UNIVERSITY OF WEST BOHEMIA
FACULTY OF APPLIED SCIENCES
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Diploma thesis

Design of Reliable Systems Using
Formal Methods

Plzen, 2012 Peter Cipov

I hereby confirm that the work submitted is entirely my own and does not involve any additional human
assistance. All quotations and paraphrases but also information and ideas that have been taken from sources
used are cited appropriately with the corresponding bibliographical references provided. The same is true of all

drawings, sketches, pictures and the like that appear in the text, as well as of all Internet resources used.

In Plzen 15.5.2012 Peter Cipov

Abstract

The formal methods have been researched over several decades and they became very powerful tools. There are
varieties of approaches from purely theoretical to solutions that are nearly automatic. Even so, formal checker
is not daily bread of every software developer. In the industry formal checkers are used only for very expensive,
mission critical software where only a few program parts, separate algorithms or protocols are transformed to
model which is under check. This thesis tries to use other promising way of formal verification that aims to be
used on much bigger units than a single algorithm. This thesis is focused on using such checker for purposes
of CORDET project which is oriented on development of onboard satellite systems. It examines and
demonstrates current checker characteristics.

Table of Contents

1.

2.

3.

INTrOAUCTION L.t s 1
1.1. Organization of the Thesis.......ccccoiiiiiiiiiiiiiii e 1
Domain OVEIVIEWooiiiiiiiiiiiiiiiiii e 2
2.1. Brief Introduction to CORDETcccccoiiiiiiiiiiiiiiiiiiiiici e 2
2.2, Action Language.........coooiiiiiiiiiiiiiiii e 3
2.3. FOrmal PrOPEITIES ..cuvtiruiiiuiiiiiiiiiieie ettt ettt ettt et b e s et e e st e es 3
Model ChecKingc.oiiiiiiiiiiiiiiiiiiii e 5
3. 1. Temporal LOZIC . .ouiiuiiiiiiiiiiiieiecit ettt et 6
3.2 KrpKe STrUCTUIE ...oouviiiiiiiiiiicic e 6
3.3, Computation TTEES......coiiiiiiiiiiiiiiiiiii s 6
3.4. Linear Temporal LogiC......ccccooiiiiiiiiiiiiiiiiiiiiiiiiiiicc e 7
3.5, Blchi AUTOMATONoiiiiiiiiiiiiici e 8
3.6, LTL Checking.....ocouiiiiiiiiiiiiiiiiiiieitcie e s 9
3.7. State Explosion Problemcccooiiiiiiiiiiiiiiiiiiiiiiiiii 10
3.7.1. Symbolic Analysis — Binary Decision Tree Approach..........cccccccooiiiiniiiiinininin. 11
3.7.2. Partial Order Reductioncoouiiiiiiiiiiiiiiiiiiiiicctceieee ettt 12
Tools for Formal Verification.........cocuiiiiiiiiiiiiiiiciicciece ettt st 13
4.1, Checker REQUITEMENTSiciiiiiiiiiiiiiiiiiiiiiciet et st 13
4.1.1. Action Language ISSUes.........cccccuiiiiiiiiiiiiiiiiiiiiiiii 13
4.2 SPIN ittt s st 14
4.2.1. Promela Language.........ccooiviiiiiiiiiiiiiiiiicic s 14
4.2.2. Linear Temporal LOgIC.....c.cccueiiiiiiiiiiiiiiiiiiiiiiiiiiicicetc s 15
4.2.3. Memory Management.........ccuiiiiiiiiiiiiiiiiiii e s s s 15
4.2.4. Meeting ReQUITCMENTSoocuiiiiiiiiiiiiiiii e 15
4.3, Java PathFInder...cccuiieiiiieiiieie ettt ettt te e et e e et e e et e e e nbeeensaeeenbaeenbeeennaeas 16
4.3.1. State checking........cccoiiiiiiiiiiiiiii 16
4.3.2. State Space Exploration in Multithreaded Environment............ccccooiiiiiiiiiniini.. 17
4.3.3. Meeting ReQUITCMENTSooouiiiiiiiiiiiiiiiiiiii e 18

B, TOOL SELECTION ettt et e e e et e e e e aee e e et ae e e e e e e e e eaeeeesenaseerananaes 19

5.

JPE-LTL MOAUIE......iiiiiiiiiieeeeeee e e e e e e et e e e e e e e e ttraeeeeeeeeeenanssraeaeaaaeaas 20
5.1. Introduction to Java Virtual Machineccccouviiiiiiiiiiiiiiiiiee e 20
5.2, Bytecode ANalysiscccoooiiiiiiiiiiiiiiiii s 21

5.2.1. Temporal Logic Checking Idea...........coceiiiiiiiiiiiiiiiiiiiiiiiiiccceeeee e 21

5.2.2. Module Overall ArchiteCtUrecouviiieeiiiiieeeiiee et ettt e ettt e e e e e e e erbeee s esaraaesesnraeeens 21
5.3. Temporal Logic Formula Specificationc.cccoiiiiiiiiiiiiiniiiiiiiiiiccieccce e 24

5.3.1. GIFAIMITIAL. .ttt ettt e e e st e e ab e e st e e s e e e sabe e eaaeesaneees 25
5.4. LTL Formula Global SCope.......c.cooiiiiiiiiiiiiiiiiiiiicecteceee e 25
5.5, Cache LIMItations......cocuiiiuiiniiiiiiiieiieeie ettt ettt ettt et e e 25

T00lING INTEGIAtIONviiuiiiiiiiiiiiieeie ettt ettt et st e e esaaeenees 27
6.1. Common Environment — Eclipseccooiiiiiiiiiiiiiiiiiiiicccce e 27

6.1.1. Bundle SYSteM.c...iiiiiiiiiiiiiieit et e 27

6.1.2. EMEF - Eclipse Modeling Framework............cccccoiiiiiiiiiiiniiiiiiiieniciececec e 27

6.1.3. Bundle DistriDution......cccuiiiiiiiiiiiiiiiiiieeceee e 27
6.2. CORDET ENVIFOMMENT c.uuttiiiiiiiiiieieiieeiieeeiieeeiteeeitee ettt e eiteesteeesabeeesareesnneesebeeesabeeenneesaneees 28
6.3, CUSTOM STETEOTYPE ..uveuriiiiiiiiiiiiie ittt ettt st st s e e b s s s e sbe e saa e saaeeene e 28
6.4. Integration of JPF......cccooiiiiiiiiiiiiiiiiiic e 29

6.4.1. Custom DIStriDUtiOn.cocuiiiiiiiiiiiiiiiii et 30

6.4.2. CUSTOM EXECUTION teeiuttiiiiiiiiiie ettt ettt ettt e ettt e et e e s abee s sbeeenbeeeenbeeennseesnneeas 30

6.4.3. Temporal Logic Formula Visualization............ccccccooiiiiiiiiniiiiiiiiiiiiecccccee, 32

EValUATION 1.ttt ettt ettt ettt e et e et e e st e e e b e e e st eeenbeeensteeenbee e nbeeenbaeeenbaeenbaeennaeas 33
7.1. Telecommand Example........ccccciiiiiiiiiiiiiiiiiiiiiii 33

7.1.1. Component Classcc.coiiiiiiiiiiiiiiiciicieie e 33

7.1.2. ManagedMemory Class.........ccccouiiiiiiiiiiiiiiiiiiiieicce e 34

7.1.3. Telecommand Classccouieieiuieieiiieiiieeiie ettt ettt e e e eenaeeenaaeas 34

7.1.4. TelecommandManager Class.........cccoieiiiiiiiiiiiiiiiiiiiiciccce e 36
7.2, Functional PrOPerties.c.ocouiiiiiiiiiiiiiiiiiiii it s 37
8 T 1 BB e U1 TP 39

7.3.1. Missing Localness........cc.oeiiiiiiiiiiiiiiiiiiiiiicict s 39

7.3.2. Function Return Valte.......coocuiiiiiiieiiieeiie ettt ettt e et e et e e e enene s 39

7.3.3. Cumbersome Formula Creation....... e eeueeeeeeeeeee et e et e e eeeeeeeeeeseeeaaeeeetaeeeeraaanees 39

7.3.4. Symbolic Analysiscccccoiiiiiiiiiiiiiii 40

7.3.5. Infinite Model ChecKingcccccouiiiiiiiiiiiiiiiiciceccect e 40
8. CoNCIUSIONS ...t 41
BIbLIOGIapRy ..c...iiuiiiiiiic e et 42
Appendix A LTL Formula Grammar Specificationcccccoeiiiiiiiiiiiiiiiiiiiccc e 45
Appendix B Telecommand Class Diagramccccoiiiiiiiiiiiiiiiiiiiccce 47

Appendix C Reference implementation of Telecommand.............cccoocoiiiiiiiiiiiii 48

Table of Figures

Figure 1 — Process of developing project by CORDET methodology.cc.ccccueiiiiiiiniiiiiiniiiiiiiiiiciee 2
Figure 2 — Example of action 1anguagecocuiiiiiiiiiiiiiiiiiiiicccccc e 3
Figure 3 — Simplified visualization of checking formal properties.............cccceeviiiiiiiiiiniiiiiiiniiniiiiececeee 4
Figure 4 - example aUTOMATONoiuiiiiiiiiiiiiciie ittt ettt et e 6
Figure 5 - Computational Tree for the Figure 4........cccccociiiiiiiiiiiiiiiiiiiiicccece e 7
Figure 6 - Semantics of tempPoral OPErators..........cccueiviieiiiiiiiiriiiiiteiee ettt ettt et 8
Figure 7 — A BUChI QUTOMATON.iiiiiiiiiiiiiiiieiie ettt ettt ettt ettt esaneea 9
Figure 8 — Kripke structure and its corresponding Biichi automaton after transformation............ccccceeueenins 10
Figure 9 — Biichi graph of transformed LTL specification...........coccevuiiiiiiiiiiiiiniiiiiiiicnccicceeeeeeceeen 10
Figure 10 — Majority of checked model spaces have to be reduced to equivalent space.........c.cccccveniinninnee. 11
Figure 11 — Representation of Boolean function f= ab + cd with OBDD.......cccccociiiiiiiiiiiiniiiiinicicee. 11
Figure 12 — En example of POR redUctioncccccoiiiiiiiiiiiiiiiiiiciiicitctcccece et 12
Figure 13 — Typical SPIN USae USE-CaSE.eouviiiiiiiiiiiiiiiiiii it 14
Figure 14 — Promela code example for factorial computation of 5!ccccoiiiiiiiniiniiiiiiiiieccceeen 15
Figure 15 — McCarthy algorithm implementation for Java with single execution path.........ccccceeevniininnee. 16
Figure 16 — Configuring JPF to use heuristics in choice generation of property sizecoccevveevieniirneennen. 17
Figure 17 — State exploring in JPFcc.coiiiiiiiiiiiiiiiiic e 17
Figure 18 — JPF “on-the-fly” check for scheduling relevant instructionscccceviiiiniiiiniiniiininn, 18
Figure 19 — Java Bytecode of method mcCatrhy obtained from compiled source of Figure 15..................... 20
Figure 20 — Stack frame snapshots of execution McCarthy 91 method for n=101........cccccceviiiininniniinn, 20
Figure 21 — JPF deSi@ . ..ccueiiiiiiiiiiiiiiiiiiiicec et e e e 21
Figure 22 — JPF-LTL module architecture.cccccuiiiiiiiiiiiiiiiiiiiiiiicicicie e 22
Figure 23 — JPF Snapshot System.........ccccciiiiiiiiiiiiiiiiiiii i 24
Figure 24 — Biichi automaton with a single accepting state.ccceeuiiiiiiiiiiiiiiiiiiiiic e, 25
Figure 25 — Limitation eXamplecccooiiiiiiiiiiiiiiiiiiiiieiee e 26
Figure 26 — Stereotype used for writing formal specifications in a UML model............ccccooiviiiininnininin, 28
Figure 27 — Example of applying LTLVerified stereotype on Vehicle class in the Eclipse environment. 29
Figure 28 — Post plug-in configuration.cocieiiiiiiiiiiiiiiiiiiiieic e 30
Figure 29 — Convention over configuration example...........ccccecuiviiiiiiiiiiiiiiiiiiieicieic e 31
Figure 30 — Visualization screenshot from com.singularity.visualizer plug-in.occoiiiiininiinnninnnn, 32
Figure 31 — An example of little bit more complex temporal logic example...........cccooviiviiiiiininiiniiiiniinn, 32
Figure 32 — Component state Chart..........c.ociiiiiiiiiiiiiiii 33
Figure 33 — State chart diagram for ManagedMemory class...........cocoevuiiiiiiiiiiniiiiiniiiiiiciecceee, 34
Figure 34 — Telecommand state chartc..occooiiiiiiiiiiiiiii e 35
Figure 35 — TelecommandManager state chart.ccccoiiiiiiiiiiiiiiii e, 36
Figure 36 — An example implementation of runOneCycleMethod.........cccooeiiiiiiiiniiiiniiiiiii, 36

Figure 37 — LTL formula for the first demonstration property.ccoeevueruieiienierienienieniesieeiesieeeeseenns 37

Figure 38 — Biichi automaton for LTL form shown on Figure 37cccccociiiiiiiiniiiiiiiie 37

Figure 39 — LTL formula for the second demonstration property...........ccceeevuerieriinienienieenenienenieneenens 38
Figure 40 — Biichi automaton for LTL form shown on the Figure 39.........cccccociiiiiiiiiii, 38
Figure 41 — LTL formula for the third demonstration propertycccceceviieiiiiiiiiiniiiniiiiieececceceeen 38
Figure 42 — Biichi automaton for LTL form shown on the Figure 41.........ccccccoooiiiiiiiiiiiiiiii, 38
Figure 43 — Altering a few operators can lead to state explosion problem (compare with Figure 37). 39
Figure 44 — Simple example with one if statement that divides execution into two execution paths.............. 40
Figure 45 — LTL formula grammar specification...........cocueevuiiiiiiiiiiiiiiiiiiiiieiececceeeeeee e 45
Figure 46 — Atom grammar Specificationccoccuiiiiiiiiiiiiiiiii i 46

Figure 47 — Class diagram of Telecommandccccooiiiiiiiiiiiiiiiiiiii e 47

1. Introduction
This thesis tries to find a solution for checking of functional properties of software developed by using
CORDET methodology. Most of those properties can be viewed as state machine constrains. Checker role is

to guard those constrains report any violations.

This thesis aims to find proper functional checker and adapt this solution to be as much user friendly as

possible.

1.1. Organization of the Thesis
In the chapter 2, we introduce CORDET project, its methodology and domain specific Action Language. We
introduce what are formal properties and what types of them are used in CORDET.

Chapter 3 is more formal. It introduces model checking as mathematical area — it formally defines primitives
of model checking like Kripke structure, Biichi automaton and Linear Temporal Logic (LTL) itself. It defines
when LTL formula is broken and what is considered as a counter example. This chapter also mentions one of

the biggest problems in this field — State Explosion Problem and describes approaches how to solve it.

Chapter 4 defines and summarizes processes of choosing best candidate for checking of CORDET functional
properties. The selection considers requirements like active development, LTL support or OOP support. It

describes the reasons for choosing Java Pathfinder (JPF) as the best candidate.

Chapter 5 describes how JPF works and more importantly how JPF-LTL — LTL module for Java Pathfinder

works, what are its internals and limitations.
Chapter 6 introduces JPF integration to Eclipse environment.

In Chapter 7, results of test case are discussed. A Telecommand example was used as a demonstration example,
on which formal properties were checked. Chapter contains discussion what features of checker are still

missing and what are the next steps for development of JPF-LTL.

2. Domain Overview

2.1. Brief Introduction to CORDET
CORDET (Component Oriented Development Techniques) is a project that approaches software
development with model-driven development way [1] with high focus on software reusability. Project defines

a generic architecture for on-board satellite software applications. This process contains of two steps.

First step is the definition of reusable software assets organized in a framework. This framework is a set of

instances and classes expressed as UML models that comply with two UML profiles:

e FW Profile — which covers functional aspects

e HRT-UML profile — which covers timing aspects

These features are captured to Family Model that captures all available features and their legal combinations.

To the System Model are selected only those that can be used on particular system during customization.

Family Mode System Model Aplication requirements
. 2 g .\‘

- ——— '
; —/ /\l.,\i,_ Customization | /7X |
_) : N | _ I / \ _ N } |~ & Instantiation

)) @) ¢) |

Source Code >
| -
) 01 o Application UML Model
o 01 0
11 001 H @)
110 Bl T Code Generation [)
02 7 : 1 001
o 11
1|9 : . : 101 P A |
1 000 - i
01 1]
1 001

Figure 1 — Process of developing project by CORDET methodology.

The second step is the usage of those reusable building blocks according to application requirements in the
Application UML Model. This is done by extension and implementation due to used OOP paradigm. Class-
diagrams and state diagrams are result of this phase. Class diagrams defines skeleton and state diagrams defines
behavior of the system. An action language acts as glue that connects these two diagrams. It is a fact pseudo-
language that can be written directly to UML model properties (method bodies). Last stage is code generation

to specified language. For more detailed discussion please refer to [2]

2.2. Action Language
UML model does not contain only UML diagrams (class diagrams, state chart diagrams). Models also contain
attributes that are written implicitly in statically typed programming language called Action Language [3]. It’s
a simple programming language. It is not as expressive as Java or C++, but it supports OOP paradigm. It is
not full-fledged OOP language, but it serves as glue between class diagrams and state charts. It is used to

capture business logic.

1 forlin this.tcList'RANGE loop

2 if (not(this.tcList[I] == null)) then

3 if (this.tcList[l].isAborted || this.tcList[l].isTerminated) then

4 this.tcList[l].putOutOfUse();

5 this.tcFactory.release(this.tcList[l]);

6 this.tcList[l] := null;

7 else

8 //Print("TelecommandManager: EXECUTING branch entered...");
9 this.tcList[l].accept();

10 this.tcList[l].ready();
11 this.tcList[l].execute();
12 end if;

13 end if;

14 end loop;

Figure 2 — Example of action language from class TelecommandManager, body of a method
runOneCycyle. [4]

As we can see in a Figure 2, Action language supports loops, if statements, virtual method execution,
expression computation and assignments. It does not support declaration of local variables — it uses class or
method input parameters. New object can be created by using keyword new. Other non-standard feature of
this language is lack of support of nested method invocation, like a(b(c())). Parameters of method can only be

non-calling expressions.

2.3. Formal Properties
In the above section we have defined methodology and processes. To check formal properties we have to
somehow insert stage where we would define what kind of formal properties we want to check. In process line,
visualized in Figure 1, there are two places where it would be preferable to have such options. It is in stage of
preparing framework, where we want to check global properties. And also in the stage of design of application

UML model, where typical use-case would be checking on more fine-grained level.

Create formal @-\

requirements

-

<

Project description

&
N

(=mmmmmmm==

Check model

Invalid

»
1
1
1
1
1
1
1
1
1

R - V"

Transform M2M &

FeEEmm s ————

Figure 3 — Simplified visualization of checking formal properties

Figure 3 shows how model checking process would look like. Programmer has to create UML model where all
properties of the system are stored. This is already done in these two CORDET stages we have mentioned a in
section 2.1. User has to create formal specification of properties that need to be checked. An example of such

requirement can be:
For state machine with three states: “initializing”, “running”, “stopped”
If component is in a state “running”, then it can never switch back to “initializing”.
If component is in a state “running’, then method start cannot be executed again.

Such requirements and system UML model are transformed to DSL (domain specific language) of model
checker. And checking is solely left on this tool. It returns positive result if checking was correct (formal
properties hold) and negative result with counter-example (this example does not hold formal properties) if

checking has found some mistakes.

3. Model Checking

Developing of software programs is in general connected with unwanted products features. We call them bugs.
Programmers may devote more than 60% of their time on testing and debugging in order to increase
reliability of software. A lot of automated tools has been created (PDM, FindBugs) that statically analyze code
for the known and frequent problems. Yet, serious errors still afflict many computer systems including systems
that are safety critical, mission critical, or economically vital. Some examples of famous failures caused by

software bugs are:

® Ariane 5 floating point overflow (1996, approx $500 million) [5]
e Patriot missile failure (1991, 28 dead) [6]

More examples can be found here [7]. The US National Institute of Standards and Technology (NIST) has
estimated that programming errors cost the US economy $60 billion annually [8]. According to NIST, 1/3 of

the costs could be avoided by using better software development methods.

An alternative approach to classic testing method uses fact that programs and more generally computer
systems may be viewed as mathematical objects. So one can try to give formal proof that the program does

what its creators wants him to do. This line of study is referred to as formal methods.

At the beginning of model checking in 1980’s, axiomatic verification was the mainly used paradigm. It
consists of manual proofs of correctness for sequential programs. The basic principles of this approach were
established by Robert W. Floyd in [9] and later extended by C. A. R. Hoare [10]. The Floyd-Hoare
framework was a significant success and inspired many researches for further work, e.g. proof systems were

proposed for new programming languages and constructs. Proofs were made for small programs.

However this framework turned out to be too complex for adoption as a mainstream technology. It did not
scale up to “business programs”. These proofs can involve the manipulation of extremely long logical
formulae. It turned out that constructing of proof was tedious and error-prone work for humans. In practice it
was unusable, because it turned to problem of “checking the proof that was checking the program”. Therefore
a different approach was proposed. It transforms algorithms to a graph with states and transitions that are
traversed and checked over constraint written in Linear Temporal Logic (LTL). The state graph that is
explored is called state-space. If the state-space is finite, it can be explored completely. State-space exploration
with LTL constraints turned out to be the most successful strategy for analyzing and verifying concurrent

systems.

Many different types of properties can be checked by exploring its state space: deadlocks, dead code,
starvations, violation of user specified properties, etc. It has been studied intensively by scientists. Variety of
different approaches was proposed over past 20 years. Moreover, verification by state-space exploration became
fully automatic: no intervention of the designer is required. This is the crucial feature for further usage in the

industry.

3.1. Temporal Logic
Originally it was developed by philosophers and later it was suggested that it might be useful in computer
science [11]. As mentioned before temporal logic is more suitable for more complex programs, which are
cyclic, non deterministic or concurrent. Its high degree of expressiveness and flexibility is considered to be the

big advantage of this approach.

To describe behavior of a program and his transitions, temporal logic extends basic logic operator set (or, not,
xor, and ...) with those that can express time behavior (e.g. if variable A has value 5, variable B must be always

greater than zero).

3.2. Kripke Structure
Kripke structure is form of non-deterministic automaton proposed by Saul Kipke [12]. Basic idea is to
capture states of computing machine without adding unnecessary complexities. It is graph whose nodes
represent reachable states of the system and whose edges represent state transitions. In more formal manner

we can define it as:
K=(IT,L)

(1) S isa finite non-empty set of states of K
(2) I €S is non-empty set of initial states of K
(3) T € S xS is aset of transitions of K

(4) L:S - A is a labeling or interpretation function that assigns properties of system to automaton state.

N
B:

Figure 4 - example automaton for S ={A, B}; I={A}; T={(A,B); (B,B)}; L={ (A, {x=1}); (B, {x=0}) }
products for input path p = A, B, B, B execution word w = {x=1}, {x=0}, {x=0}, {x=0}

3.3. Computation Trees
Computation tree notation captures all possible behavior of Kripke structure. It is a representation for
computation steps of non-deterministic automaton on a specified input. It can be represented as a tree graph
where parent is labeled with current state S and it is pointed to children that are marked with label of all

reachable states of S.

/\

: A:

Figure 5 - Computational Tree for the Figure 4

3.4. Linear Temporal Logic
Linear Temporal Logic (LTL) is used to describe properties of a path in a Computation Tree. For example
“for some state on a path”, “for the next state”, “for all states” can be expressed. We define new extended set

of temporal operators:

= 0A - A is true for the next state
= O A -Aistrue for some state
= OA - A is true for all states

* AUB -Aistrue for all following states until B is true

* ARB - Bistrue for all following states until it is released by A
The semantics of these operators is shown in Figure 6. In the simple way, they can be explained as follows.
O A — It means “next”. It holds, if the next state holds on the path.
0 A — It means “eventually”. This formula holds if A eventually occurs, i.e., A holds at some state of the path.

0O A — It means “always”. This formula holds if A holds on all states along the path.

A U B — It means “until”. This formula holds, If A holds until B occurs, i.e., there is some state which holds B
and all states before has to hold A.

A R B — It means “release”. This formula holds if B holds globally on the path, or A occurs before the first

state at which B is violated.

oA O— @ — -

oA O—0O— OO0 —0—..
A A—@— @ —@— @ — -
AGB A — @ A —@) —) — -

DO @O O
or

® @ @ @ O

Figure 6 - Semantics of temporal operators

3.5. Biichi Automaton
Programs can be finite or infinite, therefore we have to use w-automaton that is capable to recognize infinite
words, i.e. X* , where X is finite alphabet, and w denotes infinite number of iterations. The simplest class of

w-automata is Biichi automaton [13]. It is a fivetuple:
B=(,S5A4,1F)

(1) X is the finite alphabet

(2) S is finite set of states

(3) A € S x X xS is the transition relation
(4) I € S are starting states

(5) F €S are accepting states

a

Figure 7 — A Biichi automaton

Figure 7 shows an example of Biichi automaton for = {a, b}; S= {S,, S,}; I= {S,}; F= {S;}; 4 = {S; 5 S2; S,

a
— S53; S, = 81} It can be also written using the w-regular expression (ab*)®. Namely, an infinite repetition

of single a, followed by finite (possible empty) sequence of b.

The language accepted by Biichi automaton is called w-regular, because such language can be described using
expressions containing letters from alphabet X, and the operators + (union), concatenation, * (iteration) and w

(infinite iteration).

3.6. LTL Checking
The biggest advantage of approach of using automata to describe both systems — model and temporal
specification, is that they are represented in the same way, so it is much simpler to understand and compute.

Kripke structure K = (S,1,T, L) where L: S = A can be directly transformed to Biichi automaton:
n=(\; SU{agk A; {ae); SU{ae})
A is set of transitions constructed from:

o (s,0,5) €eAif(ss") €T; a=L(s")
o (ag0,s) eAifs'el; o=L(s"

Also LTL expression has to be translated to Biichi. But this transformation is much more complex and
therefore out of scope for this work. For more discussion refer to [14]. In further text I will refer to

transformed automaton as .

The system satisfies specification ¥ when L(3) S L(¥) — language produced by automaton is a subset of
language produced by automaton W. This mean, each behavior of modeled system is included in behavior set

of specification W. The inclusion above can be also rewritten as:
LGONLMW) =0

Where L(W) is the complement of L(W), i.e., Z°\L(W). This expression means there is no behavior in 2

that is disallowed by W. If the intersection is not empty, any element in it corresponds to counter-example — it

is a word C, i.e. 2%, that can be accepted by both languages: C € L(%) A C € L(V¥)

This formula also gives us an elegant recipe how to check LTL property on-fly in a running program. At the
beginning we will construct negated Biichi automaton W. Program instructions are input for W. After every
instruction we ask automaton whether it is in accepting state. If no, program is correct and execution
continues. If yes, this means intersection is not empty, therefore path to this point can be considered as

counter example.

i

{x=1;y=0} {y=0}

ococooe)

@ {x=1} {x=1,y=0} {x=1}

Kripke Structure Blichi automaton

Figure 8 — Kripke structure and its corresponding Biichi automaton after transformation.

I compute() result >0

1
>
Figure 9 — Biichi graph of transformed LTL specification: D(Compute() — O(result > O))
It means: Check for all paths whether after calling method compute result is always > 0

3.7. State Explosion Problem
In real case scenarios, state space of computation tree can be huge. In this work it is marked as the language of
all words that holds the Kripke structure limitations, i.e., £(3¢). But this space can grow exponentially when
checker is traversing program, especially in concurrent systems, with many threads, that share the same critical

section. It can be so huge that it can be easily bigger than memory of a computer. At first sight, the state

10

explosion problem looks so formidable that it seems to make state space methods useless for verification of real
systems. However, the great advantages of state space traversal have motivated researchers to find a way to

reduce the problem.

Reduction

Full Transition Space Reduced space

Figure 10 — Majority of checked model spaces have to be reduced to equivalent space. A lot of
redundant spaces and transitions can be removed.

3.7.1. Symbolic Analysis - Binary Decision Tree Approach
Fundamental breakthrough in field of state space reduction was mad by Ken McMillan in his doctoral thesis

[15]. McMillan argued that larger systems could be handled if transition relations were represented implicitly
with order binary decision diagrams (OBDDs) [16]. By using the original model checking algorithms with the

new representation of system transitions, he was able to verify some examples that had more than 10* states.

Ordered Binary Decision Diagram (OBDD) Reduced OBDD

Figure 11 — Representation of Boolean function f= ab + ¢d with OBDD. It is an equivalent of
table with all possible inputs and results. It can be reduced to equivalent diagram but with far
less nodes.

11

McMillan represented Kripke structure with Boolean functions and then he reduced them with OBDD. The

key idea of this method is to combine equivalent subclasses.

However, reduction ration of this method is highly unpredictable and in some special cases it can result in

complexity problems. [17]. This algorithm is a base idea of model checker SMV [18].

3.7.2. Partial Order Reduction
This method makes use of fact that there exist independent transitions in the program that are commutative,

i.e., it does not matter in which order they are executed, and after execution verification always ends in the
same state. Such transitions are common in concurrent systems, where every thread modifies its own

independent memory part, so other threads are never influenced.

©O—11—-0O—1—C
®—':—'O—':—'O—:_£
00000 T

Petri net

O® § &6
&)

®

All possible states space Reduced space

Figure 12 — En example of POR reduction on model of barrier and 3 threads (modeled with
Petri net). States space contains huge amount of states and it will grow exponentially with
more threads in the model. But if we apply POR, states count will dramatically drop.

As shown in Figure 12 we can prove correctness of those all possible states just by proving correctness of
reduced space. Big advantage of this approach is that is scales very good with more and more threads in the
system. Reduction ratio is better when system contains threads with independent parts. For more detailed

discussion refer to [19].

12

4. Tools for Formal Verification

4.1. Checker Requirements

For selection of model checker I have selected these requirements:

e It has to be actively developed.

e It has to support LTL logic verification

e It should have some way to implement OOP without huge reimplementation of the model checker

e CORDET model contains action language (a pseudo language). There has to be some way to

translate it to checker input model.
e model language should be easy to read, easy to write (nice to have feature)

e it should be already used on some industry case

Name Development LTL support oopr Model Language Usage
Bandera Discontinued Yes Yes Java Academic
SPIN Actively Yes No Promela Industry
PAT Actively Yes No CSP# Academic

Java PathFinder Actively Yes* Yes Java Bytecode NASA
NuSMV Sporadic Yes No SMV Academic
Prism Actively Yes No Prism Academic
DiVinE Tool Actively Yes No DVE Academic

Table 1 — List of model checkers

In Table 1 is a list of reviewed model checkers. A lot of them are solely academic attempts to demonstrate
examined approaches and they are used as study examples for students. Two of them matured enough to be
used in the industry. First of them it is SPIN. It is considered to be a leader in this area. It is widely used in

industrial model checking [20].

The second one Java Pathfinder is interesting with its practical approach. It does not checks some model, but
it checks directly Java Byte Code, that is pure program representation. With this approach already compiled

java programs can be checked.
These two candidates I have chosen for more detailed selection.

4.1.1. Action Language Issues
As was mentioned in domain overview (section 2.2) model also contains “hard coded” parts in the Action

language. This moves solution from standard model checking rather to runtime verification. Because of OOP
paradigm polymorphism, we have to overcome additional nondeterminism that this code can contain. Static
analysis fails in this case, so this code has to be somehow interpreted and executed. Keyword like “this”
contains always different reference and what exactly kind of reference its clear only after the execution. Tools

have to have solution for these parts.

13

4.2. SPIN
Simple Promela Interpreter is a model checker developed by Gerard J. Holzman for verifying communication
protocols. As an input it uses model described in language Promela (Process Meta Language). Verification
process (Figure 13) contains of describing of system in Promela language. Than this file is parsed by SPIN and
C-source code is generated. The Code is compiled by C compiler and executed. The result of execution is a

report that all computations are correct or some computations were incorrect and counter example is returned

(trail). Trail can be used to analyze program.

Promela Gererate C source code of Compile Compiled executable
> - —
source code Verifier program
Execute
Y |
Trail Report

Figure 13 — Typical SPIN usage use-case.

4.2.1. Promela Language
Promela language could resemble C language. It has similar syntax, primitive types, but has several restrictions.

There are no functions, procedures or methods in the language. Variables are defined only in global scope.
There are only local variables in thread scope. Therefore writing some recursive code can be cumbersome. To
imitate local variables we have to use an array to imitate stack or we have to run every recursion in separate
thread and communicate via channels (shown in Figure 14). For better code folding, it is possible to use C-like
macros that are expanded by spin preprocessor, or inline functions with only global variable scope. There are
no object and OOP syntax notions. It means there is no polymorphism and inheritance in Promela. Program
can be structured to threads, so concurrent problems like mutual exclusion, deadlock and starvation and be

easily simulated.

1 proctype factorial(int n; chan result) {

2 int result;

3 if

4 d(n<=1)-> result ! 1; /* push 1 result channel and finish*/
5 t(n>=2)-> chan subresult =[1] of {int };

6 run factorial(n-1, subresult); /* run sub task in separate thread */
7 subresult ? result; /* wait for sub result */

8 result ! n * result /* count and push result */

9 fi

10 }

11 init{

12 int result;

13 chan subresult = [1] of {int };

14

14 run factorial(5, subresult);

15 subresult ? result;
16 printf("result: %d\n", result)
17 }

Figure 14 — Promela code example for factorial computation of 5!

4.2.2. Linear Temporal Logic
SPIN also has a support for LTL formulas checking. Those formulas are composed from atomic prepositions

and logic operator and temporal operators:

Operator Math SPIN
not - !
and A &&

or v I|
implies - ->
equivalent o <->
always O [
eventually 0 <>
until 0 U

Table 2 - Operators used in SPIN for describing temporal formulas

LTL property is passed to verifier via parameter -f in command console. For more detailed setup refer to [21].

4.2.3. Memory Management
To store a huge amount of states that can be generated while tracing of program, Spin uses these techniques:

e Partial Order Reduction — already mentioned in section 3.7.2

e Compressing state space — Byte masking: every state can be broken in a few constants that can be
represented as a vector. In memory are stored only differences between already stored and new vector.
It uses premise, that Promela do not encourage user to have many local states and lots of them are
global. Those can be chunked and referenced via vector. With this approach, spin reduces 62% of
memory usage with only 15% overhead [22].

e Bit hashing — SPIN is using byte array and hash function to store whether algorithm has already

reached state in depth first state space.

4.2.4. Meeting Requirements
First and one of the most important disadvantages of Promela is lack of OOP semantics. Properties like

inheritance and polymorphism has to be translated to Promela syntax. This process requires explicit

declaration of table of virtual methods and simulation all OOP behavior in Promela.

Second problem is variable scoping. Promela contains much simpler scope mechanism that is not suited for

scoping of variables of modern programming languages.

Dynamic memory allocation, exceptions, floating point numbers, method calls are not included in Promela.

15

Even so SPIN is de facto standard tool for model checking in the industry. On the one hand, it is a good
solution for standard model checking, but on the other hand it is not suitable for models with OOP

semantics. It is brings a lot of problems that SPIN was not designed for.

4.3. Java PathFinder

Java Pathfinder is an explicit model checker. Its input is pure Java Byte Code [23]. The first attempt was cross-

compilation from Java to Promela. [24]. This approach has two drawbacks:

e Language Coverage — as mentioned in mitigation section of SPIN (4.2.4) each language feature of
source, must have corresponding language. This is not true for UML model with Action Language
and SPIN. For example Promela lacks support for floating point numbers. The only way is to extend
Promela language and tweak SPIN compiler.

e Libraries support — Standard structures like List, Map, Set, LinkedList can be rewritten in Promela,

but what about binary libraries distribution without source code?

The second attempt [25] abandoned Promela and SPIN model checker. To overcome language coverage they
created custom JVM based model checker that executes Java Byte Code instead of parsing Java Source Code.

This way they overcome both problems — language coverage and libraries support.

4.3.1. State checking
One can argue that this approach do not prove complete program correctness. To check correctness, this

approach (run-time verification) needs to execute program. And in a single execution it checks only execution

path. Let assume single threaded application implementing McCarthy91 algorithm [26]:

import gov.nasa.jpf.jvm.Verify;
public class McCarthy91 {

1
2
3
4
5 public static int mcCarthy91(int n) {
6
7
8
9

n=(n>100)
? n-10
: mcCarthy91(mcCarthy91(n + 11));
return n;
10 }
11

12 public static void main(String[] args) {
13 // int rand = Verify.getInt(0, 101);

14 intrand = 101;

15 mcCarthy91(rand);
16 }

17 }

Figure 15 — McCarthy algorithm implementation for Java with single execution path

Program implemented as in Figure 15 will always be executed on single execution path and other possibilities
(other than 101) are not checked. For these cases JPF comes with Verify APL. By specifying rand as a result of
Verify.getInt(0, 101), not directly 101, JPF will backtrack and checks all 102 possibilities. So ones argument

16

about runtime-verification is right, we cannot properly check programs with single value input. For proper
check, tests has to contain all interval that verifier should check. But in case of float numbers it is a problem,
because checker is traversing a lot of similar cases without major meaning. For this case JPF comes with

heuristic choice generators that can be modified in the configuration.

code.java contains:

double s = Verify.getDouble(“size”)

in configuration.jpf:

size.class = gov.nasa.jpf.choice.DoubleThresholdGenerator
size.treshold = 13250

10 size.delta=500

11

1
2
3
4
5
6
7
8
9

Figure 16 — Configuring JPF to use heuristics in choice generation of property size

Configuration shown in Figure 16 will generate set of 3 choices C = {t — A; t; t + A}. It is possible to create

| / \] Choice

own generator, with own semantics.

Transition

/

Figure 17 — State exploring in JPF. After every state “choice generator” is applied to choose next
transition. If there are multiple states to be chosen, it backtracks and visits all choices.

In Figure 17 is a demonstration of JPF state exploration. It uses choice generators to create all “useful” states
to check. If JPF executes instruction of Verify API, it will intercept and apply choice generator that will check
all defined paths. This is the example of how powerful approach of JVM checker can be. Checker has total

control of instruction flow.

4.3.2. State Space Exploration in Multithreaded Environment
As I mentioned in section 3.7 exploration of state space can be problematic because of tendency of space to be

big and to be huge in the concurrent environment. For reducing state space, JPF uses “on-the-fly” variant of
g g g p y

partial order reduction method (mentioned in section 3.7.2). JPF analyses instruction and decides whether it

17

is the one that can be thread “unsafe”. Due to JVM is stack based executor only 10% of instruction are

scheduling relevant.

executed bytecode instruction

[_seheduling relevant insn type. |

dala races / | \

field insn syncinsn deadlocks invoke insn
p \ .
GETFIELD MONITORENTER OCK FACES) pyutvevinTuaL configured
PUTFIELD MONITOREXIT INVOKESTATIC class/imthd
GETSTATIC / \ attributes
“ﬂ élg”c sync threading
X
*ASTORE mth . call .
hread. start(), yield()

steep(), join(}
Object.watt(),notify()

other runnablel threads |

| recursive locks |

| shared objects |
tracking of access threads

[lock protected access |
lock distance & statistics

Figure 18 — JPF “on-the-fly” check for scheduling relevant instructions (27)

Scheduling relevance is considered via multiple levels.

e If there no other running thread, the instruction is scheduling irrelevant
e If thread is recursively entering its monitor (monitor inside monitor), the instruction is scheduling
irrelevant

e If multiple threads share the same object, then instruction is scheduling relevant

4.3.3. Meeting Requirements
Input language of this checker is Java Byte Code that can be easily created by compiling Java sources, which

brings us full power of one of the most popular OOP language that can be used as input language for checker.

Java PathFinder is developed and maintained by The NASA Ames Research Center. It is used for their

internal usage [28] [29]. Fujitsu uses it for verification of business process of their web applications [30].

Current version of JPF lacks a proper LTL module. There are several external projects, but they are only proof

of concept. They lack of maintenance and active development.

18

4.4. Tool Selection
For further work I have chosen Java PathFinder as the formal checker. The most interesting feature, I consider
is the input language — Java Byte Code. It has included the OOP support. This is the biggest advantage from
other tools. Other tools use language with very simple semantic and all OOP features like polymorphism and
inheritance are unsupported. This has to be “translated” along model transformation, which would be a huge
task itself. JPF in his first release tried to convert Java to Promela, but this way was discouraged due to too
much incompatibility between them. Translating model to input language where floats, inharitance, functions
are unknown features, is a way also discouraged by myself. Java has those features and a lot of more, like

concurrent programming features and a big standard library of data types like lists map and sets.

The problem is in missing LTL module. Some work was already done [31] but project is discontinued for
some time and is not working anymore. The project has several problems. It was not maintained for a long

time so it was not compilable with current JPF code base and all its tests did not hold.

19

5. JPF-LTL module

5.1.Introduction to Java Virtual Machine
Java Virtual Machine (JVM) is stack based executor of Java Bytecode (see Figure 19). It means it does not

make assumptions about registers and special functions of processor. Therefore it is very easy to implement for

variety of hardware platforms. Its primary execution model is stack. All parameters of execution are pushed to

the top of it. Every method call starts a new stack frame which holds start point of method execution (all local

variable referencing is counted from this position). Then operation is called, which consumes (pops) all stored

parameters and pushes result to the top. For example lines 5-10 of Figure 15 are translated in Bytecode shown

on Figure 19 and snapshots of stack frame are shown on Figure 20. For detailed JVM description refer to [32].

1 public static int mcCarthy91(int);
2 0: iload_0 // pushes first parameter of function to the top
3 1: bipush 100 // pushes constant 100 to the top
4 3: if_icmple 13 // pops 2 from stack, if first <= second jumps to 13
5 6: iload_0 // pushes first parameter of function to the top
6 7: bipush 10 // pushes constant 10 to the top
7 9: isub // pops 2 from stack; subtraction is pushed to the top
8 10: goto 23 // jumps to label 23
9 13: iload_0 // pushes first parameter of function to the top
10 14: bipush 11 // pushes constant 11 to the top
11 16: iadd // pops 2 from stack; addition is pushed to the top
12 17: invokestatic #2; // calling int McCarthy91.mcCarthy91(int);
13 20: invokestatic #2; // calling int McCarthy91.mcCarthy91(int);
14 23: istore_0 // pops 1 from stack and stores it to function parameter
15 24: getstatic #3; // java.lang.System.out reference is pushed to the top
16 27: iload_0 // pushes first parameter of function to the top
17 28: invokevirtual #4; // calling void printIn(int arg0); pops 1 from stack
18 31: iload_0 // pushes first parameter of function to the top
19 32: ireturn // pops 1, returns the vale and pops all function parameters
Figure 19 — Java Bytecode of method mcCatrhy obtained from compiled source of Figure 15
I Stack Frame I Stack Frame I Stack Frame I I Stack Frame : I Stack Frame |
0101 - . So0i 101 - co100 2 io: 91
initialstate - 1 """ o1 i1t e L i g1 T after i’ﬁgikﬁcifo'n”zé”

after instruction 7

after instruction 1

Figure 20 — Stack frame snapshots of execution McCarthy 91 method for n=101

20

5.2.Bytecode Analysis
JPF is a custom made virtual machine written in Java. It executes input Bytecode and provides variety of
triggers and properties for modules, allowing them to intercept execution flow and allows them to react to

every instruction execution. JPF-LTL module is also a standard JPF module implementing instruction listener.

current

. O:iconst2 Q TN
1: istore_1 i/o
BT Intercept \/
: 2:iload_1 :

6: if_icmpge 44 Events Interception

Figure 21 — JPF design. Search module is traversing computational tree and informs listeners
about his progress. They can react or intercept current execution — they can intercept current
instruction or state in memory.

JPF-LTL module is one of such listeners shown in Figure 21. It listens to JPF triggers and checks current

computation tree traverse and memory state.

5.2.1. Temporal Logic Checking Idea
As mentioned in section 3.6 LTL check requires to test whether the following formula holds on every node of

computational tree:
L(x) € L(P)

L(#) can be interpreted as all states that search module can achieve and L(W) are all states that Biichi
automaton can achieve. Every instruction that is executed changes state in a memory. With a trigger after

execution, module can check whether Biichi automaton and JPF search holds common state.

Lack of common state indicates breaking the checking formula. There has to be a mutual state accepted by
automaton and execution. In a moment of breaking formula, current stack trace and memory can be

considered as the counter example.

5.2.2. Module Overall Architecture
Module contains of three basic parts. Business code that contains checking logic, fields cache that holds

references to stack (local variables), to heap (object references) or to permanent generation that holds statics,

and negated Biichi automaton. Detailed view is shown in Figure 22.

21

Tractor

@LTLSpec(...)
Vehicle

+start()
+stop()

Auto

/

Class Loading

Execution

— Class Loaded

i— Object created

i Object released

— Instruction Executed

i— Check

p—— Backtracked

| Fieldscache

Update

- class static fields rerences,

- class properties

Update
- per object variables

Remove
- per object variables

Update
- local veriables

Accepting common state ?

Backtracked

Advance

Create

Figure 22 — JPF-LTL module architecture.

Module holds fields cache that holds reference pointers to all variables that are checked (specified in LTL

formula). It is used as reference holder for Biichi automaton — it reduces redundant memory lookup. Class can

be loaded at any time; hence cache has to be updated after every class load.

The class loading looks up the class for properties, static references and checks whether there is already some

formula that refers to it. If a class is annotated with LTLSpec annotation, new formula is added to cache with

the new Biichi automaton.

LTL formulae often hold dependencies to other classes that may not be loaded yet, e.g.:

0 (A.property == B.property)

Cache has to be recreated after loading class A and class B, because it would not contain all properties that

LTL formula refers to.

22

When new object is created, it is checked in the cache whether some formula is referring to it. If cache

contains object descriptor, reference is added to the cache.
Releasing trigger does a similar action and removes object descriptor from cache.

Instruction execution triggers lookup of current stack frame and checks whether all local variables that are
checked by LTL formulae have properly updated references to the stack frame. It also triggers advance of all

stored Biichi automata.

After every instruction execution, module checks whether Biichi automaton transition is triggered. If some
automaton does not move to the next state, it means temporal formula is broken and error is triggered. Second
check is done after last instruction, where module checks whether automaton is in an accepting state. Non-

accepting state in final stage means breaking of temporal formula. In term of mathematic formalism:

e The alphabet of language £ () consists of ByteCode instructions

e Prefix is composed of all instructions in the execution order from the program start to the current
executed instruction.

e Prefix is considered to be word, after execution of last instruction.

e In the first stage, after every instruction prefix is checked. It is assumed that if the whole word is
accepted, then also its prefix can be translated to automaton states. This is not sufficient condition,
but only necessary condition. With this simplistic approach most of the formula violations can be
caught (like for every state, next state ...). But conditions like evenrually will be omitted.

e Therefore second stage check is done after every traversal path end. In this moment, it is checked
whether word is accepted by Biichi automaton. In this stage full word has to be accepted, otherwise

formula is broken.

Backtracking makes module to properly reinitialize automatons — move them a few steps back, so some new
branch of computation tree can be checked. Heap and frame-stacks are rolled back automatically by JPF. This
is one of the good sides of JPF, it snapshots computation of tree traversals, so after calling rollback trigger, it

also rolls back memory state.

Biichi automaton has to be also modified to support backtracking. It is not necessary to copy whole
automaton per snapshot, because states are always the same. Only actual states change per time. This
information has to be stored in stack structure, every advance pushes new state and the backtracking pops one

from the top. This way we can store all necessary traversal history that is required for checking.

23

0: iconst_2

Choice

 l0cistore 2 | - 9dconst2
". - 1l:iload_2 ‘ 10sore2
Clesd 1 11: lload, 2 :
| 13:if icmpge31 |

S

Backtracking

Figure 23 — JPF Snapshot System — Snapshots are not taken after every executed instruction,
but before every choice that is made by search module. So it can easy backtrack and check all
other computation paths.

5.3.Temporal Logic Formula Specification

Every class can be annotated by @LTLSpec annotations that hold linear time logic formula specification. In
this string, it is possible to refer to:

Method call: package. TargetClass.yourMethod(int,String[][],float)
e Variables

o Class field— package. TargetClass.yourfield

o0 Method variables— package. TargetClass.yourMethod(int,String[][],float).locallnit

Reflection — sometimes class field is not a primitive time but object. For referencing to its

properties reflection is needed: your. TargetClass.yourObjectField{subField1.subField2}
e Relations — (varl + var2) * var3 - 4 <= 5.3 - var3

o

Those references can be connected with various operators:

Operator Math JPE-LTL
not - !
and A &&
or Y [|
implies - ->
equivalence o <>
next 0 X

24

always O (]
eventually ¢ <>
until [0) U
release R \Y%

Table 3 — JPF-LTL formula operators

5.3.1. Grammar
LTL formula is specified by formal grammar (see Appendix A) and parser is generated according to the

specification.

Every temporal logic specification formula is composed from atoms that refer to some system property like
object variable k == 2 or method invocation. These atoms are combined with mathematical operators shown

in Table 3.

5.4. LTL Formula Global Scope
All formulae have global scopes. That means per object checking is possible only if there is a single instance of
a referenced object in the runtime. Otherwise in the case of multiple instances of referenced type, formula may
not hold because Biichi automaton can be set to some unwanted state. This is caused by objects state localness.
Example is show in Figure 24. Let’s assume two instances (A, B) of a single class. Change in an instance A
(setting k to value 2) would trigger transition of Biichi automaton (from SO to S1). The same change in
instance B also triggers change in Biichi automaton, but this leads to breaking of formula, because there is no
(k==2) transition from S1. The formula assumes that there is only global scope, i.e., current state of Biichi
automaton is stored only globally (per class, not per instance) and all instances of a same class can change it.

Therefore verification of multiple instances can lead to ambiguous formula violations.

Figure 24 — Biichi automaton with a single accepting state.

5.5.Cache Limitations
The approach of continuous cache creation has its limitations due to class loading. Not all classes are loaded at
once, therefore some LTL formulae can be loaded too late by which they can break in unpredictable states.

Let’s assume following example:

1 publicclass A {

2 int property;

3 public void foo() {

4 property = 1; //expected break

5 property = 0;

6 new B(); // actually breaks here
7 property = 1; // expected break

25

8 }

9 public static void main(String[] argv) {
10 new A().foo();

11 }

12 }

13

14 @LTLSpec(“[]A.property == 0”)
15 publicclassB{ }

Figure 25 — Limitation example

Checker is checking that all states should always hold the formula A.property==0. We would assume that LTL
formula will be broken on line 4 and definitely on line 7. But it would break after executing of object B
creation after line 6. It is due to loading of B class dynamically (and also LTL formula annotation) after object
A was made. Therefore there was no object referrer stored in cache after object A was created. Object A was
created long before cache was instructed to store objects of class A. Module logic will always miss. This
behavior limits annotations to contain only formulae that refer to already loaded classes. Problem in the Figure

25 would be solved by moving of annotation from class B to class A.

26

6. Tooling Integration

Java Pathfinder is a set of libraries and its configuration is not user friendly — it is complex and large. To fully
understand whole capability of this tool takes time. Therefore its integration should be made as easy to use as
possible. It should use common use cases. It should be integrated to the same toolset as other CORDET

modeling tools.

6.1. Common Environment - Eclipse
Eclipse is a multi-language software development environment, with huge support of programming languages.
It also provides RCP — rich client platform for creation of custom modules based on module framework OSGi

[33].

6.1.1. Bundle System

OSGi framework uses concept of bundles. Every bundle can be considered as versioned black box with its own
lifecycle (activation, computation, and dispose). It specifies dependencies to other bundles and its own
interfaces that can be reused elsewhere. Framework handles the dependency graph and provides glue layer

between bundles — it manages and provides dependencies. This approach has multiple advantages:

e There can be multiple copies of the same library in the system but in different version. Bundle A can
have dependency to library L version 1. Bundle B has also dependency to L but version 2 and both
versions are not compatible. In standard environment this problem could be overcome only with
refactoring of A or B. In OSGi, these two libraries can be loaded at once.

e This approach tends to even more code reuse that is the number one requirement in huge projects like
Eclipse.

® Dependencies are “injected” in the runtime [34]. This means dependencies are not hardcoded via
static references and whole application structure is constructed at the beginning. This approach leads
to better problem division and encapsulation. Then every bundle can be tested separately, without

initialization of whole application.

6.1.2. EMF - Eclipse Modeling Framework

EMF is a modeling framework that is used store application structure, behavior or domain model. EMF
differentiate meta-model and the actual model. The meta-model describes the structure of the model (defines
class, interface, enum ...). Model is the instance of meta-model (class Car, interface Vehicle, enum State).
EMF uses xml to store model information. Framework is pluggable and allows describing model via multiple
interfaces. First is mentioned XML or it can be annotated Java code. EMF also supports code generation from
defined model. However EMF is only a framework. For modeling in UML via GUI, other bundles are needed
which provides graphical user editor, like UML2 or Papyrus plug-ins.

6.1.3. Bundle Distribution

Plug-in development in Eclipse can be divided to separate layers:

e Development of bundles — all business logic is coded here.

27

e Feature composition — bundles can be considered as small pieces of puzzle. Feature is considered to be
a set of bundles that provides some functionality that can be described with some use case (UML
editor, git repo manager).

e Update site — provides a convenient way how to organize and distribute Features. It can be done by
creating tree structure with features as its leaves. Result of update site building is a folder with all

bundles and features that can be updated as is to some web hosting.

With update site URL, installation of plug-in is a standard routine, same for standard (eclipse provided) and

custom made repositories.

6.2. CORDET Environment
CORDET uses custom domain specific model written using EMF framework to describe program
components and state machines. All information is stored in XML files with model description. It uses its
own UML profile FW Profile [35] that defines stereotypes for classes, interfaces and state machines and also

multiple constraints on those stereotypes that can be validated by model checker.
FW Profile is distributed as set of plug-ins that contains:

e Profile containing stereotype meta-model written in EMF format

e Validator of profile constraints

6.3. Custom Stereotype
Stereotype is extension mechanism of UML that allows programmer to extend standard meta-model objects
like class or method and specify there a new set of properties that will be added to each instance of those
objects. This is a kind of mechanism allows us to add specific behavior to the model without significant

refactoring.

In our case we have to “plug-in” formal specification. This can be easily done by creating custom stereotype
that extends class object, so formal properties would be applicable to all classes in the model, i.e., formal
properties can be applied per class. Programmers work would be the analysis of the domain and creating

formal specification on particular classes.

(<<stereotype>>
LTLVerified

L +expression : String [1..*]

<<metaclass>>
ass

Figure 26 — Stereotype used for writing formal specifications in a UML model

Both CORDET software modeling stages (framework modeling, application instantiation) use UML to
describe program behavior. Extending UML can be applied in both cases by using custom stereotypes. Figure

26 illustrates such stereotype. It extends meta-class Class, therefore it is applicable on every class in the model.

28

It contains property expression that can contain list of formal specifications. This stereotype is distributed as

separate bundle. It is not part of FW Profile, but it has to be installed separately via an update site [36].

Engine @
+ getwehicle(): Yehicle «Enumerationz
wehicle_has_engine + engine State
Running
Iddle
Tgnites
+ wehicl
alTLierifieds «Interface:
vehicle Moveable
-+ acceleratel + in: double{unique}) + start()
+ breakf + in: double{unique}) + stop(} :
+ getEngine(): Engine + getState(); State
+ getBreaks(): Break
¢
Apply stereotype
- wehicle
e Add LTL
[1.*]

+ getwehicle(): wehicle
wehicle_has_breaks + break.

By vehice 52 | %g Engine state machine diagram
[Properties 53 2 Model Table | a5k

H < <ITLverified> > <Class> Yehicle

o Applied stereatypes: Property values:
Profile = LTLwerified (From Formalverification) 75 [)(Break.state ==Running - > Engine.state ==Iddle)
Appearance [expression: String [1..*] = [J{Ereak. state ==Running - Engine.state ==Iddle}]
Advanced
Requirement
< >

Figure 27 — Example of applying LTLVerified stereotype on Vehicle class in the Eclipse

environment.

6.4. Integration of JPF
JPF environment consists of multiple libraries packed to the modules. Every module contains its own set of
configuration parameters. This is first problem, that user can find. Framework contains many badly

documented features, and it takes to figure it out alone from a source code.

Second problem is framework own distribution model. They distribute multiple modules with runtime
dependencies between them. A deep knowledge about framework structure is required to prepare framework

with non-trivial structure and setup initial configuration.
Third problem is lack of “user friendly” interface, at best with one big button “Validate”.

Most significant problem is lack of any binary distribution. Sources can be found in mercurial repository [37],
but no binary distribution is maintained. While developing jpf-ltl module I have encountered changes in

source code base (some code was uncompilable) several times. Leaving this problem on users is unbearable.

29

6.4.1. Custom Distribution
For easy integration of JPF to Eclipse, it is necessary to omit any kind of compilation of framework by user. It

brings unnecessary burden when compilation dependencies are broken by development delay of one of

necessary module.

Several solutions can be applied, like creating custom Maven repository, or Linux repo. Both solutions are
mature but they are unnecessary complex. Easier to maintain and more elegant solution can be used. In basis
we can manage with simplistic solution with source code control system like GIT (or SVN, CVS) where the
newest version of file can be accessed via simple link to repository (no version number is needed for head
version). Plug-in contains hardcoded links to compiled modules (packed as zips). User is only obligated to

trigger download framework by pressing button. Framework is then downloaded and configured.

& Preferences |:|®

| | LTL Preferences = -
General .)
Ant LTL werifier internal properties.
Help Directory with Framewark: | Ci\Dacuments and Setkings|Cipoy Peterlipf | l Browse...
InstallfUpdate
Java Diovnload Framework]

LTL Preferences

Flug-in Development
FunyCebug
Team
’Restu:ure QeFaults] l Apply]
@:l [Ok] [Cancel]

Figure 28 — Post plug-in configuration. User specifies folder and presses Download framework
button. Plug-in downloads all modules extract them and configures framework to be fully
operating.

Framework distribution consists of binary libraries, examples and source code of these modules:

e jpf-core — contains execution environment
e jpf-symbc — used for formulas evaluating. Its main purpose is symbolic analysis, not used in current
version of jpf-Itl, but planned as further extension.

e jpfld - module for verifying temporal properties in finite programs.

6.4.2. Custom Execution
JPF is designed as Java command line utility. It’s not user friendly but on the other hand, it can be easily

wrapped with proper GUI. The ideal integration would be in the form of one big button “Validate”, without

some configuration steps. All properties should be default or generated, and they can be changed by user if it is

30

necessary. “Convention over configuration” paradigm is used as much as possible. It’s a design paradigm
which seeks to decrease the number of decisions that user has to do, gaining simplicity, but not loosing

flexibility.

& Java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project ETH Code Generator Run Window Help

iy W B0 WO % G -
{5 Package Explorer &3 -2+ 1 Main
= Run As 3
= = Project Run Configurations. ..
= sre Organize Favorites, ..

=3 (default package)

=]

B, IRE System Library [1avasE-1.6]
= Project.jpf

Figure 29 — Convention over configuration example. First validation will generate .jpf file with
all configuration that can be altered by user.

To be as unobtrusive as possible, it is good to use “Eclipse way” of execution. There is the big green play
button in the toolbar, which runs java execution, code generation, unit tests, plug-ins ... Adding LTL

validation seems fit to this methodology.

Eclipse contains set of various extension points, where programmer can extend almost every component in

Eclipse. Extension points are declared in plug-in configuration xml file:

e org.cclipse.ui.preferencePages — adding custom plug-in preference page, shown on Figure 28.
Extension class has to implement interface org.eclipse.ui.lWorkbenchPreferencePage, where it
declares form dialog with preferences fields. Loading and storing configuration is led to standard
Eclipse libraries that store them.

® org.eclipse.core.runtime. preferences — extension point that register property in Eclipse. By extending
org.eclipse.core.runtime. preferences. AbstractPreferencelnitializer class registers all properties and set
default value.

e org.eclipse.debug.core.launchConfigurationTypes — creates custom launch configuration. This enables
running jpf in a standard way via run configuration (shown on Figure 29).

e org.eclipse.debug.ui.launchShortcuts — enables running verification from .jpf file perspective.

e org.eclipse.debug.ui.launchConfigurationTabGroups — registers custom run dialog, where main class
jpf-configuration file can be specified

e org.eclipse.debug.core.launchConfigurationTypes — registers run configuration on specified Java run

mode (run or debug)

Execution of verification is executed in a separate process. Verification will consume a lot of memory and can

fail due to memory limitation. It is more convenient and secure to run Eclipse and verification separately.

31

6.4.3. Temporal Logic Formula Visualization

Complex LTL formula can be ambiguous to read, and it can be quite cumbersome to search for mistakes.

Also, it can be hard to understand how the final Biichi graph would look like. Because its Biichi graph that

makes final decision, whether system is in an allowed state or formal property is broken. Visualization of

constructed graph can be an enormous help to realize what exactly formula does.

1Dwm.insertCoingink, ink, ik}

o

1CainBox. addCoindink)

\mﬁ\\ 1CainBox, addCoinfint)
\m’\ 1CoinBox, addCaindink)

10w, returnButkon)

\Crink. release() Q //_
O / = e
S5

Figure 30 — Visualization screenshot from com.singularity.visualizer plug-in. Green nodes are
accepting states. Blue are not accepting.

ONOULLHA,WNPR

[1 (Dvm.insertCoin(int, int, int)
-> X ([] (CoinBox.addCoin(int)
->X ([l (CoinBox.addCoin(int)
-> X ([] (CoinBox.addCoin(int)
-> X ([] (Dvm.returnButton()
-> X ([] (Drink.release()
-> X (<> Drink.updateDrink()

)))))))I))

Figure 31 — An example of little bit more complex temporal logic example. It transformation to
Biichi automaton is show in Figure 30

32

7. Evaluation

7.1. Telecommand Example
For demonstration of formal properties check (mentioned in section 2.3) Telecommand example [38] was

chosen as an evaluation example.

This example covers the management of ESA’s Packet Utilization Standard (PUS) telecommands in an on-
board application. It can be seen as an example of handling commands that are sent to real-time application by

an external operator.

As a Standard use-case can be considered: commands are prepared on the earth, then serialized and sent to the
satellite over radio link. After reception signal is transformed to bytes. In these bytes satellite actions are
encoded. Bytes are de-serialized and Telecommand instances are created. These instances are passed to the
central execution component TelecommandManager that stores list of actual commands and executes them in

a loop.

This example was originally created for demonstration purposes of CORDET project and therefore it is a

good test case for solution proposed by this thesis.

7.1.1. Component Class
Component is meant to be a basic class for all non trivial objects. It defines three states: CREATED,

INITIALIZED and CONFIGURED. These states describe the processes of configuration and initialization
phase.

"’ = CHE&TEDH‘

H e START
Tainit | INITIALIZED |
[canInitialize()] . ¢l dolnitialize)

) reset

_ [canConfigure()]

" &2 COMNFIGURED "

| Al dDCDr:IﬁgLJI’EI::I | Freset

[canConfigurei)]

Figure 32 — Component state chart

33

Components are first initialized and then configured. Initialization is an irreversible process, where parameters

can be set only once. Typically in the initialization internal data structure is allocated.

Configuration is a process where values of parameters can be dynamically changed. After reset, component is
configured and it is ready to start its normal operation. Configuration parameters can be updated during

normal operation but it will take effect after component reset.
Following properties should be checked on class Component:

1. A component cannot be configured if it has not been initialized.
2. A component can only be initialized if its initialization check is successful

3. A component can only be configured if its configuration check is successful.

7.1.2. ManagedMemory Class
Memory class extends class Component. This class is intended to be a base class for all components with

dynamic allocation requirements. Class defines two states: IN_USE and OUT_OF_USE. When component is

in a state IN_USE, then it is considered to be allocated.

[canGooutOfidse()]

START i pUtOUtOfUse & IN_USE ‘

g

“Hputinlse

‘& 0UT_OF USE

Figure 33 — State chart diagram for ManagedMemory class
Following properties should be checked:

1. A component can be put out of use if out-of-use check allows it

7.1.3. Telecommand class
Telecommand class extends ManagedMemory class, because it is meant to be created once in runtime by

abstract factory and then reused.

Telecommand contains 7 internal states (shown on Figure 34 — Telecommand state chart) and performs many

checks. Immediately after being loaded to TelecommandManager, an acceptance check is performed. If

34

acceptance check is passed, the telecommand enters the ACCEPTED state. It remains in this state undil it is

ready to start. Readiness to start execution is encapsulated in the ready check.

When ready check is passed, component enters the READY state and performs the start action. Then the

telecommand performs start check that determines whether execution can start.

If start check is passed, component enters IN_PROGRESS state. It can be entered multiple times. On each

entry doProgress action is executed. After each step progress-has-failed and progress check is executed.

The progress check determines whether telecommand has terminated execution and moves component to the

COMPLETING state and performing doComplete action. Right after completion check is performed that

determines whether telecommand can complete successfully.

At any stage if checks failed, component enters ABORTED state.

START
[isacceptanceCheckOK ()]
= ﬁ e @O ACCEPTED
@ RECEIVED 2| doreadyCheck()
?|| doscceptanceCheck()
" ready
. [(! isReady())]
1 accept
[l isacceptanceCheckOK()]
|

“fexecute

@9 ABORTED [hasProgressFailed()]

2| dosbort()
“ execute

[(! canComplete())]

@ TERMINATED |
21| doFinalize()

“hexecute

[canComplete()]

(isReady()]

“hready @ READY

2| doStart()

W execute
[{! (canStart() && canProgress()))]

“hexecute
[(canStart() && canProgress())]

@9 INPROGRESS
#|| doProgress()

“ execute

[{canProgress() &8 (! (hasProgressFailed())))]

i execute
[{(! canProgress()) && (! hasProgressFailed()))]

@9 COMPLETING
#|| doComplete()

Figure 34 — Telecommand state chart

35

Following properties should be checked:

1. If the acceptance, ready, start and progress checks are passed, then a telecommand will go through the
following states: ACCEPTED, READY, IN_PROGRESS (possibly more than once).
A telecommand can only complete if it has successfully terminated its progress actions.
If the ready check of a telecommand is passed, then the telecommand executes its start action.

4. If a telecommand fails its start check, then it is aborted.

7.1.4. TelecommandManager Class
This class hold list of telecommads and executes them. It extends Component class and defines two states:

READY and OPERATING (shown on Figure 35). It defines trigger activate, that calls private method

runOneCycle (see Figure 36) that executes all telecommands in the list.
START -
= READY

“ activate

EOOPERATIMNG
|| runonecCyclel)

1l activate

Figure 35 — TelecommandManager state chart.

1 public void runOneCycle() {

2 for (Telecommand tc : tclist) {

3 if (tc.isAborted() | | tc.isTerminated()) {
4 toBeRemoved.add(tc);

5 } else if (tc.isAccepted() && ! tc.isReady()) {
6 tc.ready();

7 } else {

8 tc.execute();

9 }

10 }

11 for (Telecommand tc : toBeRemoved) {
12 tclist.remove(tc); }

13 toBeRemoved.clear();

14 }

Figure 36 — An example implementation of runOneCycleMethod

36

7.2. Functional Properties

For demonstration purpose I have chosen 3 formal properties from Telecommand class:

1. If the acceptance, ready, start and progress checks are passed, then a telecommand will go through the
following states: ACCEPTED, READY, IN_PROGRESS (possibly more than once).

If the transition guards: isAcceptanceOK, isCheckReady, canStart, and canProgress are TRUE,
then the telecommand state machine passes through the following states (in the order given):

ACCEPTED, READY, IN_PROGRESS (possibly more than once).

O NSO UL AN WNR

I([1(isAcceptanceCheckOk().can == true
-> X ([] (doReadyCheck()
-> X ([] (isCheckReady().can == true
-> X ([] (doStart()
-> X ([] (canStart().can ==true
-> X ([] (canProgress().can ==true
-> X ([] (doProgress()

D))

Figure 37 — LTL formula for the first demonstration property.

Figure 38 — Biichi automaton for LTL form shown on Figure 37

2. A telecommand can only complete if it has successfully terminated its progress actions.

If the telecommand has reached state IN_PROGRESS, then it can only enter state
COMPLETED when both methods canProgress and hasProgressFailed return FALSE.

u bh WNR

1 ([] (doProgress()
-> X ([] (canProgress().can == false
-> X ([] (hasProgressFailed().can == false
> X ([] | doComplete()))

)

37

Figure 39 — LTL formula for the second demonstration property

Figure 40 — Biichi automaton for LTL form shown on the Figure 39

3. Ifthe ready check of a telecommand. is passed, then the telecommand executes its start action.

- If the transition guard isCheckReady returns TRUE, then method doStart is executed.

1 ! ([l(isCheckReady().can == true
->X([] (doStart()

3)

N

Figure 41 — LTL formula for the third demonstration property

Figure 42 — Biichi automaton for LTL form shown on the Figure 41

7.3. Test results

7.3.1. Missing Localness
The review of Figure 40, Figure 41 and Figure 42 shows that they look nearly the same. It is always the same

pattern: some instructions are done, then expected guard is satisfied and automaton transits to the next state
with the same semantics. This is done to the last state which is accepting. With this automaton we declare that
the only single state is accepting. Temporal logic offers more that simplistic transition diagrams. LTL provides
powerful operator but in demo they were useless. The cause is localness of object state. In current state of jpf-
Itl, it is possible only to check global state (as mentioned in section 5.4). But objects (like telecommand)
conceive local state that is independent from global state and there can be multiple instances of single class
that can have independent state. In test therefore I have always used only single telecommand instance. More
challenging problem would be checking components properties, because Component class is extended by
Telecommand manager and Telecommand and both of them would alter global Biichi automaton for

Component properties. Therefore these properties were not included in the test case

This problem is considered to be a major problem of current jpf-ltl implementation. Creating scopes like

global scope and object scope is crucial improvement for the next jpf-Itl release.

7.3.2. Function Return Value
Appendix C shows reference implementation of a telecommand. All methods that return some kind of value

always make assignment to local variable at first. The reason for this redundant code is that there is no mean
to check return value of function. The workaround is creating a local variable and assigning return value there.

This variable may already be referenced in LTL formula.

Altering code to add referable points is not a correct use-case. This is the expected improvement of the next

jpf-ltl version.

7.3.3. Cumbersome Formula Creation
While creating LTL formula, I have discovered that having some kind of LTL visualization tool is not only

nice to have feature but it is necessity for two reasons:

1. Making LTL formula may be a big obstacle for people that are not familiar with this area of
mathematics. Visualization is a big help for those kinds of users.
2. Also LTL formula can be easily translated to Biichi automaton with hundreds of states. Debugging of

such automaton can be unbearable obstacle.

([I(isAcceptanceCheckOk().can == true
-> X (<> (doReadyCheck()
-> X (<> (isCheckReady().can == true
-> X (<> (doStart()
-> X (<> (canStart().can ==true
-> X (<> (canProgress().can ==true
-> X (<> |(doProgress()

DININN))

O NOULANWNR

Figure 43 — Altering a few operators can lead to state explosion problem (compare with Figure 37).

39

Biichi automaton of Figure 37 contains 8 states and 15 transitions and 15 atoms. Biichi automaton of Figure
43 contains 176 states, 6466 transitions, 12306 atoms and this can be a big obstacle while evaluating which
part of program has failed. It is easy to end up with hundreds of states. Then just compiling LTL to Biichi
takes 5 minutes on 2 GHz core. Therefore it is better not to create one all checking rule, but it is

recommended to divide problem to set of easier rules.

7.3.4. Symbolic Analysis

The test does not pass pass all possible execution paths without adding choices to the code (mentioned in
section 4.3.1). This can be also considered as redundant code. Hopefully there is also another possibility how
to check all states without refactoring in the source code. This can be done with symbolic analysis, where data

are not important as symbols that represent them.

function (int x, int y) {
if (x>y)
a();
else
b();
}

function a() { ... }

WoONGOUVANEWNR

10 function b(){...}

Figure 44 — Simple example with one if statement that divides execution into two execution
paths

For example code shown in Figure 44, execution path would divide to two paths on line 2, one for x > y and
one for x <=y. Exact values does not matter, just symbols and theirs operator. This way it is possible to traverse
all paths without source code modification. Support for symbolic analysis is already implemented in official

NASA module jpf-symbc [39] but symbolic LTL checking needs to be implemented.
This feature is considered as long term goal.

7.3.5. Infinite Model Checking

Satellite software can be hardly considered as finite (execution has some proper ending). It is software that is
designed to run infinitely. Checking system from this perspective seems to be a proper use-case that deserves to
implement. In a nutshell this is done by negating LTL Biichi automaton. This automaton contains states that
are considered to be all possible invalid states. The trick is that automaton is preprocessed at first. Procedure
looks for specific cycles in graph called strongly connected components that guarantees that there is always
path that leads to the point of origin. If negated Biichi enters such cycle, it possible to declare that program

will be always in invalid state.

This feature is considered as import for the next jpf-Itl release.

40

8. Conclusions
JPE-LTL module was repaired and improved and it can be now used to check formal properties on a global
scope for whitch it works well. It is possible to refer to almost every class feature like variables values, method

call and local method variables.

Module still lacks a lot of crucial features like localness or infinite model checking. Therefore it cannot be
considered as tool ready for the industry. It is still in a prototype phase, but it is now very clear what features
are exactly missing and what use cases it has to fulfill. Therefore next development should not focus on new

features like symbolic analysis but stabilize core features.

For this purpose fork of the original JPF-LTL project was created and development is now separated. Current

module source repository can be found at http://bitbucket.org/petercipov/jpf-ltl/.

JPE-LTL was integrated to Eclipse environment where it can be executed as other standard Eclipse features.
Main idea while creating integration plug-in was simplicity and one click install of the checker framework. A
part of the Eclipse integration is LTL visualiser that has proven his irreplaceable place while creating LTL
formula. Creating proper LTL formula can be cumbersome and visualizing Biichi automaton can solve a lot of
starters’ problems. The source code of LTL visualization and runner can be found at

http://code.google.com/p/singularity.

41

Bibliography

1. Beydeda, Sami, Book, Matthias and Gruhn, Volker. Model-Driven Software Development. s.1.: Springer,
2005.

2. Pasetti, A., Rohlik, O. and Cechticky, V. Software Framework Concept. [Online] 9 11, 2005.
http://singularity.googlecode.com/git/docs/[ETH]%20Assert%20-
%20deliverables/pdf/004033.DVT_ETH.DVRB.1.11R2_D4.2.4-1_FrameworkConcept.pdf.

3. Pasetti, A., Rohlik, O. The FW Action Language. 7he Model-to-Code Tranformation Project. [Online] 12
2005. http://control.ee.ethz.ch/-rohliko/ceg/assert/model2code/The_FW_Action_Language.html.

4. PNP-Software. Class TelecommandManager. TelecommandManager (CORDET Data Handling and
Control Framework documentation). [Online] 6 14, 2008. http://www.pnp-

software.com/fwprofile/doc/com/pnp-software/cordet/dh/telecommand/TelecommandManager.html.

5. Inquiry Board. Ariane 5 - Flight 501 Failure. ESRIN - European Space Agency. [Online] July 19, 1996.

http://www.niwotridge.com/Resources/Ariane5Resources/esa-x-1819eng. pdf.

6. US General Accounting Office. Patrior Missile Defense: Software Problem Led to System Failure at
Dhabhran, Saudi Arabia. 1992.

7. Huckle, Prof. Thomas. Collection of Software Bugs. Technische Universitiit Miinchen. [Online] November
7, 2011. http://www5.in.tum.de/ ~huckle/bugse.html.

8. RTI. The Economic Impacts of Inadequate Infrastructure for Software Testing. National Institute of

Standards and Technology. [Online] May 2002. http://www.nist.gov/director/planning/upload/report02-3.pdf.

9. Floyd, Robert W. Assigning meanings to programs. [book auth.] J.T. Schwartz (Ed.). Proceedings of a
Symposium in Applied Mathematics, Vol. 19. s.1. : A.M.S, 1967, pp. 19-32.

10. Hoare, Charles Antony Richard. An Axiomatic Basis for Computer Programming. Communications of
the ACM, Volume 12 Issue 10. October 1969.

11. Pnueli, Amir. 7he Temporal Logic of Programs. 1977. pp. 46-57.

12. Kripke, Saul. Semantical Considerations on Modal Logic. [aut.] Philosophical Society of Finland. Acza
Philosophica Fennica 16. Helsinki : North-Holland Publishing Company, 1962, s. 83-94.

13. Khoussainov, Bakhadyr and Nerode, Anil. Automata Theory and Its Applications. Boston : Birkhauser,
2001.

14. Gerth, R., et al. Simple On-the-fly Automatic Verification of Linear Temporal Logic. /n Protocol
Specification Testing and Verification. Poland : Chapman & Hall, 1995, pp. 3-18.

42

15. McMillan, Kenneth. Symbolic Model Checking: An approach to State explosion Problem. Pittsburgh :
Carnege Mellon University, 1992.

16. Bryant, Randal E. Graph-Based Algorithms for Boolean Function Manipulation.1986. IEEE Transactions
on Computers, C-35(8). pp. 677-691.

17. Feigenbaum, J., et al. Complexity of promlems of graphs represented as OBDD. Chicago Journal of
Theoretical Computer Science. 1999.

18. Specification and Verification Center at CMU. School of Computer Science, Carnegie Mellon
University. The SMV System. [Online] 1998. http://www.cs.cmu.edu/~modelcheck/smv.heml.

19. Godefroid, Patrice. Partial-Order Methods for the Verification of Concurrent Systems -- An Approach to the
State-Explosion Problem. s.1. : University of Liege, Computer Science Department, 1994.

20. Holzmann, Gerard. Spin - Formal Verification. [Online] January 20 , 2012.

http://spinroot.com/spin/whatispin.html.
21. Ben-Ari, Mordechai. Principles of the SPIN mocel checker. London : Springer-Verlag, 2008.

22. Holzmann, Gerard J. The Model Checker SPIN. /EEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 23, NO. 5. May 1997.

23. Lindholm, Tim and Yellin, Frank. VM Spec The Structure of the Java Virtual Machine. 7he JavaTM
Virtual Machine Specification; Second Edition. [Online]
http://docs.oracle.com/javase/specs/jvms/se5.0/html/Overview.doc.html#7143.

24. Havelund, Klaus and Pressburger, Thomas. Model Checking Java Programs Using Java PathFinder.
International Journal on Software Tools for Technology Transfer, Vol. 2, No. 4. 2000.

25. Havelund, Klaus, et al. Model Checking Programs. Automated Software Engineering Journal, Volume 10,
Number 2. 2003.

26. McCarthy 91 function. Wikipedia, Free Encyclopedia. [Online]
http://en.wikipedia.org/wiki/McCarthy_91_function.

27. The NASA Ames Research Center. On-the-fly Partial Order Reduction. Java Path Finder. [Online]
http://babelfish.arc.nasa.gov/trac/jpf/wiki/devel/partial_order_reduction.

28. Brat, G., et al. Experimental Evaluation of Verification and Validation Tools on Martian Rover Software.
Formal Methods in Systems Design Journal . Volume 25, Number 2-3. 2004.

29. Penix, J., et al. Verifying Time Partitioning in the DEOS Scheduling Kernel. Formal Methods in Systems
Design Journal. Volume 26, Number 2. 2005.

30. Ginbayashi, Jun, et al. New Approach to Application Software Quality Verification. s.1. : Fujitsu, 2009.

43

31. Raimondi, Franco. JPF-LTL model checker. [Online] https://bitbucket.org/francoraimondi/jpf-Iel.

32. Lindholm, Tim and Yellin, Frank. The Java Virtual Machine Specification; Second Edition. Oracle
Documentation. [Online] 1999. http://docs.oracle.com/javase/specs/jvms/se5.0/html/VMSpecTOC.doc.html.

33. OSGi Alliance. OSGi Service Platform - Core Specification. s.1. : OSGi Alliance, 2011.

34. Fowler, Martin. Inversion of Control Containers and the Dependency Injection pattern. [Online]

January 23, 2004. http://martinfowler.com/articles/injection.html.

35. Pasetti, A. and Rohlik, O. Automated proof based System and Software Engineering for Real-Time
Applications. [Online] http://www.pnp-
software.com/fwprofile/pdf/004033.DVT_ETH.DVRB.2.13R0_D4.2.2-1_AdaptationTechnique. pdf.

36. Cipov, Peter. Singularity update site. [Online] 2012.
http://singularity.googlecode.com/git/SingularityUpdate/.

37. NASA Ames Research Center. jpf-core source repository. Java Pathfinder. [Online]
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core.

38. Pasetti, A., Rohlik, O. and Egli. V3 Demonstrator. Automated proof based System and Software
Engineering for Real-Time Applications. [Online] May 10, 2007.
http://singularity.googlecode.com/git/docs/[ETH]%20Assert%20-
%?20deliverables/pdf/004033.DVT_ETH.DVRB.9.11R1_D4.2.4-4.3.V3Demonstrator. pdf.

39. Pasareanu, Corina S., et al. Combining Unit-level Symbolic Execution and System-level Concrete Execution
for Testing NASA Software.

44

Appendix A LTL Formula Grammar Specification

ltlSpec

binaryFormula

unaryOperator

Il NOT I|

=
binaryFormula

logicalFormula

IMPLIES |—"| binaryFormula

EQUVIVALENT [binaryFormula

logicalFormula

andFormula

logicalFormula

I| ROBBY1O_OR I

andFormula

andFormula

—>| temporalFormula

I| ROBBY1O_AMND I

temporalFormula

releaseFormula

UMNTIL |—-F| temporalFormula

WEAK_UNTIL |-+ temporalFormula

releaseFormula

RELEASE I——>'| releaseFormula

WEAK_RELEASE |—b| releaseFormula

proposition

S =I TRUE [ol

=|| akom II o

unaryOperator proposition
- N H

Figure 45 — LTL formula grammar specification

-

45

atorn

~—+| not_rquats |+f expr |—
\—| GREATER_OR_EQ H Expr |—/
—] LEss_or EQ |+ expr |1

method

o1 e p—| [

) PARENTHESIS type || PARENTHESIS_cL
L1 L/ "]
=N
[por |
PARENTHESIS |-+| PARENTHESIS_CL
type
ALWAYS

expr

—|—| mulk

mult

—l-l Factor I

MULTIPLY |+ Factor

factor

———+| PaRenTHESIS |+ expr |-+ PARENTHESIS CL |——0

war I
T | 4

FLOAT

TRUE I|

l ~
1 FALSE

o STRING !

| |

BRACE_CL

Figure 46 — Atom grammar specification

46

=zJava Class=»
(3 Memory

functional statemachine

9°Memory()
@ putinUse(): void

Appendix B Telecommand Class Diagram

=zJava Clags=>=
(3 Component

functional .statemachine

>

@ putOutOfUse(): void

@ isinUse():boolean

@ isOutOfUse():hoolean

® canGoOutOfUse():boolean
@ inttializeStateMachine(): void

==Java Class=>

(®Telecommand
functional.statemachine

& Telecommand()

@ accept():void

@ ready():void

@ execute():void

@ issborted():boolean

@ isAccepted():boolean

@ isCompleting():boolean

@ isinProgress():boolean

@ isReady():boolean

@ isReceived():boolean

@ isTerminated():boolean

@ isCheckReady():hoolean

@ isAcceptanceCheckOk():boolean
@ canStart():hoolean

© canProgress():boolean

@ hasProgressFailed():boolean
® canComplete():boolean

@ intializeStatemMachine(): void
@ doAcceptanceCheck(): void
@ doReadyCheck(): void

© doStart():void

@ doProgress(): void

@ dolhort():void

@ doComplete(): void

© doFinalize(): void

#INPROGRESS

#ABORTED
#READY

]

==zJava Class=»
(@ TestTelecommand

functional statemachine test

Sof MaX_ITERATIONS: int
& progress: int

ecTes’tTelecommand()

® canProgress():hoolean

@ doProgress(): void

@ doStart(): void

@ hasProgressFailed():boolean
® doFinalize(): void

& Component()

@ init(): void

@ reset():void

@ isCreated():boolean

@ isConfigured():boolean
@ isInitialized():boolean

& isCurrent(State):hoolean
@ caninttialize():boolean

® canConfigure():hoolean
@ dolnitialize(): void

@ doConfigure():void

@ intializeStatemMachine(): void

#CREATED

#CONF|GURED
0.1 0.1 A

HNITIALIZED

==Java Class=»

(®State

functional .statemachine

o identifier: int

o size: int

o numOfEmbeddedStates: int
o current: hoolean

o startFlag: boolean

o name: String

-actions

&

==Java Interface==
@ IStateActions

functional .statemachine

@ onEntryAction(): void
@ onExitAction(): void

& State(int)

& State(String)

& State(String,int)

@ setldentifier(int): void
® getldentifier():int

© setName(String): void
© getName(): String

@ setEmbeddedState(State boolean): void
© getEmbeddedState(int): State

@ mark&sCurrent(): void

@ unmarkasCurrent():boolean

@ isCurrent():hoolean

© isMestedStateCurrent():boolean

© setStartFlag(): void

® getStartFlag():hoolean

@ setNumberOfEmbeddedStates(int): void
@ inttialize(): void

@ setactions(|StateActions): void
© switchTo(State): void

-embeddedStates

Figure 47 — Class diagram of Telecommand

47

Appendix C Reference implementation of Telecommand

1 @LTLSpec({
2 "I([](isAcceptanceCheckOk().can == true " +
3 "> X ([] (doReadyCheck() " +
4 "-> X ([] (isCheckReady().can == true " +
5 "> X ([] (doStart() " +
6 "> X ([] (canStart().can ==true " +
7 "> X ([] (canProgress().can ==true " +
8 "> X ([] !(doProgress()" +
9 DN
10
11 "I([J(doProgress() " +
12 "> X ([] (canProgress().can == false " +
13 "> X ([] (hasProgressFailed().can == false " +
14 "-> X ([] /(doComplete()" +
15 DI,
16
17 "I([](isCheckReady().can == true " +
18 "->X([] '(doStart()" +
19 M
20 1)
21 public class TestTelecommand extends Telecommand {
22
23 private static final int MAX_ITERATIONS =5;
24 int progress = 0;
25
26 @Override
27 public boolean canProgress() {
28 super.canProgress();
29 boolean can = progress < MAX_ITERATIONS;
30 return can;
31 }
32
33 @Override
34 public void doProgress() {
35 super.doProgress();
36 progress++;
37 }
38
39 @Override
40 public void doStart() {
41 super.doStart();
42 progress = 0;
43 }

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

@OQOverride

public boolean hasProgressFailed() {
boolean can= super.hasProgressFailed();
return can;

}

@Override
public void doFinalize() {

super.doFinalize();

}

@Override
public void doComplete() {
super.doComplete();

}

@Override
public void doReadyCheck() {
super.doReadyCheck();

}

@Override
public boolean isAcceptanceCheckOk() {

boolean can = super.isAcceptanceCheckOk();

return can;

}

@Orverride

public boolean isCheckReady() {
boolean can = super.isCheckReady();
return can;

}

@OQOverride

public boolean canStart() {
boolean can = super.canStart();
return can;

}

@Override
public void doAbort() {
super.doAbort();

}

50

