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In this contribution we deal with using of the optimal control method for solution of an inverse
problem for nonlinear Gao beam which was published by Gao in [1]. The inverse problem will
be formulated as the minimization of a cost functional which depends on a state problem. The
state problem is represented by the Gao beam equation





σIuIV − σα(u′)2u′′ = f in (0, L),

u(0) = u′(0) = 0,

u(L) = u′(L) = 0,

(1)

where u is an unknown deflection of the beam, σ is the Young’s elastic modulus, I = 2
3
h3 is

the area moment of inertia, h is the thickness of the beam and L is the length of the beam. The
remaining symbols indicate the following

α = 3h(1− ν2) and f = (1− ν2)q,

where ν denotes Poisson ratio and q is the given vertical load. The clamped beam is considered
which corresponds to the prescribed boundary conditions.

It remains to specify the cost functional. Let || · || be L2-norm and let z ∈ L2((0, L)) be a
given function. Then we define the cost functional J(σ, u(σ)) : Uad ×H2

0 ((0, L))→ R1 by

J(σ, u(σ)) =
1

2
||u(σ)− z||2,

where

Uad = {σ ∈ L∞((0, L)) |σmin ≤ σ ≤ σmax in (0, L), σ|Ki
∈ P0(Ki), i = 1, . . . , n}

is the set of admissible parameters with given constants 0 < σmin < σmax and Ki = [xi−1, xi],
i = 1, . . . , n, where x0 = 0 < x1 < x2 < . . . < xn = L. It means that Uad ⊂ Rn is the set of
piecewise constant functions over the partition of (0, L).

Now we can define the inverse problem as a following minimization problem




Find function σ∗ ∈ Uad such that
J(σ∗, u(σ∗)) = min

σ∈Uad

J(σ, u(σ)),

where u(σ) solves the state problem (1).

(2)

The numerical realization of this problem is based on using finite element method and con-
sists of two parts. The first part is the discretization of the state problem which does not make
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any troubles and it is described for example in [2, 3]. The second part concerns the minimiza-
tion of a cost function I which arises from the discretization of the cost functional J and can be
written in the form

I(σ) := J(σ,u(σ)).

The minimization is based on iterative process which generates a sequence
{
σk
}

with the given
initial approximation σ0 such that

lim
k→∞

I(σk) = I(σ∗), where I(σ∗) = min
σ∈U

I(σ).

For the given σk we compute u(σk) as a solution of the discretized state problem and the next
iteration σk+1 is found in the form σk+1 = σk+αdk,where α > 0 and dk is a descent direction.
This direction is chosen in such a way that I(σk+αdk) < I(σk) for all α ∈ (0, α), α > 0. The
important step for this algorithm is the choice of the step length α which is obtained by using
line search techniques. The cost function can be written in the form

I(σ) =
1

2
(Su(σ)− z,Su(σ)− z)p ,

where z ∈ Rp is a given vector, (., .)p denotes the inner product in Rp and S ∈ Rp×n is a matrix
representing the restriction mapping from Rn onto Rp. For computation of the descent direction
we need to derive the expression for the gradient of the function I. It is obvious that

I′(σ) =
1

2
(Su′(σ),Su(σ)− z)p +

1

2
(Su(σ)− z,Su′(σ))p =

= (Su(σ)− z,Su′(σ))p =
(
ST (Su(σ)− z) ,u′(σ)

)
p
.

The problematic part u′(σ) can be eliminated by using adjoint state problem, for more details
see in [5].

Numerical results for the nonlinear Gao beam are compared with results for the classical
linear Euler-Bernoulli beam [4] and numerical computations are realized by using MATLAB.
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