylinder filling - rball = 4, rcylinder = 40, height = 40, 853 balls. The yellow set

of balls represents the candidates, the purple set of spheres represents the spherical particles.

Different Radii

The V-algorithm yields to the VE-algorithm (with the same start generators), because
most of vertices in the preprocessing part were rejected. The results of tests are illustrated
in Tables 7.4-7.5, where cylinderd is a diameter of a cylinder, ball1, ball2, ball3 - are
sets of balls, where the minimal allowed radii are 1, 2, 3, respectively, t1, t2, t3 - is
the appropriate execution time for sets of balls with ball1, ball2, ball3 smallest radii,
respectively.

The V- and VE- algorithms were also tested on a cylinder, but in this case the VE-
algorithm seems to be better, see Table( 7.4- 7.5). Figure 7.9 presents the diagram of the
dependence of balls counts in a cylinder on the algorithm.

cylinderd ball1 t1 ball2 t2 ball3 t3

20 28 6.080 32 8.350 14 0.144
30 35 10.550 29 5.512 26 0.3.961
40 40 11.754 33 9.001 30 5.600
50 35 9.134 34 8.002 34 7.411
60 54 58.884 48 42.873 34 10.612
70 87 253.360 77 190.152 62 83.111
80 87 211.808 54 60.650 48 28.300
90 75 129.934 46 37240 38 15.107

Table 7.4: Time execution of packing spheres into a cylinder, balls of different radii, VE -

algorithm
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7.1 Sphere Packing

cylinderd ball1 t1 ball2 t2 ball3 t3

20 25 1.270 28 1.804 14 0.144
30 23 0.980 21 0.865 17 0.532
40 21 0.930 21 0.923 21 0.904
50 23 1.132 22 0.919 22 0.877
60 28 1.360 26 1.322 26 1.343
70 57 17.430 26 1.325 26 1.362
80 48 10.786 27 1.354 26 1.382
90 31 1.926 28 1.378 27 1.324

Table 7.5: Time execution of packing spheres into a cylinder, balls of different radii, V -

algorithm

Figure 7.9: Cylinder filling - Comparison of V- and VE-algorithms. r1 − V, r2 − V, r3 − V

- application of the V-algorithm on the sets of balls, where the minimal radius is 1, 2, 3,

respectively. r1 − VE, r2 − VE, r3 − VE - application of the VE-algorithm on the sets of

balls, where the minimal radius is 1, 2, 3, respectively.

Figure 7.9 illustrates that both algorithms have almost equal results for smaller radii of
a cylinder (e.g., for diamaters 20, 30, 40, 50), but with diameter increasing the difference
starts to be significant.

Figure 7.10 illustrates the VE-algorithm in packing into a cylinder with radius 30 and
height 60. The cylinder is packed by 161 different balls.
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7.1 Sphere Packing

Figure 7.10: Cylinder. VE-algorithm. - In lines, from left to right, from top to bottom.

iterations: 2, 4, 5, 6, 7, 7 (without diagram), 7 (the opposite side of a cylinder), 7 (the Voronoi

diagram of spheres).

Equal Radii

The results of packing equal balls into a cylinder are presented in Table 7.6 (cylinderd is
a diameter of a cylinder, balls3, balls4 are sets of balls, where the minimal radii are 3, 4,
respectively. t3, t4 - is an appropriate execution time).

cylinderd balls3 t3 balls4 t4

20 14 0.153 14 0.152
30 64 32.251 14 0.152
40 128 171.101 68 36.864
50 123 53.425 117 156.733
60 492 6952.4936 86 18.454

Table 7.6: Time execution of packing spheres into a cylinder, balls of same radii, V -

algorithm

Figure 7.11 captures the packing by identical spheres (with diameter 6), the final result
is comparable to result illustrated in Figure 7.10. Both cylinders have unbounded top
parts. Figure 7.11 has more densely packing than Figure 7.10 (this can be solved by
defining a smaller minimal allowed radius).
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7.1 Sphere Packing

Figure 7.11: Packing spheres in a cylinder - Packing spheres in a cylinder, the radius is 3,

492 balls. Iterations: 2, 4, 6, 13, 13 (the appropriate Voronoi diagram)

The results can be compared with M. Gavrilova’s approach [1] (briefly described in
Chapter 3), the computations were implemented in Fortran 77 and tested on Sun Ultra 5
Workstation, and the results can be seen in Figure 3.1, Chapter 3. Their cylinder contains
300 Lennard-Jones atoms obtained by Monte Carlo relaxation with the fixed diameter of
a cylinder. Our simulation of a similar cylinder showed in Figure 7.12 contains 494 balls.
Our approach has more chaotic packing of spheres in comparison with approach from [1],
Figure 3.1.

Figure 7.12: - Packing spheres in a cylinder

7.1.3 Triangle Mesh

Most of complex models are represented by triangle meshes, thus it is handy if we can
pack more dense objects than cubes or cylinders. A given example is a little tricky, since
it requires to create the initial VDS more accurate to avoid voids, i.e., minor or curved
details are defined by a greater number of generators.

Figure 7.13 illustrates the results of packing by equal balls and it depends on a count
of initial generators of the diagram. Figure 7.13(a) has random generators thus the result
is not cheering, since the head part is almost empty (most of candidates were rejected
in the preprocessing part). Figure 7.13(b) contains more initial generators (uniform
distribution), but still the ear part is not fully filled.Figure 7.13(c) has more initial
generators than the other two and apparently this result is the best one. It was decided
to initialize ear part more accurately as it is possible and pack by smaller balls than the
rest of a body. This makes the final result more smoother and softer.
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7.1 Sphere Packing

Figure 7.13: Bunny - (a) - random generators (the violet set of balls represents the initial

generators). (b) - uniform distribution of initial generators (white balls represent the initial

generators). (c) - the ear part contains more initial generators than the rest of the bunny (initial

generators has a zero radius)

.
Figure 7.14 illustrates the packing of a bunny by equal balls stage by stage, the set of

red balls represents the initial generators.

Figure 7.14: Bunny - Filling the bunny step by step. Iterations: 1, 2, 3, 6.

Packing by different spheres is shown in Figure 7.15 (with a corresponding VDS), the
idea is the same as in previous examples, to insert the largest possible ball into a void.
The initial digram was created by a subset of vertices of triangles, thus the distribution
of generators is close to be even (every 21th vertex from the triangle mesh was taken as
a start generator). At first iteration the largest founded balls which fitted in the model
were added. The generated kitten contains 605 balls, the smallest ball is 1 and the largest
ball was limited to 50.
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7.1 Sphere Packing

Figure 7.15: Kitten - In lines, from left to right, from top to bottom. Filling the kitten model

step by step, the minimal radius =1, the maximal radius is 50. Iterations: 1, 2, 5, 7, 9, 17.

Figure 7.16 illustrates the distribution of initial generators and the following packing
of the model. The minimal radius was set to 0.9, the maximal radius was limited to 50.
The smaller the minimal radius, the better the result is. The bigger inscribed sphere into
a void, the faster packing process is, since the number of vertices and edges in the diagram
does not increase so extensively. But it is important not to forget that a big ball in rare
cases could still cause voids (see anomalies, Chapter 2).

The packing into the Stanford Bunny is shown in Figure 7.16, the big parts are filled
by big balls. The top part of the model contains more initial generators, to define the ear
part more properly.
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7.1 Sphere Packing

Figure 7.16: Bunny - Packing by different balls

Figure 7.17(a) the bunny has a uniform distribution of start generators, Figure 7.17(b)
the top part of the model is defined by a larger number of start generators than the rest of
the body. The difference between the two models is great, Figure 7.17(a) has completely
empty ears and a lot of empty spaces in the bottom part.

Figure 7.17: Bunny - Packing by different balls

The uniform distribution of generators in a model for creating the initial diagram does
not work well on all types of triangle mesh models, e.g, Figure 7.15 captures a better
packing than Figure 7.17(a). Hence, in cases that have complex models it is better to
divide them into several parts and define the start generators with dependency on the
complexity of a given part.

The achieved results can be compared with another method of packing spheres for
arbitrary objects [21]. The idea is to start with the largest sphere that fits in the object
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7.1 Sphere Packing

and iteratively insert new spheres, under the constraints that they must not intersect
already existing spheres and be completely contained inside the object, the full approach
is described in [21]. The Algorithm was implemented using CUDA (and a NVIDIA
GTX480 graphics card), Figure 7.18 shows the result of packing a bunny. The cover
volume is approximating to 94-95%.

Figure 7.18: Bunny - Packing by different balls, taken from [21]

The bottleneck of the algorithm is that we calculate the Voronoi diagram of spheres
for each new ball from the beginning, maybe it could work faster in case of incremental
option in the VDS construction or it might be found another way of application of the
VDS in packing problems, e.g., as it was suggested in [21] to use only some parts of the
diagram.

Others examples of packing spheres in a container are saved on a CD, in results/spack
directory.
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7.2 Granular Fluid Simulation

7.2 Granular Fluid Simulation

The simulation is strongly depended on the Voronoi diagram, if the diagram is not
constructed, the new position is rejected. In very rare cases errors in the VDS construction
occurs (anomalies, see Chapter 2), thus leads to a situation when the tested ball stops its
motion for a couple of iterations while others balls continue to move. The ball can start
to move when the structure of the diagram has been modified (the positions of other balls
due to the stopped ball has changed).

Also it could be problematic to touch the bottom of a cylinder/box or plane
mathematically correctly, because three more balls on a plane or more than four balls
with one inscribed sphere do not allow to construct the diagram. One of the solution is
to add a very small number to a position of a ball, or in case of motion simulations shift
the particle by a short distance between the partial iterations, that allows to use a previous
position in case of failure of the diagram construction.

While the particle size in majority of fluid simulations is negligible and has a constant
value, our particle has a weight (radius), which plays the primary role in computations.
The external SPH library also counts with the same sized particles, thus it was necessary
to implement an additional part of code, which tests intersections between nearby balls
and the following adjustment of a particle position and a velocity direction.

Several simulations were created to illustrate the results of applying the VDS library.
Figure 7.19 illustrates a fluid motion of 156 particles in a cylinder. The scene is very
simple but shows the interaction between balls. The iteration between balls in a fluid does
not have a attenuation, thus the motion looks a little chaotic.

Figure 7.19: Fluid motion in a cylinder. - in lines left to right, top to bottom.

Figure 7.20 captures a fluid motion in a triangle mesh.
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7.2 Granular Fluid Simulation

Figure 7.20: Cup (triangle mesh) - in lines left to right, top to bottom.

The results are compared with the original SPH (Fluid v.2). Unfortunately our
simulation is much slower, since SPH was implemented in C++ (CPU, supports also
GPU (CUDA)) and our simulation is coded in C]. But the advantage of our method is
that the set of input balls allows to have different radii and does not intersect nearby balls.
The construction of the Voronoi diagram in each iteration performs well and rarely fails.

Other animations are saved on a CD, in results/animations directory.
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Chapter 8

Conclusion

The primary objective of this work was to test the Voronoi Diagram of 3D Balls Library,
to find an application of diagrams in a granular material. Half of my work was focused
on container packing by balls, where the Voronoi diagram plays a role of a map. The
Voronoi vertices and points on Voronoi edges were propounded as potential spots for
new spheres. The advantage of the VDS was a fast neighbour search (i.e., the diagram
stores the whole information about neighbouring balls), where the set of tested balls was
significantly reduced. The VDS was tested on two types of data, sets of equal and different
size of balls. The packing by different size balls performed quite well. The drawback was
that sometimes the big difference in balls sizes caused situations when the diagram could
not be constructed. Another tricky situation occurred in case of three or more balls on the
same plane or the situation of four balls with one inscribed sphere. The other problem
were large balls, they tended to cause voids, which sometimes could be solved by using
Voronoi edges in addition as a guideline for new spheres (but it significantly increases
the number of candidates). Packing by the same sized balls worked out great, the result
depends only on a radii of a ball, but in this situation the idea of 3D balls had no purpose,
since it could be reduced to a problem of points when all balls have the same weight.
Overall the VDS library is a very useful tool in packing problems or free volume analysis
(e.g., detection of voids and neighbour search in static scenes).

As for granular simulations the VDS was used for a fast nearby balls search, but
in practise it showed up that for dynamic calculations when the diagram has to be
recomputed with each motion of a particle in a fluid is not very effective. Unfortunately
the simulation for a large number of particles was expected to be time-consuming because
the main application and VDS library were implemented in C] programming language.
The simulation also needs to be optimized to achieve better performance. Preferably for
practical use it is better to rewrite the program code in C/C++.
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Abbreviations and Notation

• The following abbreviations are met throughout the diploma thesis:

VD — Voronoi diagram
VDS — Voronoi diagram of spheres
VV — Voronoi vertex
VE — Voronoi edge
VF — Voronoi face
SPH — Smooth Particle Hydrodynamics
GUI — Graphical User Interface
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