Zapadoceka univerzita v Plzni

Fakulta Aplikovanych Véd

Katedra kybernetiky

BAKALARSKA PRACE

PLZEN, 2018 JAN KREJCI



University of West Bohemia
Faculty of Applied Sciences

Department of Cybernetics

BACHELOR THESIS

Uncertainty propagation for tracking of moving

objects

PILSEN, 2018 JAN KREJCI



ZAPADOCESKA UNIVERZITA V PLZNI
Fakulta aplikovanych véd
Akademicky rok: 2017/2018

ZADANI BAKALARSKE PRACE

(PROJEKTU, UMELECKEHO DILA, UMELECKEHO VYKONU)

Jméno a piijmeni: Jan KREJCI
Osobni ¢islo: A15B0537P
Studijni program: B3918 Aplikované védy a informatika

Studijni obor: Kybernetika a fidici technika
Nazev tématu: Propagace nejistoty v tloze sledovani polohy pohybujicich se
objekta

Zadavajici katedra: Katedra kybernetiky

Zasaldy pra VY PTraceyaini;

1. Seznamte se s literaturou zabyvajici se propagaci nejistoty v uloze sledovani.
2. Vyberte vhodné metody a implementujte je.

3. Porovnejte vybrané metody teoreticky a na simulacnich piikladech.



Rozsah grafickych praci:

Rozsah kvalifikacni prace:

Forma zpracovéani bakaldiské prace:

Seznam odborné literatury:

Doda vedouci bakalaiské prace.

Vedouci bakalaiské prace:

Datum zadani bakalaiské prace:

Termin odevzdani bakalaiské prace:

/] ) /
\ N4
! W Yd

Doc. Dr. Ing. Vlasta Radova

dékanka

V Plzni dne 1. listopadu 2017

dle pot¥eby
30-40 stranek A4
tisténa

Doc. Ing. Ondfej Straka, Ph.D.

Katedra kybernetiky

1. listopadu 2017
18. kvétna 2018

L.S:

Prof. Ang. Josef Psutka,{

edouci katedry



PROHLASENI

Predkladam timto k posouzeni a obhajobé bakalaiskou praci zpracovanou na zavér studia

na Fakulté aplikovanych véd Zapadoceské univerzity v Plzni.

Prohlasuji, ze jsem bakalaiskou praci vypracoval samostatné a vyhradné s pouzitim odborné

literatury a pramenu, jejichz iplny seznam je jeji soucasti.

Voplznidne ............

vlastnorucni podpis

PODEKOVANI

Timto bych rdd podékoval panu doc. Ing. Ondieji Strakovi, Ph.D za odborné vedeni,
cenné rady a pripominky, poskytnuté materialy, trpélivost, ¢as a ochotu pti zpracovavani

této bakalarské prace.



Anotace

Tato bakalarska prace se zabyva analyzou vybranych metod vyuzivanych v tloze propagace
pocatecni nejistoty pro dlouhodobé ¢asové horizonty. Vybrané metody jsou teoreticky
analyzovany a nasledné testovany na dvou simula¢nich modelech pohybu objekti po obézné

dréze Zemé. Vysledky simulaci jsou poté porovnavany mezi sebou.

klicova slova: neurcitost, propagace nejistoty, predikce, matematicky model, poloha, stav,
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Annotation

This bachelor thesis deals with analysis of selected methods utilized within the problem of
propagating initial uncertainty for a long time horizon. First, these methods are theoret-
ically analyzed; second, they are tested using two cases of Earth orbit movement models.

The results are compared subsequently.
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CHAPTER 1

Introduction

By nature, real systems usually have some non-deterministic features which may be mod-
eled in terms of stochastic models. If a state-space model is taken into consideration, the
core element, which represents the system status is its state. The state is usually not mea-
surable directly and therefore has to be estimated from noisy data. Consider a continuous
stochastic dynamical system model with a discrete-time measurement. State of such model
at any time is per se described by some probability measure. In order to study the time
evolution of this state, one needs to determine its description at a desired time, which can
be done within two phases: time update (prediction) and measurement update (filtering).

The measurement update goal is to improve the current knowledge of the system state
using a single measurement at a time.

The time update is a continuous process which might be called uncertainty propagation.
This process takes place between the measurement time instants and it can be very difficult
if the system under consideration is highly nonlinear. In many cases of interest the state
description reveals a Gaussian distribution, but it can easily become non-Gaussian, depend-
ing on chosen coordinate system and application [1, 2]. This means that the uncertainty
propagation is often only an approximation of a very complex reality. Various uncertainty
propagation methods have been developed in order to satisfy common objectives including
computational requirements (speed), accuracy and system suitability.

Such methods and above mentioned models are widely used in areas such as automatic
control, economics or the space situational awareness (SSA). In terms of SSA, a compact
summary of uncertainty propagation methods can be found in [3].

The stochastic system behavior can be affected in terms of multiple error sources. Re-

ferring the seminal paper [4], the uncertainty sources can be differentiated with respect to



an epistemological perspective into two fundamental types, aleatory and epistemic uncer-
tainty.

Aleatory uncertainty describes the irreducible natural uncertainty, e.g. additive noise.

Epistemic uncertainty describes the designer’s lack of knowledge, inaccurate model e.g.
uncertainty in initial condition, or uncertainty in model parameters.

The continuous dynamic systems that are theoretically studied in this work are deter-
ministic state-space models with an uncertain initial condition. No measurements, inputs,
or noise within the system state evolution are considered. The objective of this thesis is
to analyze some of the uncertainty propagation tools (uncertainty propagators). The the-
oretical methods are implemented and tested with a chosen nonlinear model. The results
are compared in various objectives settled before.

The thesis is organized as follows. First, basic theory is presented. Theoretical analysis
of chosen uncertainty propagation methods follows. Two test problems are then settled

with the following results. Finally, comparison and conclusion are given.



CHAPTER 2

Theory Preliminaries

2.1 Uncertainty Representation

Let a random process x(t) € R"™ (continuous in both time and values) be distributed by
the cumulative density function (CDF) P(x(t)). If the CDF is absolutely continuous, the
process x(t) can be described by the probability density function (PDF) p(x(t)), which
must be a non-negative function and also must integrate to unity over the state space.

Then, the probability of x(¢) being in some volume = can be computed as

Pr(x(t) € =) :/dP(x(t)) = /p(x(t))dx (2.1)

For any fixed time ¢, x(¢) is a random vector denoted simply as x € R".

2.1.1 Statistical Moments

Statistical moments of a random vector x describe some overall qualities of the distribution
p(x) at a given time ¢. The first two moments are mean and covariance. The mean m € R”
measures the central tendency, the covariance matrix P € R"*™ measures spread of the

distribution of its mean,

m=Fx= | (e (22)

P = Eflx— m)x—m)") = [ (€~ m)(¢ — m)"pl)de (2.9



where F[.] denotes the expectation operator. Other moments can be defined similarly. The

formal derivative of mean and covariance matrix with respect to time is
m = E[x] (2.4)

P = E[xx’ + xx'] — (hm” + mm?") (2.5)

2.1.2 Gaussian and Gaussian Mixture Model Distributions

If a random vector x is Gaussian, its PDF is given by

1 1 Tp-1
py(x;m,P) = ———exp{—=(x—m) P (x —m 2.6
106 m,P) = —exp{—5 0~ m) P — ) (2.6
where | . | represents the matrix determinant, m and P are mean and covariance matrix,

respectively. The Gaussian distribution can be described with only mean and a covariance
matrix which limits the PDF to have only certain proportions: it is centered around the
mean and its contours can only be ellipsoids (due to the covariance). If the true distribution
px cannot be sufficiently represented using the Gaussian PDF (the random vector x is not

Gaussian), other representations such as the Gaussian mizture model (GMM) can be used

as follows,
N
px(X, m, P) ~ Z Oéipg(X; m;, Pl) (27)
i=1
where
N
a;>0Vie{l,2,...,N} and » ;=1 (2.8)
i=1

with N being the number of components and m;, P; being mean and covariance associated
with the ith component, respectively. It can be shown [5] that approximation of a PDF py
by a GMM PDF converges uniformly as the number of components N increases without
bounds. This means that the more components of GMM are used, the better approximation
is yielded, as can be seen in the AEGIS uncertainty propagation method [6], which analysis

is in Section 3.7.



2.2 Splitting a Gaussian Distribution

If the true PDF p, is approximated by a GMM, the parameters of the GMM naturally
change during the time evolution. In order to catch better the shape of the true PDF in a
future time, the number N of the GMM components can be enlarged replacing any of the
existing GMM component with several new, smaller ones (a replacing GMM).

First, consider replacing an univariate standard Gaussian distribution with a GMM

consisting of Al components as the following splitting process,

(x;0,1) Zozng Ty, 07) (2.9)

where «;, m;, 0; are the replacing GMM paramters to be found. If the replacing components
are constrained to have the same variance parameter o;, the parameters can be found for
example by minimizing the Kullback-Leibler divergence between the two distributions (the
PDF to be splitted and the GMM to be used instead) which yields splitting libraries
presented in Tab. 2.1 and 2.2, which are taken from [6], where the splitting process is fully
described. A four-component splitting library can be found in [7].

Second, consider a splitting process in a multivariate case, such as

apy(x, m, P) Zang x;m;, P;) (2.10)

the goal is to find the parameters «;, m;, P;. If the GMM approximation is required to
lay along any chosen eigenvector of P, such as it is illustrated in Fig. 2.1 for the largest

eigenvector, the Jordan decomposition is to be accomplished,
P=VAV?Y, V=[v,....,v,], A=diag{\,...,\} (2.11)

where \;, v; Vi are the eigenvalues and eigenvectors, respectively. Then, the parameters

can be computed using

o; = 627;0{, m; = m + y/ )\kﬁzivk, Pz = VKZVT (212)
A; = diag{\, ..., 5N A} (2.13)



where k establishes the chosen eigenvector along which the Gaussian PDF is to be split. If

the largest one is to be chosen, then k& = arg, max{\;}.

apg(X7 m7P> ZZA:ll aipg(xv mNP[)

o

covariance ellipse covariance ellipses

Q

Figure 2.1: Hlustration of splitting a Gaussian distribution.

Table 2.1: Three-component splitting library

i Q; m; 0;

1 0.2252246249 -1.0575154615 0.6715662887
2 0.5495507502 0 0.6715662887
3 0.2252246249 1.0575154615 0.6715662887

Table 2.2: Five-component splitting library

l Q; m; o
0.0763216491 -1.6899729111 0.6715662887
0.2474417860 -0.8009283834 0.6715662887
0.35247313 0 0.6715662887
0.2474417860 0.8009283834  0.4422555386
0.076321649  1.6899729111  0.4422555386

—_

Ot = W N




2.3 Differential Entropy of a Gaussian Distribution

The method AEGIS, explained in Section 3.7, uses entropy in order to indicate when
to start the splitting process discussed in the section above. Therefore, entropy of the
nonlinear and linearized system state is to be discussed in this section.

A Differential (Shannon) entropy of a random variable x € R™ with PDF p(x) is given
by [8]

1) = [ 0 lozplx)x = Bl log p(x)] (2.14)

where § = {x : p(x) > 0} is a support set of the PDF. If the PDF is Gaussian, the

differential entropy can be written in terms of covariance matrix,

H(x)=F [ —log —log exp{—%(x —m)"P(x— m)}}

1
|27 P |1/2
1 1 TpH-1
=F 510g|27TP|+§(x—m) P (x—m)
1 1 To—1
= §log|27rP| +§E[(x—m) P~ (x — m)]

x —m) P}

—~

1 1
=3 log |27P| + §trace{E[(x —m)

1 1 1
=3 log [27P| + §trace{PP*1} = —log|27P| + §trace{I}

| —
—_

1 1 1 1
= §log 127P| + g =3 log [27P| + §log e = §log 27Pe" = 3 log [2meP| (2.15)

where I € R™*™ denotes the identity matrix. The differential entropy describes the lack of
information about the random variable.
For the Gaussian distribution, the differential entropy drawback is that if |P| < W,

the entropy becomes negative, which happens if p,(m) > ¢"?, where m is the mean.



2.3.1 Entropy of a Linearized System State

Assuming the initial state has a Gaussian PDF | its entropy is defined by Eq. (2.15), which

temporal derivative is

H(x(t)) = %(%log |27reP(t)|) (2.16)
_ %m Mtrace{%P_l(t)%P(t)} (2.17)
_ %trace{P_l(t)P(t)} (2.18)

with initial condition defined by P(¢).

Assume a linear system of the form

x(t) = f(m(t),t) + A(m(t), t)[x(t) — m(t)], A(m(t),t) = (2.19)

where m(?) is the mean. For such system, covariance P(t) time evolution is governed by
P(t) = A(m(t), )P(t) + P(t)A" (m(t), 1), P(0) =Py (2.20)

See Section 3.4.2 for derivation.

Therefore the entropy of a linearized system is governed by

. 1 1 1
H(x(t)) = §trace{P_1AP +P'PAT} = étrace{APP”r} + §trace{AT} (2.21)

= trace{A(m(t),t)} (2.22)

with initial condition defined by m(%y). Such entropy evolution can be computed for both

LinCov (see Section 3.3) and FOTE based (see Section 3.4) propagation methods.



CHAPTER 3

Uncertainty Propagators

In this chapter, uncertainty propagation methods are theoretically stated and analyzed.The
selected methods include Monte Carlo (MC) simulation, local linearization (LinCov and the
first order Taylor expansion based propagation - FOTE) and statistical linearization meth-
ods (CADET), unscented transformation (UT), and entropy based method for adaptive
GMM update (AEGIS). The descriptions are briefly provided with derivations, a graphical
illustration', and a theoretical analysis (pros and cons, discussion, etc.).

Methods described herein are certainly not the only ones that exist. The current state
of art is summarized in Fig. 3.1, as it was described in [3], methods that are analyzed
within this thesis are highlighted in red.

The methods can be divided into few categories which are linear, nonlinear and other
methods.

Linear methods focus on a linear assumption about the system model description (local
linearization - discrete-time LinCov, and continuous-time FOTE based propagation) and
uncertainty transformation (statistical linearization - CADET).

Nonlinear methods take the nonlinear nature of the system model into consideration.
Sample-based methods focus on the system state behavior (state propagation through the
transformation) - Monte Carlo simulation, unscented transformation and polynomial chaos
expansion. Dynamics-based methods focus on the transformation and its approximation
itself (e.g. higher-order Taylor expansion) - state transition tensors and differential algebra
technique. PDF-based methods focus on the approximation of the PDF (the uncertainty
representation) - GMM and solving FPE.

LGraphical illustrations are taken from the Low Earth Orbit (LEO) test case (position results of a single

orbit of the space object) discussed in Section 4.2. The key element of each method is highlighted in red.



Linear Covariance Analysis (LinCov)

Local linearization<
. First Order Taylor Expansion (FOTE)
Linear methods / Based Propagation

Statistical linearization —Covariance Analysis Describing
Function Technique (CADET)

Monte Carlo simulation (MC)
Sample-based <Unseented Transformation (UT)

Polynomial chaos expansion (PC)
: State Transition Tensors (STTs)
Nonlinear methods Dynamics- bdbed<

Differential Algebra (DA)

Gaussian Mixture Model (GMM)
PDF-based <
Solving Fokker-Planck Equation (FPE)

Coordinates transformation
Other methods & GMM-STTs, GMM+PC, GMM+UT

Hybrid methods <Implicit Runge Kutta+UT

Figure 3.1: Uncertainty propagation methods outline.

The other methods try to solve the problem in more convenient sense (coordinates

transformation) or try to make combination of different approaches.

The main objectives using which the methods are compared, are computational costs,
accuracy, system suitability and the overall results.

Some of the methods suffer from the curse of dimensionality, meaning that the desired
accuracy can be reached only if dimensions of some parameters increase without bounds.
A goal is to find a method with the best ratio of accuracy to speed.

Some of the methods require that the system dynamics is differentiable (the derivative

A(x(t),t) exists), some do not.

10



3.1 Problem Statement

Consider the following nonlinear system with an uncertain initial condition, as a default

theoretical model in this thesis,
x(t) = f(x(t),t), x(ty) = %o (3.1)

where x(t) € R" is a state vector, dynamics f : R™ — R" is a sufficiently differentiable
function, and xy is assumed to be a random variable with a PDF p(xg). Mostly, the
initial PDF is taken to be Gaussian p,(xo; mg, Py). Because the subject of this thesis is to
construct a state uncertainty prediction, consider there is only a single initial measurement
which determines my and Py, and no other measurements for ¢ > 0 are available. Also, no
input signals such as actuation, control, disturbance or noise are considered. The objective
then is to find a plausible statistical properties, such as mean m and covariance matrix P
of x(t) at any desired time ¢.

A graphical illustration of this process is shown in Fig. 3.2, where the propagation
process is split into a branch which represents the real uncertainty propagation (which
satisfies the Fokker-Planck equation and results into the true density, see Section 3.1.1) and
a branch which represents the approximation procedure (use of an uncertainty propagation

method) which may conditionally converge to the true PDF.

. true
given / Fokker-Planck Equation ——a P (X ( t))
4
p(x(to))
convergence

usually by mg, Py

\U taint . " approximate P(X(?))
ncertainty propagation___
methods usually by m(t), P(t)

Figure 3.2: Ilustration of uncertainty propagation.
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Note that if the initial condition is not random, the system state at any time can be

implicitly denoted as a numerical solution to the differential equation 3.1,

x(t) = ¢(xo, to, t) (3.2)

where ¢(xqo, to,t) is the state solution flow.

3.1.1 Fokker-Planck Equation

The exact time evolution of the PDF p(x(t),t) is given by the Fokker-Planck equation
(FPE) in terms of no diffusion [9]:

GiPx(0).1) = = 32 s lplox(t).6) - x(0).1) 33)

where the initial PDF is taken to be py(x¢; mg, Py). As the PDF time evolution depends
on the system dynamics f(x(t), ), the initial Gaussian distribution can easily become non-
Gaussian. As studied in [1] or [2], the used coordinate system has big impact on this
problem. Obtaining an exact solution of Eq. (3.3) is possible only in special cases such as
linear systems, e.g. [10].

Note that the model settled in Eq. (3.1) can be further generalized in terms of state
diffusion as it is studied e.g. in the paper [3], but this model will not be under consideration

in this thesis.

12



3.2 Monte Carlo Simulation

Monte Carlo (MC) simulation is a technique based on random number generation that

captures the shape of the transformed PDF by a set of samples.

3.2.1 The Method Description

First, a set of samples {x; ¢}, derived from a given initial distribution p(xy) is generated.
If the initial distribution is taken to be Gaussian, each sample can be generated with a
Gaussian pseudorandom number generator. Then, each sample x; o is transformed through
the nonlinear dynamics from ¢, to ¢, which can be denoted using the state solution flow

function as
Xz(t) = ¢(Xi,07 to, t), 1= ]_, ceey N (34)

as a result of a numerical integration. Therefore, the first two moments can be computed

via equations for sample mean and sample variance,

m(t) =+ 3" %0 (3.5)

P(t) = > [xi(t) - m(t)][x:(t) — m(t)]" (3.6)

3.2.2 Analysis and Discussion

The results? of the MC simulation approach to the true distribution when N — +oo,
therefore it is considered reliable to validate other uncertainty propagation methods [3]. It
is suitable for any nonlinear system as it captures a shape of an arbitrarily transformed
initial PDF. The results are very intuitive and easy to understand. Also, the algorithm is

easy to implement.

2The transformed MC samples can be used to create for example a Dirac mixture model distribution

(DMM) [11], or a histogram PDF.

13



The biggest disadvantage of this method is that to achieve high accuracy, N has to be
high enough, which makes the method computationally expensive.

A graphical illustration is shown in Fig. 3.3.

x; before transformation

X
x

generated MC samples
initial mean
95.4% error ellipse

%i(t) = £(x,(1)),

x;0 generated from p(xq),

i=1
x;(0) =xip

e

x;(t) after transformation

X
x

transformed MC samples
computed mean
95.4% error ellipse

compute m, P from x;(t)

xXx

Transformation

Figure 3.3: Monte Carlo simulation graphical illustration, with 1000 MC samples.
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3.3 LinCov

“Linear Covariance” (LinCov) method is a discrete-time propagation method based on
a local linearization along a reference trajectory X(t). The goal is to approximate the

covariance matrix. A general formulation of LinCov can be found in [12].

3.3.1 The Method Derivation and Description

A local linearization of f(x(t),t) along a reference trajectory X(t) is to be created using the
first-order Taylor expansion,

x(t) ~ £(X(t), t) + AX(L), te(t) (3.7)

e(t) = x(t) — %(t), A(R(L),1) = 3fé’; )

(3.8)

x=X(t)

where e(t) is the state error vector. The reference trajectory X(¢) might be a solution to the
differential equation (3.1) with an initial condition given by the initial mean mg. Because

f(X(t),t) = X(t), the Eq. (3.7) yields,
é(t) =~ A(X(t),t)e(t) (3.9)
Assuming the state error vector retains small, the analytic solution can be expressed as
e(t) = ®(X(t), At)e(ty), B(X(t),At) £ AEDH-AL (3.10)

where ®(X(t), At) is the state transition matrix (STM). Note that t = to + At. The state

solution flow equation for this linearized model is
x(t) = X(t) + ®(X(t), At)x(tg) — ®(X(t), At)X(to) (3.11)

Assuming E[x(to)] = X(to), the mean m(t) = E[x(t)] retains simply the reference trajec-

tory. The propagation of the covariance matrix is given by

P(t) = E[(x(t) —m(t))(...)"] (3.12)
= E[®(X(t), At)(x(to) — m(to))(...)"] (3.13)
= P(t) = ®(X(t), At)P(to) @ (X(t), At) (3.14)
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which is the main result of the LinCov method.

3.3.2 Analysis and Discussion

Unlike the Monte Carlo simulation, LinCov needs to solve the object trajectory only once
(to find the reference trajectory X(¢)), which makes it way more computationally effective.

A disadvantage is that Eq. (3.14) holds only if At — 0 due to the local linearization
effect. This fact makes this method iterative, time discretization At (which becomes a
design parameter) should be small, otherwise the results will be less accurate. This makes
LinCov inaccurate for strongly nonlinear systems. Moreover, in order to find the matrix
function A(x(t),t), the derivative of the system dynamics must exist.

Note that the LinCov propagation scheme described in Eq. (3.14), also appears in a
discrete-time extended Kalman filter. A graphical illustration of the LinCov method is

shown in Fig. 3.4.

Statistical properties before transformation Statistical properties after transformation
generated MC samples transformed MC samples
x Initial mean x transformed mean
95.4% error ellipse 95.4% error ellipse, At=30s

——95.4% error ellipse, At=1s

m(t) = X(t)
toor = 1 + AL
‘I’(tk, iy 1) = eAmea)di) At
P(tpi1) = ®(t, b)) P () @7 (i trs)

Ly
>

Transformation

Figure 3.4: LinCov technique graphical illustration with comparison to 1000 Monte Carlo

samples (gray).
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3.4 FOTE Based Propagation

The first Order Taylor Expansion (FOTE) based propagation is a continuous-time propa-

gation method based on a local linearization along an approximated mean m(t).

3.4.1 The Method Description

Using Eq. (3.7) a local linarization of f(x(t),t) along the mean m(t) is given by a first

order Taylor series expansion:
x(t) ~ f(m(t),t) + A(m(¢),t)[x(t) — m(t)] (3.15)

where A (m(t),t) is the first order derivative, see Eq. (3.8). Then the propagation governing

equations are

() = f(m(t), 1), m(0) = my (3.16)

P(t) = A(m(t),)P(t) + P(t)AT (m(t), 1), P(0) =P, (3.17)

Eq. (3.17) formally is the continuous-time Lyapunov Equation. In terms of our objective,
it can be derived for example from the FPE [10]. An alternative derivation is shown as

follows.

3.4.2 The Alternative Derivation

For convenience, the notation A = A(m(t),t) will be used. Let r(t) = x(¢) — m(¢), then

i(t) = X(t) — (t) = EmeTT + Alx(f) — m(t)] - EmE T = Ar(t)  (3.18)
which can be approximated by Euler’s rule:

r(t+ At) =r(t) + Ar(t)At (3.19)
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Because P(t) = Elr(t)r’(t)], we get

Elr(t + AT (t + At)] = E[(x(t) + Ar(t)At)(.. )] (3.20)

P(t+ At) = P(t) + AP(t) At + AtP(t)AT + AP(t)AT A%t (3.21)
P(t+ At) — P(t)

- = AP(t) + P(t)A” + AP(t)A" At (3.22)

Taking the limit as At — 0 results into the desired equation:

Jim P+ AA?L “ PO _ by = Am(r), )P(0) + P()AT (m(1), 1) (3.23)

3.4.3 Analysis and Discussion

This linear propagation scheme is widely used because of its good ratio of accuracy and
speed. The object trajectory has to be solved only once to find the mean. No design
parameter is needed.

The accuracy is sabotaged by local linearization effects. Like in the LinCov analysis,
in order to find the matrix function A(m(t),t), derivative of the system dynamics must
exist.

Note that LinCov and FOTE based propagation are both linear propagators (both are
de facto first order Taylor expansion based). The FOTE based propagation can be used
only in terms of the continuous-time, while LinCov can be readily used both in terms
of continuous-time and discrete-time sense but with respect to the given discretization
At. Note that the FOTE based propagation scheme also appears in the continuous-time
extended Kalman filter. A graphical illustration of the FOTE based propagation is shown
in Fig. 3.5.
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Statistical properties before transformation Statistical properties after transformation

genelrated MC samples trans]tormeg MC samples
% Initial mean % transformed mean
95.4% error ellipse 95.4% error ellipse

m = f(m)
P=AP +PAT A =A(m(1),1)
Transformation

Figure 3.5: FOTE based propagation graphical illustration with comparison to 1000 Monte

Carlo samples (gray).
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3.5 CADET

“The Covariance Analysis Describing Function Technique” (CADET) is a method that uses

a statistical linearization. A formulation of this method can be found in [13, 3].

3.5.1 The Method Derivation and Description

A statistical linearization is to approximate the state vector x(t) and the leading function

f(x(t),t) with a linear expression

x(t) = m(t) + r(t) (3.24)

T(x(t), ) = Ny (t)m(t) + N, (£)r(t) (3.25)

where m(t) = E[x(t)] and r(t) is a zero-mean independent random process representing
state deviations, P(t) = E[r(t)r"(t)]. Note that E[r(t)m”(¢)] = E[m(t)rT(t)] = 0. Ny (¢)
and N,(t) are the so-called multiple-input describing function gain matrices that are chosen

to minimize the mean square approximation error eg(t),
er(t) = f(x(t),t) — £(x(t),1) (3.26)
=f(x(t),t) — N (t)m(t) — N,r(t) (3.27)
For convenience, the arguments of the functions will be omitted. Then, the criterion to

minimize is
J = Ele} Seg] = trace Eleref ]S (3.28)
= E[f"Sf — 2f"SN,,m — 2f"SN,r + 2m” N SN, r

+m"NL SN, m + r"NI/SN,r]| (3.29)

where S is a symmetric positive semi-definite matrix. Minimization of J leads to

0

a7 = ~2E[")Sm + 2m" N[ Sm + 2m SN Efr] =0 (3.30)
8; J = —2E[f7Sr] + 2m"NLSE] + 2E[r"SN,1] = 0 (3.31)
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because Er] = 0. Taking Eq. (3.30), N, can be expressed as

2m NI 8m = 2E[f"|gm /()T (3.32)
m’N. m = m” E[f] (3.33)
= Nm(t)m(t) = E[f(x(t),1)] (3.34)

Taking Eq. (3.31), N, can be expressed as

E[r"8N,r] = E[fSr] (3.35)
trace E[rr’|N, = trace E[fr’] (3.36)
= N, (t) = E[f(x(t),t)r" (t)]P(t) (3.37)

Therefore, the statistical linearization [combining Eq. (3.1) and (3.25)] is in the form

x(t) = F(x(t),t) = E[f(x(t), t)] + E[E(x(t), )r" ()P~ (t) r(1) (3.38)

J/

~~ ~~
Nmm Nr

Moreover, under the assumtion of x(¢) being Gaussian, N, (t) can be computed [13] using

expression
N.(t) = ——=FE[f(x(t), )] (3.39)
which might be approximated by N, (¢) ~ A(m(t),¢). The mean propagation is

m(t) = E[f(x(t),t)] = Nm(m, P, t)m(t) = E[f(x(t), )] (3.40)

Taking Eq. (2.5) the covariance propagation is as follows

P(t) = E[f(m” +r7) + (m + r)f’] — E[fjm” — mE[f"] = E[fr"] + E[rf] (3.41)
= E[(Nyym + Nor)r'] + Er(m”NZ +r"N7)] = E[N,rr”] + E[rr"N,]  (3.42)
=N, (m,P,#)P(t) + P(t)NL(m,P, 1) (3.43)
= E[f(x(t),t)rT (1)) + E[r()fT (x(1),1)] (3.44)
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3.5.2 Analysis and Discussion

A benefit of this method is its suitability to high-order systems, whose derivatives do not
exist, systems with multiple nonlinearities, inputs or nongaussian statistical description.

The implementation might be tricky due to the need to calculate E[f(x(t),t)] and
E[f(x(t),t)r"(t)] which can be high-variate integrals with the need to evaluate current
p(x(t)). That might be done with some approximation e.g. some quadrature rule (UT,
see Section 3.6) or a sparse grid integration [14]. However, this can make the results of
CADET inaccurate for nonlinear systems.

The CADET method can be used for example in missile guidance systems [13], or

estimation. A graphical illustration of the CADET method is shown in Fig. 3.6.

Statistical properties before transformation Statistical properties after transformation
generated MC samples transformed MC samples
x initial mean x transformed mean
95.4% error ellipse 95.4% error ellipse

= E[f(x)]
P = E[f(x)r] + E[rf” (x)]

Transformation

Figure 3.6: CADET method graphical illustration with comparison to 1000 Monte Carlo

samples (gray).
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3.6 UT

The continuous-time unscented transformation [15] is a nonlinear propagation method that
uses a set of so-called weighted sigma-points generated from the initial distribution that are
subsequently transformed through the nonlinear function to yield the transformed mean
and covariance matrix. Unlike the Monte Carlo samples, the sigma-points are deterministi-
cally chosen from the initial distribution, so that they capture a specific information about
it. Various ways to determine the sigma-points exist [17], the symmetric sigma-point set

is presented herein.

3.6.1 The Method Description

Let n be the dimensionality of the state vector x. In order to determine the sigma-points,

the square-root factor S of the initial covariance matrix has to be found,
Py=SS", S=[s1,...,s,] (3.45)

which can be accomplished for example via the Cholesky factorization, or via a singular-

value decomposition. Then, the symmetric sigma-point set {X; o}, is determined as

‘)(2'70 :mo—i—\/ﬁsi, 1= 1,...,’]7, (346)
.)C;"O =1mgy — \/ﬁsi, 1= n,..., 2n (347)

It can be shown [15], that this sample set has the mean and covariance of the initial distri-

bution p(xg). Then, each sigma-point is transformed through the nonlinear transformation,
Xz(t> = ¢<%70,t0,t), 1= 17...,272, (348)

Then, the first two moments of x(t) can be computed via equations

m(t) = > wX(t) (3.49)

P(t) =) wilXi(t) — m(t)][A;(t) — m(t)]" (3.50)

where the weights w; = % Vi in terms of a symmetric sigma-point set.
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3.6.2 Analysis and Discussion

The presented form of the unscented transformation has no design parameter, though
many modifications have been developed over the past years to improve its performance e.g.
[16, 17]. The concept is similar to one of the Monte Carlo simulation, but the computational
costs is way below that of Monte Carlo. The speed and accuracy are considerably high.
UT delivers a second order approximation of the first two moments, but only those first
two moments can be propagated which may be inadequate for some applications [3].
Note that the unscented transformation can be also used to approximate integrals of
the form of Eq. (2.2) and (2.3) or some expectation values of functions of random variables
such as Eq. (3.34) and (3.37) in CADET technique. In such case, the transformation part
in Eq. (3.48) is skipped.
The UT can also be used in a discrete-time, modifying the transformation Eq. (3.48).
Note that the unscented transformation also appears in the continuous-time unscented
Kalman filter. A graphical illustration of the UT is shown in Fig. 3.7, where the dimen-

sionality n = 4 (marginal distribution is drown) which leads to 8 UT samples.

X, before transformation X;(t) after transformation

generated MC samples the transformed MC samples
x generated UT samples x the transformed UT samples
x initial mean x computed mean

95.4% error ellipse 95.4% error ellipse

X, chosen from p(xp), i=1,..,2n

Xv‘(t) :f(k}(t)), /1)7(0) i,0

compute m, P from X;(t) y

Y

Transformation x

Figure 3.7: UT propagation graphical illustration, with comparison to 1000 Monte Carlo

samples (gray).
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3.7 AEGIS

The “Adaptive, Entropy-Based Gaussian-Mixture Information Synthesis” is a method that
uses a nonlinear transformation for propagation and a Gaussian-Mixture model for un-
certainty representation. In order to preserve high accuracy, AEGIS method change the
number of GMM components adaptively with respect to the entropy difference between

linear and nonlinear uncertainty propagation. It was first established by DeMars et al. [6].

3.7.1 The Original Method Description

First, assuming the initial PDF is Gaussian, the following terms are established

pGMM(X(tO)) = O[lpg(Xo, my, Po) (351)

1
Hy = HY(ty) = 5 log |27ePy| (3.52)

where pav (X(to)) is the initial GMM, «; = 1 is the weight of the initial component, and
Hj establishes a threshold as € - Hy, where ¢ € R is a design parameter. The propagation
process will be now described using following iteration.

Consider following GMM at time t,_; during the time evolution,

pamm(x(ts-1)) = Z%‘Pg(x(ts—l)a my(ts—1), Pi(ts1)) (3.53)

Then, each component is propagated using the UT (see Section 3.6) propagation tool
starting from the time ¢,_; until (not known yet) time t,. The weight associated with
i-th component is held constant during the propagation. Denote the resulting mean and
covariance at time ¢ > t, 1 as m} (¢), P () respectively. In parallel, each component
entropy is monitored in terms of nonlinear entropy H}¥(¢) (the UT) and linear entropy

HE(t) (see Section 2.3.1) propagation via following equations,

HN (1) = %log 2mePy(¢)| (3.54)

)

HE(t) = trace A(my(t),t), HE(te—y) = HN(to_1), t >t (3.55)

K3 K3
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If the difference between H}Y(t) and HF(t) for any i at any time ¢ exceeds the given
threshold eHy, the propagation is halted and the ¢, := ¢. Then, the splitting process (see
Section 2.2) is applied to the i-th component, a;p,(x(ts), my (¢,), PN (t,)), to yield new
components which replace the i-th component,

I+Al—-1
pGMM(X(tS)) = Z aipg(x(tS)v mi(tS)v Pi(tS)) (3'56)

i=1
where Al is the number of components the chosen library splits in. After that, the iteration

is reestablished with setting t,_; := t,.

3.7.2 Improvements of the Method

As mentioned in Section 2.3, the differential entropy of a Gaussian distribution becomes
negative if |P| < w which happens if the covariance matrix P is small, leading to
py(m) > e™2. If Py satisfy such property, Hy < 0 and therefore the term |HF — HY| > H,
does not make sense while |[HX — H¥| > 0 for every t. This means that the GMM is split

at every time ¢, meaning the GMM number of components increases without bounds.

A possible solution is to scale the covariance matriz with some parameter & > 0 to
yield a positive entropy. That can be done only within a specific application, because the
design parameter £ > 0 cannot be established before having any information about the
system. Taking the account of variability of the design parameter, the lack of generality

may or may not be balanced by a possible improvement.

Another approach to cope with the problem is, instead of the entropy H}¥(t) defined
above, taking some chosen function denoted e.g. H of the entropy. Consider taking the

exponential function of H(t), as

~ 1
HYN 2 H(HY) = exp{§ log [27eP;|} = +/|2meP;] (3.57)
which is certainly a nonnegative function of P;.
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Another useful improvement would be defining the threshold eHy not globally, but
separately for each GMM component. Consider that the splitting process of i-th component
at time ¢,, yielded Al new components. Denote t,. 1 = t,, the time a new r-th component

was created. Now define
Hy, = H(P,(ts, 1)) (3.58)

which establishes a threshold for the new r-th component as eH,. Entropy H can be
computed as H(t, _1) using Eq. (3.57).

3.7.3 Analysis and Discussion

The AEGIS method can approximate the true, non-Gaussian PDF very accurately, depend-
ing on the chosen eHy; for each GMM component (or eH, globally), entropy definition,
chosen splitting library, or even time discretization. This makes AEGIS suitable for nonlin-
ear systems. The GMM approach very effectively eliminates the UT propagation drawback
(propagating only the first two moments) by using more Gaussians in parallel. Instead of
the UT, other nonlinear propagators can be used (such as STTs, PC, FPE). Thanks to the
Gaussian nature, only the first two moments require propagating.

A penalty for a good accuracy is computational cost which is considerably high. This
reveals the curse of dimensionality. The use of entropy as a measure of whether the distri-
bution retains Gaussian or not is arguable. Refering [1], other measures e.g. Cramer von
Mises metric (which uses the Mahalanobis distance) could be taken, but an analytic result
of the estimate of when the uncertainty becomes non-Gaussian has not yet been answered.
Moreover, AEGIS can have many design parameters which can be uncomfortable from the
user point of view. Also, in order to find the matrix function A(x(t),t), the derivative of
the system must exist.

A graphical illustrations including the method improvements are in the Fig. 3.8 (scheme)

and 3.9 (possible result).
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ts_1 Propagation process, t € (t;_1,ts) ts
propagate until any component has to be splitted
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Figure 3.8: AEGIS method propagation scheme.

Statistical properties before transformation Statistical properties after transformation
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X initial mean X means of GMM components
< >initial PDF << —>the resulting GMM PDF

nonlinear propagation of components

monitoring the entropy
splitting a non-Gaussian component

>
>
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Figure 3.9: AEGIS method graphical illustration with comparison to 1000 Monte Carlo

samples (gray).
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CHAPTER 4

Testing Problems

In this chapter, two testing problems are defined, each propagation tool is then applied to
the problem with following results and comparison. The testing problems should follow
the main theme of this bachelor thesis, which is an uncertainty propagation for tracking of
moving objects. The models should illustrate the functionality of uncertainty propagators,
be intuitive and reflect the nonlinear assumption. To accomplish these objectives the two
models of an orbital object movement commonly found in space object tracking [6] were
chosen: an eccentric high FEarth orbit case that is not under the influence of atmosphere,
and a circular low Farth orbit case is under the influence of both atmospheric drag and
gravity. Following the theoretically analyzed model given in Section 3.1 the testing models
identify the function f(x(t),t) for further simulations.

DeMars et al. in the paper [6] introduced the two models to illustrate the AEGIS
method (described in Section 3.7) functionality. The other methods (stated in chapter 3)

are compared in those cases in this thesis.

4.0.1 Likelihood Agreement Between Distributions

Performance of the methods is compared with respect to 1000 Monte Carlo Samples in
chosen time steps using the likelihood agreement measure (LAM) between two distributions

P, q, which is defined as

L(p,q) = /p(X)Q(X)dX (4.1)
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The LAM measures the amount of overlap between the two PDFs. The larger agreement

of the two PDFs, the greater LAM. Let ¢(x) be a Dirac mixture model (DMM) of the form

q(x) = Z 7i0(x — x;) (4.2)

where x; Vi are the transformed Monte Carlo samples and ~; = % Vi. Therefore, the LAM
between the DMM and Gaussian, and DMM and GMM are computed by the following

equations respectively,

N
L(pg,q) = Y 7ipg(xs, m, P) (4.3)
i=1
N 1
L(pavn, q) = Z Z%‘ijpg(xu m;, P;) (4.4)
i=1 j=1

Note, that higher value of LAM means that the given set of Monte Carlo samples are more

likely to be generated by the tested PDF p.

4 X 104 A MC Sample Position Trajectory 8 A MC Sample Corresponding Velocity Trajectory
—— LEO velocity sample rajectory
—— HEO velocity sample rajectory
3r 5 . 6 initial velocity .
5 of a orbit x  velocity after transformation
2 4

HEO initial altitude = 35,000 [km]

O\

LEO initial altitude¢/= 225 [km]
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o —
N
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'
g
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N
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—— Shape of the Earth
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-4 L L L L ] -8 L 1 ]
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Figure 4.1: Both HEO, LEO testing problems graphical illustration from the initial state
until approximately g of one orbit. Position and Velocity trajectories are taken from one

of the Monte Carlo samples.
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4.1 High-Earth-Orbit Test Case

As was mentioned before, the high Earth orbit (HEO) is eccentric and so the trajectory
shape retains elliptical during time evolution. The influence of the atmosphere is not

considered in this case. The governing equations of motion are taken to be

. : 1
r=v, V=-—53r (4.5)

where r, v are the ECI position and velocity coordinates of the moving object respectively,
r = ||r||, u is the gravitational constant!. The motion is confined to the equatorial plane, so
that the moving object position can be described with scalar values x = z(t) and y = y(t),
as well as velocity u = u(t) and v = v(t).

The nonlinear dynamical system in form or Eq. (3.1) can than be written with

x u
Y v
)= ", txo.n=| (4.6)
u —paxr
_U_ __Myr_3_

where r = /22 + 92,
The derivative of system dynamics (Jacobian of f(x(t),t)) therefore is

0 0 10
0 0 01
Ax(D) = (@)
p[3x?r=5 — r73] pu3zyr—° 00
pu3zyr =5 p[3x?r=5 —r=3] 0 0

The initial state distribution is taken to be Gaussian. The initial mean is given by
Keplerian orbital elements. A semi-major axis of 35,000 km, an eccentricity of 0.2, an

argument of periapse of 0 deg, and a mean anomaly of 0 deg. The initial covariance is

IThe gravitational constant can be computed using equation u = M - G, where M [kg] is the mass of

Earth and G [m®kg~'s72] is the Newton’s gravitational constant
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taken to be diagonal with position deviations of 1 km and velocity deviations of 1 m-s~*.

The initial mean (transformed into Cartesian coordinates [18]) and covariance matrix both

scaled into kilometers therefore are

2.8 x 10*

10 0 0
0 01 0 0
Xy = s PO = ) (48)
0 00 10% 0
—4 00 0 10°°

A moving object drives a single orbit after approximately 1080 minutes.

4.1.1 Results

Monte Carlo, LinCov, CADET and AEGIS have some design parameters. Those used
within the following simulations will be therefore described now.

The number of Monte Carlo samples used is N = 1000. The LinCov time discretization
parameter At = 1 second was used. In CADET, the expectation values of the Eq. (3.34)
and (3.37) were approximated with the UT (as suggested in Section 3.6.2). The AEGIS
method is implemented twice. "s-AEGIS-3” with the 3 component splitting library; for
computing the differential entropy, the scaled version (P of covariance matrix is used with
¢ = 10° (the deviations are scaled into meters); the entropy threshold e Hy is computed using
Eq. (3.52) and is same for all GMM components, ¢ = 0.04 was used. "e-AEGIS-3” with the 3
component splitting library; the entropy is computed using the exponential transformation
[see Eq. (3.57)]; the entropy threshold eHy, is computed for each component separately
[see Eq. (3.58)] with € = 0.8. Note that the implementation of s-AEGIS-3 should represent
the original AEGIS method, while e-AEGIS-3 should represent the method improvements.

A comparison of LinCov, FOTE, CADET and UT methods with Monte Carlo simula-
tion is shown in terms of position and velocity (marginal covariance ellipses) in Fig. 4.2
and 4.5. A comparison of s-AEGIS-3 and e-AEGIS-3 to Monte Carlo simulation in terms
of position and velocity (marginal PDF contours) is shown in Fig. 4.4 and 4.3, respectively.

A comparison of likelihood agreement measure of all used propagators is in Fig. 4.6. Then
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the entropy H” (linear propagator) and HY (UT) with comparison to their transformed
versions through the function H are drawn in Fig. 4.7. Number of GMM components of

both implementations of the AEGIS method is shown as a function of time in Fig. 4.8.
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transformed MC samples
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2.79 2.792 2.794 2.796 2.798 28 0.05 0.1 0.15 0.2 0.25 0.3
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Figure 4.2: Position and Velocity results of Monte Carlo, LinCov, FOTE, CADET and UT
propagators with 95.4% confidence ellipses after 18 hours (approximately one orbit).
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Figure 4.3: Position and Velocity marginal PDF contours of s-AEGIS-3 after 18 hours

(approximately one orbit).
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Figure 4.4: Position and Velocity marginal PDF contours of e-AEGIS-3 after 18 hours

(approximately one orbit).
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Figure 4.5: Position and Velocity results of Monte Carlo, LinCov, FOTE, CADET and UT
propagators with 95.4% confidence ellipses after 36 hours (approximately two orbits).
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4.2 Low-Earth-Orbit Test Case

Unlike the eccentric HEO, low Earth orbit trajectory shape is circular during the time
evolution. The influence of atmosphere is considered in this case. The governing equations

of motion are taken to be

. . 1
r=v, Vv= —f—gr — ép(h)ﬁvrelvrel (4.9)

where p(h) is the atmospheric density as a function of h = \/m — a which is the
altitude of the moving object (where a is the Equatorial Earth radius taken to be 6378 km
in this analysis), § is the ballistic coefficient (taken to be 1.4 in this analysis), and v, is
the inertial velocity vector (with respect to the atmosphere). Similarly to the HEO test
case, the motion is confined to the equatorial plane, so that the moving object position
can be described with scalar values x = z(t) and y = y(t), as well as velocity u = u(t) and
v =v(t).

The nonlinear dynamical system in form or Eq. (3.1) can than be written with

T u
Y v
x(t) = "], #ex(t), 1) = o (4.10)
u —pxr™ = 5p(h) BrelVrel
_v_ _—,uyr_3 - %p(h)ﬁvrelvrel,y_

where r = /22 + 42, Vyelp = U — WY, Vrely = ¥ + w2, w is the angular velocity of the Earth
(taken to be 7.27x107° in this analysis), and v = 4 /02, + V2, ,- The atmospheric density

h—hg
hs ’

is assumed to be described by an exponential atmosphere model: p(h) = ppexp{—
where the constants in this analysis are taken to be py = 3.614 x 10713 kg-m~=3, hg = 700
km, and hy = 88.667 km.
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The derivative of system dynamics (Jacobian of f(x(t),t)) therefore is

where

0
0

p3xyr=> + iy

p[3x%r=5 — 73] + 4y

0 1 0
0 0 1

p3zyr=> + g Y5 Py

p[3x%r= — 73 by g ¢8_

1 x Urel,
¢1 = _p(h)ﬁvrel,x(_vrel —w ly)

2 hs Urel
R Y SPTES
2 — 2P Vrel Urel

2

Urel,x )

¢3 = _p(h)ﬁ<_vrelvrel,x +w—— + Wrel,

Yy
¢4 = _p(h)ﬁvrel,y(h_svrel +w Vel

2

2

s = — plh) (2=

2 Urel

Urel
Urel,x )

+ Urel)

1 Urel,z Urel,
o = =g () gty

2 Urel
1 Urel,yUrel,z
— —_p(h)g=Y e
Py 2P( )B -
1 Ul?el
¢8 - _ép(h)ﬁ( i + Urel)
Urel

(4.11)

(4.12a)
(4.12D)

(4.12¢)

(4.12d)

(4.12¢)
(4.12f)

(4.12g)

(4.12h)

The initial state distribution is taken to be Gaussian. The initial mean is given by an

altitude of 225 km, and the initial covariance is taken to be diagonal with deviation of 1.3

km in x position, 0.5 km in y position, 2.5 m-s~

The initial mean and covariance matrix both scaled into kilometers therefore are

Xp —

1 1

in u velocity, and 5 m-s™

2.603 x 10°

1.96
0 0
) PO =
0 0
—7.8 0

0 0 0
0.25 0 0

0 6.25x107° 0

0 0 2.5 x 107

A moving object drives a single orbit after approximately 89 minutes.
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4.2.1 Results

Monte Carlo, LinCov, CADET, s-AEGIS-3 and e-AEGIS-3 design parameters and/or im-
plementation accessories retain the same as presented in Section 4.1.1. Moreover, the
AEGIS method is implemented once more as "e-AEGIS-5” with the 5 component splitting
library; the entropy threshold eH,, is computed for each component separately [see Eq.
(3.58)] using Eq. (3.57), and € = 0.8.

A comparison of LinCov, FOTE, CADET and UT methods with Monte Carlo simula-
tion is shown in terms of position and velocity (marginal covariance ellipses) in Fig. 4.9
and 4.10. A comparison of s-AEGIS-3, e-AEGIS-3 and e-AEGIS-5 to Monte Carlo simu-
lation is shown in terms of position (marginal PDF contours) and velocity in Fig. 4.12
4.11 and 4.13 respectively. A comparison of the likelihood agreement measure of all used
propagators is in Fig. 4.14. Then, the entropy H” (linear propagator) and HY (UT)
with comparison to their transformed versions through the function H are drawn in Fig.
4.15. Number of GMM components of all of the implementations of the AEGIS method is

compared as a function of time in Fig. 4.16.
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Figure 4.9: Position and Velocity results of Monte Carlo, LinCov, FOTE, CADET and UT

propagators with 95.4% confidence ellipses after approximately 1.5 hours (one orbit).
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UT propagators with 95.4% confidence ellipses after approximately 3 hours (two orbits).
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Figure 4.11: Position and Velocity marginal PDF contours of s-AEGIS-3 after approxi-

mately 3 hours (two orbits)
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mately 3 hours (two orbits)
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4.3 Analysis

The simulation results of both HEO and LEO test cases will now be discussed.

Approximate computational time costs of the implemented algorithms measured in
elapsed time of the simulations? for both one and two orbit uncertainty propagation is
summarized in Tab. 4.1. Note that the implementations® might execute faster, depending
on the code efficiency and machine* used for simulations.

The high computational time costs of all of the implementations of AEGIS are compen-
sated by highly accurate approximation of the true PDF shape (considered to be formed
by the results of the MC simulation) which obviously cannot be reached by the LinCov,
FOTE, CADET and UT propagators as they use only the first two moments for the prop-
agation at all. This phenomenon should be supported by high accuracy measure values
of the AEGIS method results, though according to the likelihood agreement measure, the
AEGIS method results were only occasionally "slightly” better than the other propagation
methods.

Studying the nature of the LAM, it appears that the LAM yields higher values for
distributions which covariances are rather small, because the values of such PDFs near its
mean are higher. This might be the case of the linear propagators. On the other hand,
the UT resulting PDF obviously describe the state uncertainty more securely (with bigger
covariances) than the linear methods, but its LAM values are lower than might be expected
from an objective accuracy measure. Also, the UT implementation appears to have the
lowest computational time costs.

Note that the entropy as a function of time (both linear and nonlinear) can be compared
to the number of GMM components of the AEGIS methods, with respect to the chosen

design parameters.

2Corresponding design parameters can be found in Section 4.1.1 and 4.2.1
3The algorithms were implemented in MATLAB®and Simulink®of version R2014b.
4The machine used for the simulations within this thesis was not real-time and had the memory of 8GB

RAM and processor of 2.4 GHz, Intel®Core ' i5, other processes were running during the simulations.
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Table 4.1: Approximate computational time costs of the methods measured in seconds

MC
LinCov
FOTE
CADET
UT
s-AEGIS-3
e-AEGIS-3
e-AEGIS-5

HEO LEO
1 orbit 2 orbits 1 orbit 2 orbits
6.8 9.6 6.5 10.0
8.9 17.9 0.8 1.6
0.2 0.2 0.2 0.2
0.6 1.4 0.3 0.8
0.1 0.2 0.1 0.1
185.6 16829  81.7 497.6
296.2 26684 109.3 1050.6
- - 112.4 889.9
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CHAPTER 5

Conclusion

Some of the currently available uncertainty propagation methods were chosen, analyzed,
implemented and tested within two test cases. The methods were: Monte Carlo simulation,
LinCov, first order Taylor expansion based propagation, CADET, unscented transforma-
tion and AEGIS. Also, an improvement of the AEGIS method was proposed. A possible
utilization of this thesis might be as a foundation for final method selection based on spe-
cific demands in the field of uncertainty propagation (state estimation, SSA, Kalman filter
framework, etc.).

The analyzed methods were applied to orbit uncertainty prediction for two cases: an
eccentric high-Earth-orbit test case under the influence of gravity only and a circular low-
Earth-orbit test case under the influence of both gravity and atmospheric drag. It was
demonstrated how the obtained marginal PDFs (represented by contours or simply by
confidence ellipses in single-Gaussian method cases) represents the curvature of the true
distribution approximated by Monte Carlo simulation. Moreover, the result were com-
pared in terms of the likelihood agreement measure to show other aspect of accuracy of
each method. The most accurate prediction in sense of the true distribution curvature ap-
proximation was readily performed by the AEGIS method (any implementation) in both
test cases, although its LAM was slightly worse than expected. Due to the results, the LAM
might be arguable as an appropriate measure of accuracy. The approximate computational
time costs were presented to get a reasonable idea of the complexity of the methods.

Future work may include analysis of methods which has not yet been compared, further
improvements, combining aspects of the methods, or extending the test cases. Also, a

generalized method formulation might be useful in order to meet specific demands.
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