
78 79

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

Gangur M., Plevný M. (2018) “On the Problem of Generating a Large Number of Comparable Test Variants”, Journal on Efficiency
and Responsibility in Education and Science, Vol. 11, No. 4, pp. 78-84, online ISSN 1803-1617, printed ISSN 2336-2375, doi:
10.7160/eriesj.2018.110402.

ON THE PROBLEM OF GENERATING A LARGE NUMBER OF
COMPARABLE TEST VARIANTS

Abstract
The paper presents a possible way of solving the problem of creating more test variants for a large number
of students divided into groups. The proposed solution may consist in introducing a parameterized
automatic test generator. The principle of an automatic parameterized test generator is shown. The
process of the question tree construction according to the increasing numbers of question in the banks
of the particular subjects leads to a combinatorial explosion. This often results in excessive time of
generation of the different variants of tests. To solve this problem, a heuristic method based on a pre-
processing stage that precedes the construction of the searching tree is proposed. Further, the results
of the experiments comparing the time of the test generation and the congruence of the test variants
generated by the algorithm either using or non-using this heuristics are presented. According to these
results the use of the generator with the proposed heuristics provides a considerably shorter time of
generation, and the congruence of the generated test variants is even better in most cases.

Keywords
automatic test generation, combinatorial explosion, evaluation methodologies, XSL transformation

Mikuláš Gangur1, Miroslav Plevný2*

1Faculty of Economics, University of West Bohemia in Pilsen, Plzeň, Czech Republic
*2Faculty of Economics, University of West Bohemia in Pilsen, Plzeň, Czech Republic, plevny@kem.zcu.cz

Highlights
• The algorithm of generation a large number of content identical test variants in acceptable time is presented
• The tests may consist of more questions stemming from various thematic fields
• The content of individual test variants is identical but the similarity (congruence) is minimal
• The time of generation was shortened from hours to seconds in complex cases

Article type

Full research paper

Article history
Received: October 16, 2018

Received in revised form: December 4, 2018
Accepted: December 19, 2018

Available on-line: January 1, 2019

Introduction
One of the most common forms of ascertaining (or measuring)
the level of the gained knowledge is testing. Apart from the issue
of the correct and well-balanced composition of the test, which
we are not going to deal with herein, there is a specific issue of
the need for designing a number of comparable variants for the
same purpose of testing. A requirement calling for the creation
of more variants of a test of the same type is quite common in
this respect. This may be the case of testing the knowledge of
a large number of students divided into groups. The same need
arises when both the tests and the corrective tests are prepared
simultaneously, or when the tests are repeated with a time
delay. Another case is testing the knowledge in an e-learning
environment where every student handles the test in a different
time and it is therefore necessary to create a variant of the test
for each student individually (Rosman and Buřita, 2014).
The problem of compilation of such a test set consists mainly in
meeting the following requirements:

• All variants of the test should contain the same number
of questions, as well as the same intensity expressed in
points for each thematic field of the test;

• The similarity of the individual variants of the test should
be minimal (a minimal congruence requirement).

Probably the biggest problem, when processing the necessary
amount of the test variants manually (i.e. collection of tasks
from each guarantee of an individual thematic field, the
assembly of question groups for each individual variant of
the test, etc.), consists in receiving the materials in different
formats, in unbalanced difficulty of manually compiled variants
of the test, and, apart from that, a time-consuming detection and
correction of errors arising from editing the final form of the
test. The use of MS Word templates for creating questions by

the guarantees of thematic fields is seen as underperforming.
Automatic generation of the test variants seems to be a possible
solution to this problem.
Generating the necessary amount of variants of the given test
may be facilitated by applying the computing technology.
However, in connection with the above, it is necessary to solve
a few problems. From the point of view of the generated tests
mainly the following must be considered:

• guarantee of a comparable structure; and
• comparable level of difficulty.

The key issue of comparability of tests in terms of difficulty
has been addressed in other publications. Authors Klůfa and
Kaspříková (2012) use probability approach to solve the problem
by binomial distribution and to answer the questions concerning
the number of correct answers or the probability that the number
of correct answers exceeds a given number. Similarly, Klůfa
(2016) analyses the point number differences in the mathematics
test among several variants of entrance examination test
according to difficulty of variants. He studies how the results of
entrance examinations depend on test variants.
For mentioned purpose the computing technology has been
using for a long time. In the era of the Internet and the on-
line technologies another significant advantage of using the
computing technology for the purpose of testing appeared,
namely the remote knowledge verification using on-line
connection (Hürst, Jung and Welte, 2007; Niazi and Mahmoud,
2000).
The objective of this article is to present a proposal of the
system for the automatic test generation according to the
set requirements related to the structure (score, number of
questions, issues tested) and the requirements concerning the

79

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

mutual relations of the tests, i.e. the disparity of their contents.
The algorithm of the test construction is described and a method
for a solution of the problem of the combinatorial explosion
during the question tree construction is proposed. The proposal
of the above generator is based on a few input requirements for
the basic characteristics and the generator functionality. These
requirements are described in detail by (Gangur, 2014). The
most important requirements are:

•	 the need for the existence of a simple control mechanism
when setting parameters and generating tests;

•	 the possibility of the text contents structure
parameterization, i.e. the possibility of determining
the total score in the test and the number of questions
stemming from the individual thematic fields;

•	 the possibility to ensure the minimal congruence of
the test contents with regard to the random choice of
questions from the question bank.

The above requirements were the starting points in the process
of searching for such a system or, as the case may be, in applying
the principles of the already designed and published systems.
In the next section of this paper the related work is presented,
the functionality of the generator is briefly introduced, and
the following parts describe the methods and algorithm of
the generator implementation as depth/first tree searching
with a backtracking mechanism. Then, our new proposal of
a heuristic method for the solution of the combinatorial explosion
is introduced. This explosion results from the question tree
construction with respect to the number of questions. The use of
the aforementioned generator remains only in theory without an
application of the designed heuristics, due to the time-consuming
calculation. Using this heuristics a gap between the theoretical
and practical utilization of the generator is overcome, enabling
the real use of the generator in practice. Finally the outcomes
of experiments of the test generating process are presented
while the results of the processes either using or non-using this
heuristics are compared.
Materials and Methods
Related work
The issue of the automated test generating has been dealt with
in a number of publications; see e.g. Brusilovsky and Pathak
(2002), Sung, Lin and Chen (2007) or Zeng et al. (2013).
The similar difficulty of each variant is considered as a key
issue of test variants design. Contributions dealing with this
problem use various approaches to solve it. For example Klůfa
and Kaspříková (2012) reflect the results of statistical analysis
using probability for evaluation of appropriateness of test
variants. Foltýnek (2009) applied another approach that enables
to compare test variants results according to different difficulty
level using scoring process and correctness coefficients.
Automated creation of adaptive tests with regard to the level of
knowledge of the individual students is an independent field in
which intensive research is being carried out (Mine, Shoudai and
Suganuma, 2000; Kapusta, Munk and Turčáni, 2010). Fakhrusy
and Widyani (2017) developed Moodle plugins to generate
quiz as a part of LMS using genetic algorithm. Nuthong and
Witosurapot (2017) focused on diverse difficulty of quizzes
and proposed the 5-level difficulty ranking score using a hybrid
similarity measurement approach to increase the number of
usable generated quizzes and their sensible generation.
Seemingly simple issues of the automated test generation
controlled by parameterized requirements concerning the test
structure are not paid so much attention with regard to the
quantity of publications on this topic. Authors Yang, Wu and

Wang (2008) proposed and implemented a robust system with
adaptive elements for administration and a follow up selection of
the test questions from the database with regard to the previous
test results is described. The system enables a random choice of
the test questions with regard to the set parameters, such as the
percentage of the required type of questions (e.g. multi-choice,
open questions) or the fields (knowledge points) out of which
questions are selected. In the key issue of the choice of questions
the system uses a complicated mechanism of arithmetic
calculations which ensures meeting the set requirements for
the test structure. The system is extensive and with regard to
the process of choosing the questions and feeding the question
database it may seem difficult for the users.
None of the above systems deals with the problem of insertion
and namely the typesetting of the mathematical text. The authors
Tomas and Leal (2013) deal with the issues of the mathematical
text by means of an external application. So, as to finalize the
creation of the tests, the above authors use some functionalities
of a web application for the presentation and evaluation of the
mathematical expressions.
The above described systems meet the basic requirements for the
test creation from the randomly chosen questions with regard to
the set parameters of difficulty and coverage of various fields of
issues to be studied. These are complex and extensive systems
covering a number of other functionalities and requiring a time
consuming creation of a question bank. In most cases, generators
do not deal with the issue of the mathematical text typesetting
and they are not quite flexible in the matter of the choice of the
generated tests output format. The majority of the above stated
tools as well as other examined instruments only generate online
web tests.

The functionality of the generator

In this chapter we will discuss the functionality of the proposed
automatic test generator along with methods and algorithms of
the implementation of such a generator. Attention will be paid
to the solution of the combinatorial explosion with focus on the
mutual congruence of the generated tests.
Let us, first of all, describe the final product of the process of
generation, which is the necessary amount of variants of the
required test. The input data here are the source questions in the
question bank. The following attributes have to be entered for
each question:

• thematic field – a thematic area related to the given
question; for each thematic field the required number of
questions and the overall number of points for this field
must be entered as the input parameters of the process of
generation;

• score - number of points awarded if the answer is correct,
this value should express the difficulty of a question;

• group - it determines whether a question is or is not
incorporated in the test in context with other questions –
for more detail see following subchapter).

Resulting test consists of questions generated within the
individual thematic fields.
The functionality of the generator is controlled by a set of input
parameters. We used the following parameters as the basic
input generator parameters which then determine the system
functionality:

• the total number of questions stemming from the
individual thematic fields;

• the total score stemming from the individual thematic
fields;

• the format of the resulting tests;

80 81

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

• the total number of the generated tests;
• the number of the tests in a package to be used

simultaneously.
By means of the first two parameters it is possible to select the
quantity of questions stemming from the given field in the entire
test and at the same time to select its difficulty by a suitable
combination of the number of questions and the score for the
given thematic field. The generator supports the distributed
creation of the individual fields of questions by various creators
who can save the final question bank in an online repository of
questions used by the generator. The administrator then controls
the final tests generation. This approach enables, in some special
cases (entrance tests and such like), hiding the contents of the
complete test from the individual creators and letting only one
authorized person create the test.
The strength of the generator consists in the possibility of
selecting a template for generating the required output format.
The test itself is generated in the proposed universal XML
format, and by means of the XSLT processor it is, with the
help of the inserted transformation template, transformed into
the required output format (Kosek, 2013). The possibility of
selecting this output format is flexible and it enables the user to
create his/her own template and to generate his/her own output
format (LaTeX, AcroTeX, Moodle XML).
The parameters determining the total number of the generated
tests and the number of the tests in a package to be used
simultaneously also control, among other things, the format of
other generator outputs, namely the calculation of the mutual
percentage congruence of the test variants, and the suggestion
of the most suitable combinations of the test variants to be
used simultaneously. The administrator, with the help of these
suggestions, tries to compile the tests so that there are tests
with the lowest level of congruence of questions between the
individual rounds. The test questions are selected randomly
and some questions, with regard to the required total number of
questions in comparison with the number in the bank of a given
field, may be repeated in the tests.
Even the question banks stemming from the individual fields
can be listed in the generator outputs. The possibility of simple
creation of such a question bank by means of freely available
editors is one of the requirements for the generator functionality.
The control information related to the individual questions can
be seen as another parameter influencing the test compilation. It
determines, apart from the evaluation of a question by scoring,
also listing a question in a group of questions. The group of
questions enables similar questions not to be listed in one test
and, at the same time, to list more questions with the joint
settings in one group.
Another functionality of the generator considers congruence
among test variants. As support for the prevention of undesirable
cooperation among the examinees the generator considers the
percentage congruence of tests and proposes combinations of the
individual test variants to be grouped together. The percentage
congruence of two variants is defined as a ratio of the number
of identical questions in the considered variants and the total
number of questions.
The proposal for the composition of variants in the individual
rounds, i.e. the test packages, results from the requirement for
the minimal congruence between the individual rounds. This
limits the possibility of influencing the test as a result of possible
communication of the examinees in the time gap between
rounds when the examinees from one round may pass on as little
information related to the particular questions as possible to the
examinees in the following round.

The question structure and information control
The current version of the presented generator uses the Aiken
question format (Aiken, 2013) and it can be extended by the
possibility of the questions with a short or numerical answer
and by the possibility of inserting more correct answers in case
of the multiple response questions.
Each question is introduced by a tag with an abbreviation of the
thematic field to which the question belongs (see ‘OV’ in the
listing below). The tag contains control information influencing
the listing of questions in the compiled test. Within this
information the question bank creator determines the evaluation
of the question by score and the group to which the creator lists
the question.

<OV score=”2” group=”381”> The
objective function for achieving the highest
total possible number of the manufactured
products in the linear mathematical model
of an optimization task for the above stated
settings can have the following from:

A) <math>\max z = \sum\limits_{i=1}^{n}
w_i</math>

B) <math>\max z = c_j \sum\limits_
{i=1}^{n} w_i</math>

C) <math>\max z = \sum\limits_{i=1}^{n}
c_{ij} w_{ij}</math>

D) <math>\max z = \sum\limits_{i=1}^{n}
\sum\limits_{k=1}^ {p} b_{jk} w_j</math>

E) <math>\max z = \sum\limits_{i=1}^{n}
c_j w_j</math>

ANSWER: A

The numerical code identifying the group is important. The
digits of this code control the listing of the question in the stage
of constructing the test according to the following scheme:

• Group 0 - the question can be listed without limitation;
• Group <1 – 99> - questions with the same number are not

listed together in one test;
• Group <100 – 999> - group questions; mostly it is more

questions with joint settings;
o questions with the same first digit and different

second digit are not listed in the same test;
o questions with the same first and second digit

belong to the same group and either all of them are
listed in the test or none of them at all;

o the last digit determines the order of questions in
the group; the first one is often a question with the
joint settings.

One of the other features of the generator is the possibility to
insert the mathematical text into the text of a question or, as the
case may be, also the exact listing (e.g. algorithm listing and such
like) as well as a figure in the JPEG format as a complement to
the task settings (Gangur, 2011; Gladavská and Plevný, 2014).

The algorithm of the test assembling

In case we require the compilation of the test out of the questions
based on the set criteria and with regard to the question control
information (group) the algorithm of the recursive depth-first
search of tree is applied. It is the so called backtracking algorithm
which selects, out of the questions for the given field, one or
more questions (according to the group number) and it always
checks whether the criteria of the total number of questions and
the required total score are met. If one of these parameters is
exceeded, it recurs by one question (more questions) and selects
another one.

81

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

The core of this algorithm is the combination recursive function.
The input in this function, when it is called for the first time, is
the list of the question bank suitable for the given field. Random
permutation and question selection is applied in case of this list
and therefore the order of questions and the depth-first search
of tree are always different. The following listing shows the
headline of the applied function and its first call.

function combination($list, $current_
list, $num_points, $deep)

new_test_list = combination($question_
bank, Array(), 0, 0)

In case of further recursive calls of the function this list is entered
in the function without the questions that had already been
used. In this sense, the current list is also an input parameter in
which selected questions are stored (in case of the first call the
list is empty). Other parameters are: the score of the questions
currently inserted into the test and the depth of tree which
represents the number of questions in the compiled test. Upon
the first call both the values are null. With each question (group
of questions) being added the depth of tree gets higher.
Out of the list of free questions the recursive function call creates
the rest of the list of the tested questions. The recursion ends
upon achieving the required score and the number of questions
for the given field. In case of the retrospective finishing of
the individual calls of the function a list of the test questions
is formed starting from the back and moving forward and at
each level this tail of the list is added to the currently selected
question or the question group and like this a new tail of the list
is created at the given call level.
If, upon the function call, the values of score or number
of questions are exceeded, the selected question (group of
questions) is not accepted and another question in the list of
free questions is chosen, until the list is empty. After that the
algorithm recurs back by one level of the call (backtracking),
and it selects another question out of the list of the free questions
at the given level.
By means of the above described procedure of backtracking the
depth-first search of tree is implemented. Upon returning back
to the first call level the whole list of questions according to the
set criteria is created if the finishing condition is met.
The process of depth/first searching algorithm according to the
number of used questions leads to the combinatorial explosion
and it takes too much time. When increasing the number of the
source questions for a thematic field as well as the number of
the demanded questions for this field the time demand of the
generation process increases significantly. In many cases, this
time is expressed in the order of tens of minutes (or hours
sometimes). This can be very annoying for users, and therefore
it is necessary to solve this problem. A proposal of a possible
way to solve this problem is described in the next part.

The solution of the problem of combinatorial explosion

One of the possibilities to solve the problem of the combinatorial
explosion of questions tree is to decrease the whole number
of questions in one thematic field. This approach narrows the
selection of different questions and increases the possibility of
higher congruence among the generated tests.
We, on the other hand, propose the solution that also decreases
the number of questions put in the process of depth-first tree
searching, but the algorithm randomly selects these questions
from the bank of all questions of one thematic field. If the
assembling of the questions list for the generated test according
to the input parameters setting is not successful, the process

continues with the selection of new questions from the rest
of questions in the bank. When the bank of questions for the
considered field is emptied all questions are returned to the bank
and the process starts again with the new selection.
In the preselection we take into account the exclusive questions
with respect to the group number (1 – 99), and at the same
time the preselection process controls the whole number of
the demanded points for the field. This number of points is
satisfied by the preselection of questions individually for sets
of different n-points questions. For example 10 points can be
assembled from four 3-points questions, five 2-points questions,
and ten 1-point questions. In the same way the question list is
constructed for every new test variant, and it contributes to the
low congruence among different test variants.
The step of the random selection is implemented as the selection
of all the remaining questions in the bank in the permuted order.
This preselection has to reflect the group questions, i.e. if the
one question of the group is selected the other ones have to be
included to the selection. The described process has quadratic
time complexity according to the number of the preselected
questions and the number of all the source questions.
The algorithm of the preselection is described in the next steps.
The input to this preselection process is a permuted list of the
source questions.

Step 1. Take the input current list of the
source questions as pl.

Step 2. Create an array of maximal
numbers of questions for every
n-point question according to the
prescription floor (demanded points
for field / n)+1.

Step 3. While selected number of n-point
questions is not greater or equal
to the maximal numbers of questions
determined in step 2 for every n or
all questions of list pl are checked
do
i. Take question from source list

pl and fill n as a score of
question.

ii. If (number of n-question is
less than the maximal number
of n-questions) and group of
question < 100 is not in the
resulting question list rl
then
a. if the group of question >=
100 then select all questions
of the group and add them to
question;

b. add question or all selected
question in group to the
resulting question list rl.

c. remove the selected
question(s) from the list of
the source questions pl.

Step 4. Return the resulting list of
questions rl.

The output from the preselection is the list of questions and it
is one of the input parameters for the combination function (see
subchapter The question structure and information control).
If the assembling of questions for the field is successful the
selected questions are removed from the permuted list of
the source questions and for assembling the next variant the

82 83

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

preselection process selects questions from the modified list
of the source questions. If the assembling is not successful the
list of the source questions is fulfilled with all the questions
and the preselection is applied on this list. If the assembling is
not successful on this new preselected list the generator stops
without result.
The proposed heuristics not only decreases the time consumption
but also, with respect to selected questions pools (that are
mostly mutually exclusive), supports lower congruence among
particular variants of the generated tests. The comparison of
the results of the generation processes using or not using the
proposed heuristics is presented in the next part.

Results of experiments
The outputs of the generating process in different output formats
according to the input parameters are presented by (Gangur,
2014). The current version of the generator offers XSL templates
mainly for the formats Moodle XML, LaTeX and AcroTeX
(interactive PDF). In case of TeX format (LaTeX and AcroTeX)
it is possible to create PDF documents by means of the post-
processor methods.
Next the computing times and the congruence among generated
variants are presented. The generator was used for the same
source of questions with the same input parameters, i.e. the same
number of the demanded questions for every field and the same
demanded score for every field. In the first case the generator
was implemented without the above described heuristics, and
in the second case with this heuristics. The data in the table 1
show the numbers of question in the banks of the particular
subjects (thematic fields) together with the values of the input
parameters.

Particular subject
(thematic field)

Bank size (No of
source questions)

No of demanded
questions

Demanded score
of questions

Economics 176 10 20
Business economy 140 11 20
Management 81 5 10
Marketing 106 6 10
Business finance 70 5 10
Accounting 70 5 10
Management science 59 4 10
Statistics 69 5 10
Average 96.375 6.375 12.5

Table 1: Numbers of questions in banks and input parameters
values, 2017 (source: own calculation)

The output coefficients of comparison are the congruence of
variants and the speed (time complexity) of the generating
process. In one experiment 10 or 5 test rounds are processed.
The outputs of the experiment are the average time per one round
(AT) for each compared algorithm (without heuristics - NH, and
with heuristics - H), and the average coefficient of congruence
among particular variants per one round (AC).
The input parameters for experiments are as follows:

• The number of test rounds.
• The number of the source questions represented as an

average number of the source question per one thematic
field (ANSQ). This number is determined by the selection
of the configured percent part of the basic source files (see
example of questions number in the table 1). More source
questions generally imply larger computing time and the
decrease of the resulting congruence among particular
variants of test.

• The number of the demanded questions for every
thematic field is represented by the average number of the
demanded question per one field (ANDQ). These numbers

are configured by the absolute number of questions for
every field. As with the previous parameter ANSQ the
higher number of the source questions generally imply the
larger computing time and the decrease of the resulting
congruence among particular variants of test.

• The number of the demanded variants of the test is
configured as the absolute number of variants. In the
experiments this number was set to 6 variants (see later).

Version
Algorithm with heuristics (H) Algorithm without heuristics (NH)

A B C D E F A B C D E F
A - 0.00 0.00 0.00 0.00 0.00 - 5.88 7.84 7.84 1.96 5.88
B 0.00 - 0.00 0.00 0.00 0.00 5.88 - 0.00 3.92 3.92 1.96
C 0.00 0.00 - 0.00 0.00 0.00 7.84 0.00 - 3.92 1.96 9.80
D 0.00 0.00 0.00 - 0.00 0.00 7.84 3.92 3.92 - 7.84 5.88
E 0.00 0.00 0.00 0.00 - 0.00 1.96 3.92 1.96 7.84 - 13.73
F 0.00 0.00 0.00 0.00 0.00 - 5.88 1.96 9.80 5.88 13.73 -

Table 2: Values of mutual congruence using algorithm H and NH
[%], 2017 (source: own calculation)

The values of both parts of the table 2 are summarized and
represented by one coefficient of the average congruence. The
lower value of the congruence means a lower level of mutual
similarity of variants. In our case the values of this coefficient
are 0.00% for the generation processes using the proposed
heuristics (H), resp. 5.49% for the generation processes non-
using the proposed heuristics (NH).
The outputs are the average congruence of one test round of the
generator and the time of generating the demanded number of
variants. The searching tree is constructed for every thematic field
of every variant and that’s why the complexity increases linearly
according to the increasing number of the demanded variants.
With respect to the number of the source questions the average
congruence among variants increases when the demanded
variants increase. If we process more than one generator round
in one experiment it is possible to characterize the experiment
results as the whole average congruence per one round and the
whole average time per one round. The example of such an
experiment is illustrated by the following table 3 where 100%
of all questions were used, i.e. on average 96.375 questions per
one field and on average 6.375 demanded questions per one field
(see table 1). In table 3 the average congruence among variants
in % for every round and both algorithms are stated in the first
two rows. The computing time of generating the demanded
variants in seconds for every round and both algorithms are
presented in the last two rows. The last column shows the whole
averages per one round.

N 1 2 3 4 5 6 7 8 9 10 Avg.

Congru-
ence [%]

H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NH 5.49 6.14 7.04 7.44 7.97 6.79 7.71 6.53 6.01 8.49 7.01

Time
[s]

H 0.21 0.19 0.23 0.26 0.25 0.24 0.30 0.37 0.66 1.19 0.39
NH 0.76 0.73 1.27 0.92 1.00 7.48 2.09 2.00 3.67 15.38 3.53

Table 3: Average congruence and the time of generation, 2017
(source: own calculation)

The described experiment can be characterized by the following
values of the input and output parameters:
ANSQ= 96.375
ANDQ= 6.375
AC = 7.01% for NH, 0% for H
AT = 3.53 [s] for NH, 0.39 [s] for H
In the implemented experiments the values AC (table 4) and
AT (table 5) were measured for different values of ANSQ from
100% to 20% of the basic file of questions and for the increasing
values of ANDQ.
For every ANSQ and ANDQ the pair NH | H of values for the
algorithm without heuristics and algorithm with heuristics is

83

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

presented. In every experiment 10 rounds for ANDQ=6.375
and 5 resp. 3 rounds for ANDQ=11.25 resp. ANDQ=20 were
processed with respect to the time complexity of computing. If
the test was not able to assemble according to the demanded
criteria (the number of points and the number of questions for
every thematic field) in the given round, the random selection
form of the source questions was implemented again until the test
was assembled or the experiment finished after the configured
time (it was set to 2 hours in all the experiments provided).

ANSQ
ANDQ = 6.375 ANDQ = 11.25 ANDQ = 20.00

NH H NH H NH H
96.375 (100%) 7.15 0.00 Inf 4.83 Inf 21.54
86.50 (90%) 7.97 0.00 23.53 11.16 Inf 25.60
76.75 (80%) 8.34 0.14 19.04 13.35 Inf 35.98
67.25 (70%) 10.57 0.80 21.91 16.31 Inf x
57.50 (60%) 11.88 1.96 24.88 20.18 Inf x
48.00 (50%) 15.20 4.30 31.14 29.36 Inf x
38.25 (40%) 18.20 6.54 38.74 39.33 x x
28.50 (30%) 25.45 17.41 x x x x
19.00 (20%) 37.38 38.17 x x x x

Marking used in the table 4 and 5:
x - the test was not assembled with respect to the demanded criteria

according to a small number of the source questions,
Inf - the computing finished according to overtime (2 hours).

Table 4: Average congruence (AC) without heuristics (NH) and
with heuristics (H) [%], 2017 (source: own calculation)

ANSQ
ANDQ = 6.375 ANDQ = 11.25 ANDQ = 20.00

NH H NH H NH H
96.375 (100%) 1.03 0.16 Inf 0.30 Inf 187.13
86.50 (90%) 1.43 0.16 115.34 0.26 Inf 92.37
76.75 (80%) 1.01 0.15 111.95 0.23 Inf 5.37
67.25 (70%) 0.65 0.13 7.41 0.27 Inf x
57.50 (60%) 0.83 0.12 7.28 0.25 Inf x
48.00 (50%) 0.41 0.13 10.70 0.20 Inf x
38.25 (40%) 0.27 0.10 0.72 0.27 x x
28.50 (30%) 0.20 0.12 x x x x
19.00 (20%) 0.13 0.10 x x x x

Table 5: Average time (AT) without heuristics (NH) and with
heuristics (H) [s], 2017 (source: own calculation)

Discussion
As it is apparent from the values in the tables 4 and 5 for the
increasing number of the demanded questions (ANDQ >
6.375) and the decreasing number of the source questions the
assembling of the test was not successful in the configured max
time of the process. The presented values depend on the structure
of the source questions in the thematic field according to the
enlistment of questions to the groups and the mutual excluding
in one test as well as the number of the tied questions and the
tied groups. That’s why it is suitable to compare the obtained
values for NH algorithm and H algorithm that were computed in
relation to the same data, i.e. to the same structure of the source
questions.
Despite the previous statement it is obvious that with increasing
ANDQ the congruence increases as well as the time complexity.
Especially the time complexity can be characterized as
O(K(ANSQ, ANDQ)), where K is the binomial coefficient, i.e. the
time complexity depends above all on the number of the source
questions (ANSQ) and the number of the demanded questions
(ANDQ). The proposed heuristics decreases the number of the
source questions in the process of the searching tree construction
and this way the time complexity of the generation process
decreases, but it does not increase the congruence. By contrast, in most
comparisons the final congruence of the test generation the algorithm
with heuristics is lower than the algorithm without heuristics.

The advantage of the proposed and in practice applicable
generator is a simple system of parameter setting that controls
generation in terms of difficulty and number of questions from
each of the areas considered. Another advantage is the simple
format of source texts for individual questions and thus a simple
process of creating questions without the need to use a more
complex SW. Optionally, it is possible to use already prepared
questions that may be in plain text format. Among the undeniable
advantages over similar systems is the choice of different output
test formats. Tests can be generated in pdf format suitable for
a written test printing, in html format for placing on the web for
online testing or into the LaTeX structure for further processing.
As limitations of the proposed solution, the impossibility
to value the individual questions in view of the difficulty of
other tasks in the final test may be considered. Each question
is rated by a specific point value within a given area. On one
side, the comparative difficulty level of each variant of the test
is determined by the described approach of assembling the tests
according to the given number of questions and the total number
of score points representing difficulty from the given thematic
field. On the other side, this assumes a correct assessment of
the difficulty of questions on a scale of 1-3 points by the authors
of questions from each individual field. The overall difficulty
of variants of the entire test can be compared only with regard
to this evaluation of individual questions by the good fit tests.
Equally, the different level of students’ knowledge is not
considered by these tests (Klůfa, 2016). Compared to Klůfa and
Kaspříková (2012), the results of previous tests are not taken
into account by the proposed method, and the structure of the
test is not modelled using estimated probability distributions.
Similarly, the possibility of more sensitive control of the difficulty
of individual tasks is limited. All questions are of the MCQ type
and are designed by the designers of the questions as static from
the domain. Therefore, the system does not allow to variate the
distractors (bad answers) dynamically with respect to adjusting
the difficulty by choosing ontologically close distractors. The
maximal number of questions in the area is limited also with
regard to the system of grouping questions, which controls the
placement of questions in the test within the required context.
However, the proposed algorithm for classifying questions
into groups is versatile, allowing the extension of the grouping
interval used and thus increasing the maximal number of
questions for the given area.
In the future, we consider extending the functionality of the test
generator by the implementation the option into the generator
to use not only statically specified but also parameterized
questions.
Furthermore, we will focus on the issue of comparable difficulty
level of individual variants both from the point of view of
individual students’ results and from the point of view of
measurement and comparison of the difficulty of individual
variants among themselves. This would extend the use of the
generator significantly, and partially eliminate some of the
above limitations.

Conclusions
The system described in this paper is a useful aid, namely in
the process of preparing tests stemming from various fields, for
example from the sphere of the entrance examination procedure
applied in the authors’ institution. When using a larger number of
sources or demanded questions the original algorithm non-using
the heuristics described above does not allow for assembling the
demanded test variants in an acceptable time. On the contrary,

84 PP

Gangur M., Plevný M. - ERIES Journal vol. 11 no. 4

Printed ISSN: 2336-2375

the proposed heuristics allows the use of the generator in the
real time.
The paper describes the functionality and the process of
implementation of the generator of questions stemming from
the set fields by means of a combination of questions according
to the set criteria, i.e. namely the number of questions in the test
for the given thematic field and the overall scoring of questions
in the given field.
The solution of the generation process is based on the construction
of a searching tree and its depth-first searching combined with
the backtracking algorithm. The main input parameters are the
number of source questions and the number of the demanded
questions. These parameters most influence not only one of the
most important final outputs of the generation process, i.e. the
mutual congruence among particular variants of the test, but
also the time complexity of the generation process. The depth-
searching of the tree results in the combinatorial explosion and
high increasing of time complexity. In some configurations of
the input parameters, especially the source questions and the
demanded questions, the generation process does not finish
within the required maximal time limit of 2 hours. That is the
reason why to propose the pre-process of preselection of a limited
smaller number of questions without placing them back to the
source questions. This preselection process also respects some
input criteria, and it is able to satisfy them in the quadratic time
complexity. If the generating process is unsuccessful because
of the empty list of the source questions or a small number of
questions in the list, the generator starts the process again with
a new selection from all the newly permuted source questions.
The proposed improving of algorithms decreases the complexity
of computing namely with respect to the increasing number of
the demanded questions, and contributes to the low congruence
among different test variants. The mutual congruence of variants
generated by the algorithm using the proposed heuristics is at
least as good (and mostly even better) as the congruence of the
test variants generated by means of an algorithm non-using this
heuristics.

Acknowledgment
This work was supported by the University of West Bohemia in
Pilsen under Grant No. SGS-2018-042.

References
Aiken (2013) MoodleDocs: Aiken format. [Online], Available:
http://docs.moodle.org/22/en/Aiken_format [26 Jul 2016].
Brusilovsky, P. and Pathak, S. (2002) ‘Assessing Student
Programming Knowledge with Web-based Dynamic
Parameterized Quizzes’. Association for the Advancement of
Computing in Education (AACE), pp. 1548-1553.
Fakhrusy, M.R. and Widyani, Y. (2017) ‘Moodle plugins for
quiz generation using genetic algorithm’. 2017 International
Conference on Data and Software Engineering (ICoDSE)
Palembang, Indonesia, INSPEC Accession Number: 17578381.
http://dx.doi.org/10.1109/ICODSE.2017.8285882
Foltýnek, T. (2009) ‘A New Approach to the Achievement Test
Items Evaluation: the Correctness Coefficients’. Journal on
Efficiency and Responsibility in Education and Science, vol. 2,
no. 1, pp. 28-40.
Gangur, M. (2011) ‘Automatic generation of cloze questions’.
CSEDU 2011 - Proceedings of the 3rd International Conference
on Computer Supported Education, Portugal, SciTePress -
Science and Technology Publications, pp. 264-269.
Gangur, M. (2014) ‘Automatic Parameterized Generation of
Test’. DIVAI 2014: 10th International Scientific Conference

on Distance Learning in Applied Informatics. Prague, Wolters
Kluwer, pp. 55-64.
Gladavská, L. and Plevný, M. (2014) ‘Problems of automatic
generation of questions for the purpose of testing the
knowledge in a management science course’. DIVAI 2014: 10th
International Scientific Conference on Distance Learning in
Applied Informatics. Prague, Wolters Kluwer, pp. 325-335.
Hürst, W., Jung, S. and Welte, M. (2007) ‘Effective learn-
quiz generation for handheld devices’. Proceedings of the 9th
international conference on Human computer interaction with
mobile devices and services, ACM, pp. 364-366.
Kapusta, J., Munk, M. and Turčáni, M. (2010) ‘Evaluation
of adaptive techniques dependent on educational content’.
4th International Conference on Application of Information
and Communication Technologies, AICT2010, INSPEC
Accession Number: 5611791. http://dx.doi.org/10.1109/
ICAICT.2010.5611791
Klůfa, J. and Kaspříková, N. (2012) ‘Multiple Choice Question
Tests for Entrance Examinations - A Probabilistic Approach’.
Journal on Efficiency and Responsibility in Education and
Science, vol. 5, no. 4, pp. 195-202. http://dx.doi.org/10.7160/
eriesj.2012.050402
Klůfa J. (2016) ‘Comparison of the Test Variants in Entrance
Examinations’. Journal on Efficiency and Responsibility in
Education and Science, vol. 9, no. 4, pp. 111-116, http://dx.doi.
org/10.7160/eriesj.2016.090404
Kosek, J. (2013) XML for everyone. [Online], Available: http://
www.kosek.cz/xml/index.html [20 May 2016].
Mine, T., Shoudai, T. and Suganuma, A. (2000) ‘Automatic
Exercise Generator with Tagged Documents Considering
Learner’s Performance’. Association for the Advancement of
Computing in Education (AACE), Chesapeake, VA, pp. 779-
780.
Niazi, R. and Mahmoud, Q.H. (2000) ‘A Web-based Tool for
Generating Quizzes for Mobile Devices’. A poster at the 39th
ACM Technical Symposium on Computer Science Education
(SIGCSE). Portland, OR.
Nuthong, S. and Witosurapot, S. (2017) ‘Enabling fine granularity
of difficulty ranking measure for automatic quiz generation’.
9th International Conference on Information Technology and
Electrical Engineering (ICITEE), Phuket, Thailand, pp. 1-6.
http://dx.doi.org/10.1109/ICITEED.2017.8250492
Rosman, P. and Buřita, L. (2014) ‘Concept of the computer
science course and some aspects of ICT integration into
education’. E&M Ekonomie a management, vol. 17, no. 3, pp.
169-180. http://dx.doi.org/10.15240/tul/001/2014-3-013
Sung, L.-C., Lin, Y.-C. and Chen, M.C. (2007) ‘An Automatic
Quiz Generation System for English Text’. 7th IEEE
International Conference on Advanced Learning Technologies,
Proceedings, Niigata, Japan, INSPEC Accession Number:
9868711. http://dx.doi.org/10.1109/ICALT.2007.56
Tomas, A.P. and Leal, J.P. (2013) ‘Automatic generation and
delivery of multiple-choice math quizzes’. Principles and
Practice of Constraint Programming. CP 2013. Lecture Notes
in Computer Science, Vol. 8124. Springer, Berlin, Heidelberg,
pp. 848-863. http://dx.doi.org/10.1007/978-3-642-40627-0_62
Yang, A., Wu, J. and Wang, L. (2008) ‘Research and design of
test question database management system based on the three-
tier structure’. WSEAS Transactions on Systems, vol. 7, no. 12,
pp. 1473-1483.
Zeng, J., Sakai, T., Yin, C., Suzuki, T. and Hirokawa, S. (2013).
‘Automatic generation of tourism quiz using blogs’. Artificial
Life and Robotics, vol. 17, no. 3-4, pp. 412-416. http://dx.doi.
org/10.1007/s10015-012-0076-7

http://dx.doi.org/10.1109/ICODSE.2017.8285882
http://dx.doi.org/10.1109/ICAICT.2010.5611791
http://dx.doi.org/10.1109/ICAICT.2010.5611791
http://dx.doi.org/10.7160/eriesj.2012.050402
http://dx.doi.org/10.7160/eriesj.2012.050402
http://dx.doi.org/10.7160/eriesj.2016.090404
http://dx.doi.org/10.7160/eriesj.2016.090404
http://www.kosek.cz/xml/index.html
http://www.kosek.cz/xml/index.html
http://dx.doi.org/10.1109/ICITEED.2017.8250492
http://dx.doi.org/10.15240/tul/001/2014-3-013
http://dx.doi.org/10.1109/ICALT.2007.56
http://dx.doi.org/10.1007/978-3-642-40627-0_62
http://dx.doi.org/10.1007/s10015-012-0076-7
http://dx.doi.org/10.1007/s10015-012-0076-7

	_GoBack
	_GoBack

