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Anotace

Tato bakalářská práce se zabývá analýzou vybraných metod využ́ıvaných v úloze propagace

počátečńı nejistoty pro dlouhodobé časové horizonty. Vybrané metody jsou teoreticky

analyzovány a následně testovány na dvou simulačńıch modelech pohybu objekt̊u po oběžné

dráze Země. Výsledky simulaćı jsou poté porovnávány mezi sebou.
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This bachelor thesis deals with analysis of selected methods utilized within the problem of

propagating initial uncertainty for a long time horizon. First, these methods are theoret-

ically analyzed; second, they are tested using two cases of Earth orbit movement models.

The results are compared subsequently.
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CHAPTER 1

Introduction

By nature, real systems usually have some non-deterministic features which may be mod-

eled in terms of stochastic models. If a state-space model is taken into consideration, the

core element, which represents the system status is its state. The state is usually not mea-

surable directly and therefore has to be estimated from noisy data. Consider a continuous

stochastic dynamical system model with a discrete-time measurement. State of such model

at any time is per se described by some probability measure. In order to study the time

evolution of this state, one needs to determine its description at a desired time, which can

be done within two phases: time update (prediction) and measurement update (filtering).

The measurement update goal is to improve the current knowledge of the system state

using a single measurement at a time.

The time update is a continuous process which might be called uncertainty propagation.

This process takes place between the measurement time instants and it can be very difficult

if the system under consideration is highly nonlinear. In many cases of interest the state

description reveals a Gaussian distribution, but it can easily become non-Gaussian, depend-

ing on chosen coordinate system and application [1, 2]. This means that the uncertainty

propagation is often only an approximation of a very complex reality. Various uncertainty

propagation methods have been developed in order to satisfy common objectives including

computational requirements (speed), accuracy and system suitability.

Such methods and above mentioned models are widely used in areas such as automatic

control, economics or the space situational awareness (SSA). In terms of SSA, a compact

summary of uncertainty propagation methods can be found in [3].

The stochastic system behavior can be affected in terms of multiple error sources. Re-

ferring the seminal paper [4], the uncertainty sources can be differentiated with respect to

1



an epistemological perspective into two fundamental types, aleatory and epistemic uncer-

tainty.

Aleatory uncertainty describes the irreducible natural uncertainty, e.g. additive noise.

Epistemic uncertainty describes the designer’s lack of knowledge, inaccurate model e.g.

uncertainty in initial condition, or uncertainty in model parameters.

The continuous dynamic systems that are theoretically studied in this work are deter-

ministic state-space models with an uncertain initial condition. No measurements, inputs,

or noise within the system state evolution are considered. The objective of this thesis is

to analyze some of the uncertainty propagation tools (uncertainty propagators). The the-

oretical methods are implemented and tested with a chosen nonlinear model. The results

are compared in various objectives settled before.

The thesis is organized as follows. First, basic theory is presented. Theoretical analysis

of chosen uncertainty propagation methods follows. Two test problems are then settled

with the following results. Finally, comparison and conclusion are given.

2



CHAPTER 2

Theory Preliminaries

2.1 Uncertainty Representation

Let a random process x(t) ∈ Rn (continuous in both time and values) be distributed by

the cumulative density function (CDF) P (x(t)). If the CDF is absolutely continuous, the

process x(t) can be described by the probability density function (PDF) p(x(t)), which

must be a non-negative function and also must integrate to unity over the state space.

Then, the probability of x(t) being in some volume Ξ can be computed as

Pr(x(t) ∈ Ξ) =

∫
Ξ

dP (x(t)) =

∫
Ξ

p(x(t))dx (2.1)

For any fixed time t, x(t) is a random vector denoted simply as x ∈ Rn.

2.1.1 Statistical Moments

Statistical moments of a random vector x describe some overall qualities of the distribution

p(x) at a given time t. The first two moments are mean and covariance. The mean m ∈ Rn

measures the central tendency, the covariance matrix P ∈ Rn×n measures spread of the

distribution of its mean,

m = E[x] =

∫
Rn

ξp(ξ)dξ (2.2)

P = E[(x−m)(x−m)T ] =

∫
Rn

(ξ −m)(ξ −m)Tp(ξ)dξ (2.3)

3



where E[.] denotes the expectation operator. Other moments can be defined similarly. The

formal derivative of mean and covariance matrix with respect to time is

ṁ = E[ẋ] (2.4)

Ṗ = E[ẋxT + xẋT ]− (ṁmT + mṁT ) (2.5)

2.1.2 Gaussian and Gaussian Mixture Model Distributions

If a random vector x is Gaussian, its PDF is given by

pg(x; m,P) =
1√
|2πP|

exp{−1

2
(x−m)TP−1(x−m)} (2.6)

where | . | represents the matrix determinant, m and P are mean and covariance matrix,

respectively. The Gaussian distribution can be described with only mean and a covariance

matrix which limits the PDF to have only certain proportions: it is centered around the

mean and its contours can only be ellipsoids (due to the covariance). If the true distribution

px cannot be sufficiently represented using the Gaussian PDF (the random vector x is not

Gaussian), other representations such as the Gaussian mixture model (GMM) can be used

as follows,

px(x,m,P) ≈
N∑
i=1

αipg(x; mi,Pi) (2.7)

where

αi ≥ 0 ∀i ∈ {1, 2, . . . , N} and
N∑
i=1

αi = 1 (2.8)

with N being the number of components and mi,Pi being mean and covariance associated

with the ith component, respectively. It can be shown [5] that approximation of a PDF px

by a GMM PDF converges uniformly as the number of components N increases without

bounds. This means that the more components of GMM are used, the better approximation

is yielded, as can be seen in the AEGIS uncertainty propagation method [6], which analysis

is in Section 3.7.

4



2.2 Splitting a Gaussian Distribution

If the true PDF px is approximated by a GMM, the parameters of the GMM naturally

change during the time evolution. In order to catch better the shape of the true PDF in a

future time, the number N of the GMM components can be enlarged replacing any of the

existing GMM component with several new, smaller ones (a replacing GMM).

First, consider replacing an univariate standard Gaussian distribution with a GMM

consisting of ∆l components as the following splitting process,

pg(x; 0, 1) ≈
∆l∑
i=1

α̃ipg(x; m̃i, σ̃
2
i ) (2.9)

where α̃i, m̃i, σ̃i are the replacing GMM paramters to be found. If the replacing components

are constrained to have the same variance parameter σ̃i, the parameters can be found for

example by minimizing the Kullback-Leibler divergence between the two distributions (the

PDF to be splitted and the GMM to be used instead) which yields splitting libraries

presented in Tab. 2.1 and 2.2, which are taken from [6], where the splitting process is fully

described. A four-component splitting library can be found in [7].

Second, consider a splitting process in a multivariate case, such as

αpg(x,m,P) ≈
∆l∑
i=1

αipg(x; mi,Pi) (2.10)

the goal is to find the parameters αi, mi, Pi. If the GMM approximation is required to

lay along any chosen eigenvector of P, such as it is illustrated in Fig. 2.1 for the largest

eigenvector, the Jordan decomposition is to be accomplished,

P = VΛVT , V = [v1, . . . ,vn], Λ = diag{λ1, . . . , λn} (2.11)

where λi,vi ∀i are the eigenvalues and eigenvectors, respectively. Then, the parameters

can be computed using

αi = α̃iα, mi = m +
√
λkm̃ivk, Pi = VΛ̃iV

T (2.12)

Λ̃i = diag{λ1, . . . , σ̃
2
i λk, . . . , λn} (2.13)
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where k establishes the chosen eigenvector along which the Gaussian PDF is to be split. If

the largest one is to be chosen, then k = argi max{λi}.

vkm

covariance ellipse

αpg(x,m,P)

≈

∑∆l
i=1 αipg(x,mi,Pi)

m2

covariance ellipses

m3 m1

α2 α1α3

Figure 2.1: Illustration of splitting a Gaussian distribution.

Table 2.1: Three-component splitting library

i α̃i m̃i σ̃i

1 0.2252246249 -1.0575154615 0.6715662887

2 0.5495507502 0 0.6715662887

3 0.2252246249 1.0575154615 0.6715662887

Table 2.2: Five-component splitting library

i α̃i m̃i σ̃i

1 0.0763216491 -1.6899729111 0.6715662887

2 0.2474417860 -0.8009283834 0.6715662887

3 0.35247313 0 0.6715662887

4 0.2474417860 0.8009283834 0.4422555386

5 0.076321649 1.6899729111 0.4422555386
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2.3 Differential Entropy of a Gaussian Distribution

The method AEGIS, explained in Section 3.7, uses entropy in order to indicate when

to start the splitting process discussed in the section above. Therefore, entropy of the

nonlinear and linearized system state is to be discussed in this section.

A Differential (Shannon) entropy of a random variable x ∈ Rn with PDF p(x) is given

by [8]

H(x) =

∫
S
p(x) log p(x)dx = E[− log p(x)] (2.14)

where S = {x : p(x) > 0} is a support set of the PDF. If the PDF is Gaussian, the

differential entropy can be written in terms of covariance matrix,

H(x) = E

[
− log

1

|2πP|1/2
− log exp{−1

2
(x−m)TP−1(x−m)}

]
= E

[
1

2
log |2πP|+ 1

2
(x−m)TP−1(x−m)

]
=

1

2
log |2πP|+ 1

2
E[(x−m)TP−1(x−m)]

=
1

2
log |2πP|+ 1

2
trace{E[(x−m)(x−m)TP−1]}

=
1

2
log |2πP|+ 1

2
trace{PP−1} =

1

2
log |2πP|+ 1

2
trace{I}

=
1

2
log |2πP|+ n

2
=

1

2
log |2πP|+ 1

2
log en =

1

2
log |2πP|en =

1

2
log |2πeP| (2.15)

where I ∈ Rn×n denotes the identity matrix. The differential entropy describes the lack of

information about the random variable.

For the Gaussian distribution, the differential entropy drawback is that if |P| < 1
(2πe)n

,

the entropy becomes negative, which happens if pg(m) > en/2, where m is the mean.

7



2.3.1 Entropy of a Linearized System State

Assuming the initial state has a Gaussian PDF, its entropy is defined by Eq. (2.15), which

temporal derivative is

Ḣ(x(t)) =
d

dt

(
1

2
log |2πeP(t)|

)
(2.16)

=
1

2

1

���
��|2πeP(t)|��

���|2πeP(t)|trace{ 1

��
�2πe

P−1(t)���2πeṖ(t)} (2.17)

=
1

2
trace{P−1(t)Ṗ(t)} (2.18)

with initial condition defined by P(t0).

Assume a linear system of the form

ẋ(t) = f(m(t), t) + A(m(t), t)[x(t)−m(t)], A(m(t), t) =
∂f(x, t)

∂x

∣∣∣∣
x=m(t)

(2.19)

where m(t) is the mean. For such system, covariance P(t) time evolution is governed by

Ṗ(t) = A(m(t), t)P(t) + P(t)AT (m(t), t), P(0) = P0 (2.20)

See Section 3.4.2 for derivation.

Therefore the entropy of a linearized system is governed by

Ḣ(x(t)) =
1

2
trace{P−1AP + P−1PAT} =

1

2
trace{A����PP−1}+

1

2
trace{AT} (2.21)

= trace{A(m(t), t)} (2.22)

with initial condition defined by m(t0). Such entropy evolution can be computed for both

LinCov (see Section 3.3) and FOTE based (see Section 3.4) propagation methods.

8



CHAPTER 3

Uncertainty Propagators

In this chapter, uncertainty propagation methods are theoretically stated and analyzed.The

selected methods include Monte Carlo (MC) simulation, local linearization (LinCov and the

first order Taylor expansion based propagation - FOTE) and statistical linearization meth-

ods (CADET), unscented transformation (UT), and entropy based method for adaptive

GMM update (AEGIS). The descriptions are briefly provided with derivations, a graphical

illustration1, and a theoretical analysis (pros and cons, discussion, etc.).

Methods described herein are certainly not the only ones that exist. The current state

of art is summarized in Fig. 3.1, as it was described in [3], methods that are analyzed

within this thesis are highlighted in red.

The methods can be divided into few categories which are linear, nonlinear and other

methods.

Linear methods focus on a linear assumption about the system model description (local

linearization - discrete-time LinCov, and continuous-time FOTE based propagation) and

uncertainty transformation (statistical linearization - CADET).

Nonlinear methods take the nonlinear nature of the system model into consideration.

Sample-based methods focus on the system state behavior (state propagation through the

transformation) - Monte Carlo simulation, unscented transformation and polynomial chaos

expansion. Dynamics-based methods focus on the transformation and its approximation

itself (e.g. higher-order Taylor expansion) - state transition tensors and differential algebra

technique. PDF-based methods focus on the approximation of the PDF (the uncertainty

representation) - GMM and solving FPE.

1Graphical illustrations are taken from the Low Earth Orbit (LEO) test case (position results of a single

orbit of the space object) discussed in Section 4.2. The key element of each method is highlighted in red.
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Linear methods

Nonlinear methods

Local linearization

Statistical linearization

Linear Covariance Analysis (LinCov)

Covariance Analysis Describing

First Order Taylor Expansion (FOTE)

Sample-based

Dynamics-based

PDF-based

Coordinates transformation

Hybrid methods

Function Technique (CADET)

Unscented Transformation (UT)

Polynomial chaos expansion (PC)

State Transition Tensors (STTs)

Differential Algebra (DA)

Gaussian Mixture Model (GMM)

Solving Fokker-Planck Equation (FPE)

Other methods
GMM+STTs, GMM+PC, GMM+UT

Implicit Runge Kutta+UT

Based Propagation

Monte Carlo simulation (MC)

Figure 3.1: Uncertainty propagation methods outline.

The other methods try to solve the problem in more convenient sense (coordinates

transformation) or try to make combination of different approaches.

The main objectives using which the methods are compared, are computational costs,

accuracy, system suitability and the overall results.

Some of the methods suffer from the curse of dimensionality, meaning that the desired

accuracy can be reached only if dimensions of some parameters increase without bounds.

A goal is to find a method with the best ratio of accuracy to speed.

Some of the methods require that the system dynamics is differentiable (the derivative

A(x(t), t) exists), some do not.

10



3.1 Problem Statement

Consider the following nonlinear system with an uncertain initial condition, as a default

theoretical model in this thesis,

ẋ(t) = f(x(t), t), x(t0) = x0 (3.1)

where x(t) ∈ Rn is a state vector, dynamics f : Rn → Rn is a sufficiently differentiable

function, and x0 is assumed to be a random variable with a PDF p(x0). Mostly, the

initial PDF is taken to be Gaussian pg(x0; m0,P0). Because the subject of this thesis is to

construct a state uncertainty prediction, consider there is only a single initial measurement

which determines m0 and P0, and no other measurements for t > 0 are available. Also, no

input signals such as actuation, control, disturbance or noise are considered. The objective

then is to find a plausible statistical properties, such as mean m and covariance matrix P

of x(t) at any desired time t.

A graphical illustration of this process is shown in Fig. 3.2, where the propagation

process is split into a branch which represents the real uncertainty propagation (which

satisfies the Fokker-Planck equation and results into the true density, see Section 3.1.1) and

a branch which represents the approximation procedure (use of an uncertainty propagation

method) which may conditionally converge to the true PDF.

p(x(t0))

p(x(t))

approximate

given

time
m0, P0

p(x(t))

true
Fokker-Planck Equation

Uncertainty propagation

methods

convergence

usually by m(t), P(t)

usually by

Figure 3.2: Illustration of uncertainty propagation.
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Note that if the initial condition is not random, the system state at any time can be

implicitly denoted as a numerical solution to the differential equation 3.1,

x(t) = φ(x0, t0, t) (3.2)

where φ(x0, t0, t) is the state solution flow.

3.1.1 Fokker-Planck Equation

The exact time evolution of the PDF p(x(t), t) is given by the Fokker-Planck equation

(FPE) in terms of no diffusion [9]:

∂

∂t
p(x(t), t) = −

n∑
i=1

∂

∂xi(t)
[p(x(t), t) · fi(x(t), t)] (3.3)

where the initial PDF is taken to be pg(x0; m0,P0). As the PDF time evolution depends

on the system dynamics f(x(t), t), the initial Gaussian distribution can easily become non-

Gaussian. As studied in [1] or [2], the used coordinate system has big impact on this

problem. Obtaining an exact solution of Eq. (3.3) is possible only in special cases such as

linear systems, e.g. [10].

Note that the model settled in Eq. (3.1) can be further generalized in terms of state

diffusion as it is studied e.g. in the paper [3], but this model will not be under consideration

in this thesis.
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3.2 Monte Carlo Simulation

Monte Carlo (MC) simulation is a technique based on random number generation that

captures the shape of the transformed PDF by a set of samples.

3.2.1 The Method Description

First, a set of samples {xi,0}Ni=1 derived from a given initial distribution p(x0) is generated.

If the initial distribution is taken to be Gaussian, each sample can be generated with a

Gaussian pseudorandom number generator. Then, each sample xi,0 is transformed through

the nonlinear dynamics from t0 to t, which can be denoted using the state solution flow

function as

xi(t) = φ(xi,0, t0, t), i = 1, . . . , N (3.4)

as a result of a numerical integration. Therefore, the first two moments can be computed

via equations for sample mean and sample variance,

m(t) =
1

N

N∑
i=1

xi(t) (3.5)

P(t) =
1

N − 1

N∑
i=1

[xi(t)−m(t)][xi(t)−m(t)]T (3.6)

3.2.2 Analysis and Discussion

The results2 of the MC simulation approach to the true distribution when N → +∞,

therefore it is considered reliable to validate other uncertainty propagation methods [3]. It

is suitable for any nonlinear system as it captures a shape of an arbitrarily transformed

initial PDF. The results are very intuitive and easy to understand. Also, the algorithm is

easy to implement.

2The transformed MC samples can be used to create for example a Dirac mixture model distribution

(DMM) [11], or a histogram PDF.
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The biggest disadvantage of this method is that to achieve high accuracy, N has to be

high enough, which makes the method computationally expensive.

A graphical illustration is shown in Fig. 3.3.

Figure 3.3: Monte Carlo simulation graphical illustration, with 1000 MC samples.
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3.3 LinCov

“Linear Covariance” (LinCov) method is a discrete-time propagation method based on

a local linearization along a reference trajectory x(t). The goal is to approximate the

covariance matrix. A general formulation of LinCov can be found in [12].

3.3.1 The Method Derivation and Description

A local linearization of f(x(t), t) along a reference trajectory x(t) is to be created using the

first-order Taylor expansion,

ẋ(t) ≈ f(x(t), t) + A(x(t), t)e(t) (3.7)

e(t) = x(t)− x(t), A(x(t), t) =
∂f(x, t)

∂x

∣∣∣∣
x=x(t)

(3.8)

where e(t) is the state error vector. The reference trajectory x(t) might be a solution to the

differential equation (3.1) with an initial condition given by the initial mean m0. Because

f(x(t), t) = ẋ(t), the Eq. (3.7) yields,

ė(t) ≈ A(x(t), t)e(t) (3.9)

Assuming the state error vector retains small, the analytic solution can be expressed as

e(t) = Φ(x(t),∆t)e(t0), Φ(x(t),∆t) , eA(x(t),t)·∆t (3.10)

where Φ(x(t),∆t) is the state transition matrix (STM). Note that t = t0 + ∆t. The state

solution flow equation for this linearized model is

x(t) = x(t) + Φ(x(t),∆t)x(t0)−Φ(x(t),∆t)x(t0) (3.11)

Assuming E[x(t0)] = x(t0), the mean m(t) = E[x(t)] retains simply the reference trajec-

tory. The propagation of the covariance matrix is given by

P(t) = E[(x(t)−m(t))(. . . )T ] (3.12)

= E[Φ(x(t),∆t)(x(t0)−m(t0))(. . . )T ] (3.13)

⇒ P(t) = Φ(x(t),∆t)P(t0)ΦT (x(t),∆t) (3.14)
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which is the main result of the LinCov method.

3.3.2 Analysis and Discussion

Unlike the Monte Carlo simulation, LinCov needs to solve the object trajectory only once

(to find the reference trajectory x(t)), which makes it way more computationally effective.

A disadvantage is that Eq. (3.14) holds only if ∆t → 0 due to the local linearization

effect. This fact makes this method iterative, time discretization ∆t (which becomes a

design parameter) should be small, otherwise the results will be less accurate. This makes

LinCov inaccurate for strongly nonlinear systems. Moreover, in order to find the matrix

function A(x(t), t), the derivative of the system dynamics must exist.

Note that the LinCov propagation scheme described in Eq. (3.14), also appears in a

discrete-time extended Kalman filter. A graphical illustration of the LinCov method is

shown in Fig. 3.4.

Figure 3.4: LinCov technique graphical illustration with comparison to 1000 Monte Carlo

samples (gray).
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3.4 FOTE Based Propagation

The first Order Taylor Expansion (FOTE) based propagation is a continuous-time propa-

gation method based on a local linearization along an approximated mean m(t).

3.4.1 The Method Description

Using Eq. (3.7) a local linarization of f(x(t), t) along the mean m(t) is given by a first

order Taylor series expansion:

ẋ(t) ≈ f(m(t), t) + A(m(t), t)[x(t)−m(t)] (3.15)

where A(m(t), t) is the first order derivative, see Eq. (3.8). Then the propagation governing

equations are

ṁ(t) = f(m(t), t), m(0) = m0 (3.16)

Ṗ(t) = A(m(t), t)P(t) + P(t)AT (m(t), t), P(0) = P0 (3.17)

Eq. (3.17) formally is the continuous-time Lyapunov Equation. In terms of our objective,

it can be derived for example from the FPE [10]. An alternative derivation is shown as

follows.

3.4.2 The Alternative Derivation

For convenience, the notation A = A(m(t), t) will be used. Let r(t) = x(t)−m(t), then

ṙ(t) = ẋ(t)− ṁ(t) =���
���f(m(t), t) + A[x(t)−m(t)]−����

��
f(m(t), t) = Ar(t) (3.18)

which can be approximated by Euler’s rule:

r(t+ ∆t) = r(t) + Ar(t)∆t (3.19)
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Because P(t) = E[r(t)rT (t)], we get

E[r(t+ ∆t)rT (t+ ∆t)] = E[(r(t) + Ar(t)∆t)(. . . )T ] (3.20)

P(t+ ∆t) = P(t) + AP(t)∆t+ ∆tP(t)AT + AP(t)AT∆2t (3.21)

P(t+ ∆t)−P(t)

∆t
= AP(t) + P(t)AT + AP(t)AT∆t (3.22)

Taking the limit as ∆t→ 0 results into the desired equation:

lim
∆t→0

P(t+ ∆t)−P(t)

∆t
= Ṗ(t) = A(m(t), t)P(t) + P(t)AT (m(t), t) (3.23)

3.4.3 Analysis and Discussion

This linear propagation scheme is widely used because of its good ratio of accuracy and

speed. The object trajectory has to be solved only once to find the mean. No design

parameter is needed.

The accuracy is sabotaged by local linearization effects. Like in the LinCov analysis,

in order to find the matrix function A(m(t), t), derivative of the system dynamics must

exist.

Note that LinCov and FOTE based propagation are both linear propagators (both are

de facto first order Taylor expansion based). The FOTE based propagation can be used

only in terms of the continuous-time, while LinCov can be readily used both in terms

of continuous-time and discrete-time sense but with respect to the given discretization

∆t. Note that the FOTE based propagation scheme also appears in the continuous-time

extended Kalman filter. A graphical illustration of the FOTE based propagation is shown

in Fig. 3.5.
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Figure 3.5: FOTE based propagation graphical illustration with comparison to 1000 Monte

Carlo samples (gray).
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3.5 CADET

“The Covariance Analysis Describing Function Technique” (CADET) is a method that uses

a statistical linearization. A formulation of this method can be found in [13, 3].

3.5.1 The Method Derivation and Description

A statistical linearization is to approximate the state vector x(t) and the leading function

f(x(t), t) with a linear expression

x(t) = m(t) + r(t) (3.24)

f̂(x(t), t) = Nm(t)m(t) + Nr(t)r(t) (3.25)

where m(t) = E[x(t)] and r(t) is a zero-mean independent random process representing

state deviations, P(t) = E[r(t)rT (t)]. Note that E[r(t)mT (t)] = E[m(t)rT (t)] = 0. Nm(t)

and Nr(t) are the so-called multiple-input describing function gain matrices that are chosen

to minimize the mean square approximation error ef (t),

ef (t) = f(x(t), t)− f̂(x(t), t) (3.26)

= f(x(t), t)−Nm(t)m(t)−Nrr(t) (3.27)

For convenience, the arguments of the functions will be omitted. Then, the criterion to

minimize is

J = E[eTf Sef ] = trace E[efe
T
f ]S (3.28)

= E[fTSf − 2fTSNmm− 2fTSNrr + 2mTNT
mSNrr

+ mTNT
mSNmm + rTNT

r SNrr] (3.29)

where S is a symmetric positive semi-definite matrix. Minimization of J leads to

∂

∂Nm

J = −2E[fT ]Sm + 2mTNT
mSm +((((

(((2mTSNrE[r]
!

= 0 (3.30)

∂

∂Nr

J = −2E[fTSr] +((((
((((2mTNT

mSE[r] + 2E[rTSNrr]
!

= 0 (3.31)
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because E[r] = 0. Taking Eq. (3.30), Nm can be expressed as

�2mTNT
m��Sm = �2E[fT ]��Sm /()T (3.32)

mTNT
mm = mTE[f ] (3.33)

⇒ Nm(t)m(t) = E[f(x(t), t)] (3.34)

Taking Eq. (3.31), Nr can be expressed as

E[rT��SNrr] = E[f��Sr] (3.35)

trace E[rrT ]Nr = trace E[frT ] (3.36)

⇒ Nr(t) = E[f(x(t), t)rT (t)]P−1(t) (3.37)

Therefore, the statistical linearization [combining Eq. (3.1) and (3.25)] is in the form

ẋ(t) = f̂(x(t), t) = E[f(x(t), t)]︸ ︷︷ ︸
Nmm

+E[f(x(t), t)rT (t)]P−1(t)︸ ︷︷ ︸
Nr

r(t) (3.38)

Moreover, under the assumtion of x(t) being Gaussian, Nr(t) can be computed [13] using

expression

Nr(t) =
∂

∂m(t)
E[f(x(t), t)] (3.39)

which might be approximated by Nr(t) ≈ A(m(t), t). The mean propagation is

ṁ(t) = E [̂f(x(t), t)] = Nm(m,P, t)m(t) = E[f(x(t), t)] (3.40)

Taking Eq. (2.5) the covariance propagation is as follows

Ṗ(t) = E [̂f(mT + rT ) + (m + r)f̂T ]− E [̂f ]mT −mE [̂fT ] = E [̂frT ] + E[rf̂ ] (3.41)

= E[(Nmm + Nrr)rT ] + E[r(mTNT
m + rTNT

r )] = E[Nrrr
T ] + E[rrTNr] (3.42)

= Nr(m,P, t)P(t) + P(t)NT
r (m,P, t) (3.43)

= E[f(x(t), t)rT (t)] + E[r(t)fT (x(t), t)] (3.44)
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3.5.2 Analysis and Discussion

A benefit of this method is its suitability to high-order systems, whose derivatives do not

exist, systems with multiple nonlinearities, inputs or nongaussian statistical description.

The implementation might be tricky due to the need to calculate E[f(x(t), t)] and

E[f(x(t), t)rT (t)] which can be high-variate integrals with the need to evaluate current

p(x(t)). That might be done with some approximation e.g. some quadrature rule (UT,

see Section 3.6) or a sparse grid integration [14]. However, this can make the results of

CADET inaccurate for nonlinear systems.

The CADET method can be used for example in missile guidance systems [13], or

estimation. A graphical illustration of the CADET method is shown in Fig. 3.6.

Figure 3.6: CADET method graphical illustration with comparison to 1000 Monte Carlo

samples (gray).
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3.6 UT

The continuous-time unscented transformation [15] is a nonlinear propagation method that

uses a set of so-called weighted sigma-points generated from the initial distribution that are

subsequently transformed through the nonlinear function to yield the transformed mean

and covariance matrix. Unlike the Monte Carlo samples, the sigma-points are deterministi-

cally chosen from the initial distribution, so that they capture a specific information about

it. Various ways to determine the sigma-points exist [17], the symmetric sigma-point set

is presented herein.

3.6.1 The Method Description

Let n be the dimensionality of the state vector x. In order to determine the sigma-points,

the square-root factor S of the initial covariance matrix has to be found,

P0 = SST , S = [s1, . . . , sn] (3.45)

which can be accomplished for example via the Cholesky factorization, or via a singular-

value decomposition. Then, the symmetric sigma-point set {Xi,0}2n
i=1 is determined as

Xi,0 = m0 +
√
nsi, i = 1, . . . , n (3.46)

Xi,0 = m0 −
√
nsi, i = n, . . . , 2n (3.47)

It can be shown [15], that this sample set has the mean and covariance of the initial distri-

bution p(x0). Then, each sigma-point is transformed through the nonlinear transformation,

Xi(t) = φ(Xi,0, t0, t), i = 1, . . . , 2n (3.48)

Then, the first two moments of x(t) can be computed via equations

m(t) =
2n∑
i=1

wiXi(t) (3.49)

P(t) =
2n∑
i=1

wi[Xi(t)−m(t)][Xi(t)−m(t)]T (3.50)

where the weights wi = 1
2n
∀i in terms of a symmetric sigma-point set.
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3.6.2 Analysis and Discussion

The presented form of the unscented transformation has no design parameter, though

many modifications have been developed over the past years to improve its performance e.g.

[16, 17]. The concept is similar to one of the Monte Carlo simulation, but the computational

costs is way below that of Monte Carlo. The speed and accuracy are considerably high.

UT delivers a second order approximation of the first two moments, but only those first

two moments can be propagated which may be inadequate for some applications [3].

Note that the unscented transformation can be also used to approximate integrals of

the form of Eq. (2.2) and (2.3) or some expectation values of functions of random variables

such as Eq. (3.34) and (3.37) in CADET technique. In such case, the transformation part

in Eq. (3.48) is skipped.

The UT can also be used in a discrete-time, modifying the transformation Eq. (3.48).

Note that the unscented transformation also appears in the continuous-time unscented

Kalman filter. A graphical illustration of the UT is shown in Fig. 3.7, where the dimen-

sionality n = 4 (marginal distribution is drown) which leads to 8 UT samples.

Figure 3.7: UT propagation graphical illustration, with comparison to 1000 Monte Carlo

samples (gray).
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3.7 AEGIS

The “Adaptive, Entropy-Based Gaussian-Mixture Information Synthesis” is a method that

uses a nonlinear transformation for propagation and a Gaussian-Mixture model for un-

certainty representation. In order to preserve high accuracy, AEGIS method change the

number of GMM components adaptively with respect to the entropy difference between

linear and nonlinear uncertainty propagation. It was first established by DeMars et al. [6].

3.7.1 The Original Method Description

First, assuming the initial PDF is Gaussian, the following terms are established

pGMM(x(t0)) = α1pg(x0,m0,P0) (3.51)

H0 , HN
1 (t0) =

1

2
log |2πeP0| (3.52)

where pGMM(x(t0)) is the initial GMM, α1 = 1 is the weight of the initial component, and

H0 establishes a threshold as ε ·H0, where ε ∈ R is a design parameter. The propagation

process will be now described using following iteration.

Consider following GMM at time ts−1 during the time evolution,

pGMM(x(ts−1)) =
l∑

i=1

αipg(x(ts−1),mi(ts−1),Pi(ts−1)) (3.53)

Then, each component is propagated using the UT (see Section 3.6) propagation tool

starting from the time ts−1 until (not known yet) time ts. The weight associated with

i-th component is held constant during the propagation. Denote the resulting mean and

covariance at time t > ts−1 as mN
i (t), PN

i (t) respectively. In parallel, each component

entropy is monitored in terms of nonlinear entropy HN
i (t) (the UT) and linear entropy

HL
i (t) (see Section 2.3.1) propagation via following equations,

HN
i (t) =

1

2
log |2πePi(t)| (3.54)

ḢL
i (t) = trace A(mi(t), t), HL

i (ts−1) = HN
i (ts−1), t > ts−1 (3.55)
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If the difference between HN
i (t) and HL

i (t) for any i at any time t exceeds the given

threshold εH0, the propagation is halted and the ts := t. Then, the splitting process (see

Section 2.2) is applied to the i-th component, αipg(x(ts),m
N
i (ts),P

N
i (ts)), to yield new

components which replace the i-th component,

pGMM(x(ts)) =
l+∆l−1∑
i=1

αipg(x(ts),mi(ts),Pi(ts)) (3.56)

where ∆l is the number of components the chosen library splits in. After that, the iteration

is reestablished with setting ts−1 := ts.

3.7.2 Improvements of the Method

As mentioned in Section 2.3, the differential entropy of a Gaussian distribution becomes

negative if |P| < 1
(2πe)n

which happens if the covariance matrix P is small, leading to

pg(m) > en/2. If P0 satisfy such property, H0 < 0 and therefore the term |HL
i −HN

i | ≥ H0

does not make sense while |HL
i −HN

i | > 0 for every t. This means that the GMM is split

at every time t, meaning the GMM number of components increases without bounds.

A possible solution is to scale the covariance matrix with some parameter ξ > 0 to

yield a positive entropy. That can be done only within a specific application, because the

design parameter ξ > 0 cannot be established before having any information about the

system. Taking the account of variability of the design parameter, the lack of generality

may or may not be balanced by a possible improvement.

Another approach to cope with the problem is, instead of the entropy HN
i (t) defined

above, taking some chosen function denoted e.g. H of the entropy. Consider taking the

exponential function of HN
i (t), as

H̃N
i , H(HN

i ) = exp{1

2
log |2πePi|} =

√
|2πePi| (3.57)

which is certainly a nonnegative function of Pi.
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Another useful improvement would be defining the threshold εH0 not globally, but

separately for each GMM component. Consider that the splitting process of i-th component

at time tsi yielded ∆l new components. Denote tsr−1 = tsi the time a new r-th component

was created. Now define

H0,r , H(Pr(tsr−1)) (3.58)

which establishes a threshold for the new r-th component as εH0,r. Entropy H can be

computed as H̃N
r (tsr−1) using Eq. (3.57).

3.7.3 Analysis and Discussion

The AEGIS method can approximate the true, non-Gaussian PDF very accurately, depend-

ing on the chosen εH0,i for each GMM component (or εH0 globally), entropy definition,

chosen splitting library, or even time discretization. This makes AEGIS suitable for nonlin-

ear systems. The GMM approach very effectively eliminates the UT propagation drawback

(propagating only the first two moments) by using more Gaussians in parallel. Instead of

the UT, other nonlinear propagators can be used (such as STTs, PC, FPE). Thanks to the

Gaussian nature, only the first two moments require propagating.

A penalty for a good accuracy is computational cost which is considerably high. This

reveals the curse of dimensionality. The use of entropy as a measure of whether the distri-

bution retains Gaussian or not is arguable. Refering [1], other measures e.g. Cramer von

Mises metric (which uses the Mahalanobis distance) could be taken, but an analytic result

of the estimate of when the uncertainty becomes non-Gaussian has not yet been answered.

Moreover, AEGIS can have many design parameters which can be uncomfortable from the

user point of view. Also, in order to find the matrix function A(x(t), t), the derivative of

the system must exist.

A graphical illustrations including the method improvements are in the Fig. 3.8 (scheme)

and 3.9 (possible result).
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Figure 3.8: AEGIS method propagation scheme.
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Figure 3.9: AEGIS method graphical illustration with comparison to 1000 Monte Carlo

samples (gray).
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CHAPTER 4

Testing Problems

In this chapter, two testing problems are defined, each propagation tool is then applied to

the problem with following results and comparison. The testing problems should follow

the main theme of this bachelor thesis, which is an uncertainty propagation for tracking of

moving objects. The models should illustrate the functionality of uncertainty propagators,

be intuitive and reflect the nonlinear assumption. To accomplish these objectives the two

models of an orbital object movement commonly found in space object tracking [6] were

chosen: an eccentric high Earth orbit case that is not under the influence of atmosphere,

and a circular low Earth orbit case is under the influence of both atmospheric drag and

gravity. Following the theoretically analyzed model given in Section 3.1 the testing models

identify the function f(x(t), t) for further simulations.

DeMars et al. in the paper [6] introduced the two models to illustrate the AEGIS

method (described in Section 3.7) functionality. The other methods (stated in chapter 3)

are compared in those cases in this thesis.

4.0.1 Likelihood Agreement Between Distributions

Performance of the methods is compared with respect to 1000 Monte Carlo Samples in

chosen time steps using the likelihood agreement measure (LAM) between two distributions

p, q, which is defined as

L(p, q) =

∫
p(x)q(x)dx (4.1)
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The LAM measures the amount of overlap between the two PDFs. The larger agreement

of the two PDFs, the greater LAM. Let q(x) be a Dirac mixture model (DMM) of the form

q(x) =
N∑
i=1

γiδ(x− xi) (4.2)

where xi ∀i are the transformed Monte Carlo samples and γi = 1
N
∀i. Therefore, the LAM

between the DMM and Gaussian, and DMM and GMM are computed by the following

equations respectively,

L(pg, q) =
N∑
i=1

γipg(xi,m,P) (4.3)

L(pGMM, q) =
N∑
i=1

l∑
j=1

γiαjpg(xi,mj,Pj) (4.4)

Note, that higher value of LAM means that the given set of Monte Carlo samples are more

likely to be generated by the tested PDF p.
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4.1 High-Earth-Orbit Test Case

As was mentioned before, the high Earth orbit (HEO) is eccentric and so the trajectory

shape retains elliptical during time evolution. The influence of the atmosphere is not

considered in this case. The governing equations of motion are taken to be

ṙ = v, v̇ = − µ
r3

r (4.5)

where r, v are the ECI position and velocity coordinates of the moving object respectively,

r = ‖r‖, µ is the gravitational constant1. The motion is confined to the equatorial plane, so

that the moving object position can be described with scalar values x = x(t) and y = y(t),

as well as velocity u = u(t) and v = v(t).

The nonlinear dynamical system in form or Eq. (3.1) can than be written with

x(t) =


x

y

u

v

 , f(x(t), t) =


u

v

−µxr−3

−µyr−3

 (4.6)

where r =
√
x2 + y2.

The derivative of system dynamics (Jacobian of f(x(t), t)) therefore is

A(x(t)) =


0 0 1 0

0 0 0 1

µ[3x2r−5 − r−3] µ3xyr−5 0 0

µ3xyr−5 µ[3x2r−5 − r−3] 0 0

 (4.7)

The initial state distribution is taken to be Gaussian. The initial mean is given by

Keplerian orbital elements. A semi-major axis of 35, 000 km, an eccentricity of 0.2, an

argument of periapse of 0 deg, and a mean anomaly of 0 deg. The initial covariance is

1The gravitational constant can be computed using equation µ = M · G, where M [kg] is the mass of

Earth and G [m3kg−1s−2] is the Newton’s gravitational constant
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taken to be diagonal with position deviations of 1 km and velocity deviations of 1 m·s−1.

The initial mean (transformed into Cartesian coordinates [18]) and covariance matrix both

scaled into kilometers therefore are

x0 =


2.8× 104

0

0

−4

 , P0 =


1 0 0 0

0 1 0 0

0 0 10−6 0

0 0 0 10−6

 (4.8)

A moving object drives a single orbit after approximately 1080 minutes.

4.1.1 Results

Monte Carlo, LinCov, CADET and AEGIS have some design parameters. Those used

within the following simulations will be therefore described now.

The number of Monte Carlo samples used is N = 1000. The LinCov time discretization

parameter ∆t = 1 second was used. In CADET, the expectation values of the Eq. (3.34)

and (3.37) were approximated with the UT (as suggested in Section 3.6.2). The AEGIS

method is implemented twice. ”s-AEGIS-3” with the 3 component splitting library; for

computing the differential entropy, the scaled version ξP of covariance matrix is used with

ξ = 105 (the deviations are scaled into meters); the entropy threshold εH0 is computed using

Eq. (3.52) and is same for all GMM components, ε = 0.04 was used. ”e-AEGIS-3”with the 3

component splitting library; the entropy is computed using the exponential transformation

[see Eq. (3.57)]; the entropy threshold εH0,r is computed for each component separately

[see Eq. (3.58)] with ε = 0.8. Note that the implementation of s-AEGIS-3 should represent

the original AEGIS method, while e-AEGIS-3 should represent the method improvements.

A comparison of LinCov, FOTE, CADET and UT methods with Monte Carlo simula-

tion is shown in terms of position and velocity (marginal covariance ellipses) in Fig. 4.2

and 4.5. A comparison of s-AEGIS-3 and e-AEGIS-3 to Monte Carlo simulation in terms

of position and velocity (marginal PDF contours) is shown in Fig. 4.4 and 4.3, respectively.

A comparison of likelihood agreement measure of all used propagators is in Fig. 4.6. Then
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the entropy HL (linear propagator) and HN (UT) with comparison to their transformed

versions through the function H are drawn in Fig. 4.7. Number of GMM components of

both implementations of the AEGIS method is shown as a function of time in Fig. 4.8.

Figure 4.2: Position and Velocity results of Monte Carlo, LinCov, FOTE, CADET and UT

propagators with 95.4% confidence ellipses after 18 hours (approximately one orbit).
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Figure 4.3: Position and Velocity marginal PDF contours of s-AEGIS-3 after 18 hours

(approximately one orbit).
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Figure 4.4: Position and Velocity marginal PDF contours of e-AEGIS-3 after 18 hours

(approximately one orbit).

34



Figure 4.5: Position and Velocity results of Monte Carlo, LinCov, FOTE, CADET and UT

propagators with 95.4% confidence ellipses after 36 hours (approximately two orbits).
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Figure 4.6: Likelihood agreement measure of LinCov, FOTE, CADET, UT, s-AEGIS-3 and

e-AEGIS-3 propagators with respect to the Monte Carlo samples as a function of time, each

function is normalised by LAM at the time t0.
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Figure 4.7: Entropy H(t) and H̃(t) of linear propagator and UT as a function of time.
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Figure 4.8: s-AEGIS-3 and e-AEGIS-3 number of GMM components as a function of time.
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4.2 Low-Earth-Orbit Test Case

Unlike the eccentric HEO, low Earth orbit trajectory shape is circular during the time

evolution. The influence of atmosphere is considered in this case. The governing equations

of motion are taken to be

ṙ = v, v̇ = − µ
r3

r− 1

2
ρ(h)βvrelvrel (4.9)

where ρ(h) is the atmospheric density as a function of h =
√
x2 + y2 − a which is the

altitude of the moving object (where a is the Equatorial Earth radius taken to be 6378 km

in this analysis), β is the ballistic coefficient (taken to be 1.4 in this analysis), and vrel is

the inertial velocity vector (with respect to the atmosphere). Similarly to the HEO test

case, the motion is confined to the equatorial plane, so that the moving object position

can be described with scalar values x = x(t) and y = y(t), as well as velocity u = u(t) and

v = v(t).

The nonlinear dynamical system in form or Eq. (3.1) can than be written with

x(t) =


x

y

u

v

 , f(x(t), t) =


u

v

−µxr−3 − 1
2
ρ(h)βvrelvrel,x

−µyr−3 − 1
2
ρ(h)βvrelvrel,y

 (4.10)

where r =
√
x2 + y2, vrel,x = u−ωy, vrel,y = v+ωx, ω is the angular velocity of the Earth

(taken to be 7.27×10−5 in this analysis), and vrel =
√
v2

rel,x + v2
rel,y. The atmospheric density

is assumed to be described by an exponential atmosphere model: ρ(h) = ρ0exp{−h−h0
hs
},

where the constants in this analysis are taken to be ρ0 = 3.614 × 10−13 kg·m−3, h0 = 700

km, and hs = 88.667 km.
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The derivative of system dynamics (Jacobian of f(x(t), t)) therefore is

A(x(t)) =


0 0 1 0

0 0 0 1

µ[3x2r−5 − r−3] + ψ1 µ3xyr−5 + ψ3 ψ5 ψ7

µ3xyr−5 + ψ2 µ[3x2r−5 − r−3] + ψ4 ψ6 ψ8

 (4.11)

where

ψ1 =
1

2
ρ(h)βvrel,x(

x

hs
vrel − ω

vrel,y

vrel

) (4.12a)

ψ2 = −1

2
ρ(h)β(

v2
rel,x

vrel

+ vrel) (4.12b)

ψ3 =
1

2
ρ(h)β(

y

hs
vrelvrel,x + ω

v2
rel,x

vrel

+ ωvrel,x) (4.12c)

ψ4 =
1

2
ρ(h)βvrel,y(

y

hs
vrel + ω

vrel,x

vrel

) (4.12d)

ψ5 = −1

2
ρ(h)β(

v2
rel,x

vrel

+ vrel) (4.12e)

ψ6 = −1

2
ρ(h)β

vrel,xvrel,y

vrel

(4.12f)

ψ7 = −1

2
ρ(h)β

vrel,yvrel,x

vrel

(4.12g)

ψ8 = −1

2
ρ(h)β(

v2
rel,y

vrel

+ vrel) (4.12h)

The initial state distribution is taken to be Gaussian. The initial mean is given by an

altitude of 225 km, and the initial covariance is taken to be diagonal with deviation of 1.3

km in x position, 0.5 km in y position, 2.5 m·s−1 in u velocity, and 5 m·s−1 in v velocity.

The initial mean and covariance matrix both scaled into kilometers therefore are

x0 =


2.603× 103

0

0

−7.8

 , P0 =


1.96 0 0 0

0 0.25 0 0

0 0 6.25× 10−6 0

0 0 0 2.5× 10−5

 (4.13)

A moving object drives a single orbit after approximately 89 minutes.
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4.2.1 Results

Monte Carlo, LinCov, CADET, s-AEGIS-3 and e-AEGIS-3 design parameters and/or im-

plementation accessories retain the same as presented in Section 4.1.1. Moreover, the

AEGIS method is implemented once more as ”e-AEGIS-5” with the 5 component splitting

library; the entropy threshold εH0,r is computed for each component separately [see Eq.

(3.58)] using Eq. (3.57), and ε = 0.8.

A comparison of LinCov, FOTE, CADET and UT methods with Monte Carlo simula-

tion is shown in terms of position and velocity (marginal covariance ellipses) in Fig. 4.9

and 4.10. A comparison of s-AEGIS-3, e-AEGIS-3 and e-AEGIS-5 to Monte Carlo simu-

lation is shown in terms of position (marginal PDF contours) and velocity in Fig. 4.12,

4.11 and 4.13 respectively. A comparison of the likelihood agreement measure of all used

propagators is in Fig. 4.14. Then, the entropy HL (linear propagator) and HN (UT)

with comparison to their transformed versions through the function H are drawn in Fig.

4.15. Number of GMM components of all of the implementations of the AEGIS method is

compared as a function of time in Fig. 4.16.
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Figure 4.9: Position and Velocity results of Monte Carlo, LinCov, FOTE, CADET and UT

propagators with 95.4% confidence ellipses after approximately 1.5 hours (one orbit).

Figure 4.10: Position and Velocity results of Monte Carlo, LinCov, FOTE, CADET and

UT propagators with 95.4% confidence ellipses after approximately 3 hours (two orbits).
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Figure 4.11: Position and Velocity marginal PDF contours of s-AEGIS-3 after approxi-

mately 3 hours (two orbits).
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Figure 4.12: Position and Velocity marginal PDF contours of e-AEGIS-3 after approxi-

mately 3 hours (two orbits).
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Figure 4.13: Position and Velocity marginal PDF contours of e-AEGIS-5 after approxi-

mately 3 hours (two orbits).
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Figure 4.14: Likelihood agreement measure of LinCov, FOTE, CADET, UT, s-AEGIS-3

and e-AEGIS-3,5 propagators with respect to the Monte Carlo samples as a function of

time, each function is normalised by LAM at the time t0.
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Figure 4.15: Entropy H(t) and H̃(t) of linear propagator and UT as a function of time.
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Figure 4.16: s-AEGIS-3 and e-AEGIS-3,5 number of GMM components as a function of

time.
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4.3 Analysis

The simulation results of both HEO and LEO test cases will now be discussed.

Approximate computational time costs of the implemented algorithms measured in

elapsed time of the simulations2 for both one and two orbit uncertainty propagation is

summarized in Tab. 4.1. Note that the implementations3 might execute faster, depending

on the code efficiency and machine4 used for simulations.

The high computational time costs of all of the implementations of AEGIS are compen-

sated by highly accurate approximation of the true PDF shape (considered to be formed

by the results of the MC simulation) which obviously cannot be reached by the LinCov,

FOTE, CADET and UT propagators as they use only the first two moments for the prop-

agation at all. This phenomenon should be supported by high accuracy measure values

of the AEGIS method results, though according to the likelihood agreement measure, the

AEGIS method results were only occasionally ”slightly” better than the other propagation

methods.

Studying the nature of the LAM, it appears that the LAM yields higher values for

distributions which covariances are rather small, because the values of such PDFs near its

mean are higher. This might be the case of the linear propagators. On the other hand,

the UT resulting PDF obviously describe the state uncertainty more securely (with bigger

covariances) than the linear methods, but its LAM values are lower than might be expected

from an objective accuracy measure. Also, the UT implementation appears to have the

lowest computational time costs.

Note that the entropy as a function of time (both linear and nonlinear) can be compared

to the number of GMM components of the AEGIS methods, with respect to the chosen

design parameters.

2Corresponding design parameters can be found in Section 4.1.1 and 4.2.1
3The algorithms were implemented in MATLAB R©and Simulink R©of version R2014b.
4The machine used for the simulations within this thesis was not real-time and had the memory of 8GB

RAM and processor of 2.4 GHz, Intel R©Core
TM

i5, other processes were running during the simulations.
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Table 4.1: Approximate computational time costs of the methods measured in seconds

HEO LEO

1 orbit 2 orbits 1 orbit 2 orbits

MC 6.8 9.6 6.5 10.0

LinCov 8.9 17.9 0.8 1.6

FOTE 0.2 0.2 0.2 0.2

CADET 0.6 1.4 0.3 0.8

UT 0.1 0.2 0.1 0.1

s-AEGIS-3 185.6 1 682.9 81.7 497.6

e-AEGIS-3 296.2 2 668.4 109.3 1 050.6

e-AEGIS-5 - - 112.4 889.9
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CHAPTER 5

Conclusion

Some of the currently available uncertainty propagation methods were chosen, analyzed,

implemented and tested within two test cases. The methods were: Monte Carlo simulation,

LinCov, first order Taylor expansion based propagation, CADET, unscented transforma-

tion and AEGIS. Also, an improvement of the AEGIS method was proposed. A possible

utilization of this thesis might be as a foundation for final method selection based on spe-

cific demands in the field of uncertainty propagation (state estimation, SSA, Kalman filter

framework, etc.).

The analyzed methods were applied to orbit uncertainty prediction for two cases: an

eccentric high-Earth-orbit test case under the influence of gravity only and a circular low-

Earth-orbit test case under the influence of both gravity and atmospheric drag. It was

demonstrated how the obtained marginal PDFs (represented by contours or simply by

confidence ellipses in single-Gaussian method cases) represents the curvature of the true

distribution approximated by Monte Carlo simulation. Moreover, the result were com-

pared in terms of the likelihood agreement measure to show other aspect of accuracy of

each method. The most accurate prediction in sense of the true distribution curvature ap-

proximation was readily performed by the AEGIS method (any implementation) in both

test cases, although its LAM was slightly worse than expected. Due to the results, the LAM

might be arguable as an appropriate measure of accuracy. The approximate computational

time costs were presented to get a reasonable idea of the complexity of the methods.

Future work may include analysis of methods which has not yet been compared, further

improvements, combining aspects of the methods, or extending the test cases. Also, a

generalized method formulation might be useful in order to meet specific demands.
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