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Abstract

The technique has been presented for time-dependence identification of several independent beetwen each other
loads distributed over a given area of a structure with arbitrary topology by using quantity values more convenient
for measurements. In the assumption that the structure’s response linearly depends on the loads, the considered
problem, which belongs to the class of boundary inverse problems in the mechanics of solids, is reduced to a system
of linear algebraic equations for coefficients that approximate the sought-for influences. The system is solved using
a regularizing algorithm providing stability of results to random errors in initial data and calculation errors. Concrete
calculations, substantiating the efficiency of the presented technique, have been performed as with theoretical data
to identify two non-stationary loads applied to a wheel carrier of a race car as with experimental data to restore an
impact force applied to a round plate with fixed boundary. To calculate values of a system’s elements corresponding
to values of measured quantities under unit loads, the finite element method was used. The suggested technique can
be used for designing structures with complex geometry based on criterias of their dynamic (fatigue) strength, etc.
c© 2018 University of West Bohemia. All rights reserved.

Keywords: structure with arbitrary topology, identification of several loads, dependence on time, influence function,
FEM, regularization

1. Introduction

The development of modern technology is inseparably linked to the design of new structures and
improvement of existed ones, which should satisfy a required set of mechanical properties. To
achieve these goals, complete and valid information about applied external loads is important in
addition to reliable methods of its calculation. The most rational approach to determine external
loads supposes their direct measurement. However, there are many situations when this approach
is difficult to implement or requires modification the structure under investigation (for installation
of sensors and/or communication means). This substantially reduces the measurement accuracy.

This problem can be solved using the technique of indirect measurements when sought-for
loads are restored (identified) by registering more accessible measurement quantities associa-
ted with the loads. Restoring of external loads by their indirect manifestations relates to the
“boundary inverse problem” in the mechanics of solids. Nowadays, there is an increasing inte-
rest in developing effective methods for solving such problems for many applications such as
reconstruction/control of stress-strain state of structures, predicting their fatigue life, topology
optimization, health monitoring, etc. [8, 20].

Research for this class of problems dwells on problems both in of identifying the spatial
distribution of external loads and their time dependence in case of non-stationary processes.
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The methodology for solving such problems often assumes that the response of the structure
and associated sensor readings depend linearly on the external loads and that it is oriented at
minimizing the discrepancy between the sensor readings and the results of numerical simulations
of the structure under the action of the sought-for loads. As noted in several studies, the presence
of inevitable measurement errors results in evaluating the values of sought-for functions rather
than determining the “true” values. Furthermore, the restoration of an approximate spatial
distribution of action based on a finite number of measuring points is possible only by assuming
additional a priori information about the nature of the distribution.

Thus, when identifying unsteady forces, it is often assumed that the load is concentrated (i.e.
distributed over a small area with an a priori unknown position). At the first stage, the procedure of
their identification consists in defining the approximate location of the load application, and at the
second stage the approximate time dependence is recovered by localizing the search area. Among
many existing methods of identification, the details of which can be found in [12, 13, 20, 31]
and literature reviews [21,25], the most developed methods are based on the frequency domain
technique. This technique has been developed to identify loads applied to both elements of
canonical form [3,19,27] and with an arbitrary geometry [11,18,28]. However, for instantaneous
loads, more accurate identification can be achieved based on the time domain technique used
for example in [2, 5, 10, 12, 14] for structures in canonical form or in [1, 28] for elements with
complex geometry. This technique is applicable for real-time identification of external loads.
This is important for problems of active control of structure’s vibration, health monitoring, etc.
Such approach is also widely used in problems of restoring the temporal component of non-
stationary distributed loads in the assumption that boundaries of the area of their application and
the pattern of distribution inside the area are known [10, 32]. The results obtained so far within
the scope of this technique are mainly related to elements of canonical form or are applicable for
impulse-type loads, for which numerical and analytical solutions of “direct problems” related to
the calculation of structures’ strength and vibrations with known loads are available. In doing
so, the method of inverse problems’ solving is realized by so called deconversion or by the
complex procedure of results comparison.

At the same time, for most structures with a complex geometry and various design features,
solving of direct problems even in the elastic strain range are only possible with numerical
methods such as the widely used the finite element method (FEM). However, numerical methods,
including FEM, are not adapted for direct solving of inverse problems. Therefore, the approaches
developed so far for identifying external loads, which are based on numerical methods, and FEM
in particular, assume the construction of so-called influence functions (coefficients) by solving
one or a series of direct auxiliary problems for subsequent identification. This approach is
outlined in [8, 23, 24] for an approximate recovering the spatial distribution of quasi-static and
time-periodic loads and given in [18] for approximate restoring of external loads represented as
a set of concentrated forces.

This paper is devoted to effective and based on the FEM method of inverse boundary pro-
blems solving for identification of dynamic external mechanical (quasi-static and non-stationary)
loads acting on a structure with arbitrary geometry. The loading is assumed to be either a sin-
gle load or a system of independent loads whose distribution in spatial coordinates is known.
Identification is performed for quantities that are available for measurement and are the indirect
response of loads acting on the structure.

Concrete calculations were realized within the scope of the Collaborate Research Centre
(CRC) 653 “Gentelligent Components in their Lifecycle” for the model problem of identification
of loads acting on a wheel carrier of a race car (item 1, Fig. 1). Within the CRC context, new
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Fig. 1. Wheel suspension with gentelligent technology for measuring loads during the life cycle: 1 – wheel
carrier; 2 – driving shaft; 3 – wishbone; 4 – bearing

sensitive materials for collecting data are being developed [7]. Their mechanical properties
are applied to identify loads during the life cycle of the structure. This kind of new sensor
technology requires new methods to recalculate the measured data into usable information.
In this context, a suspension of a race car (Fig. 1) was equipped with different measuring
devices to identify loads acting on this structure during its life time. The information obtained
allows developing new optimized generations of structures, which are more adapted to actual
environmental requirements [16, 17].

This paper is organized as follows. In Section 2 we give the statement of the problem and
present accepted designations. Section 3 describes a method of identification of several dynamic
loads in the case where these forces can be considered quasi-static. It should be noted that
the authors do not claim the scientific novelty of this section, since identical approaches can
be found in the literature. At the same time, the illumination of the algorithm for solving the
problem in a quasi-static formulation allows us to both generalize the materials outlined in this
paper and to touch upon the auxiliary questions that were needed in the development of the
method for identifying several non-stationary loads (Section 4).

The choice of the calculation case (quasi-static or non-stationary) is determined by the level
of inertial forces — if inertia forces are substantially smaller than external forces, then a quasi-
static problem takes place, otherwise the problem is non-stationary. It should be noted that in
the present paper we do not consider the case when acting on a structure forces are harmonic,
because many researches on this case can be found in the literature (see references above).

In Section 5 we demonstrate the effectiveness of the proposed methods. In particular, in
Sections 5.1 and 5.2 problems of identification quasi-static and non-stationary forces acting on
a part of race car’s suspension are examined. These calculations are based on theoretical data.
In Section 5.3 the initial data for identification is experimental data obtained by other authors
in the research of vibration of a round plate under a non-stationary force. In Section 6 we give
a conclusion.

2. Problem statement

Let there be a structure with a given geometry (topology), a variant of fastening and mechanical
characteristics of material/materials. Deformation of the structure is elastic and is the result
of the action of R external loads with known distributions over spatial coordinates. These R
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loads are designated as Z(r)(t) (r = 1, R) and have to be identified as a function of time. To
identify them, S functions V (s)(t) (s = 1, S) are used. These functions show the dynamics
of some deformation parameter by action of sought-for loads, and they can be measured with
appropriate sensors.

3. Problem solution in the quasi-static statement

First, we consider the problem of identification of quasi-static loads when deformation of the
structure are so slow that inertial forces can be neglected. To solve the problem, we use the
superposition principle that determines the superimposement effect of readings from the s-th
sensor under action of each of R applied external loads

V (s)(t) ≈
R∑

r=1

Ṽ (s,r) (s = 1, S).

If we introduce a variable V
(s,r)

, which represents the response of the s-th sensor to the r-th unit
load (Z(r) = Z = 1), then according to the assumption of linearity of processes, V (s)(t) takes
the form

V (s)(t) ≈
R∑

r=1

Z(r)(t) · V (s,r) (s = 1, S). (1)

Note that values V
(s,r)

can be determined experimentally or by using mathematical modeling
methods based on solving of the corresponding direct problem, for instance, by the FEM, which
is a universal and powerful method for engineering analysis.

Since functions V (s)(t) are often presented as arrays of corresponding readout values at
fixed points in time tm (for example, tm = mΔt, Δt =const – time step) over the time interval
of interest [0;Tinv], the problem of approximate restoration of Z(r)(t) is equivalent to solving
equation (1) for each calculation step m in time. Thus, the problem of load identification in
quasi-static statement can be reduced to solving the system of linear algebraic equations (SLAE)
for every fixed time t = tm (m = 0, 1, 2, . . .), which in a matrix form can be written as follows

AZm = Ym. (2)

HereYm and Zm are S- and R-column matrices containing known values V (s)(tm) and sought-
for values Z(r)(tm), respectively;A is the (S ×R)-matrix of constant coefficients which can be
called as flexibility influence coefficients [22].

The elements of these matrices are defined by formulas

{Ym}s = V (s)(tm) (s = 1, S); {Zm}r = Z(r)(tm) (r = 1, R); {A}s,r = V
(s,r)

.

Equation (2) is solved using the least-squares method when the required matrix-column Zm

satisfies a SLAE
ATAZm = ATYm (3)

and represents the normal pseudo-solution of the initial system (2).
In equation (3) and further superscript T denotes the transpose operation.
The obtained result as a set of (R×1)-column matricesZm (m = 0, 1, 2, . . .) allows restoring

in time configurations of quasi-static loads (Z(r)(tm) = {Zm}r) applied to the structure. The
presented above sequence can be represented in the form of the algorithm given in Fig. 2.
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Fig. 2. Algorithm for loads identification for problem in the quasi-static statement

Here and below in block diagrams mirror hexagons, which are connected by a double arrow,
designate execution of some cyclic operation (in particular, in Fig. 2 by m).

Obviously, the result of identification as Z(r)(t)-vector essentially depends on the matrix
A, which, as mentioned earlier, represents response of the sensors to a fixed value of external
forces (i.e., contains influence coefficients). Therefore, at the preparatory stage of solving the
problem special attention should be paid to the choice of positions and measuring directions
of sensors. More detailed information can be found in [20, 32], and an example of filling the
matrix A for some numerical case is demonstrated in Section 5.1. It should be noted that in
mathematical context the influence coefficients must provide continuity of a pseudo-inverse
operatorA+ = (ATA)−1AT.

4. Problem solution in the non-stationary statement

This section considers the problem of identification of several non-stationary loads (including
those of the impulse type). It is well known that identification of external non-stationary loads
as functions of time based on their indirect manifestations is a challenging problem due to
sensitivity of results to measurement errors. One method to improve solution stability and in
some cases the feasibility of solving the problem in general, is to ease requirements to quantity
of information obtained from the solution. In this paper, this approach consists in approximation
of the sought-for (unknown) dependencies Z(r)(t) using piecewise constant functions (Fig. 3a),
which within a certain n-th time interval between points t = Tn−1 and t = Tn (Tn−Tn−1 ≥ Δt)
are constant and take constant values q̃

(r)
n :

Z(r)(t) ≈
N∑

n=1

q̃(r)n [H(t − Tn−1)− H(t − Tn)]. (4)

Here Tn are fixed points in time (T0 = 0 < T1 < T2 < . . . < TN = Tinv); Tinv is the
investigation time; H(t) is the Heaviside step function.
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Obviously, relation (4) can be rewritten as a set of step functions Z(t) = H(t) (Fig. 3b), i.e.
as

Z(r)(t) ≈
N∑

n=1

q(r)n H(t − Tn−1)Z(t − Tn−1). (5)

Thus, relation q̃
(r)
n =

∑n
k=1 q

(r)
k links coefficients q̃

(r)
n and q

(r)
n .

(a) (b)

Fig. 3. Approximation of unknown dependencies by step functions: (a) representation as a piecewise
constant function; (b) representation as a combination of step functions

If by analogy with the previous case we introduce S · R functions V
(s,r)
(t) (s = 1, S;

r = 1, R), which determine changing in time of the s-th registered quantity during the application
of exclusively the r-th load in the form of a unit step influence (Z(r)(t) = Z(t)), then, according
to the principle of superposition, the specified values V (s)(t) will be approximately equal to the
sum of these functions with account of the time shift Tn−1 and coefficients q

(r)
n (see (5)) with

the meaning of weight coefficients

V (s)(t) ≈
R∑

r=1

N∑
n=1

q(r)n H(t − Tn−1)V
(s,r)
(t − Tn−1). (6)

As before, functions V
(s,r)
(t), called hereinafter “influence functions”, can be defined either

experimentally (if it is possible to realize a load similar in configuration to Z(t)) or by mathema-
tical modeling methods. Given that for the current practice in both experimental investigations
and computer simulations continuous quantities V (s)(t) and V

(s,r)
(t) as a rule are replaces with

discrete arrays of values representing corresponding functions for equidistant points with step
Δt for the investigated time interval, instead of equation (6) the following equation is more
appropriate

V(s)m ≈
R∑

r=1

N∑
n=1

q(r)n H(m − Mn−1)V
(s,r)
m−Mn−1 (s = 1, S), (7)

whereV(s),V
(s,r)

are MN -column matrices with elementsV(s)m = V (s)(tm),V
(s,r)
m = V

(s,r)
(tm)

(tm = mΔt; m = 1, MN ; Mn = E(TnΔt), E(x) is the whole part of the argument).
Thus, the problem of approximately restoring Z(r)(t) (4) is reduced to determination coef-

ficients q
(r)
n (r = 1, R; n = 1, N) that would best ensure satisfaction of equation (7), assuming
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thatV(s),V
(s,r)

,Δt and Tn are known. The last are specified either based on a priori information
about the smoothness of solutions or they can be selected based on analysis of obtained results.

In this paper, the technique of coefficients q
(r)
n calculating is based on the least-squares

method. Coefficients q
(r)
n are taken to minimize quadratic functions Jn introduced for each time

interval n (Tn−1 . . . Tn):

Jn =
S∑

s=1

⎛
⎝ Mn∑

m=Mn−1+1

(
V(s)m −

R∑
r=1

n∑
k=1

q
(r)
k V

(s,r)
m−Mk−1

)2⎞⎠ =
S∑

s=1

∥∥∥∥∥
(
V(s)(n) −

R∑
r=1

n∑
k=1

q
(r)
k V

(s,r)
(n−k+1)

)∥∥∥∥∥
2

2

(n = 1, N).

Here, values with the lower index in brackets denote sub-matrices of the corresponding
columns — X(n) = [XMn−1+1 XMn−1+2 . . . XMn ]

T, where X = V
(s,r)

or V(s); ‖X‖2 is the
Euclidean norm ofX.

The problems of finding min
q
(r)
n

Jn (r = 1, R; n = 1, N) are equivalent to solving equations

∂Jn/∂q
(r)
n = 0. Simple mathematical transformations yield a set of N ·R linear algebraic

equations which can be presented in matrix form as follows:

Aq = Y.

Here,A is the square (R×R)-matrix with a block structure (these blocks are lower triangular
Toeplitz N × N matrices); q and Y are block column-matrices with the height of R blocks
equal to N . Thus, notationAq = Y means the following:⎡

⎢⎣
A1,1 . . . A1,R

... . . . ...
AR,1 . . . AR,R

⎤
⎥⎦ ·

⎡
⎢⎣
q1
...
qR

⎤
⎥⎦ =

⎡
⎢⎣
Y1
...
YR

⎤
⎥⎦ . (8)

The elements of these matrices are defined by:

{Ap,r}n,k =
∑S

s=1V
(s,p)
(1)

T
V
(s,r)
(n−k+1); {qr}n = q

(r)
n ; {Yr}n =

∑S
s=1V

(s,r)
(1)

T
V(s)(n)

(s = 1, S; p, r = 1, R; n = 1, N ; k = 1, n).

It should be noted that this matrix A (and its elements Ap,r) is not a matrix of influence
coefficients/functions in the classical sense. It is also not symmetric, and existence of its inverse
operatorA−1 depends both on the functions V

(s,r)
(t) and on the width of time intervals Tn−Tn−1

for averaging unknown functions Z(r)(t). To ensure the continuity of the inverse/pseudo-inverse
operator the same recommendations that are used for identification problem in a quasi-static
statement are applicable.

The structure of matrixA allows to implement a step by step calculation of elements {qr}n

by a recurrence formula with a constant matrix and a variable right-hand side that includes
values {qr}k (k = 1, n − 1) calculated during the previous steps. However, column Y contains
random measurement errors, as well as data processing and transfer errors. Therefore, based on
the mentioned recurrence formula results, in spite of a smoothing effect by the piecewise constant
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approximation (see (4)), will likely by void of any physical meaning. Construction of a solution,
resistant to errors in the source data, requires using special regularizing procedures, developed
for solving ill-posed problems in computational mathematics. In this paper to determine the
approximate solutions of equation (8) a technique is used that combines implementation of
the generalized Cramer or Gauss method (to extract from initial system (8) a SLAE of type
Ârqr = Ŷr (r = 1, R) for each sub-matrix qr) and the Tikhonov regularization method.
Note that the first stage takes into account the commutativity property of blocks in matrix A
(Ar,iAp,j = Ap,jAr,i; i, j = 1, R) and the equality of elements on the diagonals parallel to
the main one (to reduce quantity of computational operations). At the second stage, problem
Ârqr = Ŷr is substituted with the solution of the regularized SLAE [26]

(
ÂTr Âr + αL̂TL̂

)
qr = ÂTr Ŷr, (9)

which follows from the condition min
qr

(∥∥∥Ârqr − Ŷr

∥∥∥2
2
+ α

∥∥∥L̂qr

∥∥∥2
2

)
(L̂ is the regularizing

matrix).
The presented above sequence can be represented in the form of the following algorithm

(Fig. 4).

Fig. 4. Algorithm for non-stationary loads identification
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An important step of Tikhonov regularization is choosing regularization parameter α (α > 0)
in the SLAE (9). Selecting of sufficiently big values of α is known to yield a zero solution, whe-
reas sufficiently small ones yield not a normal pseudo-solution of the initial SLAE but an unstable
computation process with ill-conditioned matrix Âr. Hence, these choices of α-values are exclu-
ded. The methods of choosing α, used widely in ill-posed problems of computational mathe-
matics, in particular, residual, asymptotic, quasi-optimal and discrepancy methods [8, 9, 26],
demand adjusting α to initial data errors. However, even with modern advanced measurement
techniques, the approximate evaluation of these data poses a challenge. Therefore, some authors
use the procedure of direct search for values, with a focus on selecting such an α that in their
opinion will provide the best identification result. The applicability of such approach can be
explained by the fact that, with invariable matrix Âr and the right-hand side of Ŷr of the ini-
tial SLAE, the mean-square error of solving δ first decreases with an increasing regularisation
parameter, and its effect on α diminishes. With α in the neighborhood of some αδ, the value of
δ is practically independent of α. This is the value of the parameter that is often taken as the
calculation one because the error of δ starts growing with increasing α. Note that the quantity
of iterations and computational operations, respectively, can be substantially decreased to find
αδ if the order of α will be varied by taking as the initial value and calculating for the range
of values of Sp(ÂTr Âr)/Sp(L̂TL̂) and carry out calculations in the range of α ∈ (σ2/3r ; σ

2/3
1 ),

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are singular values of matrix Âr [8, 26].
However, despite of simplicity of this approach and its efficiency at least for cases when

there is some a priori information about the domain of possible values of the sought-for solution
taken from the processing of preceding close examples (degree of smoothness, number of
extreme points, etc.), this approach should be considered as a subjective one. This explains the
recent emergence of automated methods of selecting α that do not require a priori information
about the solution, in particular, the L-curve method [23], the U-curve method [4] and the
generalized cross-validation method [6]. Detailed information about them can also be found in
monograph [8] and paper [15]. However, the practice of inverse problems solving, as it is also
shown in [30], has demonstrated many situations where the implementation of these methods is
linked to some mathematical challenges arising, for instance, from absence of a clearly defined
angle in the L-curve or a local minimum of the U-curve in the interval of definition of the values
of regularization parameter α. This requires further theoretical and applied studies in methods
for optimal searching of α.

In this paper, α was calculated based on the residual principle [26], in which the relative
level of the residual was taken to be 0.001.

Having solved system (9) and with available values q
(r)
n (r = 1, R; n = 1, N), the final

stage consists in restoring the approximate profile of sought-for functions Z(r)(t) with account
of relationship q̃

(r)
n =

∑n
k=1 q

(r)
k and equality (4).

5. Numerical results

5.1. Identification of three quasi-static forces using theoretical data

For numerical experiment, a wheel carrier (item 1 in Fig. 1) was considered to identify a
loading presented as a system of three mutually perpendicular forces Z(r)(t) (r = 1, R; R = 3)
applied to the lower part of the carrier (Fig. 5a). This structure was tightly attached to supporting
cylindrical surfaces O (Fig. 5a). Physical properties of the structural material and its geometrical
characteristics were known. Identification of Z(r)(t)was assumed to be carried out by the reading
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(a) (b)

Fig. 5. Structure under investigation: (a) scheme of fastening and loading; (b) choosing the orientation
of measurement axes of sensors and locations of measurement points

of four sensors (S = 4) measuring strains V (s)(t) (s = 1, S) at areas indicated in Fig. 5a (black
rectangles A, B, C and D).

Locations of these areas, as well as directions of measurement axes of “sensors”, were
chosen by consecutive solving R “direct static problems” in case of action exclusively the r-th
unit force (Z(r) = Z = 1, Z(p) = 0; r, p = 1, R; p �= r) and analysis of the vector strain field
in the structure in order to reveal maximum values. For the considered problem these areas
are indicated in Fig. 5a as A, B, C and D, and the directions of measurement axes are shown
schematically for areas A and B in Fig. 5b.

For the first model example, the quasi-static loads were identified. The initial datum as
functions V (s) were taken in the form shown in Fig. 6a (curves 1–4). The investigated time
interval Tinv was 20 sec; the sampling time interval (step)Δt was constant and equal to 0.02 sec
(tm = mΔt; m = 0, 1, . . . , Tinv/Δt).

The elements of the matrix of influence coefficientsA (see (2)) were determined by averaging
the values of strain in nodes of FE-model in measurement areas. So, at the stage of solving the
r-th “direct static problems” the r-th column of the matrix A is calculated. As a result, the
following matrix

A = 10−8

⎡
⎣−4.4 1.24 9.63 0.76
29.8 17.6 1.24 −7.1
−3.4 −1.0 −3.9 6.43

⎤
⎦
T

was obtained. It should be noted that calculation was performed with FEM, the size and order
of finite elements were chosen according to the convergence condition of results.
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(a) (b)

Fig. 6. Result of identification of quasi-static forces: (a) values of strain as input data; (b) values of
identified loads

Having values {Ym}s = V (s)(tm) (Fig. 6a) and the matrix A at each time step tm the
system of equations (3) with unknowns {Zm}r, that determine the approximated values of the
sought-for functions Z(r)(t) in fixed time points t = tm, has been solved (Fig. 2). The result of
this calculation is shown in Fig. 6b. The subsequent FEM-solution of the problem for structure’s
strain computation in areas A, B, C and D, caused by application of loads according to Fig. 6b,
yields a result with a close fit to the initial one (Fig. 6a).

Note that analysis of elements of matrixA allows establishing sensor s that is most sensitive
to the action of the load Z(r). For this sensor As,r = max(A,r). Thus, the biggest sensitivity
to the action of restoring Z(1) belongs to “sensor” C (s = 3): A3,1 = max(A,1). This helps
working out recommendations for choosing an optimal number of registration quantities, as well
as areas and directions of measurement. In particular, analysis of values forA-matrix elements
allows concluding about possibility of excluding the sensor in area B (s = 2), which actually
duplicates the sensor in area A (s = 1).

5.2. Identification of two non-stationary forces using theoretical data

The second model example is the problem of identification non-stationary loads Z(1) and Z(2)

acting on the wheel carrier (Fig. 5a). In doing so, it is assumed that Z(3) = 0 (R = 2), and
identification is carried out by registered strains V (s)(t) (s = 1, S) in areas A, B and C (Fig. 5a;
S = 3).

At the first stage, to form functions V (s)(t), the corresponding “direct non-stationary pro-
blems” were solved by using a FE software system. Loads Z(r)(t) (r = 1, 2) were assumed
known as time-variable and shown as dash-dotted curves r = 1 and r = 2 in Fig. 7a. The start
point for applying the second load does not coincide with the initial time point t = 0, and it is
shifted by an arbitrary time interval as shown in Fig. 7a. Investigation time Tinv was chosen to be
0.003 sec; time stepΔt for the numerical solving of the system of differential equations was con-
stant and equal to Tinv/150. Next, values V (s)(t) were superimposed with a “noise” with a zero
mean value and an amplitude of 10% of the maximum value of its functions in the range of the
investigated interval. This operation served as an imitation of random errors of in-situ measure-
ments and data transmission, processing by measuring instruments. The chosen amplitude value
has a gain margin over the order of accuracy corresponding to modern measurement practice.
The resulting “noisy” functions V (s)(t) are shown in Fig. 7b and were taken as initial data.

The S ·R = 6 influence functions V
(s,r)
(t) (see (6)) were determined by using a FE software

system also. Some of these functions are shown in Fig. 7c, and designated in the s, r format.
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(a) (b)

(c)

Fig. 7. Result of identification of non-stationary loads: (a) configurations of true and identified loads;
(b) strain vs. time; (c) “influence”/“transfer” functions

Identified functions Z(r) (r = 1, 2), presented by solid curves in Fig. 7a, agree satisfactorily
with exact values (the dash-dotted curves). The maximum values divergence in the investigated
time interval is within 13%.

Note that the transition from (8) to SLAE (9) was done using the generalized Gauss method.
Equation (9) was solved using the classic version of the Tikhonov algorithm with a zero-order
stabilizer (L̂ is an identity (N×N )-matrix). The time intervals for approximation of Z(r) by
piecewise constant functions (see (4)) were assumed to be 2Δt (Tn − Tn−1 = 2Δt; n = 1, N ;
N = Tinv/2Δt).

5.3. Identification of non-stationary load using experimental data

The presented in this paper algorithm was also tested for identification of a concentrated non-
stationary load applied axisymmetrically to a round plate with a rigidly fastened boundary. An
experimental investigation of the vibration of plate with geometrical parameters R = 60mm
(radius) and h = 2mm (thickness) and material properties E = 70GPa, ρ = 2 700 kg/m3

and ν = 0.33 (the Young’s modulus, density and Poisson’s ratio, respectively) is presented
in [29]. Schematic of experimental setup (Fig. 8) is also taken from this manuscript. Its authors
used an instrumented hammer as to realize concentrated loading, as to record the real time
dependence of the contact force (this result is shown in Fig. 9a as dashed curve 0). They also
used a instrumentation complex to measure strains εθ(t) in the circumferential direction of the
plate under the contact force in points positioned at 10mm, 20mm and 30mm from the plate
centre (curves V (1)(t), V (2)(t) and V (3)(t) in Fig. 9b, respectively). More detailed information
about this experiment and used equipment can be found in [29].
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Fig. 8. Schematic of experimental setup

(a) (b)

(c)

Fig. 9. Contact force identification based on experimental data: (a) configurations of true and identified
loads; (b) strain vs. time; (c) “influence”/“transfer” functions (see Fig. 7c)

In our case, the inverse problem consists in restoring the contact force as a function of
time Z(t) = Z(R)(t) (R = 1) by the values of strains V (s)(t) (s = 1, S; S = 3). To solve
it according to the algorithm suggested in this paper, the first stage consisted in using FEM-
software to solve the “direct non-stationary problem”. The purpose of this stage was to build
transfer functions V

(s,R)
(t) that define strains εθ(t) in points 10mm (s = 1), 20mm (s = 2)

and 30mm (s = 3) for the plate under concentrated load in the form of Heaviside function
(Z(R)(t) = Z = 1). FE-analysis results are shown in Fig. 9c. During V

(s,R)
(t) calculation,

as well as previously, convergence of results was controlled. The time step was taken to be
2μsec, the same as in [29]. Having both functions V (s)(t) (obtained by digitizing of graphs)
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and functions V
(s,R)
(t) (calculated by FEM), at the second stage the SLAE (8) was solved for

weight numbers q
(R)
n . These coefficients define the configuration of the required load Z(R)(t)

(see (4)). The result of identification is presented as curve 2 in Fig. 9a. Curve 1 in this figure
shows the result of contact load restoration based on data exclusively from the first strain gauge
(S = 1). By comparing curves 1 and 2 with curve 0, one can conclude that both in the first case
(S = 3) and in the second one (S = 1) the identified loads are in good agreement with the real
load (dotted curve). However, for the given concrete example, the result of identification with an
acceptable accuracy can be obtained based on data from one measuring point only (S = 1). This
significantly reduces number of computational operations, and accordingly, the computational
runtime.

6. Conclusion

The paper presents method of identification as a function of time of several non-stationary loads
(including impulse ones) that acting on a structure with arbitrary geometry (topology). The
initial data are quantities considered to be available for in-situ measurements including their
variation with time due to the influence of sought-for loads. The method is based on the principle
of superposition and the assumption that registered data are linearly dependent on loads acting
on the structure.

Obviously that linearity of the problem statement contributes some limitations on application
area of the presented results. At the same time advantages of the method are simplicity of
numerical implementation and sustainability of results to random errors in initial data. This
is ensured not only by involving a regularizing procedure but also by replacing a continuous
function with a piecewise constant analog to significantly reduce the size of an computational
system of linear algebraic equations (SLAE).

Identification quality depends not so much on the system solution accuracy as on the validity
and accuracy of identification/simulation of dynamic processes in the investigated structure to
build a matrix of influence functions (or coefficients for problem in quasi-static statement). This
issue completely depends on modern achievements in solving direct problems in the mechanics
of deformable solids. In this paper, these matrix were computed using the finite element method.

Identification quality also depends on the number of registered values S, which, in general,
is not recommended to be smaller than the number R of sought-for functions. In the paper,
when numerical experiments were performed, cases when S > R were considered and the
results obtained proved the efficiency of the suggested technique. At the same time, analysis
of the obtained expressions shows that calculations for S < R also can be done. In doing so,
the procedure of identification of non-stationary loads remains invariable; however, in the case
of quasi-static loads the Moore-Penrose method should be used for solving the computational
SLAE.

Generally, the presented algorithms can be used both to identify the space-time dependence
of forces applied to a structure with a complex geometry and for quantities of another physical
nature (kinematic, thermal, electrical, etc.). This is indicative of the possibility of application
the obtained results for solving of a wide class of inverse boundary problems in the mechanics
of solids. Moreover, the demonstrated algorithms can be readily integrated in intergenerational
development processes [18]. This process model is aimed at inheriting life cycle information to
support the development of the next generations of components. Therefore, the shown algorithms
can be used during product development phases.
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