
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and
Engineering

Diploma Thesis

Modeling of Erosion
Impacts on the Terrain

Pilsen 2012 Věra Skorkovská

Declaration of Authorship

I hereby declare that this diploma thesis is completely my own work and that
I used only the cited sources.

Pilsen, May 14, 2012

Věra Skorkovská

1

Acknowledgements

I wish to express my gratitude to all the people who supported me during
the realization of this thesis. First and foremost, I would like to thank to
my supervisor Prof. Dr. Ing. Ivana Kolingerová for her valued advices and
never-ending patience. This thesis would not have been possible without
Doc. Ing. Bedřich Beneš, PhD., whose experience in this field of research
was very helpful. My thanks also go to my family and my friends whose
support was very important to me during my whole studies.

Abstract

Erosion-based terrain modeling has been an important part of computer
graphics for more than twenty years but many problems still remain unsolved.
Many solutions are only capable of working with 2.5D terrain, these solutions
do not allow formations such as caves or overhangs. Other group of solutions
supports the fully 3D terrain but these methods are usually very memory
consuming and not capable of running with real-time response. This thesis
proposes a solution to hydraulic erosion; the method is capable of working
with fully 3D terrain and representing fully 3D water effects. The terrain is
stored as a triangular mesh which allows to adaptively change its resolution
based on the topology of the scene. The use of the triangle mesh data
structure introduces some new problems, e. g., the irregularity of the mesh
has to be taken into account during the calculations. The main drawback of
this solution are the inconsistencies of the mesh that can be created during
the erosion simulation. The solution to this problem is suggested in the
work, however, it is not yet successfully implemented, due to the numerical
imprecision issues.

This work has been supported by the Ministry of Education, Youth and
Sports, project LH11006 Interactive Geometrical Models for Simulation of
Natural Phenomena and Group Behavior.

Contents

1 Introduction 3
1.1 Aim of the Thesis . 3
1.2 Proposed Solution . 4
1.3 Text Structure . 4

2 Erosion 5
2.1 Hydraulic Erosion . 6

2.1.1 Physically Inspired Solutions 6
2.1.2 Physically Based Solutions 7

2.2 Wind Erosion . 8
2.3 Weathering . 10

3 3D Fluid Simulation 12
3.1 Eulerian Approach . 12
3.2 Lagrangian Approach . 13

3.2.1 Smoothed-Particle Hydrodynamics 13
3.3 Semi-Lagrangian Approach . 14

4 Data Structures for Erosion-Based Terrain Modeling 16
4.1 Height Map . 16

4.1.1 Layered Height Map 16
4.2 Volume Grid . 17
4.3 Triangle Mesh . 18
4.4 Tetrahedral Mesh . 19

5 Our Solution 20
5.1 Hydraulic Erosion . 20
5.2 SPH . 21
5.3 Data Structure . 22
5.4 Auxiliary Data Structures . 24

5.4.1 Particles . 24

CONTENTS CONTENTS

5.4.2 Triangle Mesh . 25

6 Proposed Algorithm 27
6.1 Water Sources . 27
6.2 Fluid Forces . 28
6.3 Fluid-Terrain Interaction . 28
6.4 Erosion and Deposition . 29
6.5 Mesh Subdivision . 30

6.5.1 3-0 Tesselation Scheme 31
6.5.2 4-2 Tesselation Scheme 32
6.5.3 4-4 Tesselation Scheme 32

6.6 Mesh Modification . 34
6.7 Mesh Consistency . 37

6.7.1 Inconsistency Detection 37
6.7.2 Finding the Boundary of the Inconsistency 38
6.7.3 Fixing the Inconsistency 40
6.7.4 Issues Due to the Numerical Imprecisions 41

7 Results 42
7.1 SPH Implementation . 42
7.2 Simple River . 43
7.3 Lake . 44
7.4 Tube . 47
7.5 Computational Requirements 47

8 Conclusion 50

A Other Results 56

B User Manual 60

C Proceedings of SVK 2012: Modeling of Erosion Impacts on
the Terrain 63

5

List of Figures

2.1 Desert scenery with wind-ripples. [ON00] 9
2.2 Material is accumulated on the windward side. [BR04] 9
2.3 A scene containing several weathered rock shapes created us-

ing the weathering simulation. [JFBB10] 11

4.1 Typical structure obtained by geological core sample. [BF01] . 17

5.1 An example of SPH fluid simulation. [Hoe09] 22
5.2 An example of a simple terrain modeled only by its surface. . 23
5.3 An example of a simple terrain modeled as a closed model. . 23
5.4 Triangle mesh auxiliary data structure. 25
5.5 An example of mesh spatial division. 26
5.6 An example of extended mesh spatial division. 26

6.1 3-0 tesselation scheme. 31
6.2 An example of a scene created with 3-0 tesselation scheme. . 31
6.3 4-2 tesselation scheme. 32
6.4 An example of a scene created with 4-2 tesselation scheme. . . 33
6.5 4-4 tesselation scheme. 33
6.6 An example of a scene created with 4-4 tesselation scheme. . . 34
6.7 An example of volume changes for the same value of vertex

displacement. 35
6.8 The volume change for one face has a form of a tetrahedron. . 35
6.9 An example of a mesh inconsistency. 37
6.10 A simple 2D example of an inconsistency in the scene with

concave features . 38
6.11 Four ways two triangles can intersect. 39
6.12 An example of the boundary of the inconsistency. 40
6.13 An example of a mesh inconsistency. 40
6.14 An example of a fixed mesh inconsistency. 41

7.1 Dam break test results. (in lines left to right, top to bottom) . 42

1

LIST OF FIGURES LIST OF FIGURES

7.2 Simple scene containing a river bed. 43
7.3 An example of a lake being filled by water which erodes it, the

results presented in [KBKS09]. 44
7.4 An example of a lake being filled with water. The water flows

over the boundaries and erodes the surface. 45
7.5 An example of a lake being filled with water. The water flows

over the boundaries and erodes the surface. 46
7.6 Different approaches to mesh subdivision. 46
7.7 Water pours through a tube eroding its sides and bottom. . . 47

A.1 An example of a lake being filled with water. The water flows
over the boundaries and erodes the surface. 56

A.2 A simple scene containing a river bed. 57
A.3 Water pours through a tube eroding its sides and bottom. . . 58
A.4 An example of a scene with two water sources. 59

2

1 Introduction

In the field of computer graphics, we often find ourselves in the need of
visually plausible models of terrain. Creating such a terrain using a modeling
software would be very time-consuming and the results may not be as good
as we would need. Many terrain generation methods have been introduced
since the dawn of the research in this area of computer graphics.

Most of the modern approaches to terrain generation are using erosion
processes to create a realistic scene. In nature, erosion has the main influence
on how the terrain changes with the passing years. Hydraulic erosion is
causing the biggest alterations on terrain and because of that it has been in
the spotlight of the terrain modeling research. The impacts of weathering
and wind erosion are not as significant but can be essential for certain types
of terrain.

The methods for erosion-driven terrain modeling which are physically
based can be as well used in simulation of erosion impact, such as simulation
of impacts of rainfall, floods or simulation of terrain evolution over the years.

1.1 Aim of the Thesis

The aim of this thesis is to summarize the state of the art of erosion based
terrain modeling and propose and implement a solution which will address
some of the pending problems of this area of the computer graphics.

Many algorithms have been presented in this field of computer graphics.
Most of the algorithms are solving the hydraulic erosion as it has the greatest
influence on the terrain alterations. Many are working with a height field data
structure which allows the creation of fast interactive solutions but its main
disadvantage lies in the impossibility of simulating a fully 3D scene. Other
methods are addressing this problem by proposing a way to simulate a fully
3D terrain using a uniform voxel grid but these methods are far from being
interactive and are very memory consuming. Our goal is to design a solution
to hydraulic erosion problem that would work with fully 3D terrains and
would be spatially adaptive, resulting in lower memory consumption.

3

Introduction Proposed Solution

1.2 Proposed Solution

This work has been supported by the Ministry of Education, Youth and
Sports, project LH11006. The solution was proposed by Prof. Dr. Ing. Ivana
Kolingerová, Ing. Bedřich Beneš, PhD., and me, Bc. Věra Skorkovská during
a business trip to the Purdue University in West Lafayette, U.S.A., which
took place in November of 2011 and was financed by the project LH11006.

The solution is based on Smoothed-particle hydrodynamics (SPH) fluid
simulation interacting with objects represented by surface triangle meshes.
The advantage of the SPH simulation is that the particles are localized
only in the regions with fluids and so we can limit the computation to this
locations. Similarly, the triangle mesh resolution can be adjusted according
to the complexity of the scene, allowing higher resolution in the regions with
great details and lower resolution in the homogeneous regions. The SPH
particles will simulate the fluid movements and interact with the mesh when
collision occurs. Neither SPH nor the triangle mesh gives us the information
about the spatial distribution of the elements, for that reason, auxiliary data
structures will be used to speed up the algorithm.

1.3 Text Structure

In Chapter 2 the state of the art of erosion techniques will be described,
in Chapter 3 the fluid simulation and 3D hydraulic erosion methods will be
presented in more detail. In Chapter 4 a summary of the data structures
commonly used in erosion simulation will be given. Chapter 5 will describe
the methods and data structures used in the proposed solution, while Chapter
6 will offer a detailed description of the algorithm. In Chapter 7 the results
will be presented and Chapter 8 will conclude the work.

4

2 Erosion

Erosion-based terrain modeling has been an important chapter of computer
graphics for more than two decades but there is still a lot of work to be done.
The methods used in erosion based terrain modeling have changed very much
since the beginning of the research.

The first attempts to create artificial terrains tried to generate plausible
terrains straight away but the terrains generated this way usually looked
too ”sharp” and unrealistic. As the computer performance improved, new
approaches to terrain modeling appeared. Most of the new methods were
based on erosion. The authors realized that the best way to imitate a real
terrain is to take an artificial terrain as a base (e.g., a terrain created using
a fractal geometry [Man82]) and simulate the erosion processes that alter
it. Erosion as it takes place in the nature is a very complex process and so
it is not easy to simulate. Even with the modern powerful computers it is
not possible to create an erosion simulation that would be both physically
exact and at the same time running in real-time. Every developer then has
to choose between these two options and decide where are his preferences.

Erosion is a process happening in the nature by which the material such
as sand and rocks is taken from its original location and then moved and
deposited in other location by the means of water, wind or other natural
forces. Erosion processes can be subdivided into three main categories:
weathering, hydraulic erosion and wind erosion. Hydraulic erosion is leaving
the most significant mark in the landscape and that is the reason why most
of the algorithms are addressing it. Hydraulic erosion is not only the erosion
caused by rain and flowing or still water, erosion caused by glaciers and
avalanches also fall into this category. Wind erosion is not causing such
big changes generally but in certain landscapes such as the desert sceneries
its effect can be essential. In the rest of this chapter these processes will
be described in more detail and the current state of the art in each of the
categories will be summarized.

5

Erosion Hydraulic Erosion

2.1 Hydraulic Erosion

Hydraulic erosion methods can be subdivided into two categories. The first
category contains physically inspired methods - methods, which take inspira-
tion in natural processes but are not trying to simulate them exactly. Their
main purpose is to mimic the erosion impacts with as little computational
effort as possible. The other category incorporates physically based methods.
These methods are based on hydrodynamics but usually introduce some
simplifications in order to speed up the simulation.

2.1.1 Physically Inspired Solutions

The first attempts to create a hydraulic erosion simulation were limited by
the computational force of the computers at the time. The methods were
designed so that the results ”look good” without the need of simulating the
physical erosion processes.

Musgrave et al. [MKM89] proposed a simple hydraulic erosion algorithm
simulating rain effects on the terrain. The method consists of depositing
water (rain) on vertices of the height field. The water erodes the terrain
and moves the sediment to lower locations. The implementation is done by
associating the volume of the water and the amount of sediment with each
of the vertices in the height field.

Chiba et al. [CMF98] introduced a method based on velocity fields of
water flow. They are using particles to approximate the water volume, the
erosion is calculated when a particle collides with the terrain. The algorithm
is designed to simulate natural ridges and valleys.

Beneš and Forsbach [BF02] describe a model for hydraulic erosion caused
by running water. The process consists of four independent steps that can
be repeatedly applied to achieve the visual effect that is desired. At first,
the water appears at some locations, simulating rain or water sources. Then
the water erodes or dissolves the material and captures the sediment which
is transported in the third phase. The final step representing the deposition
process is affected by two factors. The water slows down and the sediment
settles on the ground as the water flow is not strong enough to carry it
anymore. The second factor affecting deposition is evaporation of the water
which causes the excess of sediment in the particles.

6

Erosion Hydraulic Erosion

2.1.2 Physically Based Solutions

Fluid Dynamics

The fluid dynamics is described by Navier-Stokes equations for incompress-
ible Newtonian fluids, a set of partial differential equations that are supposed
to hold throughout the fluid. The equations are as follows [Ach90]:

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ µ∇2~v + ρ~f, (2.1)

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.2)

The symbol ~v [m · s−1] is used for the velocity of an infinitesimal element
of mass at a point in space. The letter p [Pa] stands for the pressure at that
point, ρ [kg ·m−3] substitutes the density of the fluid and is assumed to be

constant throughout the whole volume of the fluid, ~f [N · m−3] stands for
external forces. The constant µ [Pa · s] represents the viscosity of the fluid.
[Dav11], [Hib10]

Equation (2.1) is called the momentum equation and describes the be-
havior of the fluid due to the forces acting on it. Equation (2.2) is called the
conservation of mass. Real fluid can change its volume but the changes are
so small that we are not able to visually perceive them. The volume changes
have such a tiny effect on how the fluid moves that it is practically irrelevant
in the field of computer animation. This is a very import fact leading to a
simplification and treating the fluids as being incompressible.

Shallow Water Equations

Shallow Water equations are a simplification of Navier-Stokes equations for
fluid dynamics. The Shallow Water model does not allow overlaps such as
breaking waves or splashes - the water surface is stored as a height field
resulting in only 2.5D water effects. Second simplification of the method
comes from the fact that we are assuming the water to be shallow, allowing
us to ignore the vertical component of the velocity of the water. The last
assumption is that the horizontal component of the velocity is constant in

7

Erosion Wind Erosion

the whole vertical column. These simplifications limit the use of the method
but from the experience it is satisfactory for many simpler cases [KM90].

The Shallow Water model was used to create interactive hydraulic erosion
simulation, e.g., in papers by Mei et al. [MDH07] and Beneš [Ben07].

3D Water Simulation

With the improvements in computational force of computers the effort to
create a physically based simulation prevailed but even nowadays the sim-
ulations that work in fully 3D scenes are far from being interactive. More
realistic results can be achieved with more precise simulation of the fluid
physics and so many algorithms are working with Navier-Stokes equations
that describe fluid dynamics. The matter of fully 3D fluid simulations is so
vast that it is reasonable to dedicate a separate Chapter 3 to talk about it
in more detail.

2.2 Wind Erosion

Wind erosion has a major influence in arid landscapes where the hydraulic
erosion is nearly absent. Wind erosion consist of two main parts, abrasion
of rocks and transferring the material particles. Abrasion happens when the
wind carries material particles and hits the solid surface of a rock causing
small pieces of material to fall off. Wind can also capture the particles and
move them to other location creating such formations as sand dunes or wind-
ripples.

Onoue and Nishita [ON00] proposed a method for modeling desert scener-
ies. They use a height field terrain model and divide the erosion process into
two parts, saltation and creep. Saltation is the effect when wind grabs a
particle and lifts it to move it, creep on the other hand is occurring when
the wind is moving the particle on the surface. Equations describing the
processes are proposed in the paper, resulting in the creation of sand dunes
and wind-ripples. The two are created separately and then combined during
rendering using bump-mapping technique. Their results can be seen in Figure
2.1.

8

Erosion Wind Erosion

Figure 2.1: Desert scenery with wind-ripples. [ON00]

Beneš and Roa extended their algorithm by adding interaction with ob-
stacles [BR04]. The material is accumulated on the windward side of the
obstacles and on the leeward side the wind shadow appears. The intensity of
the wind is reduced in the wind shadow according to the simplified geometry
of the obstacle, causing the reduction of the wind-ripples. The accumulation
on the windward side is done by extension of the saltation and creep algorithm
- if the particle is moved and the final position is inside an obstacle, it is moved
to the boundary. An example of generated scenery is shown in Figure 2.2.

Figure 2.2: Material is accumulated on the windward side. [BR04]

Miao et al. [MMW01] introduced a method to simulate the initiation and
evolution of wind blown sand ripples and dunes. Their model is capable of
reproducing sand ripples and describe the reparation of a destroyed rippled
surface. They also include an algorithm for sliding when the gradient of the
sand slope is greater than the angle of repose.

9

Erosion Weathering

Hatano and Hatano [HH01] published a method producing dune patterns
as barchans and linear dunes from the initial random state. They were
studying the efficiency of sand transport which turned out to be the most
efficient for the linear transverse dune and least efficient when no pattern was
formed.

2.3 Weathering

Weathering is the process of breaking down rocks, e.g., due to the contact
with chemical substances, living organisms or due to the thermal changes.
Weathering happens in place without the material transferring to other lo-
cations, so it is not an erosion process in the strict meaning of the term. But
in the field of computer graphics it is commonly ranked as erosion as it is
often coupled with other erosion processes.

Thermal weathering is the weathering process which is being simulated
most often. Thermal weathering is caused by expanding and contracting the
material due to the temperature changes. This process is most obvious in the
deserts, where the temperatures between the day and night vary greatly. The
material drops of the rocks and falls down to the ground, where it creates
talus slopes with the critical angle defined by the material. When the angle
of the talus exceeds the critical value, movement occurs and some material
slides down.

One of the first algorithms on this matter was introduced by Musgrave
et al. [MKM89]. They presented a new two-step approach to the synthesis
of fractal terrain height fields with local control of fractal dimension. In
the first pass, a fractal terrain is generated using a noise function to locally
influence the smoothness and asymmetry of the terrain. Then in the second
pass simplified global erosion is applied. At each time step they compare
the difference in heights of each vertex and its neighbors and if the slope
is greater than the critical talus angle, some of the material is moved to
the lower neighbors. Using this simple algorithm the scene converges to
stable slopes, many other researchers have taken it over and used it in their
simulations.

Beneš and Arriaga in [BA05] present a method designed to generate table
mountains. Their goal is a geologically inspired algorithm which can simulate
visually plausible terrains. They are working with two types of material:

10

Erosion Weathering

hard rock and soft eroded material (sand). The hard material erodes when
exposed to moisture and thermal changes and the eroded parts are falling off
and becoming the soft material. The motion of the soft material is simulated
by a diffusion algorithm.

Dorsey et al. [DEJ+99] presented a method for modeling and rendering of
a weathered stone. They proposed a new voxel surface-aligned data structure
that works as an intermediate between the stone and the surrounding erosion
factors. They designed an algorithm to simulate the flow of water and
dissolution and transportation of minerals that causes the surface erosion.

Another method that works with 3D objects was proposed by Jones et
al. [JFBB10]. They presented an algorithm for spheroidal and cavernous
weathering of rocks with concave surfaces which allows the user to control
the durability of the material and by doing so affecting the resulting scene.
The algorithm is built on a voxel grid and the erosion is calculated through
the mean curvature estimation. The method is not physically accurate but
produces visually plausible results which can be used in computer animation
or games (see Figure 2.3).

Figure 2.3: A scene containing several weathered rock shapes created using
the weathering simulation. [JFBB10]

11

3 3D Fluid Simulation

This chapter describes some of the simplifications of Navier-Stokes equations
(see Section 2.1.2 for more details) that are commonly used in computer
graphics. For a more detailed description of the use of fluid simulation in
computer graphics the reader can refer to [Bri08].

There are two approaches to solving the Navier-Stokes equations in com-
puter graphics, the Langrangian approach representing the fluid with par-
ticles and the Eulerian approach dividing the volume and tracking fluid
quantities at fixed points in the space.

3.1 Eulerian Approach

The Eulerian approach looks at the volume of the fluid and tracks the fluid
quantities at fixed points. As the fluid moves, it goes through these fixed
points, causing the tracked quantities to change. This approach usually
divides the space into a uniform grid, making the necessary computations
such as pressure gradients somewhat easier. This approach leads to more
accurate results (compared to the Lagrangian approach) but the algorithms
are computationally expensive. Another disadvantage of this viewpoint is
the uniform space division. If we are trying to represent a vast nonuniform
landscape, we will still have to create the grid even in the uninteresting
regions where no changes are happening, with the same resolution as in the
regions with the most detail. That will result in huge amounts of data and
the resulting algorithms will be very memory consuming.

This approach is used in [BTHB06] to create a fully 3D simulation of
hydraulic erosion. Their solution requires a model of the environment as
a regular grid. Each voxel is classified into one of the following classes -
FULL, the voxel is full of water, it can contain dissolved material; EMPTY,
an empty voxel containing only air; MAT, a voxel containing material. A
voxel can change its state from FULL to MAT by depositing the material
and from MAT to FULL by erosion. The authors present solutions for both
cohesive and cohesionless material capable of fully 3D water effects. The
main disadvantage of their application is that it is not capable of running
interactively.

12

3D Fluid Simulation Lagrangian Approach

3D Eulerian approach is used in a paper by Wojtan et al. [WCMT07] to
simulate a corrosion and erosion of solid objects. They store the surface as a
level set 1 and simulate the erosion by advecting it inward and the deposition
by advecting the level set outward.

3.2 Lagrangian Approach

On the other hand, the Lagrangian approach represents the fluid as a particle
system. The fluid volume is treated as a set of separate particles, each of them
has its own position, velocity and other data. This representation makes some
things much simpler, e.g., the mass conservation condition (Equation (2.2))
is automatically satisfied, provided the particles do not disappear. It also
addresses the disadvantage of the Eulerian approach with nonuniform scenes
as the calculations are done only in the regions where the fluid is present.
Generally the particle based methods are less accurate than the grid based
due to difficulties in dealing with spatial derivatives on an unstructured parti-
cle cloud but are much faster which allows their use in real-time applications.
[BS09]

3.2.1 Smoothed-Particle Hydrodynamics

Smoothed-particle hydrodynamics (SPH) is an approximative numeric solu-
tion to Navier-Stokes equations for fluid dynamics (2.1), (2.2). It was devel-
oped in 1977 by Gingold and Monaghan [GM77] and independently by Lucy
[Luc77]. Initially it was designed for use in astrophysics but later it found its
way into many other fields of research, such as ballistics, oceanography and,
more recently, computer animation.

It represents the fluid with a set of independent particles and thus it
ranks among the methods of Langrangian viewpoint. The particles have
a smoothing radius, a distance over which their quantities are smoothed
by a kernel function. Put in another way, the particle’s attributes can
be calculated only with the use of all the neighboring particles within the
distance defined by smoothing radius. The contributions of each particle are
weighted by their distance and their density, the weights are given by the

1Level-Set Method is a numerical algorithm for approximating the dynamics of moving
curves and surfaces [Phi99]

13

3D Fluid Simulation Semi-Lagrangian Approach

kernel function we use. There is a wide variety of kernel functions to use,
including Gaussian function and the cubic spline. A detailed description of
the SPH method can be found, e.g., in [Mon92] or [DG96].

Solenthaler et al. [SSP07] propose a unified particle model. They use SPH
particles for both solid and fluid materials and distinguish between these two
types only by changing the attribute values of the particles. The proposed
model is then used to simulate a variety of fluid-solid interaction processes,
such as melting and solidification.

Adams et al. [APKG07] proposed an adaptive sampling algorithm for
particle-based fluid simulation. They introduce a sampling condition allowing
the change of the density of the particles so that they focus the computations
in the complex regions and reduce the number of particles inside the fluid or
near flat surfaces.

SPH method is often used in fluid simulation ([KW06], [MCG03]) but
Krǐstof and Beneš in Hydraulic Erosion Using Smoothed Particle Hydrody-
namics [KBKS09] were the first ones to try to couple SPH with erosion.
They represent the water flow with SPH particles that erode the terrain and
transport the sediment. They define a donor-acceptor scheme that describes
the advection between SPH particles and with it they simulate the diffusion
of the sediment and settling in the direction of the gravitation. For the terrain
they use a height field data structure which limits the use of this algorithm
to 2.5D terrains. Boundary particles are used as a means of communication
between the terrain and the particles. First the SPH particles interact with
the boundary particles and exchange the sediment and after that the terrain
height is adjusted according to the change of sediment in the boundary
particles.

Their solution effectively couples SPH with erosion. The resulting method
works only on 2.5D terrains but the fluid simulation is fully 3D, allowing such
formations as breaking waves or splashes.

3.3 Semi-Lagrangian Approach

Both the Eulerian and Lagrangian approaches have their strengths and weak-
nesses. Hybrid Semi-Lagrangian methods try to combine the two approaches
to reduce their individual drawbacks.

14

3D Fluid Simulation Semi-Lagrangian Approach

Foster and Fedkiw used this combined approach in [FF01] for modeling
and animating of liquids. They simulate the fluid with particles but they
use an implicit surface called a level set to track the motion. The fluid
system they designed is capable of interacting with graphics primitives such
as parametric curves and moving polygons. Fedkiw et al. [FSJ01] use a
similar approach to create a visual simulation of smoke.

Andrysco et al. [ABB08] use their modified Semi-Lagrangian approach to
simulate the interaction of fluids with permeable materials. In their work
they propose equations which allow the simulation of permeable, porous and
absorbent materials.

15

4 Data Structures for Erosion-Based
Terrain Modeling

In computer graphics, terrains are usually represented as triangle meshes but
this data structure can cause many problems in erosion simulations. This
chapter will describe the terrain representations which are the most common
in erosion-based terrain modeling.

4.1 Height Map

Height map is the most common data structure used for terrain modeling.
It can be described as a two-dimensional array, in which each element has
its own properties. Every element carries information about the height at
the element but it can contain many other data describing the state or the
characteristics of the material. The most important simplification of the
structure is that it considers the whole column to be made of the same
material with the same properties.

This data structure is very often used in simulations that do not require
great precision but need to work interactively. The simplicity of the data
structure allows very fast and efficient solutions and its memory requirements
are significantly better than those of the remaining data structures used in
terrain modeling. Considering that each element stores n bytes of data and
we are representing the terrain as a grid of 1024 x 1024 elements, we will need
only n MB to store the terrain [BF01]. The main disadvantage of height fields
is that their usage is limited to simulation of 2.5D effects as the data structure
does not support concave structures such as caves or overhangs.

This data structure is used, e. g., in [MKM89], [ON00] and [BR04].

4.1.1 Layered Height Map

Beneš and Forsbach in Layered Data Representation for Visual Simulation of
Terrain Erosion [BF01] suggested an improvement of the basic height map
data structure. They took inspiration in real geological measurements and

16

Data Structures for Erosion-Based Terrain Modeling Volume Grid

extended the height map by adding layers. In nature, the terrain usually
consist of several layers of materials with different characteristics (see Figure
4.1). The authors integrate this idea by changing the height map structure -
each element is now consisting of a one-dimensional array of elements which
contain the same information as was stored in the height map (height of the
layer and the information about the material). They take advantage of the
fact that the material layers are usually very thick so we can measure the
height of the layer and store all the information at once instead of describing
every voxel and thus saving a lot of data. The memory requirements are
similar to the ones of the height field data structure just with the difference
that for each element in the 2D array we now store k elements representing
k layers. To store the terrain with 1024 x 1024 elements k · n MB will be
needed.

This data structure is used, e. g., in [BF02] and [MDH07].

Figure 4.1: Typical structure obtained by geological core sample. [BF01]

4.2 Volume Grid

Volume grids are together with the height maps the most commonly used
data structures in terrain modeling. The volume representation divides the
volume of the scene into voxels, 3D cubes of the same size. Each voxel then
contains the same information as the elements in the previous types of data
structures only with the exception of height parameter which is now pointless

17

Data Structures for Erosion-Based Terrain Modeling Triangle Mesh

as the position of the voxel is given by its coordinates in the 3D array and
the size of the voxel is identical for the whole grid.

The techniques using voxel grids have the highest precision and give the
best results. Voxel grids are capable of describing any 3D structures and so
they are giving us the means of modeling features that cannot be modeled by
the previous approaches. The main drawback of this data structure is that
it has huge memory requirements. To model a scene with resolution 1024 x
1024 x 1024 using a voxel technique we will need n GB of data ([BF01]). The
methods which work with voxel grids give precise results but are not capable
of running with a real-time response so they cannot be used if an interactive
application is desired.

This data structure is used, e. g., in [JFBB10] and [DEJ+99].

4.3 Triangle Mesh

Another data structure which can be used for terrain modeling is a triangle
mesh. It represents an object as a set of vertices connected by edges. Three
vertices connected by edges represent a triangle face, the set of all faces
represents the surface of the object. One of the advantages of this structure
compared to the previous methods is that it does not have to be transformed
in order to render it as this data structure is very often used in computer
graphics and the rendering pipeline is optimized to work with it. Another
advantage of the triangle mesh is that its resolution can change throughout
the scene, allowing the creation of a very detailed scene in important areas
while the flat unimportant regions are modeled with lower resolution.

But its use for simulation of erosion has many disadvantages as well.
When eroding an object, its surface changes. In the previous methods this
could be simulated just by changing the height of the element of a height
map or by changing the properties of a voxel. When working with triangle
meshes, we have to actually move the vertices to simulate the surface change.
The triangle mesh can only store the information about the neighborhood of
the given vertex but it does not provide any information about the relation
of the given vertex and the rest of the mesh. By changing the position of
a vertex an inconsistency can be created as the vertex penetrates the mesh.
The problem of fixing mesh geometry is well-known but a general solution to
this problem is to the best of my knowledge not known.

18

Data Structures for Erosion-Based Terrain Modeling Tetrahedral Mesh

Purchart in [Pur09] uses an adaptive triangle mesh to simulate a de-
formable sandy terrain but the solution is designed to work only with the
2.5D terrains, formations such as caves or overhangs are forbidden.

4.4 Tetrahedral Mesh

Tetrahedral mesh is a volume variation of the triangle mesh data structure.
The model is not represented only by its surface, the whole volume is stored
as a set of tetrahedra. It looses the rendering advantage of the triangle mesh
as we have to extract the surface in order to render the tetrahedronized
model. But in some applications the volume approach can be more desirable
than the surface approach of the triangle meshes as it can give us additional
information about the topology of the object.

Tetrahedron data structure is used in [TJ10] for weathering and erosion
of 3D terrains. Their mesh is based on Delaunay deformable models (DDM).
In each iteration of the algorithm, the vertices of the mesh are moved to their
new location to simulate erosion and a new Delaunay triangulation (DT) is
constructed. By moving the vertices and building the new triangulation the
information about the material in each of the vertices is lost, to restore it, a
backward advection scheme is used: for each cell of the DT the mean offset of
its vertices is found and applied to the circumcenter of the cell, the material
that occupied this location in the previous frame is assigned to the cell. The
authors demonstrate a use of the data structure in weathering and erosion
simulation whose objective is a creation of visually plausible scene for the
use in computer animations. The main drawback of their approach is that it
is not capable of running interactively as the creation of the DT in each step
of the algorithm is very computationally expensive.

19

5 Our Solution

In this chapter the methods and structures used in the proposed solution will
be described. At first, our approach to hydraulic erosion will be described,
followed by the description of the SPH library and the data structures used
in the implementation.

5.1 Hydraulic Erosion

Terrain modeling has been an important part of computer graphics for many
years now but many problems still remain unsolved. At present there are
many solutions available. Most of the solutions try to achieve realistic looks
of the terrain by imitating the influence of natural erosion processes. Some
of the solutions are only useful in very specific cases as they are designed to
generate very specific scenes or formations.

Hydraulic erosion has the greatest influence on the terrain appearance so
most of the researchers are dealing with it in their simulations. Most of the
available hydraulic erosion solutions can be classified into one of the following
groups: slow, precise algorithms or fast, approximate ones. The algorithms
ranking in the first group usually solve the Navier-Stokes equations using the
Euler approach which results in precise solutions, however, these solutions
are usually very memory consuming and the simulations are not capable of
running with a real-time response. The other group incorporates methods
which do not try to simulate the erosion processes as accurately as possible
but try to produce realistic-looking terrains while simplifying the calcula-
tions to achieve simulations with real-time response. These solutions usually
work only with 2.5D terrains and water effects, some of them are using a
Lagrangian approach to simulate a realistic behavior of fluids including the
3D effects such as breaking waves or splashes.

The only solutions capable of working with both fully 3D terrains and fully
3D water are based on the Euler viewpoint. These solutions give accurate
results but they are very computationally expensive and very memory con-
suming. We propose a solution to hydraulic erosion which uses a Lagrangian
approach to solving fluid dynamics equations. Our solution supports fully
3D water effects and requires less memory than the Euler based solutions.

20

Our Solution SPH

With similar intentions (3D effects and low memory consumption) we decided
to represent the terrain with a triangle mesh, allowing us to increase the
resolution in detailed regions of the scene and decrease it in flat homogeneous
ones. The solution we propose is capable of reproducing a fully 3D scene, with
both 3D water and terrain effects, while reducing the memory requirements.

5.2 SPH

As mentioned before, we decided to use a Lagrangian approach to solving
fluid dynamics equations. The advantage of this approach is that it uses
particles to describe the fluid volume and thus limits the computations only
to the locations where the fluid is present. SPH method is often used in fluid
simulations but Krǐstof et al. in [KBKS09] were the first ones to try to use
it in erosion simulation. We took inspiration in their work and decided to
represent the fluid in a similar way using the SPH method. The erosion is
calculated when the SPH particles collide with the terrain model, the eroded
sediment is then associated with the particles.

The SPH method is well-known in the field of fluid simulation and there
are libraries available. We decided to use an existing implementation of SPH
instead of implementing it. There are several complex open source libraries
dedicated to fluid modeling and simulation such as OpenFLUID (available
from http://www.umr-lisah.fr/openfluid/), OpenFoam (http://www.op
enfoam.com/), SPHear (http://sphear.sourceforge.net/) or GADGET
(http://www.mpa-garching.mpg.de/gadget/). These libraries are very com-
plex and offer much stronger tools than what we need in our simulation
at the moment. We chose to implement our solution using C++, so we
had to discard a lot of libraries due to the programming language they
use, e.g., Spheral++ (http://sourceforge.net/projects/spheral/) is us-
ing Python, CFD Fluid Collection (http://cfdcollection.sourceforge.
net/) is written in C#.

In the end we had narrowed our choice to two libraries, both written in
C++ and simple enough for our needs. The first one was GPU SPH Simula-
tion (http://code.google.com/p/gpusphsim/). This SPH implementation
was developed as a part of a master thesis with no further information if the
author is still improving it and it was possible that it could contain errors that
the author did not discover during the testing phase. So we decided to use
the other library Fluids v.2 (http://www.rchoetzlein.com/eng/graphics/

21

http://www.umr-lisah.fr/openfluid/
http://sphear.sourceforge.net/
http://www.mpa-garching.mpg.de/gadget/
http://sourceforge.net/projects/spheral/
http://cfdcollection.sourceforge.net/
http://cfdcollection.sourceforge.net/
http://code.google.com/p/gpusphsim/
http://www.rchoetzlein.com/eng/graphics/fluids.htm
http://www.rchoetzlein.com/eng/graphics/fluids.htm

Our Solution Data Structure

fluids.htm) in our implementation. This library is also propagated with
bullet (http://code.google.com/p/bullet/), a free 3D game multiphysics
library. One of its advantages is that it has both the CPU and GPU version
so if we decide to implement our solution on GPU in the future, we will not
have to replace the library or implement it ourselves, we will just use the
other implementation of the SPH method. An example of a scene generated
using the unmodified library Fluids v.2 is shown in Figure 5.1.

Figure 5.1: An example of SPH fluid simulation. [Hoe09]

5.3 Data Structure

As we want to model a fully 3D terrain, we cannot use the height map data
structure. The voxel grids are often used to model fully 3D terrains but
they are very memory consuming. We wanted our solution to have adaptive
resolution based on the level of detail of the modeled scene, so we were
choosing between triangle and tetrahedral meshes. We are only simulating
surface erosion processes and for that we do not need any information about
the inner parts of the modeled objects. For that reason we have decided to use
the surface triangle meshes as they are simpler to implement and maintain
and their use should result in faster simulation.

The advantage of the triangle mesh data structure is that its resolution
can be adaptively changed according to the characteristics of the scene. The

22

http://www.rchoetzlein.com/eng/graphics/fluids.htm
http://www.rchoetzlein.com/eng/graphics/fluids.htm
http://www.rchoetzlein.com/eng/graphics/fluids.htm
http://code.google.com/p/bullet/

Our Solution Data Structure

mesh can be more detailed in important regions. We can take advantage of
this in erosion simulation - if we can estimate in which region the erosion
will be occurring, we can prepare more detailed mesh in that locations and
get more detailed erosion simulation, while the rest of the scene can remain
unchanged.

The implementation can work with 3D models stored in .obj format.
The source code managing the import was taken from OpenGL OBJ Viewer
(http://www.dhpoware.com/demos/glObjViewer.html) and adjusted for
our needs.

The 3D models used in the simulation cannot contain holes and have
to be closed. Closed model is such a model which does not have any faces
that could be accessed from both sides. In other words, the model has to
be ”waterproof”; if we would fill the model with water, the water cannot be
leaking from it anywhere. This condition is important when working with
terrains as terrains are often modeled only by the upper surface and not the
whole volume (see Figure 5.2). The required way of modeling the terrain is
shown in Figure 5.3.

Figure 5.2: An example of a simple terrain modeled only by its surface.

Figure 5.3: An example of a simple terrain modeled as a closed model.

23

http://www.dhpoware.com/demos/glObjViewer.html

Our Solution Auxiliary Data Structures

5.4 Auxiliary Data Structures

Neither the SPH particles nor the triangle mesh data structure give us an
implicit information about the spatial division of the elements in the scene.
The particles are interacting only with other particles that are within its
radius, the same applies for the fluid-solid collision. Without any auxiliary
data structure, all of the particles or faces of the triangle mesh would have
to be searched to find all the elements necessary for the given calculation.
For that reason, two separate auxiliary data structures are used to speed up
the simulation, one stores the spatial division of the particles and the other
the spatial division of the faces of the mesh.

Both the SPH particles and the faces of the triangle mesh can change
their position during the simulation, because of that we have to reinitiate
the structures every iteration of the algorithm. After the initialization of
the structures, we only have to search a small number of particles or faces to
calculate the fluid forces or fluid-solid collisions. With the use of the auxiliary
data structures, the algorithm can speed up significantly.

5.4.1 Particles

The Fluids v.2 uses a uniform grid spatial division to speed up the cal-
culations of the inter-particle forces. The size of a cell is given as double
the smoothing radius of a particle. The grid resolution is then calculated
according to the size of the whole scene.

Each particle is located in exactly one cell. Because of that it is not
necessary to keep a list of all particles that belong to the cell in the cell itself.
Instead of that it is possible to store only one particle index in the cell. The
particle on the indexed position then has a pointer to the next particle within
the grid cell and so on. The advantage of this approach lies in the fact that
we do not have to know the number of the particles that will end up in each
cell of the grid in advance.

When I was working with the library I discovered a bug in this part
of the code. In the original code the grid was by mistake created with a
wrong parameter, using the grid size instead of the grid resolution. Because
of that, the grid was created with much greater resolution than what was
needed, which was especially obvious when working with large scenes. After

24

Our Solution Auxiliary Data Structures

I replaced the parameter, the grid was created with correct resolution and
the algorithm sped up significantly.

5.4.2 Triangle Mesh

A similar data structure as the one described in Section 5.4.1 is used for
storing the spatial information about the faces of the triangle mesh. A
uniform grid is created with the same resolution as the particle grid, the
size of a cell is twice the smoothing radius of a particle (see Figure 5.4).

Figure 5.4: The grid storing the spatial information about the mesh.

Unlike the particles, generally a face of the mesh can belong to more than
one cell, in that case its index has to be stored in all of the cells where the
triangle is partly present. To decide in which cells to store the face, the
bounding box of the face is found and its coordinates are used to calculate
the minimum and maximum indices in the grid. The face is then stored in
all the cells with indices between these values. An example of a grid cell is
shown in Figure 5.5, faces that belong to the cell are highlighted in red color.

To calculate fluid-solid interactions, all the faces within the particle radius
have to be localized. For a particle located near a cell boundary, the particle
would also interact with faces from adjacent cells, not only from the cell
the particle is in. If all the cells within the reach of the particle would be
searched for collisions, the contribution of one face would be calculated more

25

Our Solution Auxiliary Data Structures

Figure 5.5: An example of spatial division, the red triangles belong to the
same cell. Triangles belong to the cell if they are located inside it.

times. This could happen if the face was stored in more than one of the
searched cells, leading to unexpected behavior of the particles. To eliminate
this problem, I extend the bounding box of the face by the radius of the
particle. Each cell of the grid then contains all the faces that are located
inside it and in addition all the faces that are within a particle reach from
it. The same scene as in Figure 5.5 is shown in Figure 5.6, this time the
triangles that are not located inside the cell but are within the particle radius
are included as well.

Figure 5.6: An example of spatial division, the red triangles belong to the
cell. Triangles belong to the cell if they lie within the specified distance.

26

6 Proposed Algorithm

The proposed algorithm consists of the following steps:

1. Fluid particles appear in the scene.

2. The fluid forces are calculated.

3. The particles are moved and the fluid-terrain interactions are calcu-
lated.

4. The erosion/deposition sediment exchange between the particles and
the terrain is calculated.

5. The mesh is updated according to the amount of sediment in the
vertices of the mesh.

In the following text each of the steps will be described in more detail.

6.1 Water Sources

At the beginning of each iteration, new particles can appear in the scene,
simulating water sources. The user can influence the position where new
particles will appear. He can as well set a rate how often should the particles
be generated.

One of the parameters of the simulation is the maximum number of
particles that are allowed in the scene. If new particles are being generated
every iteration, at some point this maximum will be reached. Some particles
have to be deleted to make space for new ones. The particles to delete
are chosen according to the age parameter, that way the oldest particles
are removed from the scene as they have probably already moved to less
important parts of the scene.

27

Proposed Algorithm Fluid Forces

6.2 Fluid Forces

The library Fluids v.2 is handling the calculations of the inter-particle forces.
The calculations take advantage of the data structure introduced in Section
5.4.1. Without this structure, all particles would have to be searched in
order to find all the particles within the reach of a given particle. Using
this structure, maximum of eight cells have to be searched - in case that the
particle is located in the corner of the cell, the adjacent cells located within
the particle radius have to be searched as well.

6.3 Fluid-Terrain Interaction

The motion of the particles is calculated based on the fluid forces from the
previous step. The original library used a simple bounding box to limit the
region where the particles are allowed. In the proposed solution the particles
need to interact with the triangle mesh representing the terrain, so I had to
modify the code for the particles to correctly interact with the triangle faces.

The motion of the particle is influenced by external forces - by gravity
and by all the faces within the reach of its radius. I use the data structure
introduced in Section 5.4.2 so that I would not have to go through all the
faces of the mesh to find the faces influencing the particle. The particle
position is transformed into grid coordinates and then I only have to check
for interactions with the faces stored in the grid cell where the particle is
located.

For each face f in the cell the interaction with particle p is checked in the
following manner:

• At first, a line going through the particle position is constructed with
the direction of a normal vector of the face f . This line is then checked
for intersections with the face f .

• If the line intersects the face f , the distance between the face f and
the particle p is calculated.

• If the distance between the face f and the particle p is smaller than the
particle radius, the face f will influence motion of the particle p.

28

Proposed Algorithm Erosion and Deposition

The contribution of the face is then calculated using a penalty-force
method [Ama06]:

f = ksd~n+ kd(~v · ~n)~n, (6.1)

where ks is the penalty force stiffness, kd is the damping coefficient, d is the
penetrated distance, ~v is the velocity of the particle and ~n is the normal
vector of the face.

6.4 Erosion and Deposition

When the fluid-solid interaction occurs, the particle erodes the surface or
deposits the sediment on it. Erosion is calculated using the method intro-
duced in [WCMT07]. Erosion is caused by the fluid flowing parallel to the
solid boundary. The force applied to the solid boundary is called the shear
stress. To apply this force to a solid, Wojtan et al. give the solid object
non-Newtonian characteristics via a power-law model:

τ = Kθm, (6.2)

where τ is the shear stress, K = 1 is a constant, θ is the shear rate and m is
the power-law index, a constant determined by the material. If enough shear
stress is applied to the solid, it will deform like a fluid, so the solid is treated
as a shear-thinning fluid. A typical value for shear-thinning fluids is m = 0.5.
The shear rate θ can be approximated from the fluid velocity relative to the
surface:

θ =
~vrel
l
, (6.3)

where ~vrel is the relative fluid velocity and l is the distance between the
particle and the face in the triangle mesh.

The erosion rate can be calculated using the equation by Partheniades
[Par65].

ε = k(τ − τc)a, (6.4)

where ε is the erosion rate, k is the erosion constant, τ is the shear stress,
τc is the critical shear stress and a is a constant, which is often set to be
1 as we can assign any value to the constant k. The critical shear stress is
a threshold value that needs to be overcome for erosion to take place. For
higher values the object will keep its shape more easily, for lower values even
slow fluids will cause an erosion of the surface. This principle could be used

29

Proposed Algorithm Mesh Subdivision

in the future to integrate different materials of the model, assigning different
values of critical shear stress to different parts of the scene. The deposition
occurs when the particle gets close enough to the terrain but the shear stress
is not strong enough to cause erosion. In that case part of the sediment
carried by the particle is deposited on the terrain.

The calculated erosion or deposition rate is uniformly divided among the
three vertices of the triangle. Each vertex has an associated parameter storing
the amount of the sediment exchanged during the current iteration of the
algorithm. This parameter was introduced to speed up the simulation - we
sum all the contributions from all the particles in it and only update the
positions of the vertices once at the end of the iteration.

6.5 Mesh Subdivision

The erosion or deposition process affects the face located within the radius of
the particle and all its neighbors. If the resolution of the mesh representing
the terrain is not high enough, the erosion or deposition can affect even the
regions of the mesh where the fluid is not present. To reduce this problem,
the mesh resolution can be adaptively increased. The distances between the
triangle vertices and the particle are calculated in order to decide whether
the triangle needs to be divided.

The triangle division follows this algorithm: if at least one of the distances
between the vertices and the particle is greater than a specified maximum
distance d, tesselate the triangle and locate the new triangle which is closest
to the particle. Compute the new distances between the vertices and the
particle and repeat this process until all the distances are shorter than the
limit distance d. When the tesselation is finished, the erosion or deposition
is applied to the vertices of the new triangle, all the vertices are now within
the distance d from the particle.

The way the triangles are tesselated has a big impact on the resulting
scene. I have implemented and tested several possible tesselation schemes to
find out which one is giving the best results. I will label each of the schemes
as M-N scheme, where M defines how many triangles will be created from
the original one and N defines into how many triangles the neighbors will be
divided.

30

Proposed Algorithm Mesh Subdivision

6.5.1 3-0 Tesselation Scheme

The 3-0 tesselation scheme adds one point inside the triangle, creating three
new triangles. The inserted point can be, e.g., the point closest to the particle
or the center of the triangle. The neighboring triangles are not affected.
Figure 6.1 shows the results of the tesselation scheme applied to one triangle
of the mesh. The inserted points are highlighted with a small dot.

(a) Original mesh. (b) Simple tesselation. (c) Recursive tesselation.

Figure 6.1: 3-0 tesselation scheme.

This scheme tends to create long narrow triangles, which are exactly the
types of triangles we are trying to avoid. The scene created with this scheme
is depicted in Figure 6.2. This scheme is unsuitable for our purposes.

Figure 6.2: An example of a scene created with 3-0 tesselation scheme.

31

Proposed Algorithm Mesh Subdivision

6.5.2 4-2 Tesselation Scheme

The 4-2 tesselation scheme adds three new points in the middle of the edges of
the triangle. Four new triangles are then created by connecting these three
new vertices with edges. The neighboring triangles have to be tesselated
as well to maintain the mesh consistency, the tesselation is done by simply
connecting the new vertex in the middle of the edge with the opposite vertex.
Figure 6.3 shows the results of the tesselation scheme applied to one triangle
of the mesh. The inserted points are highlighted with a small dot.

(a) Original mesh. (b) Simple tesselation. (c) Recursive tesselation.

Figure 6.3: 4-2 tesselation scheme.

This scheme creates triangles that are more even that the ones created
with the 3-0 scheme. The looks of the resulting scene will differ greatly
according to the value of the maximum distance parameter d (already men-
tioned in Section 6.5). For d approximately half the size of the triangle
edges the scheme results in the creation of an acceptable triangle mesh (see
Figure 6.4a). For smaller d the generated triangles become thinner and less
acceptable (see Figure 6.4b). Nevertheless, this scheme gives the best results
from all the tested tesselation schemes and it is used in the implemented
solution. The user has to pay attention to the parameter d and choose its
value reasonably according to the level of detail of the input mesh.

6.5.3 4-4 Tesselation Scheme

The 4-4 tesselation scheme divides the input triangle in the same manner as
the 4-2 scheme. The difference between these two lies in the way how they
handle the neighbor tesselation. The 4-2 scheme cuts the neighboring triangle
in half, which may lead to long triangles. The idea was to add another point

32

Proposed Algorithm Mesh Subdivision

(a) Tesselation for d approx. half the size
of the triangle.

(b) Tesselation for smaller d.

Figure 6.4: An example of a scene created with 4-2 tesselation scheme.

inside the neighboring triangle and thus divide it into four new ones. The
results of this tesselation scheme when applied to one triangle of the mesh
can be seen in Figure 6.5. The inserted points are highlighted with a small
dot.

(a) Original mesh. (b) Simple tesselation. (c) Recursive tesselation.

Figure 6.5: 4-4 tesselation scheme.

Contrary to my assumption that this alteration will lead to better results,
the tesselation scheme produces more uneven results even for larger values
of the parameter d. I tested several possible positions for the point inserted
inside the neighboring triangle such as the center of the triangle or the middle
of the line segment connecting the point in the middle of the edge with the
opposite vertex. I also tried to include a random factor to the position
but none of these adjustments did cause a significant improvement in the

33

Proposed Algorithm Mesh Modification

resulting scene. Figure 6.6a captures the results for d approximately half of
the triangle edges, the results for smaller d are shown in Figure 6.6b.

(a) Tesselation for d approx. half the size
of the triangle.

(b) Tesselation for smaller d.

Figure 6.6: An example of a scene created with 4-4 tesselation scheme.

6.6 Mesh Modification

The erosion calculation consists of two separate steps. At first the interaction
between the SPH particles and the triangle mesh is calculated following
the algorithm described in Section 6.4, the amount of eroded or deposited
sediment is stored for each vertex. In the second step the mesh is modified
in each of the vertices that were influenced by the first step. The vertex is
moved in the direction of the normal vector according to the amount of the
associated sediment.

The vertex will be moved in the direction of the normal vector but it is not
obvious how far should the vertex be moved. The vertex belongs to several
triangles. In general these triangles can differ greatly in size and shape leading
to various volume changes for the same vertex displacement. The situation
is illustrated in Figure 6.7. The dashed line represents the original mesh, the
dotted line represents the vertex displacement in the direction of the normal
vector and the full line shows the modified mesh after the vertex relocation.
The triangles of the original mesh in Figure 6.7a have smaller area than the

34

Proposed Algorithm Mesh Modification

triangles in Figure 6.7b, resulting in a smaller volume change for the same
translation of the vertex.

(a) Scene consisting of
faces with smaller area.

(b) Scene consisting of faces with
larger area.

Figure 6.7: An example of volume changes for the same value of vertex
displacement.

We need to control the volume change regardless of the local topology
of the scene. In order to do that we need means to calculate the vertex
displacement so that the volume change would have a unit size. The total
volume change is a sum of contributions from all the affected triangles. The
volume change for one triangle equals to the volume of the region bordered
by the original and the new triangle, this area always forms a tetrahedron
(see Figure 6.8).

a
b

c

Figure 6.8: The volume change for one face has a form of a tetrahedron.

To derive the required equation for vertex displacement we have to start
from the formula for the volume of a tetrahedron [Wik12]:

V =
|(A−D) · ((B −D)× (C −D))|

6
, (6.5)

35

Proposed Algorithm Mesh Modification

where A,B,C and D are the vertices of the tetrahedron. If the tetra-
hedron is translated so that the vertex D coincides with the origin of the
coordinate system, the formula simplifies to:

V =
|a · (b× c)|

6
, (6.6)

where a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) represent three edges
that meet at the vertex D (see Figure 6.8) and a · (b × c) is a scalar triple
product. The scalar triple product can be calculated using the determinant:

6V = |a · (b× c)| =
∣∣a b c

∣∣ =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ (6.7)

By solving the determinant we obtain the following relation:

6V =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1b2c3 +a2b3c1 +a3b1c2−a1b3c2−a2b1c3−a3b2c1. (6.8)

Using it we can calculate the volume as a sum of tetrahedron volumes:

Vtotal =
n∑
0

Vi, (6.9)

where n is the number of triangles containing the given displaced vertex and
Vi are the volumes of individual tetrahedra. The Vtotal is the total volume
change for the the vertex displaced |a| units in the direction of the vertex

normal. If the vertex is displaced only |a|
x

units instead, the volume change
for one tetrahedron will be:

6V1 =

∣∣∣∣∣∣
a1
x

b1 c1
a2
x

b2 c2
a3
x

b3 c3

∣∣∣∣∣∣ =
a1b2c3
x

+
a2b3c1
x

+
a3b1c2
x
− a1b3c2

x
− a2b1c3

x
− a3b2c1

x

=
a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1

x
(6.10)

36

Proposed Algorithm Mesh Consistency

By comparison of equations 6.8 and 6.10 it is obvious that V1 = V
x

. A
volume change of a unit size will be obtained for x = V . Using these ideas the
solution to the given problem is very simple. The vertex is moved one unit
in the direction of the normal vector and the volume change V is calculated.
The new displacement distance is then obtained as 1

V
, this displacement will

result in a volume change of unit size. The final displacement is calculated
by multiplying it with the amount of sediment carried by the particle.

6.7 Mesh Consistency

While relocating the vertices of the mesh to simulate the erosion process, an
inconsistency can be created in the mesh. An example of an inconsistency is
captured in Figure 6.9. The relocated vertex cut through another face of the
mesh, resulting in intersection of the faces from different parts of the mesh.
The dashed line represent the boundary where the two regions intersect.

Figure 6.9: An example of a mesh inconsistency.

6.7.1 Inconsistency Detection

For a simple scene the inconsistency can be detected easily. If an inconsis-
tency was created, the vertex had to move through one of the faces during
the mesh modification step. That means that the line connecting the initial
and the final position of the vertex has to intersect with one of the faces of
the mesh.

For a more complex scene with concave features the detection algorithm
is more complicated. The inconsistency can be created even if the vertex
trajectory did not intersect with any faces. Figure 6.10a shows a valid

37

Proposed Algorithm Mesh Consistency

scene with concave features, the point marks the vertex where the erosion
will be applied. The resulting scene after erosion is shown in Figure 6.10b.
The vertex trajectory did not intersect any faces but the inconsistency was
created. To detect this type of inconsistency, instead of checking the vertex
trajectory, we have to check for intersections with all the faces to which
the relocated vertex belongs. In this thesis I work only with the type of
inconsistencies that can be created in a simple scene.

(a) Original scene. (b) Scene with an inconsistency.

Figure 6.10: A simple 2D example of an inconsistency in the scene with
concave features .

6.7.2 Finding the Boundary of the Inconsistency

When the inconsistency is detected, we have to eliminate it and fix the mesh.
In order to do it, first we have to find the boundary of the inconsistency -
the polygonal chain where two parts of the mesh intersect. An example of
the inconsistency boundary is represented by the dashed line in Figure 6.9.

Two planes which are not parallel meet in a single line l. If triangles
lying in these planes intersect, their intersection is a part of the line l. The
four possible ways of intersection of the two triangles are presented in Figure
6.11. The parameters t1 and t2 determine the points of intersection of the
line l and the edges of the triangle T1, the parameters t3 and t4 determine
the points of intersection of the line l and the edges of the triangle T2.

During the inconsistency detection phase I have found two intersecting
faces which are a part of the inconsistency. The line segment where they
intersect forms the first segment in the polygonal chain representing the
boundary of the inconsistency. To find the next segment we have to inspect
the possible ways of triangle intersection (Figure 6.11). The parameter t1 or t3
in figures represents the entry point of the line segment and t2 or t4 represents
the exit point; the intersection line segment is always the segment between
the second and the third parameter on the line as this is the region where both

38

Proposed Algorithm Mesh Consistency

t1

t4
t2

t3

T1
T2

(a)

t1

t4
t2

t3

T2

T1

(b)

t1 t3 t4

t2

T1
T2

(c)

t1t3
t4

t2

T1

T2

(d)

Figure 6.11: Four ways two triangles can intersect.

triangles intersect the line l. If the line segment ends with a point defined
by the parameter t2, it means that the processing of the triangle T1 was
finished and we need to proceed to its neighbor through the edge containing
the point defined by t2. Similarly, if the segment ends with a point defined
by t4, the processing of the triangle T2 is finished and we proceed to its
neighbor. Following this simple algorithm we can find the boundary of the
inconsistency. For each point in the boundary we also store the indices of
the triangles whose intersection formed the given line segment, we will use
this information later for fixing the mesh.

The situation is more complicated when the line of intersection l contains
an edge or a vertex of one of the triangles. If the line l contains an edge
of one of the triangles, it is not clear to which neighbor we should move
when the triangle is processed. A simplified example of the boundary is
shown in Figure 6.12 - only one side of the intersected mesh is shown. Let us
assume that the correct boundary is marked with the red dotted line. The
line segment between points 1 and 2 (segment 12) can be found using the
algorithm described above. For segment 23 we encounter a problem - the
segment ends in a vertex of the triangle F and we do not know in which
of the neighbors the boundary continues. Or, as in this case, the boundary
continues through a triangle which is not a neighbor of the current triangle
at all. For singular cases such as this, we have to store all the possibilities
and find out where the boundary goes on. For segment 23 the boundary can
continue either in triangle E or G. By testing these triangles we find out that
they only meet with the boundary at one point, which is already included in
it. The boundary can continue through the edge containing the intersection
point, so we have other triangles for the list of possible intersections with the
boundary - through E we continue to B and through G to D. The triangle

39

Proposed Algorithm Mesh Consistency

D meets with the boundary in segment 34 and so on. The searching ends
when we arrive back to the first point of the inconsistency boundary.

1
2

3
4

A

B

C

D

E

F

G

H

Figure 6.12: An example of the boundary of the inconsistency.

6.7.3 Fixing the Inconsistency

After we find the boundary of the inconsistency, we have to fix the mesh to
restore it to the consistent state. An example of the boundary is shown in
Figure 6.13, the red dashed line represents the boundary and the red dots
mark the points where the boundary leaves one triangle and enters another.

Figure 6.13: An example of a mesh inconsistency, the red dashed line
represents the boundary of the inconsistency.

For each of the involved triangles we have to find a polygonal region
(Figure 6.14a), where the mesh has to be repaired and triangulated using
an ear cutting algorithm (the ear cutting algorithm is described, e.g., in
[Ebe08]). An example of a repaired mesh is shown in Figure 6.14b.

40

Proposed Algorithm Mesh Consistency

(a) One of the polygonal regions that
needs to be triangulated.

(b) Fixed mesh inconsistency.

Figure 6.14: An example of a fixed mesh inconsistency.

6.7.4 Issues Due to the Numerical Imprecisions

When I was implementing this part of the algorithm, I encountered problems
caused by numerical imprecisions. When looking for the boundary of the
inconsistency, it is very important to determine whether the two triangles
intersect through a general line or whether they meet at one of the edges or
vertices. The numerical imprecisions of floating point calculations can result
in an incorrect answer to this question which will lead to wrong detection of
the boundary. I was unable to eliminate this problem in my implementation
which results in unreliable behavior of the application when dealing with
mesh inconsistencies.

41

7 Results

This chapter will present some of the results of the proposed solution. In
erosion-based modeling it is generally difficult to confirm the correctness of
the implemented algorithm. To confirm it, the results would have to be
based on real data and compared to a sequence of images capturing the
erosion of the same scene in the real world. Unfortunately, erosion is a very
long term process and thus it is almost impossible to obtain the real data for
testing purposes. Most authors then validate their algorithms only visually,
evaluating if the resulting scenes look visually plausible. The correctness of
the algorithm can be as well tested by comparing the results with results of
a similar published method.

7.1 SPH Implementation

The SPH implementation used in this work was taken over from [Hoe09]
but it had to be altered to interact with the triangle meshes. To test if the
modified algorithm behave correctly the dam break test was performed. It
is a test commonly used to determine if the fluid particle system behaves
correctly. In the beginning of the test, the particles are aligned in one half of
the volume of the scene. Then the simulation starts and the particles move
due to gravity and inter-particle forces. The fluid flows towards the opposite
wall where it splashes and eventually the fluid stabilizes itself in a stable
position. The results of the test can be seen in Figure 7.1

Figure 7.1: Dam break test results. (in lines left to right, top to bottom)

42

Results Simple River

7.2 Simple River

To test the behavior of the algorithm in a more realistic situation, a simple
scene containing a river bed was created in Blender 1. The fluid is generated
from a source in the upper part of the scene and flows inside the river bed.
The fluid interacts with the terrain and erodes its surface. The terrain was
created with non-uniform resolution, the river bed where the erosion takes
place is more detailed than the rest of the scene. Figure 7.2 shows the results
of the simulation. Figure 7.2a captures the original scene, Figures 7.2b and
7.2c show the fluid motion during the simulation. The resulting scene can be
seen in Figure 7.2d; the red color of the mesh denotes the regions where the
terrain was eroded. The fluid motion is captured in Figure A.2.

(a) Original scene. (b) Fluid eroding the terrain.

(c) Fluid eroding the terrain. (d) The resulting scene. The red color
marks eroded regions.

Figure 7.2: Simple scene containing a river bed.

1Blender is an open source, cross platform suite of tools for 3D modeling. www.blender.
org.

43

www.blender.org
www.blender.org

Results Lake

The scene is very simple but shows the capability of the fluid to erode the
underlying terrain. Better results would be obtained with a more detailed
model of the terrain. One of the problems causing the unrealistic look of
the simulation is the question of the scale. The Navier-Stokes equations (see
Section 2.1.2) are scale sensitive, the actual simulation scale of the fluid used
in the implementation is around 1cm3 up to tens cm3 [Hoe09]. On the other
hand, the terrain is representing a large-scale scene, such as the landscape
with the river bed. This inconsistency in scales can lead to less realistic
behavior of the fluid.

7.3 Lake

A simple scenery with a lake was created to compare the method with an
existing solution by Krǐstof et al. [KBKS09]. The authors of the reference
method demonstrate its correctness with a simulation of a lake being filled
by water which erodes it. Their results are shown in Figure 7.3.

(a) The fluid erodes the terrain. (b) The red color marks the eroded regions.

Figure 7.3: An example of a lake being filled by water which erodes it, the
results presented in [KBKS09].

A simplified scenery was designed in Blender in order to compare the
proposed solution with the results of [KBKS09]. The scene contains a lake
which is being filled by water. The water eventually fills the lake and starts
to flow away, eroding the surface. The scene is captured in Figure 7.4. The
process of filling the lake with water is shown in Figure A.1. The final eroded
scene is shown in Figure 7.5. Figures 7.5a and 7.5c show the original terrain
from two different viewpoints, Figures 7.5b and 7.5d show the same scene
after the erosion is applied, the regions eroded by the fluid are marked with
red color.

44

Results Lake

Figure 7.4: An example of a lake being filled with water. The water flows
over the boundaries and erodes the surface.

Both of the scenes generated by our method and the reference method
described in [KBKS09] succeed in the creation of a terrain eroded by flowing
water. The results of the reference method are more visually plausible, due
to the larger resolution of the scene. The authors use 90 000 particles on a
height field of an unspecified size; we created the scene in Figure 7.5 using
approximately 12 000 particles.

The same scene from Figure 7.4 was used to test the adaptive tesselation
of the mesh. At first, the model was tesselated in Blender in order to obtain
more detailed mesh in the regions where the erosion will take place, no
further tesselation was applied during the simulation. The tesselated mesh
can be seen in Figure 7.6a. The implemented adaptive tesselation which was
described in Section 6.5.2 was used in the scene captured in Figure 7.6b. The
disadvantage of the adaptive tesselation lies in the fact that it can create long
uneven triangle faces which cause problems in the erosion calculations and
later during the rendering phase. The mesh subdivision which was created
using Blender is more even and the calculations on it are more stable, leading
to better results.

To improve the implemented tesselation scheme, a validation step could
be added in future work. After the mesh is subdivided, the new faces would
be tested to see if their shape fulfills the desired criteria and if not, the region
of the mesh would be retriangulated. The problem of this approach is that
generally the reparation of the mesh can be very computationally expensive.

45

Results Lake

(a) The original terrain. (b) The red color marks the eroded regions.

(c) The original terrain. (d) The red color marks the eroded regions.

Figure 7.5: An example of a lake being filled with water. The water flows
over the boundaries and erodes the surface.

(a) The mesh has higher resolution in re-
gions where the erosion takes place.

(b) The implemented adaptive tesselation.

Figure 7.6: Different approaches to mesh subdivision.

46

Results Tube

Some of the edges of the triangle would be switched during the reparation
process, possibly leading to the change of the volume of the model but these
changes would be minor and probably would not be visually perceptible.

7.4 Tube

A simple scene was modeled to demonstrate the capability of the algorithm
to work with 3D models with concave features. The scene consists of a cube
and a tube which is going through it. The fluid pours through the hole and
erodes the bottom and the sides of the tube (see Figure 7.7a). The fluid force
is the strongest in the region where the fluid collides with the mesh for the
first time, resulting in a more noticeable erosion (see Figure 7.7b). The fluid
flow is affected by the change of the topology of the mesh. The changes of
the fluid flow are captured in Figure A.3.

(a) Water pours through a tube. (b) The erosion is strongest in the region
where the fluid collides with the terrain for
the first time.

Figure 7.7: Water pours through a tube eroding its sides and bottom.

7.5 Computational Requirements

Computational requirements were measured for the scenes presented in the
previous text. The application was written in C++ and the simulations were
performed on Intel Core 2 Duo at 2GHz with operating system Windows 7
32-bit.

47

Results Computational Requirements

Table 7.1 contains information about the scene; the Particles column
stores the number of fluid particles in the scene, the Vertices and Faces
columns store the number of vertices or faces in the scene and the Grid
Cells column stores the number of cells in the grid auxiliary data structures
described in Sections 5.4.1 and 5.4.2. The size of a grid cell is constant and
thus the number of the cells also describes the size of the scene.

The results are summarized in Table 7.2. It contains information about
the time of computation for various scenes 2. The columns Particles and
Faces store the time necessary to assign all the particles or faces of the scene
to the appropriate cell of the grid auxiliary data structure. The column Press
and Force store the time of the computation of the inter-particle forces. The
column Advance shows the time that was needed for the computation of
the erosion and the subsequent modification of the mesh. The last column,
Frame, contains the total time necessary for one iteration of the algorithm.

Table 7.1: The topology of the presented scenes.

Scene Particles Vertices Faces Grid Cells

River 12125 2126 4244 36162
Lake 12528 4538 9068 75768
Detailed Lake 12096 6065 12122 75768
Tube 12528 2356 4706 68921

Table 7.2: Computational requirements of the presented scenes. (time in
[ms])

Scene Particles Faces Press Force Advance Frame

River 17 16 935 104 822 1 885
Lake 27 29 1 086 108 1 658 2 905
Detailed Lake 26 36 970 100 3 167 4 316
Tube 24 17 266 44 342 727

The time response was measured for scenes containing approximately
the same number of particles. As can be seen in Table 7.2, the size of the
scene influences the time necessary to assign the faces and particles to the
appropriate cell of the grid auxiliary data structure, the time complexity

2The simulations were performed on an Intel Core 2 Duo at 2GHz

48

Results Computational Requirements

of this problem is linear. The distribution of the particles in the scene
influences the time necessary to calculate the inter-particle forces and the
fluid-solid interactions. The River and Tube scenes contain approximately
the same number of particles and faces but the Tube scene runs more than
twice faster. This is caused by the fact that the particles in the River scene
are gathered in the river bed leading to more frequent interactions and thus
slower calculations.

The authors of the reference method [KBKS09] performed their simula-
tions on Intel Quad Core Q6600 at 2.4 GHz equipped with NVIDIA 8800 GT,
their results can be seen in Figure 7.3. Their simulation of 90 000 particles
was generated at a rate of one frame per 0.9 sec. Our simulation of a similar
lake scene showed in Figure 7.5 is using approximately 12 000 particles; the
simulation took 2.9 sec per frame. The slower runtime of our simulation is
caused by more complicated calculations in the step of mesh modification.
The simulation also needs to be optimized to achieve better performance.

The bottleneck of the algorithm is the calculation of the inter-particle
forces and the computation of the erosion and the subsequent modification
of the mesh. In future work, especially the erosion calculation and the
mesh modification steps should be optimized to speed up the simulation.
The algorithm could be as well implemented on GPU, using the CUDA
framework.

49

8 Conclusion

A novel solution to the erosion-based terrain modeling was proposed in
this thesis. Our solution is capable of representing both fully 3D terrains
and fully 3D water effects. Other available methods working with fully 3D
scenes are usually based on voxel techniques which lead to enormous memory
requirements. Our solution is using a triangle mesh data structure for terrain
representation. The advantage of this data structure is that its resolution can
be adapted to the topology of the scene; the detailed parts of the scene are
modeled with higher resolution than the flat homogeneous parts. In addition
to that, several tesselation schemes which allow an adaptive division of the
mesh during the simulation were implemented and tested. The user can affect
the size of the triangles created during the tesselation, the smaller the newly
created triangles are, the worse their shape characteristics are.

The results of erosion are shown and compared to results presented in
[KBKS09]. We are using a similar approach to the erosion as the authors
of the paper but their solution works only with terrains represented with a
height field. The method most similar to our solution was published in [TJ10].
The authors of the paper are using a tetrahedral structure to represent 3D
objects; they generate a new mesh every iteration of the method but in
the process they lose the continuity of the mesh. Our solution keeps the
same mesh during the whole simulation but inconsistencies can be created
in the mesh. A solution to the mesh inconsistencies was proposed in this
thesis, unfortunately it was not successfully implemented due to problems
with numerical imprecisions of floating point calculations and for that reason
our results could not be compared with the results published in [TJ10].

The work on this method will continue within my doctoral studies. There
are many avenues for future research. At the first place, the implementation
of the solution of the mesh inconsistencies have to be finished, in order to
allow simulations of more complex scenes. Another important future work is
the extension of the algorithm to support the scenes consisting of different
materials. Last but not least, the implementation could be optimized and
rewritten on GPU to speed up the simulation.

50

Bibliography

[ABB08] N. Andrysco, B. Beneš, and M. Brisbin. Permeable
and absorbent materials in fluid simulations. ACM Sig-
graph/Eurographics Symposium on Computer Animation,
Posters and Demos, 2008.

[Ach90] D. J. Acheson. Elementary Fluid Dynamics. Oxford University
Press, 1990.

[Ama06] T. Amada. Real-time particle-based fluid simulation with rigid
body interaction. In M. Dickheiser, editor, Game Programming
Gems 6, pages 189–205. Charles River Media, 2006.

[APKG07] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively
sampled particle fluids. ACM Trans. Graph., 26(3), July 2007.

[BA05] B. Beneš and X. Arriaga. Table mountains by virtual erosion.
In Pierre Poulin and Eric Galin, editors, Proceedings of the
Eurographics Workshop on Natural Phenomena, NPH 2005,
pages 33–39. Eurographics Association, 2005.

[Ben07] B. Beneš. Real-time erosion using shallow water simulation. In
VRIPHYS, pages 43–50. Eurographics Association, 2007.

[BF01] B. Beneš and Rafael. Forsbach. Layered data representation for
visual simulation of terrain erosion. In Proceedings of the 17th
Spring conference on Computer graphics, SCCG ’01, pages 80–,
Washington, DC, USA, 2001. IEEE Computer Society.

[BF02] B. Beneš and R. Forsbach. Visual simulation of hydraulic
erosion. Journal of WSCG, pages 79–86, 2002.

[BR04] B. Beneš and T. Roa. Simulating desert scenery. In WSCG
(Short Papers), pages 17–22, 2004.

51

BIBLIOGRAPHY BIBLIOGRAPHY

[Bri08] R. Bridson. Fluid Simulation For Computer Graphics. Ak Peters
Series. A K Peters, 2008.

[BS09] C. Braley and A. Sandu. Fluid simulation for computer graphics:
A tutorial in grid based and particle based methods. Computer,
2009.

[BTHB06] B. Beneš, V. Těš́ınský, J. Hornyš, and S. K. Bhatia. Hydraulic
erosion. Computer Animation and Virtual Worlds, 17(2):99–108,
2006.

[CMF98] N. Chiba, K. Muraoka, and K. Fujita. An erosion model based on
velocity fields for the visual simulation of mountain scenery. The
Journal of Visualization and Computer Animation, 9(4):185–
194, 1998.

[Dav11] C. M. Davenport. Incompressible navier-stokes equations re-
duce to bernoulli’s law. http://home.comcast.net/~cmdaven/
navier.htm, 2011. [Online; Accessed 06/05/2012].

[DEJ+99] J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K.
Pedersen. Modeling and rendering of weathered stone. In
Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’99, pages 225–234, New
York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing
Co.

[DG96] M. Desbrun and M. Gascuel. Smoothed particles: A new
paradigm for animating highly deformable bodies. In In
Computer Animation and Simulation ’96 (Proceedings of EG
Workshop on Animation and Simulation, pages 61–76. Springer-
Verlag, 1996.

[Ebe08] D. Eberly. Triangulation by ear clipping.
http://www.geometrictools.com/Documentation/Triangulation
ByEarClipping.pdf, Geometric Tools, LLC, 2008. [Online;
Accessed 02/05/2012].

[FF01] N. Foster and R. Fedkiw. Practical animation of liquids. In
Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’01, pages 23–30, New
York, NY, USA, 2001. ACM.

52

http://home.comcast.net/~cmdaven/navier.htm
http://home.comcast.net/~cmdaven/navier.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[FSJ01] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation
of smoke. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’01,
pages 15–22, New York, NY, USA, 2001. ACM.

[GM77] R. A. Gingold and J. J. Monaghan. Smoothed particle hy-
drodynamics - Theory and application to non-spherical stars.
Monthly Notices of the Royal Astronomical Society, 181:375–389,
November 1977.

[HH01] Y. Hatano and N. Hatano. Dune morphology and sand trans-
port. Forma, 16(1):65–75, 2001.

[Hib10] A. Hibbs. Navier-stokes equation. University of Warwick, De-
partment of Physics, http://www2.warwick.ac.uk/fac/sci/

physics/pendulum/navierstokes/, 2010. [Online; Accessed
06/05/2012].

[Hoe09] R. Hoetzlein. Fluids v.2 - a fast, open source, fluid simu-
lator. http://www.rchoetzlein.com/eng/graphics/fluids.

htm, 2009. Online; Accessed: 30/04/2012.

[JFBB10] M. D. Jones, M. Farley, J. Butler, and M. Beardall. Directable
weathering of concave rock using curvature estimation. IEEE
Transactions on Visualization and Computer Graphics, 16:81–
94, 2010.

[KBKS09] P. Krǐstof, B. Beneš, J. Křivánek, and O. St’ava. Hydraulic
erosion using smoothed particle hydrodynamics. Computer
Graphics Forum (Proceedings of Eurographics 2009), 28(2):219–
228, 2009.

[KM90] M. Kass and G. Miller. Rapid, stable fluid dynamics for
computer graphics. In Proceedings of the 17th annual conference
on Computer graphics and interactive techniques, SIGGRAPH
’90, pages 49–57, New York, NY, USA, 1990. ACM.

[KW06] P. Kipfer and R. Westermann. Realistic and interactive simula-
tion of rivers. In Proceedings of Graphics Interface 2006, GI ’06,
pages 41–48, Toronto, Ont., Canada, Canada, 2006. Canadian
Information Processing Society.

53

http://www2.warwick.ac.uk/fac/sci/physics/pendulum/navierstokes/
http://www2.warwick.ac.uk/fac/sci/physics/pendulum/navierstokes/
http://www.rchoetzlein.com/eng/graphics/fluids.htm
http://www.rchoetzlein.com/eng/graphics/fluids.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[Luc77] L. B. Lucy. A numerical approach to the testing of the fission
hypothesis. Astronomical Journal, 82:1013–1024, December
1977.

[Man82] B. B. Mandelbrot. The Fractal Geometry of Nature. W.H.
Freeman, San Francisco, 1982.

[MCG03] M. Müller, D. Charypar, and M. Gross. Particle-based fluid
simulation for interactive applications. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’03, pages 154–159, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[MDH07] X. Mei, P. Decaudin, and B. Hu. Fast hydraulic erosion
simulation and visualization on gpu. In Proceedings of the 15th
Pacific Conference on Computer Graphics and Applications, PG
’07, pages 47–56, Washington, DC, USA, 2007. IEEE Computer
Society.

[MKM89] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis
and rendering of eroded fractal terrains. SIGGRAPH Comput.
Graph., 23(3):41–50, July 1989.

[MMW01] T. Miao, Q. Mu, and S. Wu. Computer simulation of aeolian
sand ripples and dunes. Physics Letters A, 288(1):16 – 22, 2001.

[Mon92] J. J. Monaghan. Smoothed particle hydrodynamics. Annual
review of astronomy and astrophysics, 30:543–574, 1992.

[ON00] K. Onoue and T. Nishita. A method for modeling and rendering
dunes with wind-ripples. In Proceedings of the 8th Pacific
Conference on Computer Graphics and Applications, PG ’00,
pages 427–, Washington, DC, USA, 2000. IEEE Computer
Society.

[Par65] E. Partheniades. Erosion and deposition of cohesive soils.
Journal of Hydraulics Division of the American Society of
Agricultural Engineers 91, pages 105—-139, 1965.

[Phi99] C. L. Phillips. The Level-Set Method. The MIT Undergraduate
Journal of Mathematics, 1:155–164, 1999.

[Pur09] V. Purchart. Modelováńı ṕısčitého terénu pro virtuálńı realitu.
Master’s thesis, University of West Bohemia, Pilsen, Czech
Republic, 2009.

54

BIBLIOGRAPHY BIBLIOGRAPHY

[SSP07] B. Solenthaler, J. Schläfli, and R. Pajarola. A unified particle
model for fluid–solid interactions: Research articles. Comput.
Animat. Virtual Worlds, 18(1):69–82, February 2007.

[TJ10] L. A. Tychonievich and M. D. Jones. Delaunay deformable mesh
for the weathering and erosion of 3d terrain. Vis. Comput.,
26(12):1485–1495, December 2010.

[WCMT07] C. Wojtan, M. Carlson, P. J. Mucha, and G. Turk. Animating
corrosion and erosion. In Proceedings of the Eurographics
Workshop on Natural Phenomena, NPH 2007, pages 15–22.
Eurographics Association, 2007.

[Wik12] Wikipedia. Tetrahedron — wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=

Tetrahedron&oldid=489166298, 2012. [Online; Accessed
02/05/2012].

55

http://en.wikipedia.org/w/index.php?title=Tetrahedron&oldid=489166298
http://en.wikipedia.org/w/index.php?title=Tetrahedron&oldid=489166298

A Other Results

Figure A.1: An example of a lake being filled with water. The water flows
over the boundaries and erodes the surface.

56

Other Results

Figure A.2: A simple scene containing a river bed.

57

Other Results

Figure A.3: Water pours through a tube eroding its sides and bottom.

58

Other Results

Figure A.4: An example of a scene with two water sources.

59

B User Manual

To run the program you need the following files:

• fluids.exe, the executable

• glew32.dll and jpeg62.dll, the necessary libraries

• folder data containing the 3D models in .obj format

• folder img for exporting images

• folder export for exporting models

• folder settings with settings files

The program can be started with a command: fluids.exe [settings file]. The
parameter settings file is compulsory and contains the path to the settings
file. An example of the content of the settings file can be as follows:

Scene settings

models (filename reverseWinding scaleFactor translation)

m data/cube.obj 0 30/30/30 0/0/0

m data/model.obj 1 30/30/30 0/0/0

fluid source (rate position size)

f 10 0/0/10 10/10/10

f 5 -20/-20/10 3/3/3

maximum number of particles

p 1000

distance limit for tesselation

d 100.5

material (sediment_change max_sediment_in_particle critical_shear)

s 0.02 1.0 0.25

60

User Manual

The lines starting with a symbol # are comments, they do not affect the
application. Line affecting the application have to start with m, f, p, d or s.

• Letter m - the file can contain more lines beginning with the letter m.
The line has a following form m [filename] [reverseWinding] [scaleFac-
tor] [translation] and contains the information about the 3D model.
The first model in the file represents the bounding box of the scene; it
will not be affected by the erosion or tesselation and its size should be
adapted so that the whole scene would fit into it.

filename - the path to the .obj model.

reverseWinding - variable to decide if the winding of the triangles
in the mesh should be reversed, 1 - reverse the winding, 0 keep the
current winding.

scaleFactor - the scale factor that should be applied to the model,
the values of the vector are separated by /.

translation - the translation vector that should be applied to the
model, the values of the vector are separated by /.

• Letter f - the file can contain more lines beginning with the letter f.
The line has a following form f [rate] [position] [size] and contains the
information about fluid sources. The fluid source has to be located in
a legal position, it cannot be located inside a model.

rate - the rate of the fluid generation. For the value of rate equal
to 10, new particles will be generated every 10 frames.

position - the position of the water source, the values of the vector
are separated by /.

size - the size of the water source, the values of the vector are
separated by /.

• Letter p - maximum number of the particles allowed in the scene.

• Letter d - the distance limit for tesselation. The triangle will be tesse-
lated if the distance between its vertices and the interacting particle is
larger than d.

• Letter s - the material constants. The line has a following form s
[sediment change] [max sediment] [critical shear]

sediment change - a constant influencing the erosion process. For
bigger values the erosion will be more aggressive.

61

User Manual

max sediment - the maximum sediment that can be carried by the
particle.

critical shear - the value of critical shear, a constant used in erosion
calculation. For bigger values, the force applied to the terrain has to
be bigger for the erosion to take place.

After the application has started, the user can influence its behavior by
pressing the following keys:

• H - shows help on the screen

• space - pause the simulation

• escape - ends the simulation

• J - turns on or off the stepping of the simulation. When on, the
simulation will pause itself after each step

• L - switches between the wireframe and solid model

• K - shows or hides the wireframe when in solid mode

• D - changes the way of rendering particles

• S - changes the shading modes

• N - decreases the maximum number of particles in the scene and
restarts the simulation

• M - increases the maximum number of particles in the scene and
restarts the simulation

• V - turns on or off the capturing of all the rendered frames

• B - saves the current frame to the folder img

• Q - shows or hides the original model (without erosion)

• T - saves the model in .obj format

• 1 - measures the time of each iteration and writes the results in the
console

• 2 - hides the bounding box of the scene

62

C Proceedings of SVK 2012:
Modeling of Erosion Impacts on the
Terrain

63

Modeling of Erosion Impacts on the Terrain

Věra Skorkovská1

1 Introduction
In the field of computer graphics, we often find ourselves in the need of visually plau-

sible models of terrain. Creating such a terrain using a modeling software would be very
time-consuming and the results may not be as good as we would need. For that reason many
techniques solving this problem were developed; erosion-based terrain modeling is one of the
possible approaches. It has been an important part of computer graphics for more than twenty
years but many problems still remain unsolved. Many solutions are only capable of working
with 2.5D terrain, these solutions do not allow formations such as caves or overhangs. Other
group of solutions supports the fully 3D terrain but these methods are usually very memory
consuming and not capable of running with real-time response.

Our solution is addressing the problem of hydraulic erosion, which has the greatest in-
fluence on the terrain alterations. The solution is representing the fluid as a particle system and
the terrain is stored as a triangle mesh, leading to lower memory requirements while keeping
the ability to simulate fully 3D phenomena.

2 Proposed Solution
The solution is based on Smoothed-particle hydrodynamics (SPH), an approximative

numeric solution to equations describing the fluid dynamics. SPH represents the fluid as a set
of particles that interact over a specified distance called the smoothing radius. The advantage
of the SPH simulation is that the particles are localized only in the regions where the fluid is
present and so we can limit the computation to this locations. For the implementation of SPH
we use a library Fluids v.2 by Hoetzlein (2009).

The terrain in erosion simulations is usually represented as a height field or a voxel
grid. These regular data structures simplify the erosion calculations but they have significant
drawbacks as well. A height field does not allow the creation of a fully 3D features of the terrain;
voxel grids are capable of describing a fully 3D scene but they are very memory consuming. Our
solution represents the terrain with a triangle mesh, which leads to lower memory requirements.
Furthermore, the resolution of the triangle mesh can be adjusted according to the complexity of
the scene, allowing higher resolution in the regions with great details and lower resolution in
the homogeneous regions.

The SPH particles simulate the motion of the fluid and interact with the terrain when a
collision occurs. On collision, the erosion or deposition amount is calculated using the equations
published in Krištof et al. (2009). The erosion sediment exchange is calculated for all the
particles in the scene and after that the triangle mesh is updated. During the modification of
the mesh, an inconsistency can be created when two parts of the mesh intersect. The solution
to this problem was suggested but it is not yet successfully implemented, due to the numerical
imprecision issues.

1 student of the master study programme Computer Science and Engineering, specialisation Computer Graphics
and Computer Systems, e-mail: vskorkov@students.zcu.cz

3 Results
In erosion-based terrain modeling it is very complicated to confirm the correctness of

the generated results. To confirm it, the simulated scene would have to based on real data
and the results would have to be compared to a sequence of images capturing the process of
erosion in the real world. Unfortunately, erosion is a very long term process and thus it is
almost impossible to obtain the real data for testing purposes. Most authors then validate their
algorithms only visually, evaluating if the resulting scenes look visually plausible.

The algorithm was tested on several scenarios, the results were visually acceptable. Bet-
ter results could be achieved with more detailed terrain models. An example of a scene gener-
ated by the implementation is shown in Figure 1.

(a) The terrain is being eroded by flowing
water.

(b) The resulting terrain. The red color
marks the eroded regions.

Figure 1: An example of a lake being eroded by water.

4 Conclusion
A novel solution to the erosion-based terrain modeling was proposed which is capable of

representing both fully 3D terrains and fully 3D water effects. The results of the erosion were
shown and visually confirmed, however, it is impossible to prove their correctness as we do not
possess any real data of a similar scene.

During the modification of the terrain, an inconsistency can be created in the mesh; the
implementation of this subproblem was not successful due to the issues of numerical impreci-
sions. The solution to this subproblem will be a part of future work, along with the extension
of the algorithm to support different materials and the optimization of the implementation.

Acknowledgement

This work has been supported by the Ministry of Education, Youth and Sports, project
LH11006 Interactive Geometrical Models for Simulation of Natural Phenomena and Group
Behavior.

References
Hoetzlein, R., 2009. Fluids v.2 - a fast, open source, fluid simulator.

http://www.rchoetzlein.com/eng/graphics/fluids.htm, 2009. Online; Accessed: 30/04/2012.

Krištof, P. and Beneš, B. and Křivánek, J. and Štava, O., 2009. Hydraulic erosion using
smoothed particle hydrodynamics. Computer Graphics Forum (Proceedings of Eurograph-
ics 2009), Vol. 28 No. 2, pp 219–228.

	Introduction
	Aim of the Thesis
	Proposed Solution
	Text Structure

	Erosion
	Hydraulic Erosion
	Physically Inspired Solutions
	Physically Based Solutions

	Wind Erosion
	Weathering

	3D Fluid Simulation
	Eulerian Approach
	Lagrangian Approach
	Smoothed-Particle Hydrodynamics

	Semi-Lagrangian Approach

	Data Structures for Erosion-Based Terrain Modeling
	Height Map
	Layered Height Map

	Volume Grid
	Triangle Mesh
	Tetrahedral Mesh

	Our Solution
	Hydraulic Erosion
	SPH
	Data Structure
	Auxiliary Data Structures
	Particles
	Triangle Mesh

	Proposed Algorithm
	Water Sources
	Fluid Forces
	Fluid-Terrain Interaction
	Erosion and Deposition
	Mesh Subdivision
	3-0 Tesselation Scheme
	4-2 Tesselation Scheme
	4-4 Tesselation Scheme

	Mesh Modification
	Mesh Consistency
	Inconsistency Detection
	Finding the Boundary of the Inconsistency
	Fixing the Inconsistency
	Issues Due to the Numerical Imprecisions

	Results
	SPH Implementation
	Simple River
	Lake
	Tube
	Computational Requirements

	Conclusion
	Other Results
	User Manual
	Proceedings of SVK 2012: Modeling of Erosion Impacts on the Terrain

