

Diplomová práce

Analýza stavebních systémů pasivních domů

Fakulta: Fakulta aplikovaných věd

Studijní program: Stavební inženýrství

Vypracoval: Bc. Tomáš Lohr

Vedoucí práce: Doc. Ing. Jan Pašek, Ph.D.

Datum: 2017/2018

ZÁPADOČESKÁ UNIVERZITA V PLZNI

Fakulta aplikovaných věd Akademický rok: 2017/2018

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení: Bc. Tomáš LOHR

Osobní číslo:

A16N0111P

Studijní program: N3607 Stavební inženýrství

Studijní obor:

Stavitelství

Název tématu:

Analýza stavebních systémů pasivních domů

Zadávající katedra: Katedra mechaniky

Zásady pro vypracování:

- 1. Návrh a optimalizace dispozičního řešení pasivních domů.
- 2. Analýza variant stavebních systémů pasivních domů.
- 3. Zpracování vybraných konstrukčních detailů.
- 4. Zhodnocení z hlediska ekonomického, konstrukčního a materiálového řešení.

Rozsah grafických prací:

Práce skládající se z výkresů a textových částí

Rozsah kvalifikační práce:

úvodní část 50 - 60 stran A4

Forma zpracování diplomové práce:

tištěná

Seznam odborné literatury:

1. Soubor zákonů, norem a vyhlášek v oblasti výstavby.

2. Tepelné mosty: Detaily pro nízkoenergetické a pasivní domy. Grada, 2011.

3. Nízkoenergetický a energeticky pasivní dům. Bratislava: Jaga, 2009.

4. Pasivní rodinný dům: Proč a jak stavět. Praha: Grada, 2008.

Vedoucí diplomové práce:

Doc. Ing. Jan Pašek, Ph.D.

Katedra mechaniky

Datum zadání diplomové práce:

3. července 2017

Termín odevzdání diplomové práce:

5. ledna 2018

Doc. Dr. Ing. Vlasta Radová děkanka

Prof. Ing. Vladislav Laš, CSc. vedoucí katedry

V Plzni dne 3. července 2017

Diplomová práce

Bc. Tomáš Lohr

Čestné prohlášení

Prohlašuji, že diplomovou práci na téma: "Analýza stavebních systémů pasivních domů" jsem vypracoval samostatně, pod odborným dohledem vedoucího diplomové práce Doc. Ing. Jana Paška, Ph.D. a za použití literatury, která je uvedena na konci této diplomové

práce.

V Plzni, dne 5. 1. 2018

.....

Bc. Tomáš Lohr

Poděkování

Velké poděkování patří vedoucímu diplomové práce Doc. Ing. Janu Paškovi, Ph.D. za užitečné rady, ochotu, vstřícnost a čas, který mi věnoval na konzultačních hodinách.

Anotace

Diplomová práce se zabývá analýzou vybraných stavebních systémů pasivních domů. Jsou navrženy tři stavební systémy pasivních rodinných domů. Stavební systém z vápenopískové cihly, keramické cihly a dřevěný montovaný systém - dřevostavba. Na vybrané stavební systémy jsou zpracovány projektové dokumentace pro provádění stavby. Dále jsou na jednotlivé systémy zpracovány rozpočty, průkazy energetické energie, komplexní posouzení jednotlivých skladeb, výpočet tepelných ztrát objektu, výpočet energetické náročnosti, výpočet nejvyšší teploty vzduchu v pobytové místnosti a posouzení konstrukčních detailů. Výsledkem diplomové práce bude podrobné zhodnocení jednotlivých variant stavebních systémů.

Klíčová slova:

Analýza, rodinný dům, stavební systém, pasivní dům, vápenopísková cihla, keramická cihla, dřevěný montovaný systém, dřevostavba.

Annotation

Dissertation follows up the analysis of selected structural systems of passive houses. There are 3 designed structural systems of passive family houses. They are made of lime-sand bricks, ceramic bricks and wooden assembled system. I went through with the project documentation for construction work. In addition I made the budget, the power energy certificates, the complex assessment of each buildings, the calculation of a heat loss, the calculation of energy intensity, the calculation of the highest air temperature in living rooms and the assessment of construction details. The results of this dissertation will be detailed evaluation of each variant of these structural systems.

Key words:

Analysis, family house, structural system, passive house, lime-sand bricks, ceramic bricks, wooden assembled system, wooden construction

Obsah

1	Úvo	d		9
2	Tex	tová	á část	10
	2.1	Pas	sivní dům	10
	2.1	1	Základní parametry pasivního domu	10
	2.1	2	Výhody, nevýhody pasivních domů	10
	2.2	Ná	vrh pasivního domu	11
	2.2	.1	Koncepce návrhu	11
	2.3	Ori	ientace a zónování	13
	2.4	Te	pelná izolace konstrukcí	14
	2.5	Vý	plně otvorů	16
	2.6	Zas	stínění	18
	2.7	Ne	průvzdušnost – vzduchotěsnost	19
	2.7	'.1	Blower door - test	20
	2.8	Vě ⁻	trání	22
	2.9	Vyt	tápěnítápění	23
	2.9	.1	Teplovzdušný systém vytápění	23
	2.9	.2	Kombinace nuceného větrání a vytápění	23
	2.10	1	Náklady na stavbu pasivního domu	24
3	Pral	ktick	κά část	25
	3.1	Po	rovnané stavební systémy	25
	3.1	1	Osazení a orientace objektů na pozemek	25
	3.1	2	Navržené objekty	26
	3.1	3	Dispozice	26
	3.1	.4	Stavební systém: Vápenopísková cihla	27
	3.1	.5	Stavební systém: Keramická cihla	28

	3.1.	6	Stavební systém: Dřevostavba	29
3.	2	Poi	rovnání velikosti kapacit stavebních systémů	30
	3.2.	1	Tloušťky konstrukcí	30
	3.2.	2	Podlahová plocha v porovnání se zastavěnou	30
	3.2.	.3	Zhodnocení porovnání podlahové plochy	31
3.	.3	Ekc	onomické porovnání stavebních systémů	32
	3.3.	1	Rekapitulace rozpočtu stavební systém: Vápenopísková cihla	32
	3.3.	2	Rekapitulace rozpočtu stavební systém: Keramická cihla	33
	3.3.	3	Rekapitulace rozpočtu stavební systém: Dřevostavba	35
	3.3.	4	Celkové zhodnocení a porovnání ceny stavebních systémů	36
	3.3.	5	Zhodnocení ceny stavebních systémů dle ploch a objemů	38
	3.3.	6	Celkové zhodnocení ceny stavebních systémů	39
3.	4	Poi	rovnání posouzených skladeb stavebních konstrukcí	40
	3.4.	1	Shodné skladby konstrukcí stavebních systémů	40
	3.4.	2	Rozdílné skladby konstrukcí stavebních systémů	42
	3.4.	3	Zhodnocení výsledků posouzených skladeb konstrukcí	47
3.	.5	Poi	rovnání výsledků tepelných ztrát	48
	3.5.	1	Tepelné ztráty stavebního systému: Vápenopísková cihla	48
	3.5.	2	Tepelné ztráty stavebního systému: Keramická cihla	48
	3.5.	3	Tepelné ztráty stavebního systému: Dřevostavba	49
	3.5.	4	Zhodnocení výsledků výpočtu tepelných ztrát	50
3.	6	Poi	rovnání energetické náročnosti stavebních systémů	51
	3.6.	1	Zhodnocení stavebních systémů dle energetické náročnosti	52
3.	7	Poi	rovnání nejvyšší vypočítané teploty vzduchu v pobytové místnosti	53
	3.7.	1	Zhodnocení nejvyšší vypočítané teploty vzduchu v pobytové místnosti.	53
3.	.8	Poi	rovnání konstrukčních detailů	54

Diplomová práce

_	_	/ V		
RC.	$I \cap$	mac	$I \cap$	hr
DC.	10	máš	LU	

	3.8	3.1	Porovnání hlavních konstrukčních detailů	54
	3.9	Do	tace Nová zelená úsporám	62
	3.9	9.1	Stavební systém: Vápenopísková cihla	62
	3.9	9.2	Stavební systém: Keramická cihla	63
	3.9	9.3	Stavební systém: Dřevostavba	65
	3.9	9.4	Zhodnocení výsledků jednotlivých systémů	66
4	Záv	ěr		67
5	Sez	nam	n použité literatury, zdrojů a softwaru	69
	5.1	Lit	eratura	69
	5.2	No	ormy a vyhlášky	69
	5.3	Int	ernetové zdroje	69
	5.4	Ро	užitý software	70
6	Sez	nam	n obrázků	71
7	Sez	nam	n tabulek	73
8	Sez	nam	າ příloh	74

1 Úvod

Tématem mé diplomové práce je analýza vybraných stavebních systémů pasivních domů. V práci se zabývám třemi vybranými stavebními systémy, které jsou navrženy v pasivním standardu. Jedná se o stavební systém: vápenopísková cihla, keramická cihla a dřevěný montovaný systém - dřevostavba. Z důvodu co nejdůvěryhodnějšího srovnání jednotlivých stavebních systémů pasivních domů, jsem domy navrhl co nejvíce si podobné. Objekty mají stejný obestavěný prostor i stejnou zastavěnou plochu. Rodinné domy se liší pouze svými stavebními systémy. Jednotlivé domy jsou osazeny na stejný pozemek v obci Horoměřice, par. č.: 425/314. Pozemek je rovinného charakteru a nabízí nejoptimálnější osazení domu dle požadavků pro pasivní rodinný dům.

V textové části diplomové práce se zabývám obecně informacemi o pasivních domech. Co ovlivňuje energetickou náročnost domů, jaké jsou zásady umístění a orientace, jaké jsou zásady návrhu jednotlivých pasivní domů a mnoho dalších důležitých informací, bez kterých by se nedala zpracovat praktická část diplomové práce.

V praktické části diplomové práci se zabývám porovnáním jednotlivých variant pasivních domů. Jsou zde podrobně porovnány zpracovaná data, která jsou přiložena k diplomové práci jako příloha č. 1, 2, 3. Jednotlivé systémy jsou porovnány z ekonomického a tepelně technického hlediska.

2 Textová část

Pasivní dům 2.1

Pasivní dům je objekt, v němž lze dosáhnou příjemné teploty jak v zimě, tak v létě bez zvláštních vytápěcích a klimatizačních systémů.

Termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení. Oproti stávajícím budovám, které jsou spíše teplenými zářiči, spotřebují pasivní domy desetkrát méně energie na vytápění. V porovnání s novostavbami splňujícími současné platné normy činí tato úspora až 85%. 1

Koncepce pasivního domu je velice jednoduchá. Základem je nepustit skoro žádné teplo ven a přitom co nejefektivněji využívat tepelné zisky.

2.1.1 Základní parametry pasivního domu

Maximální roční měrná potřeba tepla na vytápění pasivního domu

< 15 kWh/m²

Celková neprůvzdušnost n₅₀ měřena testem neprůvzdušnosti

< 0.6 h⁻¹

Maximální roční celková měrná potřeba primární energie pasivního domu (vytápění, teplá voda, pomocná energie, domácí spotřebiče, osvětlení)

< 120 kWh/m²

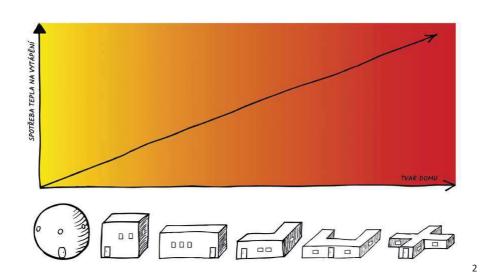
2.1.2 Výhody, nevýhody pasivních domů

+ vyšší komfortní bydlení

vyšší cena budovy

- + nízké náklady na vytápění
- + stálý přívod čerstvého vzduchu
- + příjemné teploty v létě i v zimě

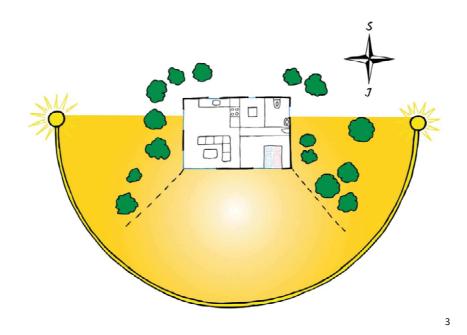
¹ (Hazucha, Centrum pasivního domu, 2013)


2.2 Návrh pasivního domu

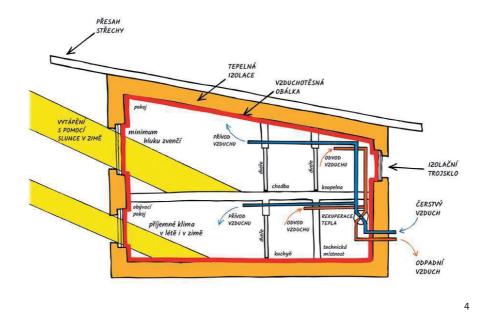
Základem je dokonale promyšlený návrh pasivního domu. Ani použití sebelepších prvků pasivní dům nezajistí. Nejdůležitější je optimalizace všech prvků, jako jsou: tvar a velikost budovy, orientace ke světovým stranám, konstrukční řešení, vnitřní dispozice, velikost, umístění oken, návrh vytápění a větrání. Důležitým faktorem je do detailu promyšlená a zpracovaná projektová dokumentace. Pro pasivní dům je nezbytné mít minimálně dokumentaci pro provedení stavby, která bude obsahovat všechny potřebné detaily.

2.2.1 Koncepce návrhu

Energetickou náročnost budovy ovlivňují tvary budovy a dispoziční uspořádání.


1) Kompaktní tvar budovy tj.: snaha o dosažení co nejnižšího poměru ochlazovaných konstrukcí k objemu budovy A/V. Nejideálnější tvar je koule, z praxe je dobré volit krychli, nebo dispozičně vhodnější kvádr.

Obrázek 1 Ideální tvar domu


2) Orientace nejvíce prosklené fasády na jižní stranu, z důvodu zabezpečení dostatku solárních zisků. Jižní strana by měla zároveň být nezastíněná okolní zástavbou. Nejmenší plocha oken orientována na stranu severní.

² (CentrumPasivníhoDomu, 2017)

Obrázek 2 Orientace pasivního domu na pozemku

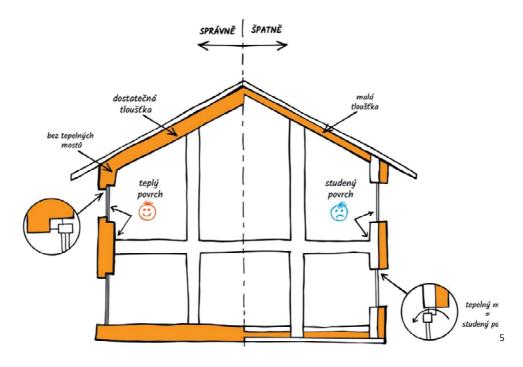
- 3) Omezit složité tvary konstrukce budovy. Při realizaci by vytvářeli složité komplikované detaily a s nimi spojené tepelné mosty.
- 4) Vnitřní dispozice dobře orientována na světové strany, využití slunečních zisků a optimalizace délky rozvodů větrání, topení a teplé vody

Obrázek 3 Základní princip pasivního domu

³ (CentrumPasivníhoDomu, 2017)

⁴ (CentrumPasivníhoDomu, 2017)

2.3 Orientace a zónování


Spotřebu energie, a spokojenost uživatelů zásadně ovlivňuje dobře navržená dispozice. Na vnitřní uspořádání má vliv několik faktorů. Faktory, které ovlivňují uspořádání: teplotní režim a jeho regulace, potřeba denního osvětlení, délka vnitřních rozvodů, funkční propojení místností...

V základu se objekt v pasivním standardu dělí na vytápěnou a nevytápěnou část. Vytápěnou od nevytápěné části objektu je důležité důkladně tepelně oddělit. Ve vytápěné části je objekt dále členěn dle účelu místnosti, provozního režimu a následné regulaci tepla. Je zapotřebí sdružovat místnosti s potřebou teplé vody, aby se nenatahovaly rozvody a nemusela se tak používat energeticky náročná cirkulace. Koupelna, kuchyň a technická místnost by měly být co nejblíže u sebe, případně přímo nad sebou.

Umístění obytných místností je vždy k osluněné straně, od jihovýchodu až po jihozápad. Ložnice se poté umisťuje k severovýchodu až jihovýchodu, čímž je dosažena nižší teplota. K nejteplejším místnostem v rodinném domě patří koupelna, kterou je vhodné umístit do teplejší části objektu. Skladové prostory, komunikace, spíže a toalety se umísťují převážně na severní stranu objektu. Je to z důvodu nenáročnosti osvětlení. Místnosti nepotřebují okno, a když už, tak stačí okno malé a na severní fasádě. Z tohoto důvodu se vyhneme velkým tepelným ztrátám. Prostory jako kanceláře a pracovny je vhodné situovat na neosluněné strany.

2.4 Tepelná izolace konstrukcí

Důležité je správné provedení teplené izolace bez tepelných mostů. Celá obálka objektu musí být dobře izolovaná v porovnání se současnou běžnou výstavbou, až extrémně. Správná tloušťka izolace se určuje výpočtem energetické náročnosti, běžně se ovšem tloušťka izolace pohybuje kolem 25-40 cm u konstrukce stěny, 25 cm u konstrukce podlahy a až 60 cm u konstrukce střechy. Izolace musí být provedena bez přerušení spár a zbytečných prostupů, které by vytvářely tepelné mosty. U okenních a dveřních otvorů je důležité zaizolování ostění a nadpraží jednotlivých oken a dveří z důvodu zamezení tepleného mostu.

Obrázek 4 Správné a špatné řešení izolace

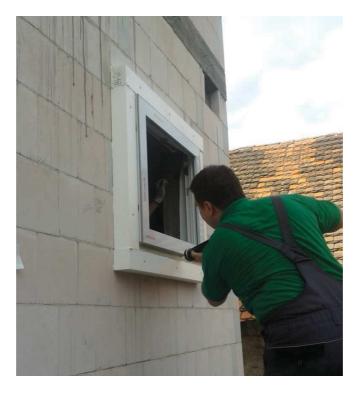
Pro stavbu v pasivním standardu je možné použít všechny běžně dostupné konstrukční systémy. Jak masivní konstrukce zděná nebo betonová tak i dřevostavby. Výhodné u masivních konstrukcí je dobrá akumulační schopnost zdiva, za to u dřevostaveb zase menší tloušťka stěny, rychlejší výstavba i menší pracnost při výstavbě. Obecné zásady jsou pro vytvoření co nemenší tloušťky konstrukce za dosažení požadovaných hodnot součinitele prostupu tepla U, proto je nutné u zděných staveb používat co nejmenší tloušťku zdiva a k ní přidat dostatečnou tloušťku izolace. Tato volba materiálu stěn ušetří každý čtvereční metr zastavěné plochy a tím i výrazné úspory nákladů, proto není ekonomicky výhodné použití zdiva vyšší tloušťky než 30

⁵ (CentrumPasivníhoDomu, 2017)

cm. I tímto způsobem je možné pasivním dům postavit, ale po zateplení je výsledná tloušťka zdiva příliš velká a systém je cenově neefektivní. Na výstavbu domů v pasivním standardu se používají ve velké míře stěny z pevných materiálů, jako jsou vápenopískové bloky nebo beton. Materiály dokáží dosáhnout subtilní konstrukce i při tloušťce pod 20 cm. Při zateplení poté tloušťka stěny nepřesáhne 50 cm. Důležité je ale zabezpečit dostatečný odpor prostupu tepla konstrukce. Hodnoty jsou uvedeny v tabulce.

Tabulka 1 Hodnoty součinitele prostupu tepla U

Typ konstrukce	Požadované hodnoty součinitele prostupu tepla U _{N,20} konstrukcí [W/(m ^{2*} K)]	Doporučené hodnoty pro pasivní budovy U _{pas,20} [W/(m ² *K)]
Střecha	0,24	0,15 - 0,10
Stěna	0,30	0,18 - 0,12
Podlaha na terénu	0,45	0,22 - 0,15
Okna	1,5	0,8 – 0,6

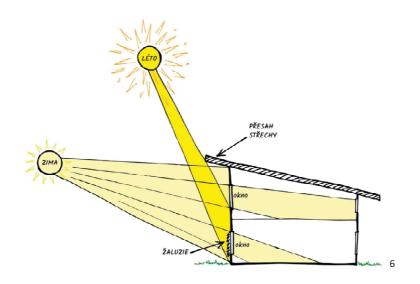

Jako tepelnou izolaci je možné použití všech běžně dostupných izolačních materiálů. Jsou to například: polystyren, minerální vata, sláma, konopná izolace, foukaná celulóza, ovčí vlna... Výběr tepelné izolace závisí jen na výsledném energetickém výpočtu.

2.5 Výplně otvorů

Okna u pasivních domů hrají důležitou roli. Musí splňovat jak estetickou tak i energetickou funkci. Okna jsou nejslabším článkem v řetězci obálky pasivního domu. Přes okna dochází k největším ztrátám tepla. Obecně jsou okna až pětkrát tepelně slabší než obvodová konstrukce domu. Na druhou stranu jsou zdrojem solárních zisků objektu a v topné sezóně jsou zisky z oken výrazně větší než ztráty. Aby bylo možné okna použít, musí splňovat několik požadavků. Tepelně izolované okenní rámy, trojité izolační zasklení, teplé distanční rámečky, na okraji skla a napojení na vnější stěnu s minimálními tepelnými mosty umožňují dosáhnout součinitel prostupu tepla U – hodnot osazeného okna menší než 0,8 W/(m²*K). Zasklení izolačními trojskly vyplněnými vzácnými plyny, běžně dosahují hodnot Ug < 0,6 W/(m²*K) s vysokou propustností slunečního záření nad 50%. Minimalizování tepelných mostů v místě napojení okna a dveří je pomocí montáže do tepelné izolace.

Obrázek 5 Předsazená montáž výplní otvorů

Obrázek 6 Předsazená montáž výplní otvorů


Okna v pasivním domě zajišťují velké solární zisky. Pokrývají třetinovou potřebu tepla na vytápění. Z tohoto důvodu je důležitá jejich orientace, velikost a kvalita zasklení. Nejideálnější případ orientace je jižní strana, v úvahu připadá i jihovýchodní nebo jihozápadní orientace. V ostatních fasádách objektu by mělo být oken co možná nejméně. Úspory energie co se týká solárních zisků okny, rostou do 30 – 40 % prosklené plochy jižní fasády. Větší prosklení fasádní plochy již nevede k dalším úsporám spíše naopak a dochází tak i k přehřívání interiéru. Proto je nutné volit i vhodné zastínění objektu.

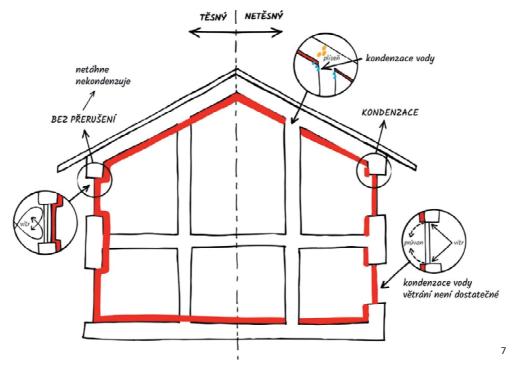
2.6 Zastínění

Zastínění objektu je stejně důležitý faktor jako všechny ostatní. Hlavní roly hraje zastínění v letních měsících, kdy může docházet k přehřívání objektu. Ostré sluneční záření za jasného dne dosahuje 1000 W/m². Záření dopadá na zasklení oken, které jej z části odrazí kolem 15% v případě trojskla, zčásti je pohltí přibližně 30 % a zbytek záření okna pustí dovnitř. Skla, stěny a předměty v interiéru se díky pohlcenému záření ohřejí a následně pak teplo vyzařují do interiéru. Teplo ale díky izolační schopnosti stěn a oken obtížně uniká z interiéru do exteriéru a tímto dochází k zahřívání.

Solární zisky jsou naopak přínosné v zimních měsících, proto je důležité, aby stínící systémy byly variabilní a nastavitelné dle potřeby.

Je hned několik možností jak zastínit objekt v letním období. Mezi stínící prvky patří: venkovní žaluzie, rolety, markýzy, slunolamy, pergoly, přesahy střech... Pergoly jako zastínění využívají rozdílné polohy slunce v létě a zimě. Efektivně odstiňují ostrým letním paprskům v letním období a v zimním období pouští zimní nízké slunce dovnitř.

Obrázek 7 Stínění v letním a zimním období


Nejvíce spolehlivá ochrana před slunečním zářením jsou venkovní stínící prvky, jako jsou venkovní žaluzie. Jsou nastavitelné a můžeme si je tedy přizpůsobit našim potřebám. Dalším přínosem stínicích prvků je i zpomalení stárnutí okna, a to jak zasklení, tak i rámové konstrukce.

.

⁶ (CentrumPasivníhoDomu, 2017)

2.7 Neprůvzdušnost – vzduchotěsnost

Neprůvzdušnost – vzduchotěsnost je základním parametrem pasivního domu. Je důležitým parametrem pro snížení tepelných ztrát a zajištění funkčnosti nuceného větrání.

Obrázek 8 Správné a nesprávné řešení vzduchotěsnosti objektu

U tlakové zkoušky n₅₀ nesmí být překročen 0,6 - násobek výměny vzduchu, n50 je hodnota neprůvzdušnosti při talkovém rozdílu 50 pascalů, měřená metodou tlakového spádu podle ČSN EN ISO 9972 – takzvaný Blower door test.

V případě, že by nebyla splněna potřebná míra vzduchotěsnosti, je celková efektivita zpětného získávání tepla nadmíru snížena a tím hrozí poškození stavby v místě větších netěsností a zároveň v ochlazovaných místech může dojít ke kondenzaci, růstu plísně a narušení kvality vnitřního prostředí.

Z těchto důvodů je potřeba již ve fázi projektování navrhnout v celém objektu spojitou vzduchotěsnou obálku bez přerušení. Při realizaci stavby je poté důležitá pečlivost při provedení a dohled nad prováděním vzduchotěsné obálky.

Vzduchotěsnost obálky objektu lze splnit několika možnostmi. U staveb s masivní konstrukcí lze vzduchotěsnost zajistit pomocí vrstvy omítky bez prasklin. U dřevostaveb je

.

⁷ (CentrumPasivníhoDomu, 2017)

vzduchotěsná vrstva zajištěna pomocí OSB desek nebo fólií přelepenými speciálními páskami. Důležitá je i kontrola utěsnění a napojení oken a prostupů konstrukcí. Místa styků různých konstrukcí, je nutné utěsnit vhodnou páskou, tmelem nebo fólií.

Obrázek 9 Přelepení spáry pomocí pásky AIRSTOP

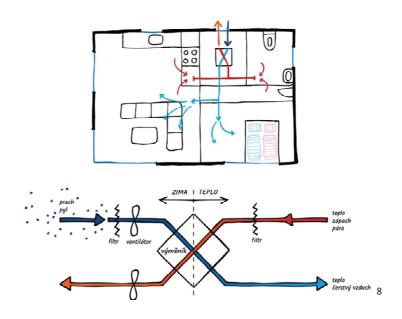
Obrázek 10 Provedení prostupů skrz vzduchotěsnou obálku

Kontrola utěsnění je provedena pomocí zkoušky těsnosti.

2.7.1 Blower door - test

Měření se provádí dle normy ČSN EN ISO 9972. Nejčastěji se k měření používá měřící zařízení tzv. blower door neboli výkonný ventilátor. Je osazen do dveří v obálce budovy pomocí teleskopického rámu a vzduchotěsné plachty. Test funguje na principu podtlaku / přetlaku a

současně se provádí měření. Výsledkem měření je hodnota objemu vyměněného vzduchu za hodinu n₅₀. Hodnota n₅₀ musí být menší než 0,6 h⁻¹. V praxi to znamená, že při tlakovém rozdílu 50 Pa by se netěsnostmi objektu nemělo vyměnit více než 60 % celého objemu vzduchu v objektu. Důležité je zkoušku provádět v době, kdy je vzduchotěsná vrstva přístupná opravám. Je to například před montáží podhledů a podlah. Provádí se z důvodu jednoduššího nalezení a opravení chybného místa. V opačném případě je hledání a oprava netěsností složitá a nákladná. Detekce netěsností je součástí měření. K detekci netěsností se využívá měření rychlosti proudění vzduchu citlivým anemometrem, barevný dým, termovizní snímkování, nebo také účinné hledání proudu vzduchu v místě netěsností nastavením dlaní.


Obrázek 11 Blower door - test

Obrázek 12 Blower door - test

2.8 Větrání

U pasivního domu se o výměnu vzduchu stará řízené větrání se zpětným ziskem tepla z odpadního vzduchu. Výměna vzduchu neboli rekuperace je zásadní pro vysoký komfort objektu, neboť eliminuje tepelné ztráty spojené s větráním okny. Ventilátor s úspornou spotřebou odsává spotřebovaný vzduch nasycený vlhkostí v kuchyni, koupelně, WC a vyfukuje jej ven. Druhý ventilátor, vhání čerstvý vnější vzduch do obytných místností, jako jsou obytné prostory, ložnice, dětské pokoje. Oba proudy vzduchu se pak přivádějí paralelně do výměníku tepla, kde teplo odpadního vzduchu předehřívá studený vnější vzduch. Účinnost rekuperace tepla musí být minimálně 75 %, aby byla zajištěna efektivita systému, tak i tepelná pohoda v místnostech.

Obrázek 13 Větrání s rekuperací

Výhody: Nevýhody:

- + 80% až 95% úspora energie, oproti běžnému větrání
- Vysoké pořizovací náklady

- + Stále čerstvý vzduch
- + Odvod vlhkosti ochrana proti plísním
- + Bezobslužný provoz
- + Filtrovaný vzduch bez znečištění prachem a pily

⁸ (CentrumPasivníhoDomu, 2017)

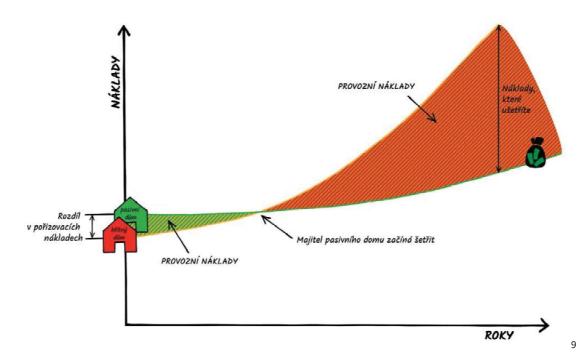
2.9 Vytápění

U pasivního domu jsou ztráty natolik malé, že zdrojem tepla může být prakticky cokoliv. Objekt má běžně ztráty kolem 15 W/m². U pasivních domů jsou využívány dvě koncepce redistribuce tepla:

- 1) Teplovzdušné vytápění nosičem tepla přímo vzduch
- 2) Dělený systém větrání a vytápění klasické zdroje tepla s jiným topným médiem

2.9.1 Teplovzdušný systém vytápění

Teplovzdušné vytápění lze realizovat u objektů s velmi nízkou tepelnou ztrátou. Rozvod vzduchu po domě se současně využívá k distribuci tepla a nahrazuje tím klasickou otopnou soustavu. Ohřev vzduchu je zajištěn pomocí nízkoteplotního výměníku zapojeného do systému ohřevu teplé vody, případně elektrický ohřívač. Ohřívač může být umístěn buď centrálně, nebo před každou vyústkou, což zajišťuje lepší regulaci tepla v místnostech. U teplovzdušného systému vytápění je nutné tepelně izolovat rozvody min. 30 - 50 mm izolace, aby nedošlo k úbytku výkonu na vyústkách.


Výhodou systému je schopnost reagovat na změny teplot. Teplovzdušný systém vykazuje vyšší úspory na vytápění, protože zisky solární, nebo vnitřní jsou využívány efektivněji. Nevýhodou systému je nemožnost regulovat teploty na úrovni jednotlivých místností.

2.9.2 Kombinace nuceného větrání a vytápění

Při použití samotného nuceného větrání s rekuperací se ohřev vzduchu realizuje klasickým způsobem pomocí radiátorů, přímotopů, podlahového vytápění. V koupelnách se standardně navrhuje topný žebřík, nebo podlahové vytápění. Výhodou u obytných místností v pasivních domech je, že zdroje tepla nemusí být pod okny. Povrchové teploty skla jsou vyšší a nedochází zde ke kondenzaci vlhkosti. Nutné je zabezpečit kvalitní regulaci a přiměřený výkon zdrojů. Při použití krbových kamen v kombinaci s nuceným větráním je nutné zabránit podtlaku, aby nedocházelo k nedokonalému spalování a nasávání spalin do objektu. Nutné je navržení rovnotlakého, ideálně přetlakového režimu. Navržení externího přívodu vzduchu do kamen zaručuje oddělené zařízení od vnitřního vzduchu.

2.10 Náklady na stavbu pasivního domu

O kolik je pasivní dům dražší než klasický rodinný dům? Pasivní dům má větší nároky na použití kvalitnějších komponent a větší preciznost při návrhu, tak i při samotné realizaci. Náklady navíc oproti klasickým stavbám se pohybují mezi 5 – 15 %.

Obrázek 14 Rozdíl v nákladech u pasivního a klasického domu

Zda investovat do realizace pasivního domu či nikoliv záleží na každém jedinci. Dům se nestaví na pět ani deset let. A každý kdo myslí trochu do budoucna ví, že tu jiná možnost není. Vše v dnešní době směřuje k energetickým úsporám a pasivní dům navíc nabízí velice komfortní a zdravé bydlení. V dnešní době kdy je dle zákona nutné dokladovat tzv. Průkaz energetické náročnosti budovy při prodeji, nebo pronájmu se domy na trhu nemovitostí budou prodávat i podle toho jakou mají energetickou spotřebu. Pasivní domy si svojí cenu udrží a nabízejí dále i jistotu do budoucna, kdy není jasné, jak se budou vyvíjet ceny energií.

.

⁹ (CentrumPasivníhoDomu, 2017)

3 Praktická část

Cílem diplomové práce je analýza stavebních systémů pasivních domů. Byly vybrány tři stavební systémy:

- 1) Stavební systém: Vápenopísková cihla
- 2) Stavební systém: Keramická cihla
- 3) Stavební systém: Dřevostavba (dřevěný montovaný systém)

Samostatně pro každý stavební systém byly zpracovány tyto dokumenty:

- 1) Projektová dokumentace pro provádění stavby
- 2) Rozpočet rodinného domu v programu KROS 4
- 3) Průkaz energetické náročnosti "PENB"
- 4) Komplexní posouzení skladeb stavebních konstrukcí z hlediska šíření tepla a vodní páry v programu Teplo 2014
- 5) Výpočet tepelných ztrát objektu v programu Ztráty 2010
- 6) Výpočet energetické náročnosti v programu Energie 2010
- 7) Výpočet nejvyšší teploty vzduchu v pobytové místnosti v programu Simulace 2010
- 8) Posouzení konstrukčních detailů v programu Agros2D

Jednotlivé dokumenty jsou přílohou diplomové práce.

V praktické části diplomové práce jsou jednotlivé stavební systémy porovnávány a hodnoceny dle ekonomického a tepelně technického hlediska.

3.1 Porovnané stavební systémy

3.1.1 Osazení a orientace objektů na pozemek

Všechny rodinné domy jsou osazeny na stejný pozemek, z důvodu co nejreálnějšího porovnání jednotlivých stavebních systémů pasivních domů. Objekty jsou osazeny na pozemku v obci Horoměřice, par. č.: 425/314, katastrální území: Horoměřice. Pozemek je rovinného charakteru s mírným svahem od západní k východní hranici pozemku, je nezastavěný. Pozemek nabízí vhodnou orientaci navržených pasivních domů. Severní a západní hranice přilehá k sousedním zastavěným pozemkům. Jižní a východní hranice pozemku sousedí s místní komunikací. Rodinný dům je situován na severní části pozemku.

Nejvíce prosklená plocha fasády je orientována na jižní stranu, nejméně prosklená plocha fasády je orientována na stranu severní. Jižní strana objektu není stíněná žádnými sousedními objekty.

3.1.2 Navržené objekty

Z důvodu co nejpřesnějšího porovnání jednotlivých stavebních systémů, byly rodinné domy navrženy co nejvíce si podobné. Objekty mají dvě nadzemní podlaží se sedlovou střechou a jsou nepodsklepené. Půdorysný tvar objektů je obdélník o rozměrech 14,875 x 7,970 m. Na jižní straně jsou doplněny nezastřešenou terasou o ploše 35 m².

Jednotlivé objekty mají stejnou zastavěnou plochu celkem 118,55 m² i stejný obestavěný prostor 957,20 m².

3.1.3 Dispozice

Dispozice rodinných domů je shodná. Stavební systémy se od sebe odlišují pouze rozdílnou velikostí půdorysné plochy jednotlivých místností. Objekt je pomyslně rozdělen na obytnou část a technickou a hygienickou část. Obytná část se nachází na levé straně objektu, technická a hygienická část se nachází na straně pravé.

Vstup do objektu je z jižní strany budovy. Vstupuje se do prvního nadzemního podlaží do zádveří. Ze zádveří se dále vstupuje do šatny a obytného prostoru spojeného s chodbou. Z chodby je dále vstup do koupelny a technické místnosti. V obytném prostoru se nachází kuchyňský kout a jídelna. Z obytného prostoru je dále vstup do pokoje pro hosty, spíže a je zde umožněn výstup na terasu podél jižní fasády rodinného domu. Pro vertikální komunikaci v objektu je navrženo ocelové schodiště, které se nachází v obytném prostoru. Schodiště spojuje první a druhé nadzemní podlaží. V druhém nadzemním podloží se nachází chodba, ze které je vstup do ložnice, dvou pokojů, WC a koupelny. Z koupelny je dále umožněn vstup do sauny. Více viz výkresy Půdorys 1.NP a 2.NP v přílohách č. 1.1, 2.1, 3.1.

3.1.4 Stavební systém: Vápenopísková cihla

Objekt je navržen z vápenopískové cihly s dodatečným zateplením z důvodu eliminace tepelných mostů pomocí fasádního polystyrenu EPS GREYWALL.

3.1.4.1 Stručný popis stavebního systému

Podrobně řešeno v příloze diplomové práce č. 1.1.

3.1.4.1.1 Základové konstrukce

Objekt je založen na základových pasech šířky 600 mm a výšky 450 mm, třídy betonu C20/25. Jako roznášecí vrstva jsou použity bednící dílce ve dvou vrstvách tl. 300 mm, které jsou vylity betonem C20/25. V ploše bude proveden podkladní beton C 20/25 s oboustrannou síťovou výztuží (při spodním i horním povrchu).

3.1.4.1.2 Svislé konstrukce

Objekt RD je navržen ze stavebního systému ZAPF DAIGFUSS KS (vápenopískové cihly). Tloušťka nosné obvodové stěny RD je 175 mm + 300 mm POLYSTYREN EPS GREYWALL. Pod obvodové stěny a příčky bude pro založení použita zakládací tvarovka ZAPF DAIGFUSS KS ISO KIMM v tl. dle příslušné stěny. Příčky jsou navrženy ze systému ZAPF DAIGFUSS KS (vápenopískové cihly) tl. 115 mm.

3.1.4.1.3 Stropní konstrukce

Stropní konstrukce nad 1.NP je tvořena panely Spiroll dle výkresu skladby stropu nad 1.NP. Tloušťka konstrukce stropu bude 250 mm. Stropní konstrukce nad 2.NP je tvořena sádrokartonovým podhledem s nosnou konstrukcí z plechových profilovaných prvků zavěšených na nosné konstrukce střechy – dřevěných příhradových vaznících s OSB záklopem.

3.1.4.1.4 Střešní konstrukce

Nosnou konstrukci střechy tvoří příhradová konstrukce. Krov tvoří sedlovou střechu se sklonem 10°. Mezi vazníky bude osazena minerální izolace (skládaná) v min. tl. 600 mm a z interiérové strany budou vazníky zaklopeny OSB deskou min. tl. 18 mm. OSB desky budou mít lepené spoje a bude přelepena styčná spára v místě napojení na omítku z důvodu zajištění vzduchotěsné obálky budovy. Tato konstrukce bude dále sloužit k osazení snížené stropní sádrokartonové konstrukce pro vedení instalací.

3.1.5 Stavební systém: Keramická cihla

Objekt je navržen z keramické cihly bez dodatečného zateplení.

3.1.5.1 Stručný popis stavebního systému

Podrobně řešeno v příloze diplomové práce č. 2.1.

3.1.5.1.1 Základové konstrukce

Objekt je založen na základových pasech šířky 600 mm a výšky 450 mm, třídy betonu C20/25. Jako roznášecí vrstva jsou použity bednící dílce ve dvou vrstvách tl. 400 mm, které jsou vylity betonem C20/25. V ploše bude proveden podkladní beton C 20/25 s oboustrannou síťovou výztuží (při spodním i horním povrchu).

3.1.5.1.2 Svislé konstrukce

Objekt RD je navržen ze stavebního systému HELUZ 2in1 broušená (keramické cihly). Tloušťka nosné obvodové stěny RD je 440 mm. Pod obvodové stěny a příčky bude pro založení použita zakládací cihla HELUZ 38 2in1 broušená. Příčky jsou navrženy ze systému HELUZ (keramické cihly) tl. 140 mm.

3.1.5.1.3 Stropní konstrukce

Stropní konstrukce nad 1.NP je tvořena panely Spiroll dle výkresu skladby stropu nad 1.NP. Tloušťka konstrukce stropu bude 250 mm. Stropní konstrukce nad 2.NP je tvořena sádrokartonovým podhledem s nosnou konstrukcí z plechových profilovaných prvků zavěšených na nosné konstrukce střechy – dřevěných příhradových vaznících s OSB záklopem.

3.1.5.1.4 Střešní konstrukce

Nosnou konstrukci střechy tvoří příhradová konstrukce. Krov tvoří sedlovou střechu se sklonem 10°. Mezi vazníky bude osazena minerální izolace (skládaná) v min. tl. 600 mm a z interiérové strany budou vazníky zaklopeny OSB deskou min. tl. 18 mm. OSB desky budou mít lepené spoje a bude přelepena styčná spára v místě napojení na omítku z důvodu zajištění vzduchotěsné obálky budovy. Tato konstrukce bude dále sloužit k osazení snížené stropní sádrokartonové konstrukce pro vedení instalací.

3.1.6 Stavební systém: Dřevostavba

Objekt je navržen z dřevěného montovaného systému – dřevostavba s dodatečným zateplením z důvodu eliminace tepelných mostů pomocí fasádního polystyrenu EPS 70F.

3.1.6.1 Stručný popis stavebního systému

Podrobně řešeno v příloze diplomové práce č. 3.1.

3.1.6.1.1 Základové konstrukce

Objekt je založen na základových pasech šířky 600 mm a výšky 450 mm, třídy betonu C20/25. Jako roznášecí vrstva jsou použity bednící dílce ve dvou vrstvách tl. 300 mm, které jsou vylity betonem C20/25. V ploše bude proveden podkladní beton C 20/25 s oboustrannou síťovou výztuží (při spodním i horním povrchu).

3.1.6.1.2 Svislé konstrukce

Objekt RD je navržen z dřevěného montovaného systému (dřevostavba). Tloušťka nosné obvodové stěny RD je 285 mm+ 160 mm POLYSTYREN EPS 70F. Pod obvodové stěny a příčky bude pro založení použita podkladní impregnovaná lať. Příčky jsou navrženy z dřevěného montovaného systému (dřevostavba) tl. 125 mm.

3.1.6.1.3 Stropní konstrukce

Stropní konstrukce nad 1.NP je tvořena dřevěnými KVH stropnicemi dle výkresu skladby stropu nad 1.NP. Tloušťka KVH stropnice bude 320 mm. Na stropnicích bude položena OSB deska tl. 22 mm a následně skladba podlahy 2.NP. Stropní konstrukce nad 2.NP je tvořena sádrokartonovým podhledem s nosnou konstrukcí z plechových profilovaných prvků zavěšených na nosné konstrukce střechy – dřevěných příhradových vaznících s OSB záklopem.

3.1.6.1.4 Střešní konstrukce

Nosnou konstrukci střechy tvoří příhradová konstrukce. Krov tvoří sedlovou střechu se sklonem 10°. Mezi vazníky bude osazena minerální izolace (skládaná) v min. tl. 600 mm a z interiérové strany budou vazníky zaklopeny OSB deskou min. tl. 18 mm. OSB desky budou mít lepené spoje a bude přelepena styčná spára v místě napojení na omítku z důvodu zajištění vzduchotěsné obálky budovy. Tato konstrukce bude dále sloužit k osazení snížené stropní sádrokartonové konstrukce pro vedení instalací.

3.2 Porovnání velikosti kapacit stavebních systémů

Zastavěnou plochu mají všechny rodinné domy stejnou. Zastavěná plocha je 118,55 m². Stejně jako zastavěnou plochu tak i obestavěný prostor mají objekty stejný 957,20 m³. Podlahová plocha místností se ale u jednotlivých stavebních systémů liší. Důvodem je rozdílná tloušťka obvodové konstrukce a vnitřních příček.

- 3.2.1 Tloušťky konstrukcí
- 3.2.1.1 Stavební systém: Vápenopísková cihla

Obvodová stěna: 475 a 500 mm

Příčka: 115 mm

3.2.1.2 Stavební systém: Keramická cihla

Obvodová stěna: 440 mm

Příčka: 140 mm

3.2.1.3 Stavební systém: Dřevostavba

Obvodová stěna: 445 mm

Příčka: 125 mm

- 3.2.2 Podlahová plocha v porovnání se zastavěnou
- 3.2.2.1 Stavební systém: Vápenopísková cihla

Podlahová plocha 1.NP: 94,46 m²

Podlahová plocha 2.NP: 88,69 m²

Podlahová plocha celkem: 183,15 m²

Poměr zastavěné plochy k podlahové ploše: 64,73 %

3.2.2.2 Stavební systém: Keramická cihla

Podlahová plocha 1.NP: 97,53 m²

Podlahová plocha 2.NP: 89,18 m²

Podlahová plocha celkem: 186,71 m²

Bc. Tomáš Lohr

Poměr zastavěné plochy k podlahové ploše: 63,49 %

3.2.2.3 Stavební systém: Dřevostavba

Podlahová plocha 1.NP: 97,26 m²

Podlahová plocha 2.NP: 90,11 m²

Podlahová plocha celkem: 187,37 m²

Poměr zastavěné plochy k podlahové ploše: 63,27 %

3.2.3 Zhodnocení porovnání podlahové plochy

Z hlediska podlahové plochy je největší podlahová plocha u stavebního systému: Dřevostavby - 187,37 m² dále pak stavební systém: Keramická cihla – 186,71 m² a nejmenší podlahovou plochu má stavební systém: Vápenopísková cihla – 183,15 m². Mezi největší a nejmenší podlahovou plochou je rozdíl 4,22 m².

3.3 Ekonomické porovnání stavebních systémů

Jednotlivé rozpočty byly zpracovány v programu KROS 4. Kompletní položkové rozpočty s výkazem výměr jsou přílohou diplomové práce č.: 1.2, 2.2 a 3.2. Zde jsou uvedené a zhodnocené pouze celkové ceny za práce a dodávky.

3.3.1 Rekapitulace rozpočtu stavební systém: Vápenopísková cihla

Tabulka 2 Rozpočet stavební systém: Vápenopísková cihla

Kód popis	Cena celkem [Kč]
1) Náklady z rozpočtu	5 191 544,13
HSV – Práce a dodávky HSV	2 351 456,56
1 - Zemní práce	109 857,93
2 - Zakládání	166 570,02
3 - Svislé a kompletní konstrukce	353 243,06
4 - Vodorovné konstrukce	146 134,36
6 - Úpravy povrchů, podlahy a osazování výplní	1 279 172,71
8 - Trubní vedení	1 752,80
9 - Ostatní konstrukce a práce, bourání	150 705,18
998 - Přesun hmot	144 020,50
PSV - Práce a dodávky PSV	2 468 187,57
711 - Izolace proti vodě, vlhkosti a plynům	92 849,27
713 - Izolace tepelné	210 423,22
751 - Vzduchotechnika	250 000,00
762 - Konstrukce tesařské	281 517,83
763 - Konstrukce suché výstavby	170 407,41
764 - Konstrukce klempířské	312 530,43

765 - Krytina skládaná	15 754,66
766 - Konstrukce truhlářské	501 176,68
767 - Konstrukce zámečnické	154 781,10
771 - Podlahy z dlaždic	40 993,02
775 - Podlahy skládané	106 071,56
781 - Dokončovací práce – obklady	32 483,79
784 - Dokončovací práce - malby a tapety	47 798,60
721 - Zdravotechnika - vnitřní kanalizace	62 100,00
722 - Zdravotechnika - vnitřní vodovod	63 600,00
725 - Zdravotechnika - zařizovací předměty	125 700,00
MON - Montážní práce a dodávky	371 900,00
21-M – Elektromontáže	371 900,00
2) Ostatní náklady	181 704,04
Zařízení staveniště	181 704,04

3.3.2 Rekapitulace rozpočtu stavební systém: Keramická cihla

Tabulka 3 Rozpočet stavební systém: Keramická cihla

Kód popis	Cena celkem [Kč]
1) Náklady z rozpočtu	5 092 263,92
HSV – Práce a dodávky HSV	2 249 034,36
1 - Zemní práce	117 522,44
2 - Zakládání	194 538,93
3 - Svislé a kompletní konstrukce	719 711,68
4 - Vodorovné konstrukce	151 341,73
6 - Úpravy povrchů, podlahy a osazování výplní	763 707,35

8 - Trubní vedení	1 752,80
9 - Ostatní konstrukce a práce, bourání	150 960,43
998 - Přesun hmot	149 499,00
PSV - Práce a dodávky PSV	2 471 329,56
711 - Izolace proti vodě, vlhkosti a plynům	93 136,36
713 - Izolace tepelné	210 889,21
751 - Vzduchotechnika	250 000,00
762 - Konstrukce tesařské	276 405,45
763 - Konstrukce suché výstavby	175 250,92
764 - Konstrukce klempířské	312 530,43
765 - Krytina skládaná	15 754,66
766 - Konstrukce truhlářské	501 176,68
767 - Konstrukce zámečnické	154 781,10
771 - Podlahy z dlaždic	40 929,95
775 - Podlahy skládané	107 963,92
781 - Dokončovací práce – obklady	32 516,33
784 - Dokončovací práce - malby a tapety	48 594,55
721 - Zdravotechnika - vnitřní kanalizace	62 100,00
722 - Zdravotechnika - vnitřní vodovod	63 600,00
725 - Zdravotechnika - zařizovací předměty	125 700,00
MON - Montážní práce a dodávky	371 900,00
21-M – Elektromontáže	371 900,00
2) Ostatní náklady	178 229,24
Zařízení staveniště	178 229,24

3.3.3 Rekapitulace rozpočtu stavební systém: Dřevostavba

Tabulka 4 Rozpočet stavební systém: Dřevostavba

Kód popis	Cena celkem [Kč]
1) Náklady z rozpočtu	5 136 055,59
HSV – Práce a dodávky HSV	1 587 840,16
1 - Zemní práce	109 857,93
2 - Zakládání	166 570,02
3 - Svislé a kompletní konstrukce	56 250,24
6 - Úpravy povrchů, podlahy a osazování výplní	991 078,42
8 - Trubní vedení	1 752,80
9 - Ostatní konstrukce a práce, bourání	151 007,75
998 - Přesun hmot	111 323,00
PSV - Práce a dodávky PSV	3 176 315,43
711 - Izolace proti vodě, vlhkosti a plynům	86 137,98
713 - Izolace tepelné	369 936,09
751 - Vzduchotechnika	250 000,00
762 - Konstrukce tesařské	610 721,72
763 - Konstrukce suché výstavby	394 992,50
764 - Konstrukce klempířské	310 088,27
765 - Krytina skládaná	15 754,66
766 - Konstrukce truhlářské	501 176,68
767 - Konstrukce zámečnické	154 781,10
771 - Podlahy z dlaždic	41 434,14
775 - Podlahy skládané	108 237,55

781 - Dokončovací práce – obklady	32 708,56
784 - Dokončovací práce - malby a tapety	48 946,18
721 - Zdravotechnika - vnitřní kanalizace	62 100,00
722 - Zdravotechnika - vnitřní vodovod	63 600,00
725 - Zdravotechnika - zařizovací předměty	125 700,00
MON - Montážní práce a dodávky	371 900,00
21-M – Elektromontáže	371 900,00
2) Ostatní náklady	179 761,95
Zařízení staveniště	179 761,95

3.3.4 Celkové zhodnocení a porovnání ceny stavebních systémů

Legenda značení:

Nejnižší cena

Nejvyšší cena

Tabulka 5 Zhodnocení rozpočtů

Stavební systém:	Vápenopísková cihla	Keramická cihla	Dřevostavba
Kód popis	Cena celkem	Cena celkem	Cena celkem
κου μομίς	[Kč]	[Kč]	[Kč]
1) Náklady z rozpočtu	5 191 544,13	5 092 263,92	5 136 055,59
HSV – Práce a dodávky HSV	2 351 456,56	2 249 034,36	1 587 840,16
1 - Zemní práce	109 857,93	117 522,44	109 857,93
2 - Zakládání	166 570,02	194 538,93	166 570,02
3 - Svislé a kompletní konstrukce	353 243,06	719 711,68	56 250,24
4 - Vodorovné konstrukce	146 134,36	151 341,73	-

6 - Úpravy povrchů, podlahy a	1 279 172,71	763 707,35	991 078,42
osazování výplní			
O. Tandará va dará	4 752 00	4 752 00	4 752 00
8 - Trubní vedení	1 752,80	1 752,80	1 752,80
9 - Ostatní konstrukce a práce, bourání	150 705,18	150 960,43	151 007,75
998 - Přesun hmot	144 020,50	149 499,00	111 323,00
PSV - Práce a dodávky PSV	2 468 187,57	2 471 329,56	3 176 315,43
711 - Izolace proti vodě, vlhkosti a	92 849,27	93 136,36	86 137,98
plynům			
713 - Izolace tepelné	210 423,22	210 889,21	369 936,09
751 - Vzduchotechnika	250 000,00	250 000,00	250 000,00
762 - Konstrukce tesařské	281 517,83	276 405,45	610 721,72
763 - Konstrukce suché výstavby	170 407,41	175 250,92	394 992,50
764 - Konstrukce klempířské	312 530,43	312 530,43	310 088,27
765 - Krytina skládaná	15 754,66	15 754,66	15 754,66
766 - Konstrukce truhlářské	501 176,68	501 176,68	501 176,68
767 - Konstrukce zámečnické	154 781,10	154 781,10	154 781,10
771 - Podlahy z dlaždic	40 993,02	40 929,95	41 434,14
775 - Podlahy skládané	106 071,56	107 963,92	108 237,55
781 - Dokončovací práce – obklady	32 483,79	32 516,33	32 708,56
784 - Dokončovací práce - malby a	47 798,60	48 594,55	48 946,18
tapety			
721 - Zdravotechnika - vnitřní	62 100,00	62 100,00	62 100,00
kanalizace			
722 - Zdravotechnika - vnitřní vodovod	63 600,00	63 600,00	63 600,00
l			

25 700,00	125 700,00
,	,
71 900,00	371 900,00

Bc. Tomáš Lohr

725 - Zdravotechnika - zařizovací	125 700,00	125 700,00	125 700,00
předměty			
MON - Montážní práce a dodávky	371 900,00	371 900,00	371 900,00
21-M – Elektromontáže	371 900,00	371 900,00	371 900,00
2) Ostatní náklady	181 704,04	178 229,24	179 761,95
Zařízení staveniště	181 704,04	178 229,24	179 761,95
Cena celkem s DPH	6 501 630,29	6 377 296,72	6 432 139,22

3.3.5 Zhodnocení ceny stavebních systémů dle ploch a objemů

3.3.5.1 Stavební systém: Vápenopísková cihla

Celková cena s DPH: 6 501 630,29 Kč

Cena (s DPH) za 1 m² podlahové plochy: 35 498,94 Kč/m²

Cena (s DPH) za 1 m² zastavěné plochy: 54 842,94 Kč/m²

Cena (s DPH) za 1 m³ obestavěného prostoru: 6 792,3 Kč/m³

3.3.5.2 Stavební systém: Keramická cihla

Celková cena s DPH: 6 377 296,72 Kč

Cena (s DPH) za 1 m² podlahové plochy: 34 156,16 Kč/m²

Cena (s DPH) za 1 m² zastavěné plochy: 53 794,15 Kč/m²

Cena (s DPH) za 1 m³ obestavěného prostoru: 6 662,45 Kč/m³

3.3.5.3 Stavební systém: Dřevostavba

Celková cena s DPH: 6 432 139,22 Kč

Cena (s DPH) za 1 m² podlahové plochy: 34 328,54 Kč/m²

Cena (s DPH) za 1 m² zastavěné plochy: 54 256,76 Kč/m²

Cena (s DPH) za 1 m³ obestavěného prostoru: 6 719,74 Kč/m³

3.3.6 Celkové zhodnocení ceny stavebních systémů

Dle výše uvedených hodnot z programu KROS 4, tak i z přepočtu celkové ceny s DPH na metry čtvereční či metry krychlové je nejdražším z porovnávaných stavebních systémů vápenopísková cihla. Cena objektu rodinného domu v pasivním standardu se dostala na hodnotu 6 501 630,29 Kč. Za 1 m³ obestavěného prostoru to vychází na 6 792,3 Kč/m³. Jedná se o nejdražší porovnávaný stavební systém s nejmenší podlahovou plochou.

Nejlevnějším stavebním systémem z porovnávaných je stavební systém: Keramická cihla. Cena objektu v pasivním standardu v daném systému je 6 377 296,72 Kč. Cena za 1m³ obestavěného prostoru je 6 662,45 Kč/m³. Stavební systém: Keramická cihla má druhou nejvyšší podlahovou plochu.

Stavební systém: Dřevostavba s největší podlahovou plochou je mezi výše zmíněnými stavebními systémy s cenou 6 432 139,22 Kč. Je o 69 491,07 Kč levnější než nejdražší stavební systém a ještě k tomu má o 4,22 m² větší podlahovou plochu. Cenový rozdíl mezi stavebním systémem: Dřevostavba a stavebním systémem: Keramická cihla je 54 896,5 Kč.

V celkovém ekonomickém porovnání všech zmíněných stavebních systémů jsou rozdíly v cenách minimální. Cena nejdražšího stavebního systému je 6 501 630,29 Kč a cena nejlevnějšího stavebního systému je 6 377 296,72 Kč. Cenový rozdíl mezi nimi je 124 333,57 Kč. Na m³ obestavěného prostoru je rozdíl cen jen 72,56 Kč/m³.

3.4 Porovnání posouzených skladeb stavebních konstrukcí

Skladby jednotlivých konstrukcí byly posouzeny z hlediska šíření tepla a vodní páry v programu Teplo 2014. Podrobné výpočty viz příloha diplomové práce č. 1.4, 2.4, 3.4.

3.4.1 Shodné skladby konstrukcí stavebních systémů

Všechny tři stavební systémy mají shodné skladby konstrukce střechy a podlahy na terénu.

3.4.1.1 Skladba střešní konstrukce

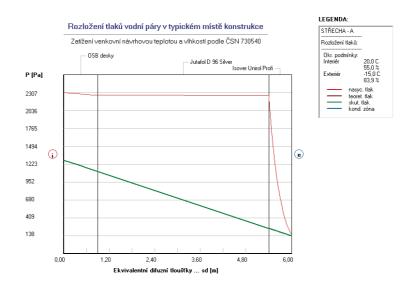
Skladba (od interiéru):

- OSB deska, tl. 18 mm
- Parozábrana Jutafol, tl. 0,2mm
- Minerální izolace Isover Unirol, tl. 600 mm

Skladba je posuzována jako střecha jednoplášťová. Z důvodu zeslabení izolace v místě vazníků je počítáno s korekcí součinitele prostupu tepla ΔU: 0,020 W/m²K.

Tepelný odpor konstrukce R: 12,516 m²K/W

Součinitel prostupu tepla konstrukce U: 0,079 W/m²K


Součinitel prostupu tepla U splňuje doporučené hodnoty pro pasivní dům U_{pas,20}.

 $U < U_{pas,20}$

 $0,079 < 0,15 [W/m^2K]$

Skladba posuzované konstrukce VYHOVUJE z hlediska součinitele prostupu tepla.

Při venkovní návrhové teplotě -15 °C nedochází v konstrukci ke kondenzaci vodní páry, viz obrázek č. 15.

Obrázek 15 Rozložení tlaků vodní páry v konstrukci střechy

3.4.1.2 Skladba konstrukce podlahy na terénu

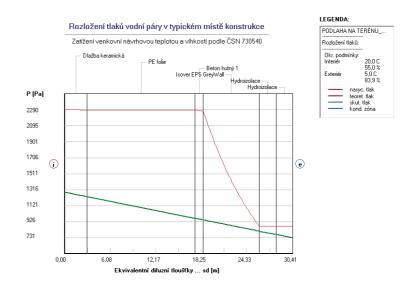
Skladba (od interiéru):

- Keramická dlažba, tl. 15 mm
- PE fólie, tl. 0,1 mm
- Betonová mazanina, tl. 65 mm
- Tepelná izolace EPS GREY, tl. 250 mm
- 2 x Hydroizolace 1,4 mm

Skladba je posuzována jako podlaha na zemině.

Tepelný odpor konstrukce R: 7,65 m²K/W

Součinitel prostupu tepla konstrukce U: 0,128 W/m²K


Součinitel prostupu tepla U splňuje doporučené hodnoty pro pasivní dům U_{pas,20}.

$$U < U_{pas,20}$$

$$0,128 < 0,22 [W/m^2K]$$

Skladba posuzované konstrukce VYHOVUJE z hlediska součinitele prostupu tepla.

Při venkovní návrhové teplotě -15 °C nedochází v konstrukci ke kondenzaci vodní páry, viz obrázek č. 16.

Obrázek 16 Rozložení tlaků vodní páry v konstrukci podlahy

3.4.2 Rozdílné skladby konstrukcí stavebních systémů

Každý stavební systém má navrženou svojí specifickou skladbu obvodové stěny.

3.4.2.1 Skladba stavebního systému: Vápenopísková cihla

3.4.2.1.1 Obvodová stěna, tl. 175 mm

Skladba (od interiéru):

- Baumit sádrová omítka, tl. 5 mm
- Vápenopísková cihla, tl. 175 mm
- Tepelná izolace ISOVER EPS GREYWALL, tl. 300 mm
- Baumit tenkovrstvá omítka, tl. 10 mm

Skladba je posuzována jako stěna vnější jednoplášťová.

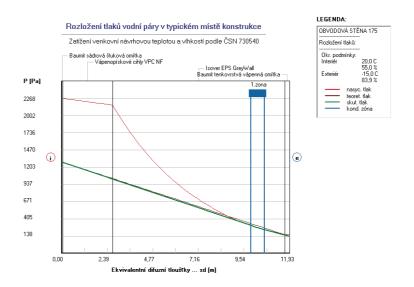
Tepelný odpor konstrukce R: 9,320 m²K/W

Součinitel prostupu tepla konstrukce U: 0,105 W/m²K

Součinitel prostupu tepla U splňuje doporučené hodnoty pro pasivní dům U_{pas,20}.

 $U < U_{pas,20}$

 $0,105 < 0,18 [W/m^2K]$


Skladba posuzované konstrukce VYHOVUJE z hlediska součinitele prostupu tepla.

Při venkovní návrhové teplotě nižší než -10 °C dochází v konstrukci ke kondenzaci vodní páry, viz obrázek č. 17.

Množství zkondenzované vodní páry za rok M_{c,a}: 0,0024 kg/(m²*rok)

Množství vypařitelné vodní páry za rok M_{ev,a}: 1,5816 kg/(m²*rok)

Množství zkondenzované vodní páry za rok je znatelně nižší než množství vypařitelné vodní páry za rok. Konstrukce tedy VYHOVUJE.

Obrázek 17 Rozložení tlaků vodní páry v konstrukci stěny, tl. 175 mm

3.4.2.1.2 Obvodová stěna, tl. 200 mm

Skladba (od interiéru):

- Baumit sádrová omítka, tl. 5 mm
- Vápenopísková cihla, tl. 200 mm
- Tepelná izolace ISOVER EPS GREYWALL, tl. 300 mm
- Baumit tenkovrstvá omítka, tl. 10 mm

Skladba je posuzována jako stěna vnější jednoplášťová.

Tepelný odpor konstrukce R: 9,349 m²K/W

Součinitel prostupu tepla konstrukce U: 0,105 W/m²K

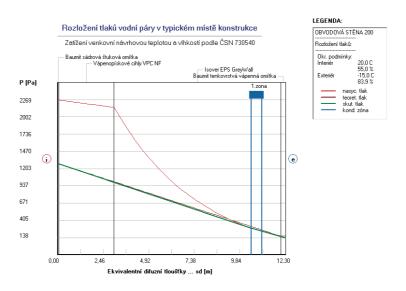
Součinitel prostupu tepla U splňuje doporučené hodnoty pro pasivní dům U_{pas,20}.

 $U < U_{pas,20}$

 $0,105 < 0,18 [W/m^2K]$

Skladba posuzované konstrukce VYHOVUJE z hlediska součinitele prostupu tepla.

Při venkovní návrhové teplotě nižší než -10 °C dochází v konstrukci ke kondenzaci vodní páry, viz obrázek č. 18.


Množství zkondenzované vodní páry za rok M_{c,a}:

0,0020 kg/(m²*rok)

Množství vypařitelné vodní páry za rok Mev,a:

1,6114 kg/(m²*rok)

Množství zkondenzované vodní páry za rok je znatelně nižší než množství vypařitelné vodní páry za rok. Konstrukce tedy VYHOVUJE.

Obrázek 18 Rozložení tlaků vodní páry v konstrukci stěny, tl. 200 mm

3.4.2.2 Skladba stavebního systému: Keramická cihla

Skladba (od interiéru):

- Baumit sádrová omítka, tl. 15 mm
- Keramická cihla HELUZ FAMILY 2in1 broušená, tl. 440 mm
- Baumit hlazená omítka, tl. 20 mm

Skladba je posuzována jako stěna vnější jednoplášťová.

Tepelný odpor konstrukce R:

 $7,268 \text{ m}^2\text{K/W}$

Součinitel prostupu tepla konstrukce U:

 $0,134 \text{ W/m}^2\text{K}$

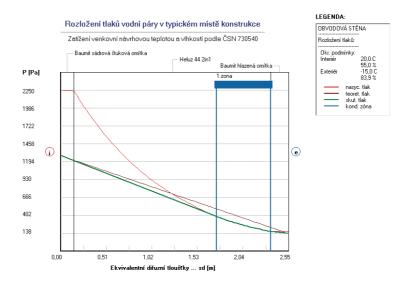
Součinitel prostupu tepla U splňuje doporučené hodnoty pro pasivní dům U_{pas,20}.

 $U < U_{pas,20}$

$$0,134 < 0,18 [W/m^2K]$$

Skladba posuzované konstrukce VYHOVUJE z hlediska součinitele prostupu tepla.

Při venkovní návrhové teplotě nižší než -5 °C dochází v konstrukci ke kondenzaci vodní páry, viz obrázek č. 19.


Množství zkondenzované vodní páry za rok Mc,a:

0,0756 kg/(m²*rok)

Množství vypařitelné vodní páry za rok Mev,a:

6,0490 kg/(m²*rok)

Množství zkondenzované vodní páry za rok je znatelně nižší než množství vypařitelné vodní páry za rok. Konstrukce tedy VYHOVUJE.

Obrázek 19 Rozložení tlaků vodní páry v konstrukci stěny

3.4.2.3 Skladba stavebního systému: Dřevostavba

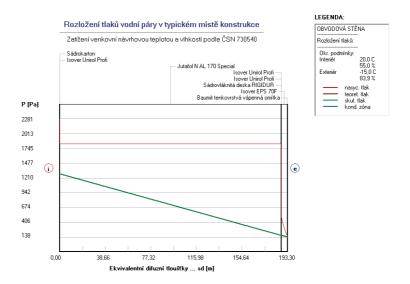
Skladba (od interiéru):

- Sádrokartonová deska, tl. 12,5 mm
- Tepelná minerální izolace, tl. 40 mm
- Parozábrana, tl. 0,2 mm
- Tepelná minerální izolace, tl. 60 mm
- Tepelná minerální izolace, tl. 160 mm
- Sádrovláknitá deska, tl. 12,5 mm
- Tepelná izolace polystyren, tl. 160 mm
- Baumit tenkovrstvá omítka, tl. 10 mm

Skladba je posuzována jako stěna vnější jednoplášťová. Z důvodu zeslabení izolace v místě dřevěných roštů je počítáno s korekcí součinitele prostupu tepla ΔU: 0,050 W/m²K.

Tepelný odpor konstrukce R: 7,176 m²K/W

Součinitel prostupu tepla konstrukce U: 0,136 W/m²K


Součinitel prostupu tepla U splňuje doporučené hodnoty pro pasivní dům U_{pas,20}.

$$U < U_{pas,20}$$

$$0,136 < 0,18 [W/m^2K]$$

Skladba posuzované konstrukce VYHOVUJE z hlediska součinitele prostupu tepla.

Při venkovní návrhové teplotě nižší než -15 °C nedochází v konstrukci ke kondenzaci vodní páry, viz obrázek č. 20. Konstrukce VYHOVUJE.

Obrázek 20 Rozložení tlaků vodní páry v konstrukci stěny

3.4.3 Zhodnocení výsledků posouzených skladeb konstrukcí

V tabulce níže jsou přehledně sepsány hodnoty součinitele prostupu tepla jednotlivých konstrukcí.

Tabulka 6 Zhodnocení součinitelů prostupů tepla

Stavební systém	Konstrukce	Konstrukce podlahy na	Konstrukce
	střechy	terénu	stěny
	U [W/m ² *K]	U [W/m ² *K]	U [W/m ² *K]
Vápenopísková cihla	0.079	0.105	0.105
Keramická cihla	0.079	0.105	0.134
Dřevostavba	0.079	0.105	0.136

Z hodnot v tabulce je patrné, že nejlepší hodnoty součinitele prostupu tepla má stavební systém: Vápenopísková cihla s hodnotou 0,105 W/m²*K. Následně je hodnota stavebního systému: Keramická cihla a s největší hodnotou stavební systém: Dřevostavba. Mezi nejvyšší a nejnižší hodnotou je rozdíl 0,031 W/m²*K. Hodnoty součinitele prostupu tepla konstrukce střechy a konstrukce podlahy na terénu mají shodnou skladbu, proto vychází součinitele prostupu tepla shodné.

3.5 Porovnání výsledků tepelných ztrát

Výpočty tepelných ztrát byly vypracovány v programu Ztráty 2010. Podrobné výpočty viz příloha diplomové práce č. 1.5, 2.5, 3.5.

3.5.1 Tepelné ztráty stavebního systému: Vápenopísková cihla

Tabulka 7 Tepelné ztráty stavební systém: Vápenopísková cihla

Označení místnosti	Název místnosti	Teplota [°C]	Celková ztráta [W]
1.01	Zádveří	20	131
1.02	Šatna	20	-42
1.03	Koupelna	24	256
1.04	Tech. místnost	20	-25
1.05	Obytný prostor	22	1568
1.06	Pokoj pro hosty	20	178
1.07	Spíž	20	-24
2.01	Chodba	20	176
2.02	WC	20	42
2.03	Koupelna	24	267
2.04	Sauna	24	125
2.05	Pokoj	20	235
2.06	Pokoj	20	235
2.07	Ložnice	20	410

3.5.2 Tepelné ztráty stavebního systému: Keramická cihla

Tabulka 8 Tepelné ztráty stavební systém: Keramická cihla

Označení místnosti	Název místnosti	Teplota [°C]	Celková ztráta [W]
1.01	Zádveří	20	141

1.02	Šatna	20	-12
1.03	Koupelna	24	184
1.04	Tech. místnost	20	24
1.05	Obytný prostor	22	1443
1.06	Pokoj pro hosty	20	206
1.07	Spíž	20	-9
2.01	Chodba	20	269
2.02	WC	20	70
2.03	Koupelna	24	256
2.04	Sauna	24	113
2.05	Pokoj	20	216
2.06	Pokoj	20	215
2.07	Ložnice	20	441

3.5.3 Tepelné ztráty stavebního systému: Dřevostavba

Tabulka 9 Tepelné ztráty stavební systém: Dřevostavba

Označení místnosti	Název místnosti	Teplota [°C]	Celková ztráta [W]
1.01	Zádveří	20	162
1.02	Šatna	20	23
1.03	Koupelna	24	137
1.04	Tech. místnost	20	91
1.05	Obytný prostor	22	1502
1.06	Pokoj pro hosty	20	189
1.07	Spíž	20	8
2.01	Chodba	20	330

2.02	WC	20	100
2.03	Koupelna	24	223
2.04	Sauna	24	89
2.05	Pokoj	20	216
2.06	Pokoj	20	214
2.07	Ložnice	20	430

3.5.4 Zhodnocení výsledků výpočtu tepelných ztrát

Tabulka 10 Zhodnocení tepelných zrát stavebních systémů

Stavební systém	Celková tepelná ztráta objektu [W]
Vápenopísková cihla	3535
Keramická cihla	3559
Dřevostavba	3712

Dle tabulky výše jsou nejmenší ztráty u stavebního systému: Vápenopísková cihla. Jedná se o hodnotu 3535 W. Rozdíl mezi největší a nejmenší tepelnou ztrátou je 177 W.

3.6 Porovnání energetické náročnosti stavebních systémů

Jednotlivé stavební systémy byly vypočítány v programu Energie 2010. Podrobné výpočty viz příloha diplomové práce č. 1.6, 2.6, 3.6.

Rodinný dům byl zhodnocen jako jedna vytápěná zóna. Vytápění je zajištěno pomocí vzduchotechnické jednotky Nilan Compact s podílem 75% s parametry COP 1,8. Doplňkovým zdrojem tepla jsou krbová kamna s podílem 20% a elektrické rohože a fólie s podílem 5%. Zpětné získávání tepla je 77%.

Příprava teplé vody je pomocí vzduchotechnické jednotky Nilan Compact s podílem 100%. V zimních měsících je dopomáháno vzduchotechnické jednotce pomocí elektrické patrony v tepelném čerpadle.

V tabulce č. 11 jsou přehledně vypsány hodnoty, kterých bylo dosaženo ve výpočtu.

Tabulka 11 Hodnoty energetické náročnosti stavebních systémů

Stavební systém	Vápenopísková cihla	Keramická cihla	Dřevostavba
Měrná potřeba tepla na vytápění [kWh/m²*a]	10	12	12
Celková roční dodaná energie [kWh/m²]	23	26	26
Měrná spotřeba energie budovy [kWh/m²*a]	23,3	25,5	25,6
Celková spotřeba primární energie za rok [kWh/m²]	43	48	49
Celková emise CO2 za rok [kg/m²]	9	10	10
Průměrný součinitel prostupu tepla [W/m²*K]	0,16	0,17	0,17

3.6.1 Zhodnocení stavebních systémů dle energetické náročnosti

Z tabulky je patrné, že co se energetické náročnosti budovy týká, vychází nejlépe stavební systém: Vápenopísková cihla. Veškeré uváděné hodnoty jsou ze všech stavebních systémů nejnižší. Stavební systém: Keramická cihla a Dřevostavba jsou si hodnotami velice podobné. Je to z důvodu totožné vnitřní technologie a velmi blízkých hodnot obálky budovy.

3.7 Porovnání nejvyšší vypočítané teploty vzduchu v pobytové místnosti

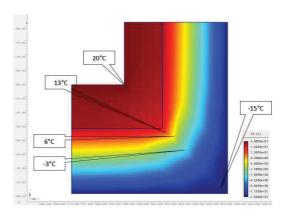
Jednotlivé stavební systémy byly vypočítány v programu Simulace 2010. Podrobné výpočty viz příloha diplomové práce č. 1.7, 2.7, 3.7.

Z důvodu velké plochy prosklení na jižní fasádě domu byla provedena simulace výpočtu tepelné stability v pobytové místnosti. Dle ČSN 73 0540-2 pro vyhovující stav musí být nejvyšší denní teplota vzduchu v místnosti v letním období $\Theta_{ai,max}$ = 27°C.

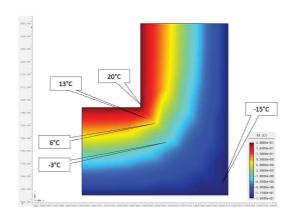
Tabulka 12 Teploty vnitřního vzduchu

Stavební systém	Vápenopísková cihla	Keramická cihla	Dřevostavba
Teplota vnitřního vzduchu [°C]	25,21	24,95	24,85

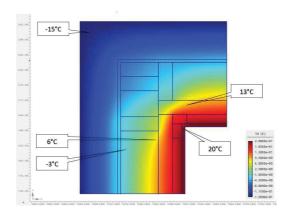
3.7.1 Zhodnocení nejvyšší vypočítané teploty vzduchu v pobytové místnosti


Dle tabulky všechny stavební systémy jsou nižší než maximální hodnota denní teploty vzduchu v místnosti v letním období $\Theta_{ai,max}$ = 27°C. Teplota vnitřního vzduchu v letním období VYHOVUJE. Nejlépe je na tom dle porovnání stavební systém: Dřevostavba teplota vnitřního vzduchu bude dosahovat maximálně na hodnotu 24,85 °C. Nejhorším případem je stavební systém: Vápenopísková cihla, kdy teplota vnitřního vzduchu vyšplhá až na hodnotu 25,21°C.

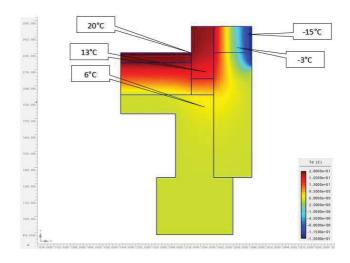
3.8 Porovnání konstrukčních detailů


Jednotlivé detaily byly posouzeny v programu Agros 2D. Podrobné posouzení všech konstrukčních detailů viz příloha diplomové práce č. 1.8, 2.8, 3.8.

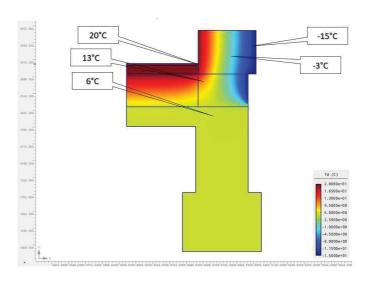
3.8.1 Porovnání hlavních konstrukčních detailů


3.8.1.1 Detail nároží obvodové stěny

Obrázek 21 Nároží obvodové stěny - vápenopísková cihla



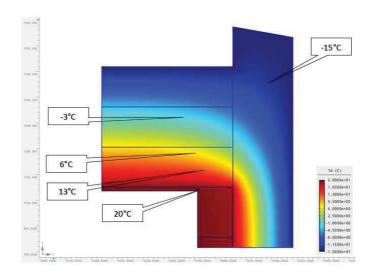
Obrázek 22 Nároží obvodové stěny - keramická cihla



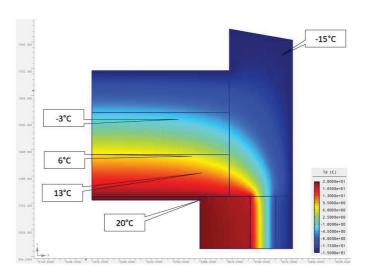
Obrázek 23 Nároží obvodové stěny - dřevostavba

3.8.1.2 Detail založení obvodové stěny

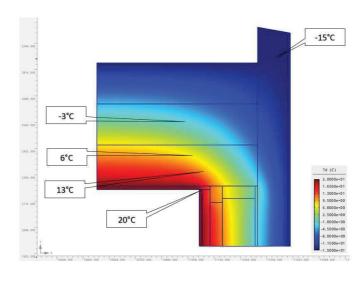
Obrázek 24 Založení obvodové stěny - vápenopísková cihla



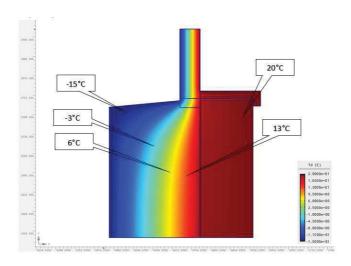
Obrázek 25 Založení obvodové stěny - keramická cihla



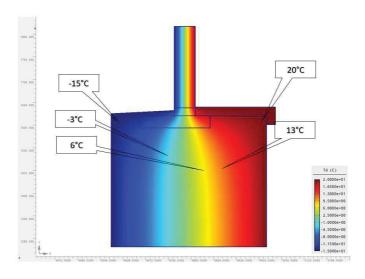
Obrázek 26 Založení obvodové stěny – dřevostavba


3.8.1.1 Detail nepojení obvodové stěny na šikmou střechu

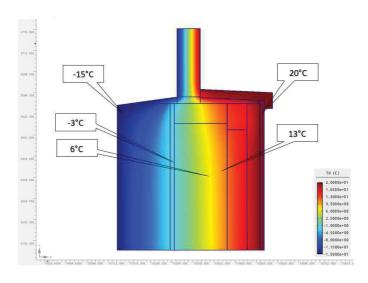
Obrázek 27 Napojení obvodové stěny na šikmou střechu - vápenopísková cihla



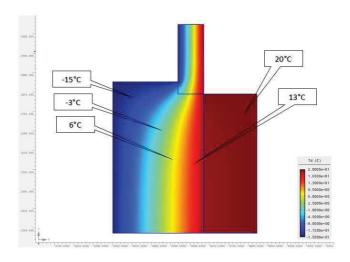
Obrázek 28 Napojení obvodové stěny na šikmou střechu - keramická cihla



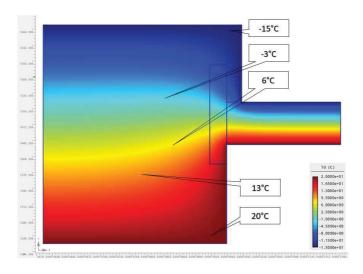
Obrázek 29 Napojení obvodové stěny na šikmou střechu - dřevostavba


3.8.1.2 Detail parapetu okna

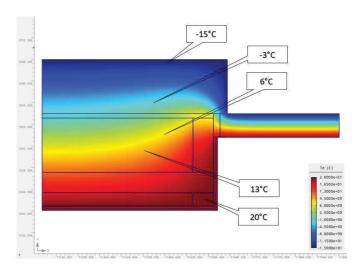
Obrázek 30 Detail parapetu okna - vápenopísková cihla



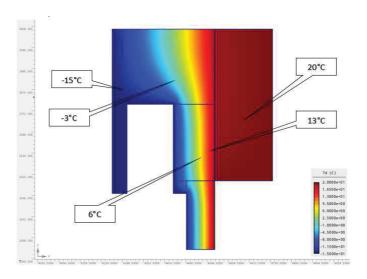
Obrázek 31 Detail parapetu okna - keramická cihla



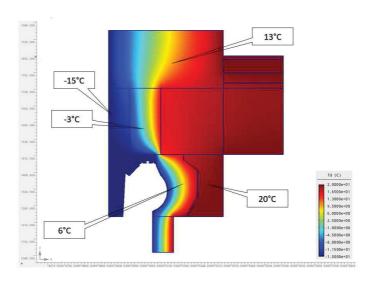
Obrázek 32 Detail parapetu okna – dřevostavba


3.8.1.3 Detail ostění okna

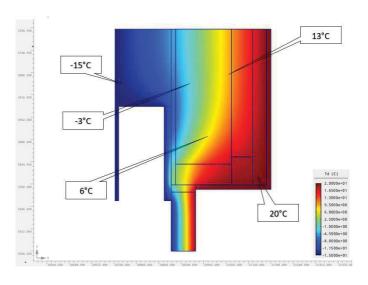
Obrázek 33 Detail ostění okna - vápenopísková cihla



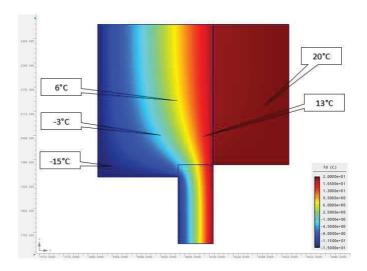
Obrázek 34 Detail ostění okna - keramická cihla



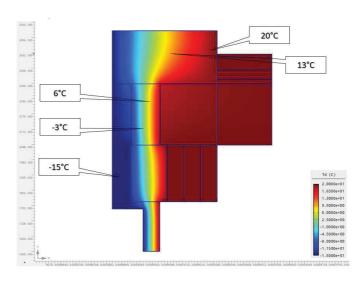
Obrázek 35 Detail ostění okna - dřevostavba


3.8.1.4 Detail nadpraží okna s žaluzií

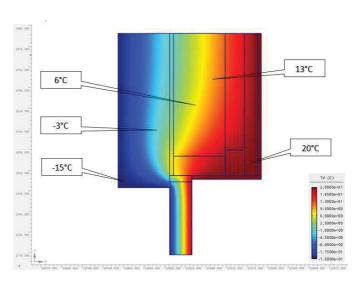
Obrázek 36 Detail nadpraží okna s žaluzií - vápenopísková cihla



Obrázek 37 Detail nadpraží okna s žaluzií - keramická cihla



Obrázek 38 Detail nadpraží okna s žaluzií – dřevostavba


3.8.1.5 Detail nadpraží dveří

Obrázek 39 Detail nadpraží dveří – vápenopísková cihla

Obrázek 40 Detail nadpraží dveří – keramická cihla

Obrázek 41 Detail nadpraží dveří – dřevostavba

3.8.1.6 Zhodnocení teplotních změn

U stavebního systému: Vápenopísková cihla se projevuje vysoká akumulační vlastnost vápenopískového zdiva. Konstrukce těží ze spojení nosného prvku o vysoké objemové hmotnosti s dobrými akumulačními vlastnostmi a prvku izolantu, který dokáže pro nosnou konstrukci zajišťovat trvale stabilní teplotní prostředí. Tato skladba výrazně zvyšuje životnost nosného prvku, jelikož v nosné konstrukci nedochází k výrazným změnám teploty uvnitř zdiva.

Na rozdíl od vápenopískové cihly je stavební systém: Keramická cihla jednovrstvá konstrukce. Konstrukci tvoří keramická tvárnice, která má vyplněné dutiny polystyrenem. Z důvodu jednovrstvého zdiva se v jejím jádru potkávají rozdílné teploty. V interiéru se teploty pohybují mezi 18 °C – 24 °C zatímco na fasádě se může roční proměnlivost pohybovat od -15 °C do 60 °C. Konstrukce tedy nemá takovou akumulační schopnost jako vápenopísková cihla.

U stavebního systémů: Dřevostavba nemá konstrukce velkou akumulační schopnost. Minerální vata, která je v konstrukci navržena je dobrým izolantem, ale nemá dobrou akumulační vlastnost. Teplotní křivka se zde pohybuje na povrchu konstrukce.

3.9 Dotace Nová zelená úsporám

V dnešní době lze na nově budovaný rodinný dům v pasivním standardu získat dotaci na výstavbu. Jedná se již o 3. výzvu pro rodinné domy. Zahájení příjmu dotace bylo 22. října 2015 a ukončení je plánováno na 31. prosince 2021.

Výše dotace pro rodinné domy:

Tabulka 13 Výše dotace

Podoblast podpory	Popis	Výše podpory [Kč/dům]
B. 1	Dům s velmi nízkou energetickou náročností	300 000
B. 2	Dům s velmi nízkou energetickou náročností s důrazem na použití obnovitelných zdrojů energie	450 000

3.9.1 Stavební systém: Vápenopísková cihla

Tabulka 14 Požadované parametry pro programu Nová zelená úsporám

Sledovaný parametr	Označení [jednotky]	Vypočtené hodnoty	Podoblast podpory B. 1	Splnění podmínek	Podoblast podpory B. 2	Splnění podmínek
Výše podpory	Kč/dům		300	000	450	000
Měrná roční potřeba tepla na vytápění	E _A [kWh/ m ² *rok]	10	≤ 20	ANO	≤ 15	ANO
Měrná neobnovitelná primární energie	E _{pN,A} [kWh/ m ^{2*} rok]	43	≤ 90	ANO	≤ 60	ANO

Součinitel prostupu tepla jednotlivých konstrukcí na systémové hranici	U [W/m ² * K]	U konstru kcí	≤ Upas,20	ANO	≤ Upas,20	ANO
Průměrný součinitel prostupu tepla obálkou budovy	U _{em} [W/m ² * K]	0,16	≤ 0,22	ANO	≤ 0,22	ANO
Průvzdušnost obálky budovy pro dokončení stavby	n ₅₀	0,6	≤ 0,6	ANO	≤ 0,6	ANO
Nejvyšší teplota vzduchu v pobytové místnosti	Θ _{ai,max}	25,21	≤ 27	ANO	≤ 27	ANO
Povinná instalace systému nuceného větrání se zpětným získáváním tepla	[-]	ANO	ANO	ANO	ANO	ANO
Účinnost zpětného získávání tepla z odváděného vzduchu	η [%]	77	≥ 75	ANO	≥ 75	ANO
Splnění podmínek pro poskytnutí podpory	-	-	B. 1	Splnil	B. 2	Splnil

3.9.2 Stavební systém: Keramická cihla

Tabulka 15 Požadované parametry pro programu Nová zelená úsporám

Sledovaný parametr	Označení [jednotky]	Vypočtené hodnoty	Podoblast podpory B. 1	Splnění podmínek	Podoblast podpory B. 2	Splnění podmínek
Výše podpory	Kč/dům		300	000	450	000
Měrná roční potřeba tepla na vytápění	E _A [kWh/ m ^{2*} rok]	12	≤ 20	ANO	≤ 15	ANO

Měrná neobnovitelná primární energie	E _{pN,A} [kWh/ m ² *rok]	48	≤ 90	ANO	≤ 60	ANO
Součinitel prostupu tepla jednotlivých konstrukcí na systémové hranici	U [W/m ² * K]	U konstru kcí	≤ Upas,20	ANO	≤ Upas,20	ANO
Průměrný součinitel prostupu tepla obálkou budovy	U _{em} [W/m ² * K]	0,17	≤ 0,22	ANO	≤ 0,22	ANO
Průvzdušnost obálky budovy pro dokončení stavby	n ₅₀	0,6	≤ 0,6	ANO	≤ 0,6	ANO
Nejvyšší teplota vzduchu v pobytové místnosti	Θ _{ai,max}	24,95	≤ 27	ANO	≤ 27	ANO
Povinná instalace systému nuceného větrání se zpětným získáváním tepla	[-]	ANO	ANO	ANO	ANO	ANO
Účinnost zpětného získávání tepla z odváděného vzduchu	η [%]	77	≥ 75	ANO	≥ 75	ANO
Splnění podmínek pro poskytnutí podpory	-	-	B. 1	Splnil	B. 2	Splnil

3.9.3 Stavební systém: Dřevostavba

Tabulka 16 Požadované parametry pro programu Nová zelená úsporám

Sledovaný parametr	Označení [jednotky]	Vypočtené hodnoty	Podoblast podpory B. 1	Splnění podmínek	Podoblast podpory B. 2	Splnění podmínek
Výše podpory	Kč/dům		300	000	450	000
Měrná roční potřeba tepla na vytápění	E _A [kWh/ m ² *rok]	12	≤ 20	ANO	≤ 15	ANO
Měrná neobnovitelná primární energie	E _{pN,A} [kWh/ m ^{2*} rok]	49	≤ 90	ANO	≤ 60	ANO
Součinitel prostupu tepla jednotlivých konstrukcí na systémové hranici	U [W/m ² * K]	U konstru kcí	≤ Upas,20	ANO	≤ Upas,20	ANO
Průměrný součinitel prostupu tepla obálkou budovy	U _{em} [W/m ² * K]	0,17	≤ 0,22	ANO	≤ 0,22	ANO
Průvzdušnost obálky budovy pro dokončení stavby	n ₅₀	0,6	≤ 0,6	ANO	≤ 0,6	ANO
Nejvyšší teplota vzduchu v pobytové místnosti	Θ _{ai,max}	24,85	≤ 27	ANO	≤ 27	ANO
Povinná instalace systému nuceného větrání se zpětným získáváním tepla	[-]	ANO	ANO	ANO	ANO	ANO
Účinnost zpětného získávání tepla z odváděného vzduchu	η [%]	77	≥ 75	ANO	≥ 75	ANO

Splnění podmínek pro poskytnutí podpory	-	-	B. 1	Splnil	B. 2	Splnil
poskytilati poupory						

3.9.4 Zhodnocení výsledků jednotlivých systémů

Dle tabulek č. 14, 15, 16 jednotlivé stavební systémy splňují veškeré požadavky pro získání nejvyšší dotace B. 2 v hodnotě 450 000 Kč.

4 Závěr

V diplomové práci se zabývám analýzou stavebních systémů pasivních domů.

V textové části diplomové práce je shrnuto, co je to pasivní dům. Jsou zde informace ohledně orientace objektu, správného návrhu, izolace, výplně otvorů, vytápění a dalších informací, bez kterých bych nedokázal zpracovat projekt pro provedení stavby v pasivním standardu.

Pro vypracování diplomové práce a následnou analýzu byly vybrány tři stavební systémy. Konkrétně se jedná o stavební systém vápenopísková cihla, keramická cihla a dřevostavba. Stavební systémy nebyly vybrány náhodně, ale s rozvahou. Stavební systém vápenopísková cihla je systém dvouvrstvé konstrukce, kdy nosnou konstrukcí je vápenopískový blok a izolační vrstvu plní polystyren. Stavební systém keramická cihla je pouze konstrukce jednovrstvá. Nosnou i izolační vrstvu zastává keramická tvárnice, která je vyplněna polystyrenem. U jednovrstvé konstrukce je třeba brát zřetel na složitější řešení detailů a složitější řešení tepelných mostů. Posledním stavebním systémem je vícevrstvá dřevěná montovaná konstrukce dřevostavba. Stavební systémy byly vybrány dle rozdílností skladeb a zároveň tyto stavební systémy patří mezi nejpoužívanější konstrukce k výstavbě pasivních domů. To byl hlavní důvod analyzovat, který stavební systém je ten nejvhodnější.

Z důvodu co možná nejdůvěryhodnějšího a nejpřesnějšího srovnání jednotlivých systému jsou objekty rodinných domů navrženy co možná nejvíce si podobné. Objekty mají stejnou zastavěnou plochu i stejný obestavěný prostor. Rodinné domy jsou dvoupodlažní objekty se sedlovou střechou.

Všechny jsou umístěny na stejném pozemku v obci Horoměřice, par. č.: 425/314. Pozemek je rovinného charakteru a má tu nejlepší možnou orientaci k umístění rodinného domu v pasivním standardu.

Pro jednotlivé stavební systémy jsou vypracovány dokumentace pro provedení stavby, aby bylo srovnání co nejpřesnější. Dále jsou k jednotlivým stavebním systémům vypracovány výpočty nezbytně nutné pro navržení pasivního domu a rozpočty pro ekonomické srovnání. Projektová dokumentace pro provedení stavby, výpočty a rozpočty jsou přílohou diplomové práce.

V praktické části diplomové práce se zabývám analýzou výsledků, výpočtů a rozpočtů. Všechny stavební systémy jsou mezi sebou porovnány a zhodnoceny jak z tepelně technických požadavků tak i z ekonomického hlediska. Ze zhodnocení vyplývá, že nejvhodnější z tepelně technického hlediska je stavební systém vápenopísková cihla, což je promítnuto i do ekonomického hlediska, kde zmíněný stavební systém je nejdražší. Z ekonomického hlediska jako nejlevnější variantou byl zvolen stavební systém keramická cihla.

5 Seznam použité literatury, zdrojů a softwaru

5.1 Literatura

- [1] HAZUCHA, Juraj. Konstrukční detaily pro pasivní a nulové domy: Doporučení pro návrh a stavbu. Praha: Grada Publishing, 2016. ISBN 978-80-247-4551-0.
- [2] Pasivní domy: Speciální ročenka časopisu DŘEVO&Stavby. Praha: PRO VOBIS, 2017. ISBN 978-80-906132-7-0.
- [3] HUDEC, Mojmír. *Pasivní rodinný dům: Proč a jak stavět*. Praha: Grada Publishing, 2008. ISBN 978-80-247-2555-0.
- [4] ŠUBRT, ING., Roman. *Tepelné mosty: Pro nízkoenergetické a pasivní domy*. Praha: Grada Publishing, 2011. ISBN 978-80-247-4059-1.
- [5] NAGY, Eugen. *Nízkoenergetický a energeticky pasivní dům*. Přeložil Jaroslava POKORNÁ. Bratislava: Jaga, 2009, 207 s. ISBN 978-80-8076-077-9.

5.2 Normy a vyhlášky

- [6] ČSN EN 1990 Zásady navrhování stavebních konstrukcí
- [7] ČSN 730540 2 Tepelná ochrana budov
- [8] ČSN 730540 3 Návrhové hodnoty veličin
- [9] ČSN EN ISO 9972 Stanovení průvzdušnosti budov Tlaková metoda

5.3 Internetové zdroje

- [10] ISOVER: SAINT-GOBAIN [online]. [cit. 2017-12-10]. Dostupné z: http://www.isover-eshop.cz
- [10] Kalksandstein [online]. [cit. 2017-12-10]. Dostupné z: http://www.kalksandstein.cz/
- [11] HELUZ [online]. [cit. 2017-12-10]. Dostupné z: http://www.heluz.cz/
- [11] *Centrum pasivního domu* [online]. [cit. 2017-12-10]. Dostupné z: http://www.pasivnidomy.cz

Bc. Tomáš Lohr

[12] *Tzbinfo: stavebnictví, úspory energií, technická zařízení budov* [online]. [cit. 2017-12-10]. Dostupné z: http://www.tzb-info.cz/

[13] Pasivní dům. In: *Wikipedia: the free encyclopedia* [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2017-12-10]. Dostupné z: https://cs.wikipedia.org/wiki/Pasivn%C3%AD d%C5%AFm

[14] Projekty domů [online]. [cit. 2017-12-10]. Dostupné z: http://www.projektydomu.cz

[15] *Nová zelená úsporám* [online]. [cit. 2017-12-10]. Dostupné z: http://www.novazelenausporam.cz/

[15] Nilan: Větrání s rekuperací [online]. [cit. 2017-12-10]. Dostupné z: http://www.nilan.cz

[17] Projekty domů [online]. [cit. 2017-12-10]. Dostupné z: http://www.projektydomu.cz

[18] *Internorm: Okna a dveře* [online]. [cit. 2017-12-10]. Dostupné z: https://www.internorm.com

[19] *DEKSOFT: Profesionální programy pro stavebnictví* [online]. [cit. 2017-12-10]. Dostupné z: https://stavebni-fyzika.cz

[20] *Nízkoenergetický dům* [online]. [cit. 2017-12-10]. Dostupné z: http://www.nizkoenergetickydum.cz

5.4 Použitý software

AutoCad 2018

Microsoft Excel 2016

Microsoft Word 2016

Fin 2D

Kros 4

Teplo 2014

Ztráty 2010

Energie 2010

Simulace 2010

Agros 2D

6 Seznam obrázků

Obrázek 1 Ideální tvar domu	11
Obrázek 2 Orientace pasivního domu na pozemku	12
Obrázek 3 Základní princip pasivního domu	12
Obrázek 4 Správné a špatné řešení izolace	14
Obrázek 5 Předsazená montáž výplní otvorů	16
Obrázek 6 Předsazená montáž výplní otvorů	17
Obrázek 7 Stínění v letním a zimním období	18
Obrázek 8 Správné a nesprávné řešení vzduchotěsnosti objektu	19
Obrázek 9 Přelepení spáry pomocí pásky AIRSTOP	20
Obrázek 10 Provedení prostupů skrz vzduchotěsnou obálku	20
Obrázek 11 Blower door - test	21
Obrázek 12 Blower door - test	21
Obrázek 13 Větrání s rekuperací	22
Obrázek 14 Rozdíl v nákladech u pasivního a klasického domu	24
Obrázek 15 Rozložení tlaků vodní páry v konstrukci střechy	41
Obrázek 16 Rozložení tlaků vodní páry v konstrukci podlahy	42
Obrázek 17 Rozložení tlaků vodní páry v konstrukci stěny, tl. 175 mm	43
Obrázek 18 Rozložení tlaků vodní páry v konstrukci stěny, tl. 200 mm	44
Obrázek 19 Rozložení tlaků vodní páry v konstrukci stěny	45
Obrázek 20 Rozložení tlaků vodní páry v konstrukci stěny	46
Obrázek 21 Nároží obvodové stěny - vápenopísková cihla	54
Obrázek 22 Nároží obvodové stěny - keramická cihla	54
Obrázek 23 Nároží obvodové stěny - dřevostavba	54
Obrázek 24 Založení obvodové stěny - vápenopísková cihla	55
Obrázek 25 Založení obvodové stěny - keramická cihla	55
Obrázek 26 Založení obvodové stěny – dřevostavba	55
Obrázek 27 Napojení obvodové stěny na šikmou střechu - vápenopísková cihla	56
Obrázek 28 Napojení obvodové stěny na šikmou střechu - keramická cihla	56
Obrázek 29 Napojení obvodové stěny na šikmou střechu - dřevostavba	56
Obrázek 30 Detail parapetu okna - vápenopísková cihla	57

Diplomová práce

$D \sim$	$I \cap m$	20	I ah
Bc.	LOIL	เสร	LOIL

Obrázek 31 Detail parapetu okna - keramická cihla	. 57
Obrázek 32 Detail parapetu okna – dřevostavba	. 57
Obrázek 33 Detail ostění okna - vápenopísková cihla	. 58
Obrázek 34 Detail ostění okna - keramická cihla	. 58
Obrázek 35 Detail ostění okna - dřevostavba	. 58
Obrázek 36 Detail nadpraží okna s žaluzií - vápenopísková cihla	. 59
Obrázek 37 Detail nadpraží okna s žaluzií - keramická cihla	. 59
Obrázek 38 Detail nadpraží okna s žaluzií – dřevostavba	. 59
Obrázek 39 Detail nadpraží dveří – vápenopísková cihla	. 60
Obrázek 40 Detail nadpraží dveří – keramická cihla	. 60
Obrázek 41 Detail nadpraží dveří – dřevostavba	. 60

7 Seznam tabulek

Tabulka 1 Hodnoty soucinitele prostupu tepia U	15
Tabulka 2 Rozpočet stavební systém: Vápenopísková cihla	32
Tabulka 3 Rozpočet stavební systém: Keramická cihla	33
Tabulka 4 Rozpočet stavební systém: Dřevostavba	35
Tabulka 5 Zhodnocení rozpočtů	36
Tabulka 6 Zhodnocení součinitelů prostupů tepla	47
Tabulka 7 Tepelné ztráty stavební systém: Vápenopísková cihla	48
Tabulka 8 Tepelné ztráty stavební systém: Keramická cihla	48
Tabulka 9 Tepelné ztráty stavební systém: Dřevostavba	49
Tabulka 10 Zhodnocení tepelných zrát stavebních systémů	50
Tabulka 11 Hodnoty energetické náročnosti stavebních systémů	51
Tabulka 12 Teploty vnitřního vzduchu	53
Tabulka 13 Výše dotace	62
Tabulka 14 Požadované parametry pro programu Nová zelená úsporám	62
Tabulka 15 Požadované parametry pro programu Nová zelená úsporám	63
Tabulka 16 Požadované parametry pro programu Nová zelená úsporám	65

8 Seznam příloh

Příloha č. 1 – Stavební systém: Vápenopísková cihla

Příloha č. 1.1 – Projektová dokumentace pro provádění stavby

Příloha č. 1.2 – Rozpočet rodinného domu v programu KROS 4

Příloha č. 1.3 – Průkaz energetické náročnosti "PENB"

Příloha č. 1.4 – Komplexní posouzení skladeb stavebních konstrukcí z hlediska šíření tepla a vodní páry v programu Teplo 2014

Příloha č. 1.5 – Výpočet tepelných ztrát objektu v programu Ztráty 2010

Příloha č. 1.6 – Výpočet energetické náročnosti v programu Energie 2010

Příloha č. 1.7 – Výpočet nejvyšší teploty vzduchu v pobytové místnosti v programu Simulace 2010

Příloha č. 1.8 – Posouzení konstrukčních detailů v programu Agros2D

Příloha č. 2 – Stavební systém: Keramická cihla

Příloha č. 2.1 – Projektová dokumentace pro provádění stavby

Příloha č. 2.2 – Rozpočet rodinného domu v programu KROS 4

Příloha č. 2.3 – Průkaz energetické náročnosti "PENB"

Příloha č. 2.4 – Komplexní posouzení skladeb stavebních konstrukcí z hlediska šíření tepla a vodní páry v programu Teplo 2014

Příloha č. 2.5 – Výpočet tepelných ztrát objektu v programu Ztráty 2010

Příloha č. 2.6 – Výpočet energetické náročnosti v programu Energie 2010

Příloha č. 2.7 – Výpočet nejvyšší teploty vzduchu v pobytové místnosti v programu Simulace 2010

Příloha č. 2.8 – Posouzení konstrukčních detailů v programu Agros2D

Příloha č. 3 – Stavební systém: Dřevostavba

Příloha č. 3.1 – Projektová dokumentace pro provádění stavby

Příloha č. 3.2 – Rozpočet rodinného domu v programu KROS 4

Příloha č. 3.3 – Průkaz energetické náročnosti "PENB"

Příloha č. 3.4 – Komplexní posouzení skladeb stavebních konstrukcí z hlediska šíření tepla a vodní páry v programu Teplo 2014

Příloha č. 3.5 – Výpočet tepelných ztrát objektu v programu Ztráty 2010

Příloha č. 3.6 – Výpočet energetické náročnosti v programu Energie 2010

Příloha č. 3.7 – Výpočet nejvyšší teploty vzduchu v pobytové místnosti v programu Simulace 2010

Příloha č. 3.8 – Posouzení konstrukčních detailů v programu Agros2D