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ON SIGN–CHANGING SOLUTIONS FOR

RESONANT (p,q)–LAPLACE EQUATIONS
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(Communicated by C.-L. Tang)

Abstract. We provide two existence results for sign-changing solutions to the Dirichlet problem

for the family of equations −∆pu−∆qu = α |u|p−2u+β |u|q−2u , where 1 < q < p and α , β are

parameters. First, we show the existence in the resonant case α ∈ σ(−∆p) for sufficiently large

β , thereby generalizing previously known results. The obtained solutions have negative energy.

Second, we show the existence for any β > λ1(q) and sufficiently large α under an additional

nonresonant assumption, where λ1(q) is the first eigenvalue of the q -Laplacian. The obtained

solutions have positive energy.

1. Introduction and main results

In this note, we consider the following generalized eigenvalue problem:

{

−∆pu−∆qu = α|u|p−2u + β |u|q−2u in Ω,

u = 0 on ∂Ω,
(GEV ;α,β )

where 1 < q < p < ∞ , α,β ∈ R , and ∆ru := div(|∇u|r−2∇u) with r ∈ {p,q} is the

r -Laplace operator. In view of the symmetry, the assumption q < p is imposed without

loss of generality. We assume that Ω ⊂ R
N is a bounded domain with C2 -boundary

∂Ω , N > 1.

The problem (GEV ;α,β ) is of variational type with the energy functional Eα ,β ∈

C1(W 1,p
0 ,R) defined by

Eα ,β (u) :=
1

p
Hα(u)+

1

q
Gβ (u),

where

Hα(u) := ‖∇u‖p
p −α‖u‖p

p and Gβ (u) := ‖∇u‖q
q −β‖u‖q

q.

Here we denote W
1,r
0 := W

1,r
0 (Ω) , and ‖u‖r :=

(
∫

Ω |u|r dx
)1/r

stands for the norm of

Lr(Ω) , r ∈ (1,∞) .
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By definition, critical points of Eα ,β are (weak) solutions to (GEV ;α,β ). Notice

that any weak solution belongs to C1,γ(Ω) for some γ ∈ (0,1) , see [2, Remark 1.1]. If

a solution u can be split as u = u+−u− , where u± := max{±u,0} 6≡ 0 in Ω , then u

is called nodal or sign-changing solution.

Various boundary value problems with “mixed” differential operators of the (p,q)-

Laplacian type are actively investigated nowadays, see [12] and references below for

a survey of the corresponding results, as well as for the physical backgrounds of the

(p,q)-Laplacian. The particular problem (GEV ;α,β ) appears to be interesting since it

can be considered as a pure combination of the (homogeneous) eigenvalue problems for

the p - and q -Laplacians, which forces the associated energy functional to demonstrate

the indefinite-type behavior in the sense of signs of its critical points, and hence com-

bined effects of positive and negative terms can be observed. The systematic study of

the existence of constant-sign solutions to (GEV ;α,β ) was performed in [1, 3, 11, 14],

see also references therein. On the other hand, the existence of sign-changing solutions

to (GEV ;α,β ) was the subject of the work [2].

The main aim of the present note is to develop several existence and nonexistence

results for nodal solutions to (GEV ;α,β ) obtained in [2]. The note is organized as

follows. In the subsequent subsections, we introduce notations and formulate the main

results. In Section 2, we give the corresponding proofs.

1.1. Notations

We say that λ is an eigenvalue of the r -Laplacian (r > 1), if the problem

{

−∆ru = λ |u|r−2u in Ω,

u = 0 on ∂Ω
(EV ;r,λ )

has a nontrivial (weak) solution. Analogously to the linear case, the set of all eigenval-

ues of −∆r (its spectrum) will be denoted as σ(−∆r) . Along this note, we will work

with two sequences of eigenvalues of −∆r . The first one, denoted here as {λk(r)}k∈N ,

was introduced in [8] and can be defined as

λk(r) := inf

{

max
z∈Sk−1

‖∇h(z)‖r
r : h ∈C(Sk−1,M(r)), h is odd

}

, (1)

where Sk−1 is the unit sphere in R
k and

M(r) := {u ∈W
1,r
0 : ‖u‖r = 1}.

The second sequence, denoted here as {µk(r)}k∈N , is based on the Z2 -cohomological

index i of Fadell and Rabinowitz [10], and can be defined as follows (see, e.g., [13]):

µk(r) := inf

{

sup
u∈A

1

‖u‖r
r

: A ⊂ Sr, −A = A, i(A) > k

}

,

Sr := {u ∈W
1,r
0 : ‖∇u‖r = 1}.
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Although it is not known whether either of these sequences (or even their union) ex-

hausts σ(−∆r) (apart the case N = 1 or r = 2), the first and second eigenvalues of

the r -Laplacian coincide with λ1(r) , µ1(r) and λ2(r) , µ2(r) , respectively. Moreover,

λk(r),µk(r) → ∞ as k → ∞ , see [8, 13]. Note that λ1(r) (and hence µ1(r)) is simple

and isolated, and the corresponding eigenfunction (which can be taken strictly positive

in Ω and has C1(Ω)-regularity) will be denoted as ϕr .

Finally, we will use the following notation for the eigenspace of −∆r at λ ∈ R :

ES(r;λ ) := {v ∈W
1,r
0 : v is a solution of (EV ;r,λ )}.

Evidently, ES(r;λ ) 6= {0} if and only if λ ∈ σ(−∆r) .

1.2. Main results

Let us start with the nonexistence of nodal solutions to (GEV ;α,β ). The following

result was proved in [2].

THEOREM 1. ([2, Theorems 1.3 and 1.4]) Assume that

(α,β ) ∈ (−∞,λ2(p)]× (−∞,λ1(q)]∪ (−∞,λ1(p)]× (−∞,λ2(q)].

Then (GEV ;α,β ) has no nodal solution. Moreover, if N = 1 , then the nonexistence

holds in (−∞,λ2(p)]× (−∞,λ2(q)] .

In order to extend the set of the nonexistence in the higher-dimensional case, we

introduce the following family of critical points:

βN (α) := inf

{

‖∇u+‖q
q

‖u+‖q
q

: u ∈W
1,p
0 , u± 6≡ 0,

‖∇u−‖p
p

‖u−‖p
p

6 α 6
‖∇u+‖p

p

‖u+‖p
p

}

, (2)

and we put βN (α) = ∞ if the admissible set is empty. In Lemma 1 below, we study

some basic properties of βN (α) . In particular, we show that βN (α) < ∞ if and only

if α > λ1(p) , and βN (α) > λ1(q) provided α > λ1(p) , see Fig. 1.

We generalize Theorem 1 in the following way.

PROPOSITION 1. For any α 6 λ2(p) and β 6 min{λ2(q),βN (α)} the problem

(GEV ;α,β ) has no nodal solution.

Let us now treat the existence of nodal solutions to (GEV ;α,β ). We define

kα := min{l ∈ N : α < λl+1(p)} (3)

and note that λkα +1(q) > λ2(q) for all α ∈ R . The following theorem was shown in

[2].

THEOREM 2. ([2, Theorem 1.6]) Let α ∈ R\σ(−∆p) . Then for all

β > max{β ∗
U (α),λkα +1(q)} (4)
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the problem (GEV ;α,β ) has a nodal solution u satisfying Eα ,β (u) < 0 , where

β ∗
U (α) := sup

{

‖∇ϕ‖
q
q

‖ϕ‖q
q

: ϕ ∈ ES(p;α)\ {0}

}

for α ∈ σ(−∆p),

and β ∗
U

(α) = −∞ provided α 6∈ σ(−∆p) .

Actually, Theorem 2 remains valid under a weaker assumption on β , namely,

β > λkα +1(q) such that

Gβ (ϕ) = ‖∇ϕ‖q
q −β‖ϕ‖q

q 6= 0 for all ϕ ∈ ES(p;α)\ {0}, (5)

as it follows from the proof of [2, Theorem 1.6] in combination with [2, Remark 3.12].

In fact, the assumption (5) is needed to guarantee the validity of the Palais–Smale condi-

tion for Eα ,β , and the assumption (4) only represents an explicit lower bound for β sat-

isfying (5). Roughly speaking, this can be interpreted in a way that the “true spectrum”

of the (p,q)-Laplacian (in the sense that Eα ,β possibly undergoes the lack of compact-

ness) consists of points (α,β ) where α ∈ σ(−∆p) and β is such that Gβ (ϕ) = 0 for

some ϕ ∈ ES(p;α)\ {0} .

Let us emphasize that the assumption on α in Theorem 2 is restrictive, since it

is not known whether R\σ(−∆p) coincides with R , apart the cases N = 1 or p = 2.

One of the main aims of the present note is to dispose of the assumption on α . Thereby,

we prove the following existence result.

THEOREM 3. Let α ∈ R . Then for every β > λkα +1(q) such that

Gβ (ϕ) = ‖∇ϕ‖q
q −β‖ϕ‖q

q 6= 0 for all ϕ ∈ ES(p;α)\ {0} (6)

the problem (GEV ;α,β ) has a nodal solution u satisfying Eα ,β (u) < 0 , where kα is

the natural number defined by (3).

Note that if α = λ1(p) , then (6) is violated only for β = ‖∇ϕp‖
q
q/‖ϕp‖

q
q . In this

case, combining the existence result [3, Proposition 2.5 (iii)] with the general existence

result for nodal solutions [2, Proposition 3.14], we can specify Theorem 3 as follows

(cf. [2, Theorem 1.7]).

THEOREM 4. Assume p > 2q and suppose that ∂Ω is connected if N > 2 . Let

(α,β )∈ (−∞,λ2(p))×(λ2(q),∞) . Then (GEV ;α,β ) has a nodal solution u satisfying

Eα ,β (u) < 0 .

Similarly to the statement of Theorem 3 one can ask whether it is possible to obtain

the existence of nodal solutions to (GEV ;α,β ) for a fixed β and some ranges of α . If

β 6 λ1(q) , then it was shown in [2, Theorems 1.3 and 1.5] that (GEV ;α,β ) does not

have any nodal solution for α 6 λ2(p) and has at least one nodal solution with positive

energy for α > λ2(p) . (More generally, there was constructed a curve βL (α) such

that below this curve one can always find a nodal solution with positive energy, see

Fig. 1.) However, it was not clear what happens for β > λ1(q) and sufficiently large

α > λ1(p) . We have the following result in this direction.
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Figure 1: Schematic plot of the sets of existence and nonexistence of nodal solutions to

(GEV ;α,β ). Existence – light grays, nonexistence – dark gray.

THEOREM 5. Let β > λ1(q) . Then there exists α∗(β ) > λ1(p) such that for

any α > α∗(β ) satisfying (6), the problem (GEV ;α,β ) has a nodal solution u with

Eα ,β (u) > 0 .

2. Proofs

Let us start with the nonexistence result given by Proposition 1. For this end, we

first show the properties of βN (α) defined in (2).

LEMMA 1. The following assertions hold:

(i) βN (α) < ∞ if and only if α > λ1(p) .

(ii) βN (α) > λ1(q) for all α > λ1(p) .

(iii) βN (α) → ∞ as α → λ1(p) .

Proof. (i) Let us show that the admissible set for βN (α) is nonempty if and only

if α > λ1(p) . If α 6 λ1(p) , then the emptiness of the admissible set directly follows

from the definition of λ1(p) and the fact that the corresponding first eigenfunction ϕp

has a constant sign in Ω . Assume that α > λ1(p) . Since ϕp ∈W
1,p
0 , there exists a se-

quence {ψn}n∈N ⊂C∞
0 (Ω) such that ψn →ϕp strongly in W

1,p
0 and Lp(Ω) . Therefore,

we can fix sufficiently large n ∈ N such that

λ1(p) =
‖∇ϕp‖

p
p

‖ϕp‖
p
p

<
‖∇ψn‖

p
p

‖ψn‖
p
p

6 α.
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On the other hand, let us take any ξ ∈C∞
0 (B) , where B is a sufficiently small ball such

that B ⊂ Ω\ suppψn and

α 6
‖∇ξ‖p

p

‖ξ‖p
p

.

Thus, we conclude that |ξ |− |ψn| is an admissible function for βN (α) .

(ii) Suppose, by contradiction, that there exists α > λ1(p) such that βN (α) =

λ1(q) . By definition, this means that there exists {un}n∈N ⊂W
1,p
0 such that u±n 6≡ 0,

‖∇u−n ‖
p
p

‖u−n ‖
p
p

6 α 6
‖∇u+

n ‖
p
p

‖u+
n ‖

p
p

and
‖∇u+

n ‖
q
q

‖u+
n ‖

q
q

→ λ1(q) (7)

as n → ∞ . (In fact, the second inequality in (7) is not needed for the proof.) Assume,

without loss of generality, that ‖∇u+
n ‖

q
q = 1 for all n ∈ N . Then the simplicity of λ1(q)

implies that u+
n → ϕq strongly in W

1,q
0 and Lq(Ω) , and a.e. in Ω , up to a subsequence,

where ϕq is the first eigenfunction of the q -Laplacian. Recall that ϕq ∈C1(Ω) , ϕq > 0

in Ω , and hence |suppϕq| ≡ |Ω| , where | · | denotes the Lebesgue measure of a set.

Therefore, we get |suppu+
n | → |Ω| as n → ∞ . Indeed, according to Egorov’s theorem,

for every ε > 0 there exists E ⊂ Ω with |E| < ε such that u+
n → ϕq uniformly on

Ω \E . Thus, for any ε > 0 we can find N ∈ N such that u+
n > 0 on (Ω \E)∩{x ∈

Ω : dist(x,∂Ω) > ε} for all n > N , which implies that |suppu+
n | > |(Ω\E)∩{x ∈ Ω :

dist(x,∂Ω) > ε}| → |Ω| as ε → 0.

Consequently, for any ε > 0 there exists N ∈ N such that for all n > N we have

|suppu−n | < ε . However, this fact contradicts the first inequality in (7). Indeed, let us

take some γ > p if p > N , and γ = p∗ if p < N . Then, using the Sobolev embedding

theorem, the first inequality in (7), and the Hölder inequality, we get

C‖u−n ‖
p
γ 6 ‖∇u−n ‖

p
p 6 α‖u−n ‖

p
p 6 α‖u−n ‖

p
γ |suppu−n |

γ−p
γ , (8)

where C > 0 does not depend on n ∈ N , which implies that

0 <
C

α
6 |suppu−n |

γ−p
γ . (9)

Taking ε > 0 small enough, we get a contradiction for sufficiently large n ∈ N .

(iii) Suppose, by contradiction, that there exist a constant C > 0 and a sequence

{αn}n∈N such that αn > λ1(p) and αn → λ1(p) as n → ∞ , but βN (αn) < C . Then for

each n ∈ N we can find a point un from the admissible set for βN (αn) such that

‖∇u−n ‖
p
p

‖u−n ‖
p
p

6 αn 6
‖∇u+

n ‖
p
p

‖u+
n ‖

p
p

and βN (αn) 6
‖∇u+

n ‖
q
q

‖u+
n ‖

q
q

6 C. (10)

Moreover, we can assume that un satisfies ‖∇u−n ‖p = 1. Therefore, we see from the

first inequality in (10) that u−n → ϕp strongly in W
1,p
0 , Lp(Ω) , and a.e. in Ω , up to

a subsequence. Arguing as in the proof of assertion (ii), we get |suppu−n | → |Ω| , and

hence |suppu+
n | → 0 as n → ∞ . However, the last inequality in (10) yields a lower

bound of |suppu+
n | by the same arguments as in (8) and (9) above. A contradiction. �
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REMARK 1. We do not know whether βN (α) > λ2(q) for all α ∈ (λ1(p),λ2(p)] .

Proof of Proposition 1. We will show the nonexistence of nodal solutions to

(GEV ;α,β ) for α ∈ (λ1(p),λ2(p)] and β 6 min{λ2(q),βN (α)} , since the case α 6

λ1(p) follows from Theorem 1. If we suppose, by contradiction, that there exists a

nodal solution u in the considered region for (α,β ) , then u must satisfy, without loss

of generality,

0 > Hα(u−) = −Gβ (u−), 0 6 Hα(u+) = −Gβ (u+), (11)

see [2, Lemma 2.5]. This implies that u is an admissible function for the definition

of βN (α) , and hence Gβ (u+) > 0 since β 6 βN (α) . If Gβ (u+) > 0, then we get

a contradiction to (11). (In particular, this happens for β < βN (α) .) Consequently,

Gβ (u+) = 0. Therefore, we have Hα(u+) = 0 and Hα(u−) 6 0, which reads as

‖∇u+‖p
p

‖u+
n ‖

p
p

= α,
‖∇u−‖p

p

‖u−n ‖
p
p

6 α.

Let us consider the map

h(s,t) = |s|
2
p−1

s
u+

‖u+‖p

+ |t|
2
p−1

t
u−

‖u−‖p

.

It can be easily seen that h ∈ C(S1,M(p)) and h is odd, and hence h is an admissible

point for λ2(p) , see (1). Thus,

λ2(p) 6 max
(s,t)∈S1

‖∇h(s,t)‖p
p 6 α,

which yields α = λ2(p) . Moreover, the deformation lemma (see, e.g., [9, Theo-

rem 2.1 and Remark 2.3]) implies that there exists (s0,t0) ∈ S1 such that h(s0,t0) ∈
ES(p;λ2(p)) \ {0} , i.e. h(s0,t0) is a second eigenfunction of the p -Laplacian, and

hence u+ and u− are both first eigenfunctions of the p -Laplacian on their supports.

(Note that any second eigenfunction has exactly two nodal domains, see [6, 9].) Re-

calling that u is a solution of (GEV ;α,β ), we see that u+ and u− have to be first

eigenfunctions of the q -Laplacian on their supports, as well. However, it contradicts

the fact that first eigenfunctions of the p - and q -Laplacians are linearly independent

provided p 6= q , see [3, Proposition A.1]. �

Let us now turn to the existence results. First we prove the following auxiliary fact

about the Palais–Smale condition.

LEMMA 2. Let α,β ∈ R . Assume that {un}n∈N ⊂W
1,p
0 satisfies

sup
n∈N

|Eα ,β (un)| < ∞ and ‖E ′
α ,β (un)‖(W

1,p
0 )∗

→ 0 (12)

as n → ∞ . If Gβ (ϕ) 6= 0 for any ϕ ∈ ES(p,α)\ {0} (in particular, if α 6∈ σ(−∆p)),

then {un}n∈N is bounded in W
1,p
0 and has a subsequence strongly convergent in W

1,p
0

to a critical point of Eα ,β .
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Proof. Let {un}n∈N ⊂ W
1,p
0 satisfy (12). Suppose, contrary to our claim, that

‖∇un‖p → ∞ as n → ∞ . Then, applying [2, Lemma 3.3], we see that vn := un/‖∇un‖p

has a subsequence strongly convergent in W
1,p
0 to some v0 ∈ ES(p;α) \ {0} . Hence,

we get a contradiction provided α 6∈ σ(−∆p) . If we assume that α ∈ σ(−∆p) , then
(

p

q
−1

)

Gβ (vn) =
1

‖∇un‖
q
p

(

pEα ,β (un)−〈E ′
α ,β (un),un〉

)

→ 0

as n → ∞ , which implies that Gβ (v0) = 0. However, this contradicts the assumptions

of Lemma 2.

Thus, {un}n∈N is a bounded Palais–Smale sequence for Eα ,β . In view of the

(S+)-property for the operator −∆p − ∆q (see [2, Remark 3.5]), we conclude that

{un}n∈N has a subsequence strongly convergent in W
1,p
0 to a critical point of Eα ,β . �

Proof of Theorem 3. The proof will be performed along the same lines as the proof

of [2, Theorem 1.6]. As the main step, under the assumptions of Theorem 3, we prove

the existence of an abstract solution to (GEV ;α,β ) via the linking arguments, cf. [2,

Theorem 3.11]. The assumption α ∈R\σ(−∆p) in [2, Theorem 3.11] was imposed in

order to guarantee the existence of an appropriate bounded Palais–Smale sequence for

Eα ,β . Here we are able to overcome this assumption and obtain the necessary Palais–

Smale sequence for any α ∈ R .

Since the proof for the case α ∈ R\σ(−∆p) is given in [2, Theorem 3.11], from

now on we will assume that

α ∈ σ(−∆p), α > λ1(p) and λk(p) 6 α < λk+1(p),

where k = kα := min{l ∈ N : α < λl+1(p)} .

Since β > λk+1(q) by the assumption, we apply [2, Lemma 3.9] to obtain an odd

map h0 ∈C(Sk,W 1,p
0 ) and t0 > 0 such that

ρ0 := max
z∈Sk

Eα ,β (t0h0(z)) < 0. (13)

Consider now the set

Y (λk+1(p)) := {u ∈W
1,p
0 : ‖∇u‖p

p > λk+1(p)‖u‖p
p}.

We easily deduce from α < λk+1(p) that

δ0 := inf{Eα ,β (u) : u ∈ Y (λk+1(p))} > −∞,

where the last inequality is given by [2, Lemma 3.2]. Moreover, δ0 6 ρ0 holds because

t0h0|Sk
+

links Y (λk+1(p)) , see [2, Lemma 3.1]. Here Sk
+ denotes a closed hemisphere

of Sk .

We claim that for any ε ∈ (0, |ρ0|/2) there exists uε ∈W
1,p
0 such that

δ0 −2 6 Eα ,β (uε) 6 ρ0 + 2ε (< 0) and ‖E ′
α ,β (uε)‖(W

1,p
0 )∗

< 2ε.

In fact, if we suppose that the above claim is false, then there exists some ε ∈ (0, |ρ0|/2)
such that

‖E ′
α ,β (u)‖

(W
1,p
0 )∗

> 2ε for all u ∈ E−1
α ,β ([δ0 −2,ρ0 + 2ε]).
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Noting that α > λ1(p) , we get inf
W

1,p
0

Eα ,β = −∞ . Thus, arguing as in the first de-

formation lemma (see, e.g., [5]), we can find an odd map ξ ∈ C(W 1,p
0 ,W 1,p

0 ) satis-

fying Eα ,β (ξ (t0h0(z))) 6 δ0 − 1 for all z ∈ Sk . However, since ξ ◦ ( t0h0|Sk
+
) links

Y (λk+1(p)) by [2, Lemma 3.1], we obtain a contradiction:

δ0 6 max
z∈Sk

Eα ,β (ξ (t0h0(z))) 6 δ0 −1.

Consequently, our claim is shown.

Therefore, for any n ∈ N , we can choose un satisfying

δ0 −2 6 Eα ,β (un) 6 ρ0 +
1

n
and ‖E ′

α ,β (un)‖(W
1,p
0 )∗

<
1

n
.

Thanks to Lemma 2, {un}n∈N is bounded in W
1,p
0 and has a subsequence strongly

convergent in W
1,p
0 to a critical point u0 of Eα ,β . Moreover, we get from (13) that

Eα ,β (u0) 6 ρ0 < 0,

whence u0 6= 0.

To finish the proof, let us consider the sign of u0 . If u0 is a sign-changing solution

to (GEV ;α,β ), then we are done. If u0 has a constant sign in Ω , then we apply

the general existence result [2, Proposition 3.14] to guarantee the existence of a sign-

changing solution to (GEV ;α,β ) with negative energy also in this case. �

Proof of Theorem 5. To obtain the required existence we will adopt the arguments

of the proof of [4, Theorem 1.4] which are based on the abstract critical point theo-

rem [4, Theorem 1.6]. Here we will use the sequence of eigenvalues {µk(q)}k∈N , see

Section 1.1 for notations.

Let us fix an arbitrary β > µ1(q) . Then there exists k > 1 such that µk(q) 6 β <
µk+1(q) . It was proved in [7, Theorem 2.3] that there is a symmetric cone

C ⊂ {u ∈W
1,q
0 : ‖∇u‖q

q 6 µk(q)‖u‖q
q} ≡ {u ∈W

1,q
0 : Gµk(q)(u) 6 0}

such that C∩M(q) is compact in C1(Ω) , and i(C \ {0}) = k .

Define the projection map πp to the unit sphere Sp in W
1,p
0 as

πp(u) =
u

‖∇u‖p

for u ∈W
1,p
0 \ {0}

and consider two sets

A0 := πp(C∩M(q)), B0 := {u ∈ Sp : Gµk+1(q)(u) > 0}.

Notice that A0 is symmetric and compact in W
1,p
0 , B0 is symmetric and closed in W

1,p
0 ,

and

i(A0) = i(Sp \B0) = k,

see [4, p. 1969]. Thus, to apply [4, Theorem 1.6], we will show that, for sufficiently

large α , there exist R > r > 0 and v ∈ Sp \A0 such that

supEα ,β (A) 6 0 < infEα ,β (B) and supEα ,β (X) < ∞, (14)
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where

A := {tu : u ∈ A0, 0 6 t 6 R}∪{Rπp((1− t)u + tv) : u ∈ A0, 0 6 t 6 1},

B := {ru : u ∈ B0},

X := {tu : u ∈ A, ‖∇u‖p = R, 0 6 t 6 1}.

First we introduce the following critical value:

α(k) := inf
v∈Sp\A0

max

{

‖(1− t)∇u + t∇v‖p
p

‖(1− t)u + tv‖p
p

: u ∈ A0, 0 6 t 6 1

}

. (15)

Since A0 is compact, we see that α(k) < ∞ .

Let us assume that α > α(k) . Then we can find v ∈ Sp \A0 such that

α(k) 6 α(k) := max

{

‖(1− t)∇u + t∇v‖p
p

‖(1− t)u + tv‖p
p

: u ∈ A0, 0 6 t 6 1

}

< α. (16)

Consider the set

X0 := {πp((1− t)u + tv) : u ∈ A0, 0 6 t 6 1}.

Since A0 is compact, X0 is compact as well, and therefore

ρ := max
u∈X0

Gβ (u) < ∞, min
w∈X0

‖w‖p
p =

1

α(k)
>

1

α
,

see (16). Consequently, for every u ∈ X0 it holds

Hα(u) = 1−α‖u‖p
p 6 1−

α

α(k)
< 0,

and hence for any u ∈ X0 and t > 0 we have

Eα ,β (tu) 6
t p

p

(

1−
α

α(k)

)

+
tqρ

q
=: C(t) < ∞.

Moreover, we can find R > 0 large enough such that C(R) < 0 by q < p . Furthermore,

for any u ∈ A0 ⊂ X0 and t > 0 we get

Eα ,β (tu) 6
tq

q
Gβ (u) 6

tq

q
(µk(q)−β )‖u‖q

q 6 0.

Therefore, we obtain

supEα ,β (A) 6 0 and supEα ,β (X) < ∞.

Let us show now that there exists r ∈ (0,R) such that infEα ,β (B) > 0. From the

definition of B0 we see that

Eα ,β (tu) =
t p

p
Hα(u)+

tq

q
Gβ (u) >

t p

p
Hα(u)+

tq

q
(µk+1(q)−β )‖u‖q

q (17)



Differ. Equ. Appl. 10, No. 2 (2018), 197–208. 207

for any u ∈ B0 and t > 0. Clearly, if Hα(u) > 0, then Eα ,β (tu) > 0 for any t > 0.

First, we will prove that

δ (t) := inf{Eα ,β (tu) : u ∈ B0, Hα(u) > 0} > 0

for any t > 0. Suppose, by contradiction, that we can find t0 > 0 such that δ (t0) = 0.

This yields the existence of {un}n∈N ⊂B0 such that Hα(un) > 0 and 0 < E(t0un) 6 1/n

for all n ∈ N . Recalling that β < µk+1(q) , we see from (17) that this is possible if and

only if Hα(un)→ 0 and ‖un‖q → 0. Since each un ∈ Sp , un converges weakly in W
1,p
0

and strongly in Lp(Ω) , up to a subsequence, to some u0 ∈W
1,p
0 . Then, the convergence

‖un‖q → 0 implies that u0 ≡ 0 a.e. in Ω . However, this leads to a contradiction since

from 1−α‖un‖
p
p = Hα(un)→ 0 we get ‖un‖

p
p → 1/α > 0 as n→∞ , and hence u0 6≡ 0

a.e. in Ω . Thus, we conclude that δ (t) > 0 for all t > 0.

Assume now that u ∈ B0 and Hα(u) < 0. Then there exists C > 0 independent of

u such that

µ1(p)1/p‖u‖p 6 1 = ‖∇u‖p 6 C‖u‖q,

see [14, Lemma 9]. Hence, we deduce from (17) that

Eα ,β (tu) > −
t pα

pµ1(p)
+

tq(µk+1(q)−β )

qCq
> 0

for any t > 0 small enough, and such t is independent of u . Thus, we conclude that

infEα ,β (u) > 0 for all u ∈ B = rB0 such that Hα(u) < 0, where r > 0 is sufficiently

small. Combining this with δ (r) > 0, we derive the desired estimate infEα ,β (B) > 0.

Therefore, (14) is satisfied. Applying now [4, Theorem 1.6] in combination with

Lemma 2, we obtain for any α > α(k) a critical point uα of Eα ,β such that

0 < infEα ,β (B) 6 cα = Eα ,β (uα) 6 supEα ,β (X) < ∞.

Finally, let us show that we can take α larger, if necessary, to guarantee that uα

is sign-changing. For this end, we recall that [1] contains the construction of a curve

C on the (α,β )-plane which separates the sets of the existence and nonexistence of

positive solutions to (GEV ;α,β ), see [1, Theorem 2.2 and Proposition 4]. Moreover,

in view of [1, Proposition 3], for any β > µ1(q) we can find α∗(β ) > µ1(p) such

that (GEV ;α,β ) has no positive solutions for all α > α∗(β ) . Therefore, taking any

α > α∗(β ) := max{α(k),α∗(β )} such that (6) holds (where α(k) is defined in (15)),

we see that uα is a sign-changing solution to (GEV ;α,β ) with positive energy. �

REMARK 2. Notice that, according to [1, Proposition 3], the critical value α∗(β )
in the proof of Theorem 5 can be estimated from above by ‖∇ϕq‖

p
p/‖ϕq‖

p
p for any

β > µ1(q) . This fact implies that the critical value α∗(β ) in Theorem 5 possesses the

following upper bound:

α∗(β ) 6 max

{

α(k),
‖∇ϕq‖

p
p

‖ϕq‖
p
p

}

.
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