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Abstract
This thesis follows the cooperation between the University of West Bohemia
and an American company Owen Software Development Company. During
the cooperation, the research teams have developed the system for auto-
matic course transferability decision making. The primary goal of this thesis
is to analyze and improve upon the existing transferability decision system.
The thesis describes multiple improvements that have been implemented to
the existing system. The essence of implemented improvements is to cap-
ture the semantic information from the descriptive attributes of the courses.
The results of the designed experiments have proved that we successfully
increased the existing system performance. We have achieved the best re-
sults by employing the artificial neural networks; we have increased accuracy
by 11.2%.

Abstrakt
Tato práce navazuje na spolupráci mezi Západočeskou Univerzitou a Ame-
rickou společností Owen Software Development Company. V rámci této spo-
lupráce byl vytvořen systém pro automatické rozhodování o přenositelnosti
kreditů mezi dvěma předměty. Hlavním cílem této práce je analýza stáva-
jícího systému, návrh a implementace jeho vylepšení. V práci je popsáno
a implementováno několik možných vylepšení stávajícího systému. Při ná-
vrhu vylepšení je hlavní důraz kladen na zachycení sémantické podobnosti
názvu a popisu kurzů. Pro ověření kvality jednotlivých implementovaných
vylepšení je v práci provedeno několik experimentů, které prokázaly, že se
stávající systém podařilo vylepšit. Nejlepších výsledků je dosaženo za použití
umělých neuronových sítí, kdy se stávající systém podařilo vylepšit o 11.2%
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1 Introduction

This introductory chapter presents an opening to the task, and challenges
which are related to this thesis. Also, we summarize the thesis structure at
the end of this chapter.

1.1 Task Introduction
Many postsecondary institutions such as colleges or universities offer various
courses similar in terms of content. However, while the topic of the courses
might be similar; its name, description, and other attributes may vary.
The process of deciding whether credits can be transferred between the cour-
ses despite different attributes of the both courses is called Course Articula-
tion. The courses are usually from different institutions, that way the Course
Articulation task decides whether the knowledge and experience obtained
during completing some course on some institution meets the same level as
when completing another course at another institution.

Universities have developed databases for exploring course transferabil-
ity. These databases are created manually and they are often used by stu-
dents who are transferring between the institutions to know what courses
they will not have to retake on the institution they are transferring to. De-
velopment and research of an automatic system for Course Articulation is
the primary goal of this thesis.

Many courses are asymmetrical by nature; in other words, courses are
often transferable in only one way. This is because the courses have different
difficulty and expertise level and thus the content of one the courses may be
just a subset of another course’s content. The asymmetricity of the courses
is the main challenge when creating the automatic system for Course Artic-
ulation. However, setting the symmetrical assumption for the courses should
not significantly influence the overall task results but only slightly increase
a false-positive metrics. In this thesis, we assume symmetrical courses.

The UWB1 developed an automatic transferability decision system as
a result of cooperation between the UWB and an American company Owen
Software Development Company [45]. In this thesis, the UWB research [18,
19, 45] is replicated and extended using the approaches for the short text
similarity task, which is the task related to the Course Articulation.

1University of West Bohemia
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1.2 Thesis Structure
The thesis is structured as follows. The chapter 2 provides the necessary
theoretical background for the Course Articulation task and especially for
the Short text similarity task. The chapter 3 describes the existing system
developed by the UWB. Chapter 4 describes the improvements made to
the UWB system. The experimental results are detailed in chapter 5, and
in chapter 6, we conclude the thesis.
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2 Theoretical Background

In this thesis, we treat the Course Articulation task as the Short text simi-
larity task meaning that we decide the course pair transferability solely on
a semantic relationship between the descriptive attributes of the courses –
its name and description. This chapter contains a theoretical background
related to the methods used when solving the task.

2.1 Preprocessing
Most of the tasks related to NLP1 (including text similarity) requires in-
put data preprocessing. The preprocessing phase includes text cleaning,
tokenization, stopwords removal, stemming, and lemmatization. The figure
(2.1) visualizes the usual workflow of a preprocessing phase. We explain each
step in the following subsections. The steps done during the preprocessing
phase are usually language dependent. In other words, the preprocessing
workflow requires to be tailored for the particular task and language.

Text cleaning Tokenization Stop-words
removal

Lemmatisation

Stemming

Figure 2.1: Visualisation of a preprocessing workflow

2.1.1 Text Cleaning
Usually, the first step during the preprocessing phase is the text cleaning. To
clean the text is to remove any symbols and characters that are not related
to the content but have more of a syntactical meaning. Such symbols can be
emoticons, punctuations, or any forms of a markup language (e.g. HTML2)

1Natural Language Processing
2Hypertext Markup Language
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2.1.2 Tokenization
Tokenization [24] is the process of breaking a continuous character sequence
into a sequence of entities called tokens. A program that performs tokeniza-
tion is called tokenizer. Typically, tokens are understood as words, thus
delimited by spaces. However, the tokenizer needs to be modified for the in-
put language since some languages do not identify words by spaces (e.g.,
Chinese, or Korean).

2.1.3 Spellchecking
Spellchecking [24] is the process of identifying and correcting the misspelled
words in the text. We differentiate between the isolated-term correction and
context-sensitive correction.

The isolated-term correction treats the input text as a separate sequence
of words. This approach can correct only the spelling errors that result
into a character sequence that is not in the vocabulary of the spellchecker.
The context-sensitive spelling correction provides more advanced detection
of the spelling errors. For example, the sentence ”I am form Czechia” would
pass the isolated-term based spellchecker without errors. However, is it clear
that the word ”form” should be corrected to ”from”. These types of spelling
errors are caught by the context-sensitive correction.

Basic spellcheckers use the Levenstein distance (or edit distance) to detect
the spelling errors. More advanced spellcheckers are using the probabilistic
models to identify misspelled words [46].

2.1.4 Phrase Detection
The natural language consists of many phrases that are composed of multiple
words. An example of a multi-word phrase is ”Information technology”.
While it is not exactly a mistake to interpret this entity as two tokens:
”Information” and ”technology”, it is clear that the individual words do not
express the true nature of the phrase. Identifying the phrases in the input
documents can significantly improve the overall performance as it brings
a more in-depth insight on the text.

The approaches for the phrase detection are using token co-occurrence
frequency [28]. Another naive, but efficient approach is to download an
existing vocabulary of common phrases in the natural language and try to
find such phrases in the input document collection.

13



2.1.5 Stopwords Removal
In the area of IR3 and NLP, the term stopword [24] refers to a so commonly
used word in a particular language that it does provide little to no informa-
tion about the content of a document. For the English language an example
stopword is the word ”the”; knowing that some document contains such word
does not provide any insight on the document. On the other hand, know-
ing that the document contains many occurrences of the word ”football”
undoubtedly tells us some information regarding the document content.

Keeping the stopwords in the text can confuse some of the methods and
thus can lead to significantly worse performance results.

For most of the languages that researchers work with, a list containing
stopwords for these particular languages exist. These lists are called stoplists,
and the words from these lists are commonly removed from the texts to
improve the performance and also to reduce the vocabulary size.

2.1.6 Stemming
The purpose of the stemming [24] step is to find the approximation of
the root (stem) form of a word. The [20] defines the word stem as a part
of the word that contains no inflectional morphology. The resulting en-
tity of the stemming does not necessarily have to match the morphological
root of the word nor even have to match any valid word from the language.
The critical fact is that syntactically related words, plural and singular forms
for example, are mapped to the same stem. This enables treating these words
as synonyms and thus significantly reduces the overall vocabulary size.

The main advantage of this step is that the stemming algorithm does
not require any other input than the words to process. The disadvantage
is the fact that lexically related words are not guaranteed to be semanti-
cally related. The stemming algorithm needs to be carefully selected for
the particular task since an inappropriate stemming algorithm can result in
the overstemming problem where the words are confused as related while
in fact they are not lexically related at all. Stemming is a language and
task dependent, e.g., for the English language a stemming algorithm called
Porter stemmer [36] exists. It is a rule-based stemming algorithm, and all
of the rules were created manually.

3Information retrieval

14



2.1.7 Lemmatization
Lemmatization [24] is mapping inflected forms of a word to a single pri-
mal form (lemma). This process allows considering the inflected forms of
words as the same entity. The difference between the lemmatization and
stemming steps is that the lemmatization takes morphological information
about the word into account. The lemmas for the words are usually obtained
from a lexical database. Lemmatization step is done by a program called
lemmatizer. The lemmatization step can also do the disambiguation. For
example, the word bank can be either noun or verb, the lemmatizer would
then differentiate between the different meanings and map these words to
different lemmas (e.g., bank_1, and bank_2).

2.1.8 WordNet
WordNet [29] is a lexical database of English words capturing semantic
relations between the words. Nouns, verbs, adjectives, and adverbs are
grouped into cognitive sets of synonyms called synsets. Synsets are then
linked through semantic and lexical relations. WordNet currently contains
the information about 117, 000 English words.

2.2 Lexical-based Text Similarity
Naive and straightforward methods can measure the similarity between mul-
tiple documents at the lexical level. The lexical-similarity based methods
which are relevant for this thesis are examined in the following subsections.
Although the lexical-based text similarity does not take the semantic rela-
tionship between the entities into account, the results can still be sufficient
for some of the use-cases.

Lexical-based similarity methods are widely used in search engines. Some-
times the lexical-based methods are used in more complex systems as addi-
tional features.

The main advantage of lexical-based similarity scoring methods is that
they are typically not language dependent in most of the cases. This is be-
cause these methods – as said – do not take the semantic information about
entities into account. However, they often provide worse results compared
to more sophisticated methods that can capture the semantic information
in the text.

15



2.2.1 Word Overlap
Calculating the document similarity as a lexical overlap present the most
straightforward scoring method for comparing the documents at the lexical
level. The similarity score is calculated as shown in the equation 2.1.

scored1,d2 = len(d1 ∩ d2)
max(len(d1), len(d2)) (2.1)

Variables d1, d2 represent the token sequences of the compared documents
and function len returns a length of a given sequence. The results of this
methods can be significantly improved by enhancing the preprocessing phase
– using stemming or lemmatization in particular.

2.2.2 Vector Space Models
Documents can be represented as vectors of floating point numbers in a n-
dimensional space. Applying appropriate transformation on documents will
result in a state where similar documents will have the lesser distance in this
space than unrelated documents. This is frequently used in search engines
where such distance between query and document is calculated to return
documents most similar to a presented query.

An angle between the document vectors can be interpreted as a similarity
of these documents. The lesser the angle between vectors, the more are
documents considered as similar. To calculate the angle between the vectors
a cosine similarity is used. This metric is calculated as shown in the equation
2.2.

cos(d1, d2) = d1 · d2

||d1|| · ||d2||
(2.2)

The figure 2.2 shows a visualization of the equation 2.2. By nature,
the cosine similarity does not consider the actual distance of the vectors.
For example, calculating the cosine similarity between the two vectors that
are highly similar in most of the dimensions and different in a few would
lead to the same results as calculating the cosine similarity between the two
vectors that slightly differ in most of the dimensions. This can be targeted
by combining the cosine similarity and some other metric, e.g. Euclidean
distance [16].

While the cosine similarity is a universal method to measure the sim-
ilarity between multiple documents represented in vector space, the other
metrics could be more suitable for particular document representations,
a Hellinger distance for example [10].

16



d1

d2
α

Figure 2.2: Vector space model

TF-IDF

TF-IDF [37] is a weighting scheme for documents represented in vector
spaces and it was designed to capture the importance of the words regard-
ing the input document collection. TF-IDF weighting translates the one-hot
document vectors into a vector of floating point numbers. This weighting
scheme was initially used in search engines as it easily allows to find a docu-
ment with a query containing only its keywords (the most describing words
for the document). The name of the method is derived from the two metrics
that are used:

• Term frequency - term frequency in a particular document,

• Inverse document frequency - inversed count of documents in which
the term occurs.

The resulting score is then calculated by multiplicating these two metrics.

Term frequency (TF) Term frequency is defined as a count of a word in
a particular document. This raw frequency is often normalized by the length
of a document which prevents overscoring longer documents. The normalized
TF weight is calculated as shown in equation 2.3.

tfi,t = fi,t∑
jεT fj,t

, (2.3)

the fi,t is the frequency of the i-th word in the document t. Many modifi-
cations of computing tfi,t exist, one of them is to use logarithmic weighting
as described in [42].

17



Inverse document frequency (IDF) IDF [39] weight can be interpreted
as the degree of uniqueness of the word, thus the importance of the word
related to the whole document collection. The bigger the document count
where the word occurs, the lesser the IDF weight is assigned. IDF weights
for the words from the stoplists would result in scores near 0 value since they
would appear in most of the documents; that is an example why stopwords
are often filtered during the preprocessing phase. IDF weight is calculated
as shown in the equation 2.4.

idfi = log N

df(i) , (2.4)

the N is the size of the document collection and function df(i) returns a doc-
ument count in which the i-th word appears. Also, many modifications of
estimation the IDF weight exist [33].

2.2.3 Keyword Extraction
In NLP, a keyword refers to a term that best describes the content of a doc-
ument. A single document usually has a set of multiple keywords to be
represented with. The automatic keyword extraction can significantly im-
prove the performance of NLP systems as it can be used as an additional
feature for measuring document similarity, or it can be helpful when solving
the document summarization task.

A simple approach for the automatic keyword extraction task is to use
TF-IDF weighting. TF-IDF weight is considered as the importance of a word
in the document. Keywords are then selected as the words with the highest
scores. This method, however, selects keywords that frequently appears in
some document while not so frequently appearing in the rest of the collection,
that does not correlate with the definition of the keyword, but this approach
still provides sufficient results. It is quality, however, relies on the nature of
the whole document collection.

The keyword extraction task is not related purely to the lexical-based
approaches. We can extract the keywords using the semantic-based ap-
proaches. For example, the topic modeling approaches described in subsec-
tion 2.3.3 can be used for the keyword extraction. With the topic modeling,
we can define a probability of the word in a particular document, that way
we can consider the most probable words as keywords for the document.
The word probability in a topic modeling is calculated by the equation 2.5.

P (w|d) =
∑
t

P (w|t)P (t|d), (2.5)

18



where w is the input word, d is a given document, and t is the particular
topic. The combination of TF-IDF weight with the word probability might
lead to better results when selecting the document keywords. The final
keyword score would be then calculated as in the equation 2.6.

score(w) = P (w|d) · tfidf(w, d). (2.6)

More advanced methods are using term co-occurrence [25] and can work
solely with a single document. However, such approaches are useful only on
long continuous texts. On short texts, methods like TF-IDF weighting or
topic modeling approaches are needed to be used since they do not require
to compute the co-occurrence frequency.

2.3 Semantic-based Text Similarity
Estimating the semantic similarity at a document, sentence, or token level
requires the use of more sophisticated methods. While the lexical-based
approaches focus more on a syntactic relation of the compared entities,
the semantic-based methods capture the deeper level of the entity relation-
ships and thus providing better results in some cases.

In order to calculate a similarity metric between the two entities, a token-
to-token similarity metric needs to be typically evaluated, this metric evalu-
ates the semantic similarity between the two tokens. To capture the token-
to-token similarity, a previously mentioned database called WordNet can be
used or the similarity can be evaluated using the methods based on distri-
butional hypothesis.

2.3.1 Distributional Hypothesis
In linguistics, the distributional hypothesis is a theory based on the insight
of natural languages. This hypothesis is stated in many variations but all
of them are equal. For example, [40] says that ”words which are similar in
meaning occur in similar contexts”. The [41] provides the multiple defini-
tions of the distributional hypothesis.

Many methods for estimating the semantic similarity between the two en-
tities are based on the distributional hypothesis. The distributional hypothe-
sis plays a critical part when constructing semantic embeddings of the natural
language entities.

19



2.3.2 Semantic Embeddings
A semantic embedding (sometimes called a semantic vector, or a context
vector) is a representation of a natural language entity in a n-dimensional
vector space. The semantic relationship between the particular entities is
dependent on their semantic embeddings distance in an n-dimensional space.
The semantic relationship and the distance of semantic embeddings are in-
versely proportional. The similarity between the embeddings is calculated
using the cosine similarity metric described in the equation 2.2.

Word Embeddings

Semantic embeddings at the token level are called word embeddings. Typi-
cally, the word embeddings term is also used for embeddings of multi-word
phrases since the phrase is often treated as a single token or word.

The less sophisticated methods for constructing the word embeddings are
based on co-occurrence matrix [21, 23, 35], the more sophisticated methods
are creating the embeddings using the neural networks (e.g., Word2Vec [28]).

The quality of the resulting embeddings is strongly dependent on the na-
ture of the training document collection. The larger the and the more generic
the document collection is, the more quality embeddings result.

Because the word embedding structure is universal (e.g, the word queen
will most probably have similar embedding structure no matter the train-
ing document collection once it is large and universal enough), it is possible
to download pre-trained embeddings that were created using a vast docu-
ment collection. Using the pre-trained word embeddings spare researchers
the need to construct the embeddings from the input document collection.
Also, the pre-trained embeddings would – in most of the cases – provide
a better insight on the semantic relationships between the entities because
they are usually trained on a large document database and have highly op-
timized hyperparameters.

Sequence Embeddings

Semantic embeddings can also be evaluated at the sequence level, these em-
beddings are called sequence embeddings (also sentence embeddings, or doc-
ument embeddings depending on the input sequence nature).

When computing the sequence embeddings, the word embeddings are typ-
ically have to be created first. Most of the methods for computing the se-
quence embeddings are based on the manipulation with the word embeddings
of the words from the sequence.

20



The most basic and naive approach is to construct the sequence embed-
ding as an average vector of corresponding word embeddings for the words
that are contained in that particular sequence. It is clear that this method
does not reflect the nature of natural language since not all words are equally
important for the meaning of a sequence. This method can be combined with
TF-IDF weighting in order to reflect the fact that some words contribute to
semantic meaning more than others. The resulting sequence embedding is
then constructed as a weighted average of corresponding word embeddings
using the weights based on TF-IDF scores.

The approach described in the previous paragraph is not very useful for
long sequences as the averaging introduces a significant error which would
increase with the number of words in the text. More advanced methods for
computing the sequence embeddings are described in [22] (Doc2Vec method
derived from the Word2Vec method), or in [10].

2.3.3 Topic Modeling
In the context of NLP, the topic modeling refer to statistical approaches for
uncovering the hidden topics in the document collection. A topic can be
interpreted as a cluster of related words. To calculate the semantic relation
of the words, the topic modeling approaches are using the distributional
semantics. For example, the words: NHL, break, and goal are likely to be
put on the same topic.

In topic models, a document is represented as an n-dimensional vector
of floating point numbers where n is the fixed number of hidden topics to
uncover. The i-th element of a resulting vector represents the probability of
how likely is the i-th topic included in the particular document. The result
is then a probabilistic distribution of topics. Estimating the document sim-
ilarity with use of topic modeling is based on the premise that the similar
documents are likely to contain proportionally the same topics.

In topic modeling, a cosine similarity metric is usually replaced with more
suitable ones. To measure the similarity between the two probabilistic dis-
tributions a metric called Hellinger distance exists. The Hellinger distance
metric is calculated as shown in the equation 2.7.

H(d1, d2) = 1√
2

∣∣∣∣∣∣∣∣√d1 −
√
d2

∣∣∣∣∣∣∣∣
2
, (2.7)

where the d1 and d2 are topic distributions of the compared documents.
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LDA

LDA4 [6] is a generative probabilistic model for document topics. In LDA,
each document is modeled as a mixture of various latent topics where each
topic is represented by a set of words. In theory, the topic distribution within
the document is presumed to have a sparse Dirichlet prior. In other words,
it is expected that the document will cover only the small set of topics and
each topic will contain only a small set of words. LDA assumes the following
generative process; for each document DmεD:

• Choose Θ ∼ Dirichlet(α),

• Choose ϕk ∼ Dirichlet(β) for each topic K.

• For each word position i:

– Choose a topic zi ∼Multinomial(Θ).
– Choose a word wi ∼Multinomial(ϕzi

).

When representing the document, LDA forms a vector of floating point
numbers in a K-dimensional space where the K is the number of hidden
topics. The resulting vector reflects topic distribution in the document.

The training process of the LDA model is an unsupervised iterative pro-
cess during which words are assigned to one of the K topics. Hyperparam-
eters K, α, and β are tunable. Parameter α controls the topic density per
document. A high α value means that documents are more likely to be
a mixture of most of the topics, a low α value means that documents are
related to just a few topics. Parameter β controls the per topic word distri-
bution, setting β to a high value means that document is likely to contain
most of the topic words, analogically for the low β value.

2.4 Neural Networks Approach
Models based on neural networks (ANNs5) are widely used for a various
number of tasks. In computer science, a neural network is a mathematical
apparatus inspired by the structures of biological neural networks. Models
based on neural networks are very useful in pattern recognition, clustering,
or classification. For this thesis, RNN6 models are relevant and are described
in the following subsections.

4Latent Dirichlet Allocation
5Artificial Neural Networks
6Recurrent Neural Network
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2.4.1 Recurrent Neural Networks
RNN models are the particular case of ANN models. In RNN output from
a single layer is passed to an identical copy of the same layer, using this
approach enables the RNN models to take the input history into account
when processing sequences, or lists. RNN models are widely used in NLP
tasks since the processing of sequences is the essence of natural languages.
Figure 2.3 shows the principle of RNN models.

ANN

yt

xt

ANN

yt+1

xt+1

ANN

yt+2

xt+2

... ...=ANN

yt

xt

ht-1 ht ht+2ht+1

ht

Figure 2.3: RNN model

A representative example of RNN models usage would be predicting
the next video frame based on the current one. RNN models would be more
effective compared to classic ANN models since the RNN models would be
able to take the frame history (that led to current frame) into account.

Long Short Term Memory

LSTM7 [14] is a type of RNN model. LSTM was designed to target the Long-
Term Dependency problem [4] meaning that their default feature is the ability
to remember information for a long period of time.

Essential building blocks for LSTM models are the cells and gates. In
RNN, a cell refers to a single layer of the model, and the gate is a component
that is responsible for the information flow through the network. LSTM
network consists of three gates within a single cell. The architecture of
LSTM cells is described through the five following equations:

ft = σ(Wfxt + Ufht−1 + bf ),
it = σ(Wixt + Uiht−1 + bi),
ot = σ(Woxt + Uoht−1 + bo),
ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc),
ht = ot ◦ tanh(ct).

(2.8)

7Long Short Term Memory
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The variable xt is the input vector in time t to the LSTM cell. Next, the ft is
the forget gate, this unit decides for how much information will be removed
from the cell state. The it is called the input gate and controls how much
information to remove from the cell input. The variable it is the output gate;
this gate controls how much information will be removed from the output
activation of the LSTM cell. The ct is called the cell state and ht is the cell
output vector. The matrices W , and U are the weight matrices which are to
be updated during the training process, the b is the bias vector and is also
updated during the training process. Each vector ht is a sequence embedding
of the previous sequence of inputs. Many variations of LSTM models have
been developed [12, 15].

Figure (2.4) shows the architecture of LSTM cells. It also provides a vi-
sual explanation of mathematical description in equation (2.8).

Sigmoid Sigmoid SigmoidTanh

Tanh

ct-1

ht-1
xt

ft it

ot

ct

ht

Figure 2.4: LSTM cells architecture

2.4.2 Stacking RNNs
When vertically stacking RNNs, the models that are not on the top of
the stack must pass the aligned sequence of yt states to the successor as
shown in the figure (2.5). On this topic, the [34] says that ”building a deep
RNN by stacking multiple recurrent hidden states on top of each other. This
approach potentially allows the hidden state at each level to operate at dif-
ferent timescale”. The stacked RNNs are used in speech recognition task
[13].
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Figure 2.5: Stacked RNNs

2.4.3 Bi-directional RNNs
Bi-directional RNNs [43] were proposed to allow for the RNN to reach the fu-
ture information from the current state. To do that, the Bi-directional RNNs
are trained simultaneously in the positive and negative time direction.

ANN

xt

ANN

xt+1

ANN

xt+2

...

ANN ANN ANN... ...

yt yt+1 yt+2

...

Backward feed

Forward feed

Figure 2.6: Bi-directional RNN

Bi-directional RNNs are used in e.g., NER8, or automatic translation.
In some cases, the Bi-directional RNN models do not provide better results
compared to stacked classic RNN models; in NLP tasks, this could be be-
cause the natural language is composed in the way that previous information
is further extended.

8Named entity recognition
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2.4.4 Siamese Networks
Siamese networks are a special class of ANNs. The core design is that
the siamese ANNs are composed of multiple copies of identical subnetworks.
These subnetworks have the exact same hyperparameters set plus they share
the weight matrices meaning that updating one of the subnetworks updates
all of the subnetworks.

The architecture of siamese ANN is commonly used for the tasks where
the task nature consists of determining a relationship between the multiple
entities. In NLP the siamese ANNs are used e.g. in STS9 task which is
the task related to Course Articulation task. The figure (2.7) shows an
example siamese ANN architecture.

ANN

ANN

Shared weights Compare/merge y

x2

x1

Figure 2.7: Siamese network architecture

2.5 Course Articulation
The primary topic of this thesis is to solve Course Articulation task as intro-
duced in section 1.1. Transferability decision is a process that many insti-
tutions have adopted [31, 32, 47]. However, most of the current institutions
use a large searchable database (up to 300, 000 transfers [19]) of manually
annotated transfers. The current state is that the transferability decision
is a manual process. These databases, however, typically do not include
the negative results on the transferability decision. The goal of this thesis
is to analyze and extend an existing system for automatic transferability
decision which allows to classify previously unseen courses.

9Semantic Textual Similarity
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2.5.1 Transferability Attributes
In order to create a course transferability database, a large course database
must be collected first. Courses have many attributes that are taken into
account whether the credits of this course are transferable for some other
course. The basic list of course attributes is the following:

• Institution,

• Department,

• Name,

• Description,

• Credits,

• Difficulty,

• Prerequisites.

For the manual decision on the credit transferability, a person with knowl-
edge of the course topics and also a person with experience of lecturing those
particular topics is likely to be included.

When annotating the credit transferability, the annotators must take into
account as much as possible attributes of both of the courses. This is time-
consuming work and mostly also a reason why creating a large transferability
database is a challenging task.

2.5.2 Current Approaches
Universities and colleges have adopted their internal procedures when de-
ciding the course credit transferability. Currently, a universal database of
the course transfers does not exist because universities and colleges have
a different course model typically. This means that the course structure
along with prerequisites can be fundamentally different to create such a uni-
versal database for the credit transferability.

While services providing an exploration for the course transferability ex-
ists, they are more like a course database with manually annotated credit
transferability decisions. An example of credit transferability exploration
system is Transferology [9]. To maintain the transferability database, Trans-
ferology tries to involve universities as well as lecturers. The results and deci-
sions from universal systems like Transferology are not binding, and the uni-
versities do not have to respect the results from these systems.
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2.6 Performance Measurement
Systems for Course Articulation or STS task are likely to be measured using
multiple evaluation metrics. Using the evaluation metrics, the systems can
be then compared to each other with regarding their quality. For this thesis,
a few evaluation metrics are relevant: accuracy, sensitivity, and specificity.

2.6.1 Evaluation Metrics
This subsection describes the relevant evaluation metrics that are used in
this thesis. All of the presented metrics are based on confusion matrix which
is in table 2.1.

Actuall Predicted
Positive Negative

Positive True positive (TP) False negative (FN)
Negative True negative (TN) False positive (FP)

Table 2.1: Confusion matrix

Accuracy

The accuracy [2] is defined as in equation 2.9. It stands for overall classifi-
cation accuracy on all of the classes.

accuracy = TP + FN

TP + FP + FN + TN
(2.9)

Sensitivity

In binary classification, the sensitivity [2] (recall) is defined as the overall
true-positive rate. The equation 2.10 defines the sensitivity calculation.

sensitivity = TP

TP + FN
(2.10)

Specificity

The specificity [2] is defined as the overall false-positive rate of classification
and is defined by the equation 2.11.

specificity = TN

TN + FP
(2.11)
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3 Existing System
Description

As introduced in section 1.1, the UWB have developed an automatic sys-
tem for the Course Articulation task. During the system development and
research, the UWB team has also created a course transferability database.
This chapter describes both the created transferability database and the ar-
chitecture of the developed system.

3.1 Transferability Database
To build a transferability database, we need the details about the courses.
During the research, the UWB have collected a database containing the course
details from many institutions. The database also contains the details about
the institutions as well as the details the particular courses (see table 3.1 for
statistics). Note that not all of the courses have all of the attributes. For
example, not all courses have the credit information since such information
was not always available.

Institutions 39
Courses 179, 113
Prerequisites 72, 848

Table 3.1: Course database statistics [45]

The course prerequisites were identified by applying NLP techniques on
the descriptive attributes of the courses. The UWB says that they have
used NLP techniques such as ER1 to match course prerequisites [45]. Also,
the SRT2 was developed to find the corresponding syllabi online for each
known course. The transferability records are the official transferability
decisions of institutions. Each transferability record consists of three at-
tributes:

• Course ID (transferring from),

• Course ID (transferring to),
1Entity recognition
2Syllabi retreival tool
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• Transferability decision (”YES” or ”NO”).

Both of the courses within a single transferability record come from different
institutions. Only the transferable pairs have been downloaded from the of-
ficial institution databases (the non-transferable records are not available
as transferability pairs). Because of this, the non-transferrable pairs were
artificially created as described in [45]. The table 3.2 describes the resulting
course transferability database.

Institution Positive Negative
Michigan State University 1, 268 26, 063
Purdue University 329 0
University of Alabama 913 0
University of Maryland 2, 078 3, 588
University of Virginia 27 30
University of Washington 127 125
University of Wisconsin-Eau Claire 1, 730 26
University of Wisconsin-Madison 2, 232 2, 128
University of Wisconsin-Milwauke 1, 654 0
University of Wisconsin-Whitewater 1, 598 4
Other 3, 642 26, 824
Total occurrence 15, 598 58, 788
Total transfers 7, 895 29, 301

Table 3.2: Transferrability database statistics [45]

3.1.1 Dataset Structure
The collected dataset is stored in a PostgreSQL [30] relational database.
The database consists of the following 7 tables:

• dd_institution - information about particular institutions,

• dd_course - course attributes,

• dd_syllabus - syllabi details retreived with the SRT,

• dd_transfer - transferability records,

• course_prerequisity - links to course prerequisites,

• course_transfer_from - source transferability courses,
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• course_transfer_to - target transferability courses.

The figure (3.1) visualizes the ERA3 model for the created data collection.

dd_institution

id

name

short_name

url

full_name

dd_course

id

credits_max

credits_min

department

description

level

name

prerequisity_text

short_name

subtopic

syllabus

topic

institution_id

dd_syllabus

id

url

course_id

file

course_prerequisity

prerequisity_id

course_id

course_transfer_from

transfer_id

course_id

course_transfer_to

transfer_id

course_id

dd_transfer

id

transferable

Figure 3.1: Dataset ERA model

3.2 Model Description
This section presents the UWB transferability decision model for the Course
Articulation task. In particular, the section describes the employed feature
set as well as the used classification algorithm.

The UWB model treats the Course Articulation task as the STS task
meaning that the transferability decision is based on the semantic similarity
of the descriptive course attributes – the title and description.

3Entity Relation Attribute
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The [45] sees the transferability decision as a binary decision that takes
the two courses and returns either ”YES” or ”NO” decision regarding the ac-
tuall course pair transferability. The UWB model does not take the asym-
metric nature of the course pair transferability into account; this means that
once the pair A→ B is classified as transferable, the pair B → A must also
be classified as transferable.

3.2.1 Feature Set
For the transferability decision, the UWB system employs the following set
of features combined:

• The cosine similarity score between the topic probabilities from the LDA
model trained to recognize 400 topics.

• The cosine similarity score between the vectors of TF-IDF scores for
the documents.

• A number of words shared by courses in the title and description
course attributes.

• A number of keywords shared by courses in the title and description
course attributes.

• The cosine similarity between the vectors containing keyword proba-
bilities for both of the courses.

The LDA and TF-IDF models are trained on the all courses from the created
course database consisting of 179, 113 courses. The model uses theMaximum
Entropy [5] classifier for the course pair transferability prediction.

3.2.2 Keyword extraction process
Keywords extraction presents a challenge when it comes to course descrip-
tion and title. The [45] says that the average number of words in a course
description is about 30 words. Thus, for the keyword extraction, the UWB
computes the word scores using both of the LDA and TF-IDF models as
described in section 2.2.3. The words with highest scores are then selected
as the keywords.
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4 System Improvement

The purpose of this chapter is to analyze the UWB system and describe
the improvements that have been done in this thesis. The first part con-
tains the analysis and justification of the particular selected improvements.
Second, we describe the technical details of some of the implemented im-
provements.

4.1 Problem Analysis
This section contains the analysis and decision steps that led to the selection
of the particular implementations of the UWB system improvements. We
choose to reimplement the system to set a baseline and to verify the per-
formance results. To increase the original system performance, we have
decided to implement new functionality at different levels of the system. Ad-
ditionally, we have decided to create an alternative classifier for the course
transferability. For that, we use ANN models.

4.1.1 System Reimplementation
The original system developed by the UWB is written in the Java [3] pro-
gramming language; this is not suitable for us since one of our ideas is to
use a neural networks approach to solve the Course Articulation task.

While there exists a deep learning library for Java – Deeplearning4j [44],
we have decided that the Python language is the best fit for this work. One of
the reasons for selecting the Python is the fact that most of the development
and research in the area of ML1 is currently done using this language, another
reason is that we can use the deep learning libraries Tensorflow [1] and Keras
[8] which are written in Python and currently tend to be one of the best
libraries for the building ANN models.

4.1.2 Preprocessing Phase Improvement
The preprocessing phase in the UWB system is pretty straightforward and
using only lowercasing, tokenization, and stopwords removal steps. There are
many ways to improve the preprocessing phase. The proposed enhancements
are analyzed and described further in this subsection.

1Machine learning
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Stemming

Initially, we wanted to employ the stemmer in the preprocessing phase, but
we have dropped this intention as we have decided that it would not bring
any benefit. The reason for not including the stemming step into the pre-
processing phase is that we aim to use pre-trained word embeddings for im-
plementation of the semantic-based features (subsection 4.1.3) and the vo-
cabulary of the embeddings models does not include stems for the words.

If we have used the stemming, we would have to train the word embed-
dings for ourselves, and we could not benefit from using a higher quality
pre-trained embeddings.

Spellchecking

After manually browsing the course database, we have noticed that many
courses have spelling typos in their descriptive attributes. Thus, we have
decided to employ a spellchecker in the preprocessing phase. This brings
two benefits; first, it will reduce the overall vocabulary size and second, it
will map the misspelled words to a single entity and thus increase the per-
formance of the employed features.

Implementation of a complex and sophisticated spellchecker would be
a time-consuming work and since the spellchecking is just one of many con-
sidered enhancements to the UWB system, we have decided to implement
a unigram-based spell checked using the Damerau-Levenstein distance [11].
This distance metric is based on a classical Levenstein distance (or edit dis-
tance) but it allows a transposition as the new edit operation. The trans-
position of characters is a very common case when making a spelling mis-
takes and adding a transposition as a possible spelling mistake would catch
a greater set of spelling errors.

Phrase Detection

Extracting the multi-word expressions from the courses could improve the sys-
tem performance. The preprocessing phase of the UWB system does not
extract phrases in any way.

One of the possible approaches is to apply a phrase extracting algo-
rithm for the available course database to extract phrases based on word
co-occurrence. However, as mentioned in the previous subsection, we plan
to use pre-trained word embeddings and it is essential to have the phrase
embeddings available. Extracting the phrases by employing some sophis-
ticated phrase extraction algorithm could result in the necessity to train
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the embeddings for the extracted phrases.
To target this, we use the vocabulary of pre-trained word embeddings that

are containing phrases in the vocabulary. We download the 300-dimensional
Word2Vec embeddings trained on about 100 billion of words from the Google
News dataset2. The downloaded dataset contains 3, 000, 000 word embed-
dings for the English words and phrases.

Using this approach – and not implementing any phrase extraction algo-
rithm – have two benefits, first, we do not have to employ any sophisticated
algorithm for phrase detection and second, we have the word embeddings for
the phrases already trained.

4.1.3 Feature Set Extension
The features of the UWB model are mostly lexical-based, adding semantic-
based features could significantly improve the overall system performance.
We have decided to try to improve the UWB system by adding new features
based on the sequence embeddings. In the implemented features, we will
use the same word embeddings as for phrase extraction. This part is critical
because we need the embeddings available for the phrases.

First, we train the Doc2Vec model. We have decided for the Doc2Vec
because it is based on the same architecture as the Word2Vec (which we also
use and which has excellent results for the word level embeddings) but it
works on a sequence level.

Next, we want to experiment with another less sophisticated methods.
We use the weighted word embeddings averaging by the TF-IDF weights.
This approach is described in section 2.3.2.

4.1.4 Alternative Classifier
This thesis treats the Course Articulation task as the STS task, for this task
ANN models are commonly used and are very efficient. Because of that, we
have decided to create an ANN-based model as an alternative course pair
transferability classifier.

The essence of the STS task is to compare two textual entities. We
have decided to experiment with ANN models based on the siamese archi-
tecture (for siamese networks, see section 2.4.4) since the siamese networks
were originally designed specifically for the comparison of multiple entities.
We expect that this approach may significantly overcome the UWB system
results.

2https://code.google.com/archive/p/word2vec/
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Preprocessing for ANN Models

The preprocessing phase used in the UWB system is convenient for lexical-
based features. For the alternative classifier using an ANN approach, we
need to use different preprocessing steps. In particular, we do not remove
the interpunction and the stopwords.

We keep the interpunction in the text because it still carries the semantic
insight of the text and the RNN models can benefit from that. We identify
interpunction as a separate token, but we do keep the interpunction joining
the words (e.g., ”machine-learning” is kept as a single token). Interpunction
is removed in the UWB model preprocessing pipeline because the employed
features in the UWB model are lexically-based and such features cannot
capture the information provided by the interpunction.

Also, the stopword removal step is more of a technique related to the IR.
Keeping the stopwords in the text can confuse the lexically-based features,
but the semantic-based approaches (especially RNN based models) can have
better results without removing the stopwords.

Figure 4.1 shows the difference between the UWB system and out mod-
ified preprocessing phases outputs. The first example shows the output of
preprocessing phase used in the UWB system, and the second shows the out-
put of preprocessing phase for ANN models.

"We had too many fumbles; we lost the game"                                                   
["fumbles", "lost", "game"]

(a) Preprocessing result for the UWB model

"We had too many fumbles; we lost the game"
["We", "had", "too", "many", "fumbles", ";" ,"we", "lost", "the", "game"]

(b) Preprocessing result for our ANN model

Figure 4.1: Difference between preprocessing phases

4.2 System Reimplementation
The UWB system was developed using several libraries that are not available
for Python. The used libraries are Brainy [17] as the machine learning
library and the Mallet library [26] for the LDA models. The lack of support
for these libraries in Python was initially an issue as we needed to select
suitable replacements for these libraries. As a result, we have decided to
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implement our own mechanism for operating with features and models, this
mechanism is strongly inspired by the Brainy library. For the NLP models,
we have used the Gensim [38] library. The Gensim also provides an interface
for the models to work with the word embeddings and sequence embeddings.

The Python codebase developed during the work on this thesis could be
used as the core for the Course Articulation systems, it allows building new
models that are based on feature embeddings as well as creating the mod-
els for this task from scratch. We have recreated the UWB model using
the developed mechanism for the features and the Gensim library.

4.3 Implemented Extensions
This section describes the technical details of some of the implemented en-
hancements and features. The subsection 4.3.3 describes the architecture
details of created alternative classifier.

4.3.1 Spellchecking
The implemented spellchecker builds the vocabulary of the words by an-
alyzing a large document collection given on input. Also, each word in
the vocabulary has also stored occurrence frequency. This allows selecting
the most probable word in the case where multiple corrections are avail-
able by selecting the most probable word based on the stored occurrence
frequency.

Once the spellchecker builds the vocabulary, it works in the following
way. The algorithm takes the wordW on the input and ifW is in the stored
vocabulary, the algorithm returns it without any modification. If W is not
found in the vocabulary, the spellchecker generates a set of words S where
each W ′εS has the Damerau-Levenstein distance equal to 1. Then, the most
frequent word in the vocabulary that matches any word from S is returned.
If none found, the spellchecker returns the input word W unmodified.

4.3.2 Phrase Detection
To detect phrases, we create the word bigrams on the input text and we
check whether the vocabulary of the downloaded word embeddings contains
any of the created bigrams. If we find a match, we join to corresponding
words in the input text to a phrase.

We do not extract trigram or higher order n-gram phrases because such
phrases in the downloaded word embeddings vocabulary are mostly not com-

37



mon phrases from the natural language but only a statistically frequently
co-occurring words (e.g. a famous person names, or names of places).

4.3.3 ANN-based Classifier
In this thesis, we implement an alternative classifier for the course transfer-
ability decision. The classifier is based on the siamese ANN architecture.
As described in subsection 4.1.4, we modify the preprocessing steps used for
the alternative classifier.

Model Description

The implemented model consists of the two subnetworks where each one
accepts one course from the transferability pair, the result of the siamese
subnetworks is then processed and the output of the model is a ”YES” or
”NO” decision regarding the course pair transferability.

We set the model hyperparameters experimentally. The siamese subnet-
works consist of 300-dimensional Embeddings layer and two 300-dimensional
LSTM layers stacked on top of each other (for details on stacking RNNs, see
subsection 2.4.2). Both of the stacked LSTM layers are using a 30% recurrent
and output dropout. The output of the siamese subnetwork is interpreted
as the encoded course information. The figure 4.2 visualizes the architecture
of the siamese subnetworks.

Embeddings - 300 Dim

LSTM - 300 Dim

LSTM - 300 Dim

Course attributes

Encoded course information

Figure 4.2: Implmeneted siamese subnetworks
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The output of both of the siamese subnetworks is concatenated and sent
to the two 900-dimensional densely connected layers with RELU activation
stacked on top of each other. We add the 40% and 30% dropouts between
the layers with RELU activation function.

The output from the densely connected layers is then sent to the 2-
dimensional densely connected layer with Softmax activation. We choose
the output number of neurons equal to the classification classes as it en-
ables us to get scores per class and thus enables us to get more insight of
the training and classification process.

The complete model is visualized in figure 4.3. All of the layers are
trainable except the Embeddings layers. The model has total of 2, 796, 002
parameters.

Embeddings - 300 Dim

LSTM - 300 Dim

LSTM - 300 Dim

Course 1 attributes

Embeddings - 300 Dim

LSTM - 300 Dim

LSTM - 300 Dim

Course 2 attributes

Concatenate - 600 Dim

Dense (RELU activation) - 900 Dim

Dense (RELU activation) - 900 Dim

Dense (Softmax activation) - 2 Dim

Transferability decision

Figure 4.3: Architecture of created model
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5 Experimental Results

In this chapter, we present the experimental results of the improvements
that we have made to the UWB system. Section 5.1 describes the designed
experiments, the results are then presented further in the chapter.

5.1 Designed Experiments
We have designed the series of experiments to validate the improvements to
the UWB system. The first experiment validates the reimplementation of
the existing system and sets a baseline for all of the following experiments.
All other experiments are compared to the baseline and not to the original
results of the existing system. The list of experiments is the following:

1. Validate the reimplementation of the existing system (section 5.4.2).

2. Evaluate the performance of the reimplemented system with improved
preprocessing phase (section 5.5).

3. Evaluate the performance of the reimplemented system with semantic-
based similarity features (section 5.6).

4. Evaluate the performance of the ANN-based classifier on the existing
course transferability database (section 5.7.1).

5. Validate the created alternative classifier on a similar task (RTE1 task
using the SNLI2 dataset [7]) (section 5.7.2).

The purpose of the last experiment is to check that the created alternative
classifier provides meaningful results on the related task and that the results
on the existing course database are not caused by overfitting of the created
model.

The presented results in experiments 1-4 are the results of a 10-fold
cross-validation on the whole course database. The results of experiment 5
are results on the SNLI dataset and are compared with the results of other
published models on this dataset. In section 5.2.2, we explain why we have
chosen the SNLI dataset for the validation of our model.

1Recognizing textual entailment
2Stanford natural language inference
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5.2 Data Collections
This section provides the description of the datasets used in the experiments.

5.2.1 Existing Course Database
The existing course database is used as described in section 3.1. No changes
have been made to this dataset for the experiments.

5.2.2 SNLI Dataset
The SNLI dataset is a collection of manually labeled English sentences for
balanced 3-class classification. The output classes are entailment, neutral,
and contradiction. The SNLI dataset consists of 570, 000 sentences and was
created to support the RTE task.

We choose the RTE task for the model validation because of the similarity
with our approach to the Course Articulation task. The SNLI dataset was
picked for our experiments because it provides the consistent collection of
training, development, and testing data parts. Additionally, the authors of
the SNLI dataset provide the summary of published results meaning that
we can compare our model performance to other published models.

When creating the dataset, the annotators were shown only the cap-
tion of a photography without showing the actual picture. The annotators
were then asked to write the alternative captions. The literal wording of
the instructions for writing alternative captions [7] is the following:

• Write one alternate caption that is definitely a true description of
the photo. Example: For the caption ”Two dogs are running through
a field.” you could write ”There are animals outdoors.”

• Write one alternate caption that might be a true description of
the photo. Example: For the caption ”Two dogs are running through
a field.” you could write ”Some puppies are running to catch a stick.”

• Write one alternate caption that is definitely a false description of
the photo. Example: For the caption ”Two dogs are running through
a field.” you could write ”The pets are sitting on a couch.” This is
different from the maybe correct category because it is impossible for
the dogs to be both running and sitting.
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5.3 Evaluation Metrics
The experiments are evaluated using the evaluation metrics described in
section 2.6.1. Specifically, the evaluation metrics are the following:

• Accuracy

• Sensitivity

• Specificity

Because of imbalance of the transferability decisions in the existing course
database, the simple and naive classifier that would classify all course pairs
as non-transferable would achieve high accuracy. To target this, we do not
measure the quality of the classifiers only by the accuracy metric, but we
consider other metrics as well. That way, we can consider the classifier with
lower accuracy as better than other classifier which has higher accuracy.

5.4 Setting Baseline
To verify the UWB model implementation and to set a baseline for our
experiments, we reimplement the original UWB system into the Python
programming language. The explanation of this step is in the chapter 4.

The codebase of the existing system provided by the UWB does not
contain the training details for the used models such as LDA for recognizing
400 topics. Only the serialized versions of trained models are provided. For
the reimplemented system, we have used a slightly different set of features
for our reimplemented system.

We optimized the hyperparameters of the models only on the last fold of
the cross-validation, the remaining 9 folds were the heldout data. We were
able to extract hyperparameters and thus successfully train only the LDA
on 100 topics. When we used our LDA trained to recognize 100 topics in
the keyword extractor with the TF-IDF model, we got worse results than
using TF-IDF alone. Because of this, we have decided to use only the TF-
IDF model for keyword extraction.

5.4.1 Models Parameters
This section contains the training details for the used models during the reim-
plementation. The models are trained using the Gensim library. We mention
only the parameters that we change from the default values that are used
by the Gensim library.
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LDA

We trained the LDA with the following parameters:

Topics 100
Iterations 1000
Alpha 50.0
Eta 0.1
Passes 5

5.4.2 System Reimplementation
The first experiment is to verify the reimplementation of the existing sys-
tem and to set a baseline for other experiments. This subsection contains
the results achieved by running the Java codebase given by the UWB and
results from our reimplemented Python codebase.

Results

The results of the experiment are in the table 5.1.

Accuracy Sensitivity Specificity
Java codebase 86.4% 52.1% 95.6%
Python codebase 86.7% 51.4% 96.1%

Table 5.1: Results of system reimplementation experiment

Discussion

We achieve almost the same results as the existing UWB system despite
using a slightly modified feature set. We do not use the same feature set
because we do not have the training details for some models (for an expla-
nation, see subsection 5.4). Specifically, we use LDA recognizing 100 topics
instead of LDA recognizing 400 topics and we did not use LDA as the part
of the keyword extractor.

We explain the similar results despite different features by the fact that
Gensim library implements some optimizations for the LDA and TF-IDF
models. We can say that we have successfully reimplemented the existing
UWB system and thus set a valid baseline for other implemented improve-
ments.
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5.5 Improved Preprocessing
In this section, we describe experiments that are related to the preprocessing
phase of the UWB system. We present separate experiments measuring
the performance gain by employing the spellchecking in the preprocessing
phase and by extracting the phrases from the courses.

5.5.1 Spellchecking
In this experiment, we employ the spellchecker in preprocessing. We exper-
imentally create the spellchecker vocabulary on the content of [24].

Results

After manually checking the spellchecker results, we have decided not to
measure the system performance with the spellchecked courses. This was
because the implemented spellchecker on the available course database re-
sulted in many correction errors. We tried to reduce the error rate by mod-
ifying the Damerau-Levenstein distance to permit only the transpose oper-
ation, but still, a lot of words were corrected incorrectly (e.g., ”GPA” was
corrected to ”gap”, or ”DNA” was corrected to ”and”).

Discussion

We did not measure the system performance with the spellchecker included.
The unsatisfactory results are caused by the simplicity of the implemented
spellchecker. We could target this issue by selecting a better dataset for
creating a spellchecker vocabulary. However, the existing course database
includes courses for various topics and domains, we would need to initialize
the spellchecker vocabulary on a universal and large document collection, or
we would need to employ a more sophisticated spellchecking algorithm. As
the spellchecking is only one of the many improvements planned to imple-
ment, we have decided not to tune the spellchecker.

5.5.2 Phrase Detection
The second made experiment related to the preprocessing phase is adding
the phrase extraction. The phrase extraction process is implemented as
described in subsection 4.1.2.

The purpose of this experiment is to validate that identifying phrases in
the descriptive attributes of the courses will result in better performance of
the UWB system.
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Results

Using the described approach, we have detected the total of 7786 phrases in
the available course database. A few examples of the detected phrases are
”biological sciences”, ”supercritical fluid”, ”civil rights”, or ”liquid fuels”.

Results of the experiment are in table 5.2. For this experiment, we did
not tune any of the hyperparameters.

Accuracy Sensitivity Specificity
Baseline 86.7% 51.4% 96.1%
Baseline + phrases 86.4% 49.9% 96.1%

Table 5.2: Results of phrase extraction experiment

Discussion

Adding a phrase extraction step into the preprocessing phase of the sys-
tem lead to worse results. While the overall system accuracy decreases by
only the 0.3%, the sensitivity metric decreases by 1.5%. The specificity
does not change. The fact that significant change of sensitivity metric does
only slightly affect the overall system accuracy points at the imbalance of
the classification classes.

We expected increased accuracy by adding the phrase extraction step.
It is because the natural language contains some phrases and considering
such phrases as a single entity better describes the meaning of the text. We
explain the results of the experiment by the inappropriate hyperparameters
of the used models. Optimizing hyperparameters on the modified prepro-
cessing phase might lead to better results.

5.6 Semantic-based Features
In this section, we present the results of experiments with adding a sequence
embeddings features to the feature set of the UWB model.

Also, because the phrases have more of semantic meaning, we run the ex-
periments both with and without the phrase extraction in the preprocessing
phase. We expect for the phrase extraction to provide better results when
combined with the semantic-based features.
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5.6.1 Doc2Vec Model
In the third made experiment, we train the Doc2Vec model on the available
course database and use it as a feature in the existing feature set. We train
the Doc2Vec model in Gensim with the following parameters:

Vector size 300
Window 10
Min. count 5
Epochs 10

Results

Results of the experiment are in table 5.3.

Accuracy Sensitivity Specificity
Baseline (BL) 86.7% 51.4% 96.1%
BL + Doc2Vec 86.7% 51.3% 96.2%
BL + phrases + Doc2Vec 86.8% 51.8% 96.1%

Table 5.3: Results of experiments with Doc2Vec model

Discussion

Adding a Doc2Vec model to existing feature set without phrase detection
does not significantly change the performance of the system. The overall
system accuracy does not change, but the sensitivity decreases by 0.1% and
specificity increases by 0.1%. Despite the consistent accuracy, we consider
this system as providing worse results for two reasons; first, the Doc2Vec
feature clearly could not capture the semantic relations better than existing
feature set combined, and second, the sensitivity metric is slightly worse.

By combining a phrase extraction with the Doc2Vec model, the sys-
tem provides better results than the baseline. Compared to the baseline,
the Doc2Vec with phrase extraction increases the overall accuracy by 0.1%
and increases sensitivity by 0.4%. The specificity remains unchanged. We
explain better results by the fact that phrases provide more of a semantic
insight on the text. The Doc2Vec model is a semantic-based feature and
thus can benefit from having the phrases identified, the existing feature set
could not do that since it consists of mostly lexically-based features.
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5.6.2 Weighted Word2Vec Averaging
In the next experiment, we try a more straightforward method to measure
the course similarity. In particular, we use a weighted word embeddings
averaging using the TF-IDF weights as described in subsection 2.3.2.

Results

Results of the experiment are presented in table 5.4.

Accuracy Sensitivity Specificity
Baseline (BL) 86.7% 51.4% 96.1%
BL + Doc2Vec 86.7% 51.3% 96.2%
BL + phrases + Doc2Vec 86.8% 51.8% 96.1%
BL + V2W avg 87.1% 52.6% 96.2%
BL + phrases + V2W avg 87.0% 51.8% 96.3%

Table 5.4: Results of experiments with Word2Vec averaging

Discussion

Applying the feature based on the weighted Word2Vec averaging without
extracting the phrases in the preprocessing outperforms the previous ex-
periments. The Word2Vec averaging increases accuracy by 0.4% compared
to to the baseline and 0.3% compared to the Doc2Vec feature with phrase
extraction.

On the other hand, adding a phrase extraction to the Word2Vec weighted
average feature does not lead to better performance results as expected by
the outcome of the previous experiments. With the phrase extraction added,
the weighted Word2Vec averaging feature performs only slightly better than
the Doc2Vec feature with phrase extraction step.

We explain the better results using the simple weighted word embeddings
averaging without the phrase extraction by the fact that we have used a high
quality pre-trained word embeddings. This simple method, however, was
not able to capture the additional semantic information provided by phrase
extraction step.

5.7 ANN-based Classifier
We have created an alternative classifier based on the ANNs. The cre-
ated model is described in subsection 4.3.3. We have applied to model on
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the SNLI dataset to verify the model performance on the task related to our
approach for the Course Articulation task.

The training details for the ANN-based classifier are described in the sub-
sections related to the particular experiments.

5.7.1 Existing Course Database
The first experiment with the alternative classifier was done on the available
course transferability database.

When training the model we monitor the validation accuracy metric to
detect when the model starts overfitting, and we always use the best-trained
model. We have trained the model using the following configuration:

Max. epochs 25
Batch size 32
Validation split 0.1
Optimizer ADAM
Loss function categorical crossentropy

Results

The results of the experiment are presented in table 5.5. Figures 5.1, and 5.2
shows the development of the accuracy and loss metrics through the training
process (both of the metrics are averaged over all epochs).

Accuracy Sensitivity Specificity
Baseline (BL) 86.7% 51.4% 96.1%
BL + phrases + Doc2Vec 86.8% 51.8% 96.1%
BL + V2W avg 87.1% 52.6% 96.2%
ANN classifier 98.3% 93.5% 99.5%
ANN classifier + phrases 98.3% 93.5% 99.4%

Table 5.5: Results of ANN-based model experiments
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Figure 5.1: Training accuracy vs. Validation accuracy
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Figure 5.2: Training loss vs. Validation loss
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Discussion

As expected, the ANN-based transferability classifier performs significantly
better than the original UWB system and also outperforms all of the imple-
mented improvements made to this system. We have tried to run the ANN
classifier both with and without the phrase extraction, and the results re-
mained the same for both cases.

The near-perfect results can be caused by the overfitting of the classifier.
However, based on the figures 5.1 and 5.2, we can say that overfitting is
the most probably not our case. We explain the results with the complexity
of the ANN model, and thus that the model is able to capture much more
information about the courses from the provided attributes than the lexical-
based features employed in the UWB system.

5.7.2 SNLI Dataset
To verify the quality and meaningfulness of the created ANN-based trans-
ferability classifier, we have used the classifier for the RTE task on the SNLI
dataset which is described in subsection 5.2.2.

When training the model we monitor the validation accuracy metric to
detect when the model starts overfitting, and we always used the best-trained
model. The model training have been done using the following configuration:

Max. epochs 50
Batch size 256
Optimizer ADAM
Loss function categorical crossentropy

Results

Table 5.6 shows our results on SNLI dataset compared to other published
models. The last entry in table 5.6 are the best results from sentence encod-
ing models. The complete table of published results on the SNLI dataset is
available at https://nlp.stanford.edu/projects/snli/. We do not aim
to achieve best results compared to other published models, the purpose of
this experiment is to validate the quality of created ANN-based classifier.

Figures 5.3, and 5.4 visualizes the training process. Specifically, they
show the development of the training accuracy and validation accuracy
throughout the model training process.
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Model (year of publication) Params Train acc. Test acc.
... ... ... ...

100D LSTM encoders (15) 220k 84.8% 77.6%
Our implemented model 2.8m 83.2% 81.9%
300D CNN encoders (15) 3.5m 83.3% 82.1%
300D SPINN-PI encoders (16) 3.7m 89.2% 83.2%

... ... ... ...
300D Self-Att. Network (18) 3.1m 92.6% 86.3%

Table 5.6: Results on the SNLI dataset [7]
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Figure 5.3: Training accuracy vs. Validation accuracy
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Discussion

In this experiment, we use our ANN-based classifier to solve the RTE task
using the SNLI dataset. The results have shown that our ANN-based model
can solve the task related to the Course Articulation task. Although, the re-
sults on the SNLI dataset have shown that the ANN-based classifier does
not match the state-of-the-art results.

By scoring results that are comparable to other models ensures us that
our results on the existing course transferability database are not produced
by overfitting the model.
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6 Conclusion

In this chapter, we propose the possible improvements (section 6.1) to this
thesis and we conclude the thesis (section 6.2).

6.1 Future Work
In this thesis, we have created a system for Course Articulation task. The fu-
ture improvements to this work may include:

• Extend the existing course database and available course transferabil-
ity records. When creating the transferability database, do not select
the course pairs for annotation randomly, but employ a more sophis-
ticated approaches to suggest the pairs for annotation – we believe
the Doc2Vec model, or any other method based on sequence embed-
dings can be used for course pair suggestions.

• Develop a way how to reuse the course transferability predictions to
improve the system. For example, select transferability predictions
with the lowest confidence, annotate them and extend the training
dataset with such course pairs.

• Employ more attributes of the courses when classifying the course
pair transferability, if available. For example, consider the similarity
of the prerequisites of the courses, credit information, etc.

• Target the possible asymmetricity of the transferability records. We
believe that in order to achieve this, the descriptive attributes of
the courses are not enough and more attributes would have to be
considered when classifying the course pair transferability.

• Develop a more sophisticated spellchecking mechanism and use it in
the preprocessing phase of the system.

• Create an online demo for the developed system. This would require to
design and implement a graphical user interface for the web browser.
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6.2 Conclusion
In this thesis, we have analyzed and improved the system for the Course
Articulation task which was originally developed by the UWB.We have reim-
plemented the existing codebase from Java programming language to Python.
Next, we have designed and implemented several improvements to the UWB
system, and last, we have employed artificial neural network as an alternative
classifier for the course transferability. In particular, the improvements to
the UWB system consist of improving the preprocessing phase (spellchecking
and phrase extraction), and implementing semantic-based features. The al-
ternative classifier is based on siamese neural networks.

The reimplemented system provides comparable results when compared
to the UWB system. Our experiments have shown that adding a phrase ex-
traction to the UWB system does not lead to the performance improvement.
On the other hand, our experiments have proved that combining phrase ex-
traction with semantic-based features slightly improves the overall system
accuracy. We explain such results with the fact that identifying phrases
provides more of a semantic insight on the text and lexical-based features
are not able to capture the additional information provided by the extracted
phrases.

The results from the experiments with the created alternative classifier
have shown, that results achieved by employing artificial neural networks
significantly overcame the results achieved by the UWB. Specifically, the al-
ternative classifier scores the 98.3% accuracy while the UWB system with
our improvements scores only 87.1% accuracy on the existing course trans-
ferability database. To verify the created classifier, we have used it to solve
the RTE task on the SNLI dataset where we achieved the accuracy of 81.9%.
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A DVD Content

The content of the attached DVD is structured as follows:

• thesis/ The PDF version of this thesis and LATEXsource.

• program/ Contains the application source codes.

– .docker/ Contains Dockerfile [27] to build the environment.
– bin/ Contains scripts to run the application.
– data/ Contains the data used for the experiments.
– src_owen/ Contains source codes related to the course database.
– src_snli/ Contains source codes related to the SNLI dataset.
– README.md Instructions on how to run the source codes.
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