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Anotace

Tato práce se zabývá geometrickým modelováním v průmyslových aplikacích. Hlavním cílem je popsat
tvar vodních turbín s pomocí moderních geometrických metod. Proto byly použity B-spline/NURBS ob-
jekty pro definici hydraulických profilů vodních turbín a dále byly navrženy geometrické parametrizace,
které jsou závislé na několika proměnných parametrech (délka, šířka, výška, úhly,...). Získáme tak dy-
namické modely, jež můžeme následně optimalizovat s pomocí isogeometrické analýzy (IGA). Díky
tomu bude zlepšena nynější metodologie designu turbín, kdy analýza proudění je provedena pro jednu
konkrétní turbínu a po obdržení výsledků z CFD systému je následně manuálně pozměněn CAD model
turbíny na základě zkušeností konstruktéra a to tak aby došlo ke zlepšení vybraných vlastností (např.
účinnosti nebo kavitace). Proces návrhu turbíny by tedy měl být více zautomatizován.

Práce je rozdělena do dvou částí. V první části se zaměříme na popis lopatek vodních turbín (koreček
Peltonovy turbíny, lopatky Kaplanovy a Francisovy turbíny). Pro koreček Peltonovy turbíny je uveden
nový algoritmus k sestrojení aproximační tečné plochy pro daný proměnný úhel. Lopatky Kaplanovy a
Francisovy turbíny jsou sestrojeny za pomocí významných křivek: střednice a funkce tloušt’ky. V druhé
části se zabýváme B-spline objemovou parametrizací Kaplanovy a Francisovy turbíny pro dané hraniční
B-spline plochy. Tato parametrizace je následně použita jako vstup do IGA řešiče a může se tak analyzo-
vat proudění turbínou. Zároveň jsou uvedeny různé možnosti parametrizací, které jsou poté porovnávány
na základě vyhodnocení různých vlastností parametrizace.

Klíčová slova

B-spline/NURBS objekty, Isogeometrická analýza, Vodní turbíny, koreček Peltonovy turbíny, Kaplanova
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Annotation

This doctoral thesis deals with geometric modelling in industrial applications. The main goal is to
describe the shape of water turbines with the help of modern geometric approaches. Therefore, we
apply B-spline/NURBS objects to define hydraulic profiles of water turbines and we propose geometric
parametrizations that depend on several parameters (length, width, height, angles, ...). Thus, we obtain
dynamic models that could be further optimized with the help of isogeometric analysis (IGA). The usage
of these dynamic models should improve the current methodology of turbine design. Nowadays, the
result of the flow analysis (obtained with CFD solver) for one particular model is used for manually
modified the turbine models in CAD systems with help of experience of designers to improve selected
utility quantities (e.g. efficiency, cavitation). Thus, the design process should be more automatized.

The thesis is divided into two parts. In the first part of the thesis, we focus on the description of blades
of water turbines (Pelton turbine bucket, blades of Kaplan and Francis turbines). The Pelton turbine
bucket is described with the help of the new algorithm for obtaining the approximate tangent surface for
given variable angle along its splitter or output from the bucket. Kaplan and Francis turbine blades are
described with the help of important curves: camber line and the function of thickness. In the second
part of the thesis, we deal with B-spline volumetric parameterization of Kaplan and Francis turbines for
the given B-spline boundary surfaces. These parameterizations serve as input to flow analysis through
the turbine based on isogeometric analysis. Moreover, the different approaches to the construction of
these parameterizations are presented and the comparison of these approaches with respect to selected
important properties of obtained parameterizations is given.

Keywords

B-spline/NURBS objects, Isogeometric analysis, Water turbines, Pelton bucket, Kaplan turbine, Francis
turbine
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Water is driving force
of all nature.

Leonardo da Vinci

Introduction

This thesis mostly deals with the geometric shape of water turbines and their descriptions with the help of
modern geometric methods. Moreover our aim is to change the proportions of water turbines to improve
selected utility. The water turbines and hydropower play an important role in the industry of today. It
is generally known that the use of renewable hydro-energy and construction of the hydropower plants
protect nature against contamination which occurs during use of non-renewable resources such as oil
and gas. Furthermore, we can list other advantages of hydropower usage, e.g. controlling floods (the
amount of water going through the turbine is regulated), irrigation, costs to run and to maintain the hy-
droelectricity power plant are low, and so on. To stay objective, there are also the cons of hydropower.
Some of them are high initial costs of building hydroelectricity power plant, dependence on water supply
(droughts could cause several financial problems), life of fishes is affected due to intervention to their
natural habitat. There are more information about pros and cons of hydropower in [25, 44, 46, 47]. De-
spite these disadvantages hydropower provides 16% of electricity generation worldwide and researchers
have published several papers how to avoid problems connected with building hydroelectricity power
plant, e.g. ruining aquatic life in the dams (see about fish-friendly turbines in [27, 28, 32, 72]). It is
unavoidable to admit that hydropower is an important topic for the society and according to the forecast
published in [45], the electric energy obtained by hydropower can be still increased in the next three
years (see Fig. 1).

Current State

As we mentioned at the beginning, our aim is to describe the shape of water turbines with the help of
modern geometric approaches. We mainly use B-spline or Non-uniform rational B-splines (NURBS)
objects, which are standard objects used in current Computer Aided Design (CAD)/Computer Aided
Manufacturing (CAM) systems (see more in [71]), to characterize silhouette of the water turbine. Look-
ing to the history, uniform B-spline curves were introduced by I. Schoenberg in 1946 (see [75]). One

Figure 1: Hydropower generation and forecast by region. Source of graph is [45], MTRMR in graph is
abbreviation for Medium-Term Renewable Energy Market Report.
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year later they were generalized to non-uniform B-splines by H. Curry in [26]. The main research of
these curves started after C. de Boor formulated a relatively fast and numerically stable algorithm for
calculating points on splines (cf. [13]). Later, non-uniform rational B-splines were studied by S. Coons
or A. R. Forest but complete description of NURBS curves, as we know them nowadays, was done by
K. Versprille (see [82] for more details). P. de Casteljau and P. Bézier are another well-known names
connected with the history of geometric modelling. In 1960s, P. de Casteljau [19] described curves with
the help of the so-called control polygon. Unfortunately, he was not allowed to publish the results of his
research which were kept as an industrial secret of Citroën. Meanwhile, P. Bézier and his group reached
similar results and he introduced the well-known Bézier curves (see [11, 12]) into Computer Aided Geo-
metric Design (CAGD). It is obvious that B-splines or NURBS curves and surfaces are a reasonable tool
for the modelling of water turbines, because of complicated shapes forming some parts of turbines.

The description of different parts of water turbines is closely related to the fluid dynamics compu-
tations (see [50, 64, 89] for more details), i.e., to the numerical experiments based on Finite Element
Method (FEM), Finite Volume Method (FVM), or, in the last years, on isogeometric analysis (IGA).
Since CAD and CAGD originated later then FEM, this is probably the reason why the connection be-
tween CAD/CAGD and FEM were not so strong. Nevertheless, Hughes et al. in [43] has proposed
already mentioned IGA which bridges this gap and which strongly connects CAD and FEM or as it is
written in [22]: “IGA is a superb vehicle to promote the marriage of CAD and Finite Element Analysis

(FEA).”. A thorough analysis has followed, see e.g. [2, 6, 29, 40]. The overall strategy of IGA is similar
to FEM in standard cases – the exact geometry in CAD system is used to construct a mesh of so-called
NURBS elements and this mesh can be subsequently refined by h-, p- or k-refinements. Further, using
the weak form of a boundary value problem we set a system of linear equations for control points of
a new NURBS object representing the approximate solution of the original problem. One of the main
advantages of the method is that we can avoid the generation of a triangular (quadrangular) mesh from
CAD representation to be able to perform the finite element analysis and the necessity to create this mesh
again and again after each change of the geometry because this task is very time-consuming. Another
advantage is that the geometry is represented exactly, not only approximately. IGA is involved in sev-
eral scientific areas nowadays, i.e. problems including structural vibrations [23, 79], electromagnetism
[17, 61], biology [59, 78, 94] and others. There are numerous papers devoted to isogeometric analysis
applied to flow problems (see [3, 4, 5, 8, 10, 14, 16, 63]). For example, in [63] the problem of Navier-
Stokes flow in 2D is solved and the theoretical results are applied to a standard benchmark flow problem,
namely the lid-driven cavity problem (see [6] for more details). IGA approach applied for turbulent mod-
elling on single or multi-patch geometries is presented in [3, 4]. Another interesting problem of flows
concerning rotating components (e.g. blades of water turbines, submarine and ship propellers) is studied
in [9] and there is also an example that involves two propellers rotating inside a rectangular box. A lot
of issues appeared with the development of IGA. We can divide the problems in several categories:

• Local refinement

During the analysis process in various problems (such as stress distribution along the machine
components, flow through the turbine) we sometimes need to concentrate on individual parts of
the analyzed environment, thus the meshes should be refined locally. Several generalizations of
B-spline constructions were proposed to solve the local refinement problem: T-splines [7, 74],
hierarchical splines [36, 83], LR B-splines [31, 49] or THB-splines [37, 38].

• Parameterization and usage of existing tetrahedral meshes

One of the key issues in IGA is finding of analysis-suitable parameterizations of computational
domains. The quality of the parametrization can significantly affect the result of IGA simulations
(see [22]). In [41] planar paramterizations are presented and several methods are shown (i.e.
spring model, mean value coordinates, nonlinear methods). Planar parameterizations are also
studied in [90], where generalization of discrete Coons method to B-spline volumes is shown in
the Appendix. Another analysis and generalizations followed [91, 92, 93]. Further, methods for
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construction of volumetric parameterizations are proposed in [53, 66]. Research is also devoted
to the transformation of tetrahedral meshes to B-spline/NURBS solids because a lot of tetrahedral
meshes were constructed for FEA. There are successful attempts to convert these meshes to the
version suitable for IGA shown in [51, 84, 85].

• Implementation

The next crucial problem is the implementation of tensor-product, NURBS-based isogeometric
analysis (for more information see [62] and the references therein). Luckily, the packages for
commercial softwares (e.g. Matlab, Python) or open-source libraries that incorporate the paradigm
of IGA have already been established (c.f. [39, 70, 81]), thus the researches could circumvent the
implementation of basics of IGA.

It could be seen that researches are attracted to problems connected with parameterizations of complex
geometries. However, there are not many papers concentrating only on geometric models of turbine parts,
but there are several papers which focus on different techniques of geometric modelling of the blades
because of their complicated shape and importance in the process of transferring energy. For example, the
methods for interactive design of blades (mainly blades of gas turbines) are presented in [57]. The blades
are represented with NURBS curves and blade sections are defined with respect to general surfaces of
revolution. Another method for the modelling of turbine blades based on lofted B-splines is presented in
[42], where the lofting process is extended to cylindrical and to conical isoparametric lines. A computer
based process for blade modelling of horizontal axis turbines using B-spline surfaces is described in
[68]. This method starts with the creation of a 3D set of offsets that constitute rotor blades based on a 2D
definition of airfoils and there is an emphasis on the fitting of a blade’s leading edge. Most of the methods
for the modelling of turbine blades focus on using several profiles (sections) of blades and connecting
them together to obtain geometric model, whereas M. Rossgatterer et al. (see [73]) use approach based
on medial surface of a blade and profile curves attached to it and the construction of these curves depends
on B-splines.

Summary and contribution of the work

If we look closely to the development in the field of water turbines, it is characteristic by blending
conservative approaches and long-time experience on one hand and application of modern methods of
fluid mechanics and numerical analysis, which uses powerful computational methods, on the other hand.
Manufacturers of hydraulic turbines create models of turbines due to previous experiences and modernize
only existing types of turbines. They form models in CAD systems and use CFD (Computational Fluid
Dynamics) packages to analyze the flows. This is usually achieved thanks to the expert engineering
solution when improvements are usually obtained due to the experience of a designer. The turbines are
designed and built individually according to the specific requirements of the customer, generally based
on the experience as well. These processes depend on each manufacturer and they are a part of their
industrial secrets. Thus, publication of new methods is limited only to general principles.

Also the process of shape optimization based on the iterative modification of a hydraulic profile of
a turbine in a CAD system using the results of a flow analysis obtained with the help of standard CFD
packages could be very difficult (the process of optimization is shown in Fig. 2). One of the problems
is the discretization of the area where the flow simulation based on FEM or FVM is solved. It is not
possible to discretize complex shapes accurately. It introduces error in the next iteration of optimiza-
tion and the error accumulates. Moreover, it is often necessary to fine-tune the discretization manually,
which prevents any automatic process. The key to the formulation of such an automatic optimization
process, which eliminates the above mentioned problems, is the creation of high quality dynamic geo-
metric models of turbine components based on B-spline/NURBS objects, a successive discretization of a
computational domain for flow simulation by finding its precise volumetric representation and numerical
solution of flow equations based on the IGA. There are several papers devoted to shape optimization.
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Figure 2: Scheme of optimization process.

The general framework of shape optimization solution problems by means of IGA is described in [60],
whereas in [65] readers can find more specific problem of optimization in fluid mechanics.

In this thesis we create several dynamic geometric models of water turbines (Pelton turbine, Kaplan
turbine and Francis turbine) so that the previously described processes are more automatized and less
time-consuming. The proposed geometric models of chosen parts of water turbines depend on several
shape parameters (length, width, angles, ...) to generalize the definition of the shape of the water turbine.
It means that we are capable of describing different shapes of one type of water turbine or its selected
part, e.g., blades. The main contributions of the dissertation thesis are also presented in the following
papers:

• [1] P. Anděl, B. Bastl, K. Slabá: Parameterizations of generalized NURBS volumes of revolution.

Engineering Mechanics, Vol. 19, pp. 293-306, 2012.

• [56] K. Michálková, B. Bastl: Imposing angle boundary conditions on B-spline/NURBS surfaces.

Computer-Aided Design, Vol. 62, pp. 1-9, 2015.

The remainder of the thesis is organized as follows. At the beginning of the first chapter (Section
1.1), we review basic facts and properties about B-spline/NURBS curves, surfaces and volumes. The
first chapter (Section 1.2) is concluded with the basic nomenclature used in the rest of the thesis and the
fundamentals of water turbines (in particular we focus on these three types: Kaplan turbine, Francis tur-
bine and Pelton turbine). The second chapter is devoted to geometric models of water turbine blades. We
start with presentation of the blades followed by particular examples: Pelton turbine bucket, Kaplan tur-
bine guide vanes and runner blades and the last proposed models are stay vanes, guide vanes and runner
blades of Francis turbine. The construction of each blade is based on describing the parameterization of
important curves (e.g. boundary curves, camber line curve) and it is followed by the definition of the
final surface of blade. In Chapter 3 we show the problem of finding NURBS volume parameterizations
of computational domains from its boundary NURBS surfaces. At the beginning of the last chapter, we
mention several methods used for the determination of NURBS volume parameterizations followed by
the description of the boundary surfaces (entrance of the turbine, runner and draft tube). The main part of
the third chapter is devoted to the NURBS volumes of Kaplan turbine segments and Francis turbine parts
where we present several possible approaches. Finally, we conclude the work and we describe future
goals.
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There is no royal road
to geometry.

Euclid

1
Preliminaries

In this chapter we give a brief review of B-spline and NURBS curves, surfaces and volumes. We also
mention some basics about hydraulic turbines, that are geometrically described in the following chapters.

1.1 B-spline/NURBS curves and surfaces

Current CAD/CAM systems mostly use the so-called B-spline and NURBS objects for representation of
free-form curves and surfaces and they are considered to be de facto standard for shape representation
of objects. In the following paragraphs we remind basic definitions and properties and show several
examples of B-spline/NURBS curves, surfaces and volumes (see [69, 21] for more details).

Definition 1 A NURBS curve of degree p is determined by a control polygon of control points Pi, their

associated weights wi, i = 0, . . . , n and a knot vector T = (t0, . . . , tn+p+1). Then its parameterization

is of the form

c(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

, (1.1)

where Ni,p(u) are B-spline basis functions of degree p corresponding to the knot vector T.

For the given knot vector T = (t0, . . . , tn+p+1), the B-spline basis functions are defined by a recur-
sive formula

Ni,0(t) =

{
1, ti ≤ t < ti+1,
0, otherwise,

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t), k = 1, . . . , p.

The knot vector is a non-decreasing sequence of real numbers which determines the distribution of a
parameter of the corresponding curve/surface/volume. In general, two different forms of the knot vector
are commonly distinguished:

• periodic knot vector T = (t0, . . . , tn+p+1) where we have to add the desired degree p of B-spline
basis functions (see Fig. 1.1 (top row)),

• non-periodic knot vector T = (a, . . . , a︸ ︷︷ ︸
p+1

, tp+1, . . . , tn, b, . . . , b︸ ︷︷ ︸
p+1

) where p is a degree of the associ-

ated B-spline basis functions (see Fig. 1.1 (bottom row)).

Further, we distinguish uniform (uniformly distributed knots) and non-uniform (non-uniformly distributed
knots) knot vectors.

One of the main properties of B-spline basis functions is a relation between the multiplicity of knots
in the knot vector and the continuity of the corresponding B-spline basis functions – the B-spline basis
functions are of continuity Cp−k, where k is the maximal multiplicity of inner knots in the knot vector.
Among their other properties belong non-negativity, partition of unity and local support.
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Figure 1.1: Top row: B-spline basis functions for the knot vector T = (0, 1, 2, 3, 4, 5, 6, 7) of degree p
(p = 1 (left); p = 2 (middle); p = 3 (right)); Bottom row: B-spline basis functions for the knot vector
T = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) (left) and for the knot vector T = (0, 0, 0, 1, 2, 2, 3, 3, 3) (right).

Remark 1 If all weights wi of control points Pi, i = 0, . . . , n, are equal, the denominator of (1.1) is a

constant and a polynomial B-spline curve is obtained.

B-spline/NURBS curves possess a lot of important practical properties which follow from their de-
finition and from the properties of B-spline basis functions. Some of these are used later in NURBS
volume modelling. The properties of B-spline curves are:

• Affine invariance

An affine transformation can be applied to the curve by applying it to the control points.

• Local modification

Changing the control point Pi (or weight wi) influences the curve on the interval 〈ui, ui+p+1).
This property follows from the fact that the basis function Ni,p(u) is non-zero on the interval
〈ui, ui+p+1).

• Convex hull property

The curve is in the convex hull of its control polygon. More precisely, if the part of the B-spline
curve corresponding to u ∈ 〈ui, ui+1), p ≤ i < n is considered, then c(u) is contained in the
convex hull of the control points Pi−p, . . . ,Pi.

• Variation diminishing property

This property holds for curve in plane or space and it means that the number of intersection points
of any straight line (resp. plane) with the curve is less or equal to the number of intersections of
this straight line (resp. plane) with the control polygon.

Several properties are shown in Fig. 1.2. Proofs and more information about B-spline/NURBS curve
properties can be found in [69].

As a straightforward extension, we can define NURBS surfaces that share most of the properties with
NURBS curves. Similarly to the curve case, if weights of all control points are the same, the definition
covers also polynomial B-spline surfaces (see Fig. 1.3).
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Figure 1.2: Left: Local modification property is shown. Changing the control polygon (dashed one)
influences only the curve just in particular interval. Middle: Convex hull proprety is presented. The
purple part of the curve lies in the convex hull (gray area) of corresponding control points. Right:
Variation dimishing property is demonstrated.

Figure 1.3: Left: Control net of a NURBS surface; Right: Control net and the corresponding NURBS
surface composed of 4 patches.

Definition 2 A NURBS surface of degree (p, q) is determined by a control net of (m + 1) × (n + 1)
control points Pij , their associated weights wij , i = 0, . . . ,m, j = 0, . . . , n, and two knot vectors

U = (u0, . . . , um+p+1), V = (v0, . . . , vn+q+1). Then its parameterization is of the form

s(u, v) =

∑m
i=0

∑n
j=0Ni,p(u)Nj,q(v)wijPij∑m

i=0

∑n
i=0Ni,p(u)Nj,q(v)wij

, (1.2)

where Ni,p(u) and Nj,q(v) are B-spline basis functions of degrees p and q corresponding to the knot

vectors U and V, respectively.

Finally, we would like to remind the B-spline/NURBS volumes (see [21, 1]).

Definition 3 A NURBS volume of degree (p, q, r) is determined by a control net (m+1)×(n+1)×(l+1)
of control points Pijk, with weights wijk, i = 0, . . . ,m, j = 0, . . . , n, k = 0, . . . , l and three knot vectors

U = (u0, . . . , um+p+1), V = (v0, . . . , vn+q+1), W = (w0, . . . , wl+r+1). Parameterization is then

v(u, v, w) =

∑m
i=0

∑n
j=0

∑l
k=0Ni,p(u)Nj,q(v)Nk,r(w)wijkPijk∑m

i=0

∑n
j=0

∑l
k=0Ni,p(u)Nj,q(v)Nk,r(w)wijk

,
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Figure 1.4: Left: Control net of a NURBS volume; Right: Corresponding NURBS volume composed of
6 parts.

where Ni,p(u), Nj,q(v) and Nk,r(w) are B-spline basis functions of degrees p, q and r corresponding to

the knot vectors U, V and W, respectively.

In the case of B-spline volumes all weights wijk of control points Pijk are equal. In Fig. 1.4 the
example of NURBS volume and its control net is shown. NURBS volumes are generalization of NURBS
surfaces and therefore they possess analogous properties as NURBS surfaces, i.e., it is fast and numer-
ically stable to generate points on NURBS volumes, and computation of these points is invariant with
respect to projective transformations (for more information see [69]).

1.2 Water turbines

In this section we mention some basic facts about hydraulic turbines (see [80] for more details).
The main principle of water turbine is based on a conversion of potential energy of water to kinetic

energy of a water machine. The predecessor of hydraulic turbine is a water wheel invented by Ancient
Greeks (cf. [52, 87]), especially used for water-lifting during irrigation or later utilized as a part of a
water mill.

The first water turbine based on theoretical foundations (dynamics of frictionless liquid by L. Euler
and D. Bernoulli) was constructed by B. Fourneyron, who built the first centrifugal turbine in St. Blasien
in 1835. Further, it is important to mention the most famous turbines that are still in use: Francis turbine
(1848), Pelton turbine (1870s) and Kaplan turbine (1912). While water power stations with Francis or
Pelton turbine are built in places with medium or high head, Kaplan turbine is used for low heads (see
[52] for more information about efficiency of water turbines). Other examples of turbines are in [86, 95].
The runners of mentioned turbines are shown in Fig. 1.5 (left column).

We distinguish several types of turbines which are classified in the following categories:

• The manner of transferring energy

The main category, that divides turbines in two types, depends on the manner in which the water
causes a turbine runner to rotate. The first type are reaction turbines where a piece of the energy is
transferred in the diffusion ring and the rest of energy is changed in the runner. Further, the blades
are fully flooded during the process of transferring energy. On the contrary, in the impulse turbines

whole pressure energy changes to kinetic in the nozzle and at the beginning and at the end of the
runner the same values of pressure can be measured. Moreover, impulse turbines operate with their
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Figure 1.5: Description of reaction and impulse turbines (left) with corresponding runners (right). Top:
Pelton turbine. Middle: Francis turbine. Bottom: Kaplan turbine. (Source: [33, 54])
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Figure 1.6: The passage of flow through the runner. Top: axial, diagonal, radial centrifugal; Bottom:
Tangential, radial axial, radial centripetal

blades also in the air. The examples of reaction turbines are Kaplan turbines and Francis turbines,
whereas the Pelton turbine is an example of an impulse turbine. The description of individual parts
of reaction and impulse turbines is shown in Fig. 1.5 (left column).

• The passage of flow through the runner

This category depends on the direction of flow at the beginning and at the end of the runner. The
possibilities are the following: radial centrifugal, radial centripetal, radial-axial, diagonal, axial

and tangential. For example, Pelton turbine is an example of tangential turbine, Francis turbine is
typically radial-axial and Kaplan turbine is usually of axial type. See illustrative Fig. 1.6.

• The position of the runner

The type of turbine depends on the placement of the runner towards the flow. There are two
eventualities: horizontal (Kaplan/Pelton turbine) or vertical (Francis/Kaplan turbine).

The more detailed description of the chosen turbines (the one that are presented in the Chapters 2
and 3) is shown in the following paragraphs. We start with the Pelton turbine (see Fig. 1.5 (top)). This
turbine is the only one mentioned here which has multiphase flow. It means that blades operates not only
under the water but they go through a phase that are completely in the air. The runner is composed of the
buckets and it is moved by the flow that is brought by nozzle. The number of nozzles can be different for
each turbine and depends on the given head H (the approximate vertical distance through which water
falls) and flow rate/discharge Q (the volume flow rate of the water that passes through plant), but the
maximum number is 6 nozzles. The first part of the design of runner is dependant on chosen width of the
bucket and the computed diameter of the runner. These are also dependant on the given flow rate, head
and velocity of the water that is brought to the runner. Water leaves the runner to the draft groove. The
Pelton turbine operates on the high heads and low flow rates (see Fig. 1.7). Pelton turbine efficiency is
about 91%.

The next type of turbine that also operates on high heads but for a larger range of flow rates is vertical

Francis turbine (see Fig. 1.5 (middle)). The water is brought to the guide vanes by the spiral shaped pipe
(there could be included stay vanes that are not moveable). Then the water is prepared by guide vanes to
the runner which has non-moveable blades. The water leaves the runner through a draft tube (device for
water drainage) that has the elbow shape. The only moveable blades are the guide vanes. The Francis
turbine can reach the highest efficiency almost 94%.
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Figure 1.7: Turbine application chart, the dependency on the flow rate. (Source: [88])

The similar process happens in the last type of turbine presented in this thesis – tubular Kaplan

turbine (see Fig. 1.5 (bottom)). This turbine is optimal for the low heads compared to the previous ones.
Water is immediately brought to the guide vanes and continues to the runner. A straight draft tube is also
at the end of the turbine. The main difference between the Francis and the Kaplan turbine is that runner
blades in Kaplan turbine are moveable. Efficiency of Kaplan turbine is about 93%.

The steps of water turbine design process are shown in the next text (see [80, 76]). First, the designer
determines the most suitable type of a turbine for the given site. Each turbine operates on different flows
(see Fig. 1.7). As it was mentioned Kaplan turbine is more suitable for low heads whereas Pelton and
Francis turbine operate on higher heads. Assume that the suitable type is Kaplan turbine (the process is
analogous for the Francis turbine). The basic parameters for determining the water turbine design are

Figure 1.8: The parts of turbine and the arrow shows the “direction” of design.
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Figure 1.9: Left: Inlet velocity triangle for the runner blade; Right: Outlet velocity triangle for the runner
blade. The components of velocity are: vu is the velocity of the blade, vt is the tangential velocity, v is
the absolute velocity of the water, vr is the relative velocity of the water and va is the axial velocity.

head H and flow rate/discharge Q. The specific discharge Q11 and unit speed n11 are determined by

Q11 =
Q√
HD2

,

n11 =
nD√
H

,

where D is the diameter of the runner. The design starts “against the flow” (see Fig. 1.8) and the velocity
of flow is the most important element in the design process. Indexes 1, 2 are input and output components
for guide vanes and 3, 4 are input and output components for runner blades respectively (see Fig. 1.9)
in the following text. If index is not mentioned it means that the definition holds also for every index
1, . . . , 4.

The output velocity of the runner blade has influence on the draft tube efficiency. One of the compo-
nent is axial velocity va

va =
4Q

π(D2 − d2)
,

where d is the diameter of the hub. The next component is velocity of the blade vu and it is generally
(not just for the runner blades) computed as

vu = rω, (1.3)

where ω is angular velocity of the runner and r is the radius of the cylindrical surface (definition follows
in the next paragraph). The next component is tangencial velocity vt4 given by

vt4 = f(r, vu4),

where function f depends on the type of turbine and vu4 is defined for the runner blades analogically as
in (1.3). The further step is to compute output angle of the flow α4 and the output angle of the blade β4

tanα4 =
va4
vt4

, (1.4)

tan β4 =
va4

vu4 − vt4
. (1.5)

As the Euler equation is satisfied, the tangencial velocity vt3 for the input is computed

vt3 =
gHn + vu4vt4

vu3
,

where and vu3 is generally defined in (1.3) and Hn is ideal increase of total head (increase of head when
all losses are ignored), see [20]. Then, the input angle of the flow α3 and the input angle of the blade β3
are defined analogically to (1.4) and (1.5).
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Figure 1.10: The nomenclature of blade profile. 1 – leading edge; 2 – nose circle; 3 – thickness; 4 –
camber; 5 – main camber line; 6 – suction side; 7 – trailing edge; 8 – pressure side.

Now, we define the geometry of runner blades from β3 and β4. It is composed of several profiles.
Each profile lies on a cylindrical surface with radius r (see (1.3)). The blade profile is composed of
pressure and suction sides and water attacks the blade on the leading edge and leaves it on trailing edge
(see Fig. 1.10). The construction of the profile was inspired by the airfoil NACA profiles (cf. [18, 48]).
It means that the profile is determined by the camber line and the function of thickness. There are several
characteristic parameters for the profile (see more in Chapter 2). Leading edge angle β3 and trailing edge
angle β4. This determines the camber of the profile. Further, the guide vanes are constructed. The only
difference from the previous description of runner blades is that guide vane is determined with just one
profile on a conical surface (see Chapter 2). The angles β1 and β2 are computed as β3 and β4 using (1.5).
We define the components of velocities for guide vanes from the inlet velocity triangle of the runner
blade

vu2 = g(vu3),

va2 = k(va3),

where functions g and k depends on the type of turbine. The design of water turbine blades from geo-
metric point of view is more described in Chapter 2.
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Where there is matter, there
is geometry.

Johannes Kepler

2
Geometric modelling of water turbine blades

In this chapter we present several types of water turbines blades and we focus on their geometric descrip-
tion in the class of B-spline/NURBS objects. Moreover, design parameters (e.g. length, width, depth, ...
of blade) are included in the geometric descriptions. In the following sections we specify four types of
blades: Pelton turbine bucket, Kaplan and Francis turbine guide vanes, runner blades of Kaplan turbine
and runner blades of Francis turbine. The construction of blades is based on several algorithms and ge-
ometric approaches that are also presented in the next paragraphs. The results of this chapter are used
as the input for computation of B-spline volumes important for analysing the flow through the whole
turbine. The chapter is organized as follows. We start with the description of a parametric model of
Pelton turbine bucket where we focus mainly on preserving the angle along the outlet curve. Then we
show Kaplan turbine guide vanes and runner blades and the chapter is concluded with the Francis turbine
stay vanes/guide vanes and runner blades.

2.1 Pelton turbine bucket

The Pelton turbine bucket (see Fig. 2.1) can be described by several parameters (e.g. lengths, widths,
angles, ...). Our goal is to propose a method which returns a B-spline model of the bucket satisfying given
shape parameters, i.e., to create what we will call “parametric geometric model” or “dynamic geometric
model” in the following text. We divide the task to two parts. At first, the inner surface of the bucket is
described and then the outer surface is presented. Moreover, the bucket is symmetrical with respect to
the splitter, i.e., we focus on half of the bucket.

Figure 2.1: A Pelton turbine with the runner. (Source: [67])
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Figure 2.2: Three different views on the Pelton turbine bucket (splitter (blue), outlet curve (red), cutout
(magenta)) with the prescribed parameters.

2.1.1 Inner surface

The one part of inner surface of the Pelton turbine bucket is usually given by several angles and distances
(see Fig.2.2):

• l ... length,

• w ... width,

• d ... depth,

• ls ... length of a splitter,

• wc ... width of a cutout in a bucket,

• is ... inclination of a splitter,

• as(t) ... angle distribution along a splitter,

• ao(t) ... outlet angle distribution from the bucket.

The geometric model of the inner surface of a Pelton turbine bucket can be based on uniform bicubic
B-spline surfaces. Now, we mention how to prescribe some of the parameters determining the shape
of the bucket. One way is to start with the boundary of a B-spline surface describing a bucket, i.e.,
we describe the control points of the boundary curves. With the help of standard algorithms for knot
insertion and knot removal (cf. [69]) it is possible to satisfy given parameters.

Firstly, the splitter is constructed (Fig. 2.4 (top row, left)) as the cubic B-spline curve and its control
points are defined. This ensures that the prescribed parameters ls (length of a splitter) and is (inclination
of a splitter) are preserved. The next step is to satisfy the l (length), w (width) and wc (width of a cutout
in a bucket) thus the outlet curve is prescribed also as the cubic B-spline curve (Fig. 2.4 (top row, right)).
It is followed by the preserving of angle distributions as(t) (along a splitter) and ao(t) along the outlet
curve which generates neighbouring control points to splitter and outlet curve (see Fig. 2.4 second, row).

15



Figure 2.3: Left: The Pelton bucket is shown with the control net and important curves. Right: The
schematic control net with marked control polygons of important curves.

These steps of preserving angle distributions are more complicated, therefore this problem is discussed
in more detail in Section 2.1.1.1. The next step is to define the cutout of the bucket (the cutout curve is
shown in Fig. 2.4 third row, left). This curve is already partially determined by preserving of the angle
distributions as(t) and ao(t) (the second and the last but one control points are defined) and the rest of
the control points is computed from the minimization of second differences i.e. we establish objective
function

F =

n∑

i=0

(Pi − 2Pi+1 +Pi+2)
2 , (2.1)

where Pi are the control points of the curve, i = 0, . . . , n and n + 1 is the number of control points.
Derivatives of F with respect to unknown variables lead to a system of linear equations for these unknown
variables. The minimization of second differences can be understood as minimization of curvature of the
control polygon. Further, it is necessary to preserve the given depth d of the bucket. Suitably chosen
inner curve is included into the model via determining its control points (see Fig. 2.4 third row, right).
The last curve is the curve that connects the bucket to the runner. This curve is constructed in the same
way as the cutout of the bucket (Fig. 2.4 last row, left). Finally, remaining control points are obtained
from minimization of second differences (Fig. 2.4 last row, right). The control net (see Fig. 2.3) has
dimension 12×7 and the knot vectors of B-spline surface are

U = (0, 0, 0, 0, 1/7, 2/7, 3/7, 4/7, 4/7, 4/7, 5/7, 6/7, 1, 1, 1, 1),

V = (0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1).

Intermediate steps of the construction of a B-spline surface representing the inner surface are shown
in Fig. 2.4.

2.1.1.1 Imposing angle distribution along the given curve

We study the following problem (see more in [56]): Let

c(t) = (cx(t), cy(t), 0)
⊤, t ∈ [0, 1]

be a polynomial/rational parameterization of a given curve, e.g. B-spline/NURBS curve being a bound-
ary curve of a general NURBS surface s(s, t), let u = (0, 0, 1)⊤ be a given vector and let f(t) be
a function describing desired angle distribution which we need to prescribe on s(s, t) along c(t) with
respect to u, i.e., it holds that

cos f(t) = (0, 0, 1)⊤.
(c′x(t), c

′
y(t), 0)

⊤ × n(0, t)

||(c′x(t), c′y(t), 0)⊤ × n(0, t)|| (2.2)
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Figure 2.4: Process of modelling the inner surface of Pelton bucket with the help of B-spline curves and
surfaces. Blue points are important to preserve prescribed parameters (length, width, depth, length of
splitter).
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where

n(s, t) =
rs(s, t)× rt(s, t)

||rs(s, t)× rt(s, t)||
is a normalized normal vector field of a ruled surface

r(s, t) = (1− s)c(t) + sd(t), (s, t) ∈ R× [0, 1] (2.3)

determined by the curves c(t) and d(t) = (dx(t), dy(t), dz(t))
⊤, t ∈ [0, 1]. Is it possible to find polyno-

mial/rational curve d(t) such that the ruled surface (2.3) (and also s(s, t)) satisfies the prescribed angle
distribution f(t) along c(t)?

The ruled surface r(s, t) represents the tangent surface to the desired surface s(s, t) with c(t) being
the boundary curve of s(s, t) and f(t) the prescribed angle distribution along c(t). In the context of
B-spline/NURBS surfaces, whereas the control polygon of c(t) determines the boundary column (row)
of the control net of s(s, t), the control polygon of d(t) (defined for the same knot vector) represents the
neighbouring column (row) of this control net. Altogether, control polygons of c(t) and d(t) determine
the control net of the ruled surface (2.3) representing the tangent surface to the B-spline/NURBS surface
s(s, t) and also the first and second columns (rows) of the control net for the NURBS surface s(s, t).

Remark 2 Let us emphasize that the angle distribution defined in (2.2) is independent of directions of
the rulings of r(s, t), as it is related to the normal vector of r(s, t) along c(t).

Remark 3 We study this case for the simplicity of the presented results, but exactly the same approach,

presented in the following paragraphs, can be used for a general case, where c(t) = (cx(t), cy(t), cz(t))
⊤,

t ∈ [0, 1] and u = (ux, uy, uz)
⊤, only the results are too long to be included into the thesis.

For the modelling of an inner surface of a Pelton turbine bucket. The curve c(t) could be the splitter
or the outlet curve and the corresponding angle distributions are as(t) along the splitter and outlet angle
distribution from the bucket ao(t) (shown in Fig. 2.2 (right)).

Is there an exact solution? In this section, we will study the existence of an exact solution of the
above mentioned problem. Let c(t) and u be defined as in the beginning of Section 2.1.1.1 and let
f(t) be a given function defined for t ∈ [0, 1]. We want to determine if there always exists another
polynomial/rational curve d(t) = (dx(t), dy(t), dz(t))

⊤, t ∈ [0, 1] such that the ruled surface r(s, t) (cf.
(2.3)) fulfils (2.2), or if such a curve d(t) exists only in special cases.

Thus, in the first step we need to compute d(t) for given c(t), u and f(t). Normal vectors of r(s, t)
along c(t) can be written in the form (for brevity we mention not normalized form)

n(s, t)
∣∣∣
s=0

=




−dz(t)c′y(t)
dz(t)c

′
x(t)

c′x(t)(cy(t)− dy(t)) + (dx(t)− cx(t))c
′
y(t)


 .

Substituting to (2.2) we obtain

cos f(t) =
dz(t)

√
c′x(t)2 + c′y(t)2

√(
c′x(t)(cy(t)− dy(t)) + (dx(t)− cx(t))c′y(t)

)2
+ dz(t)2(c′x(t)2 + c′y(t)2)

. (2.4)

If we denote g(t) = cos f(t), then we compare g2(t) with the square of the right-hand side of (2.4), i.e.,

g2(t) =
d2z(t)(c

′
x(t)

2 + c′y(t)
2)

(
c′x(t)(cy(t)− dy(t)) + (dx(t)− cx(t))c′y(t)

)2
+ dz(t)2(c′x(t)2 + c′y(t)2)

, (2.5)
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and we can solve this equation with respect to dx(t). We arrive at

dx(t) = cx(t) +
c′x(t)(dy(t)− cy(t))

c′y(t)
± dz(t)

√
1− g2(t)

g(t)

√
c′x(t)2 + c′y(t)2

c′y(t)
. (2.6)

Similarly, we can solve (2.5) with respect to dy(t) to obtain

dy(t) = cy(t) +
c′y(t)(dx(t)− cx(t))

c′x(t)
± dz(t)

√
1− g2(t)

g(t)

√
c′x(t)2 + c′y(t)2

c′x(t)
(2.7)

or with respect to dz(t) to obtain

dz(t) =
g√

1− g2(t)

c′x(t)(cy(t)− dy(t)) + c′y(t)(dx(t)− cx(t))√
c′x(t)2 + c′y(t)2

. (2.8)

Thus, (2.6) obtained for an arbitrary dy(t), dz(t) (or (2.7) obtained for an arbitrary dx(t), dz(t), or (2.8)
obtained for an arbitrary dx(t), dy(t)) completes the parameterization of the curve d(t) such that the
ruled surface r(s, t) given in (2.3) satisfies the given angle distribution f(t) along c(t) (cf. (2.2)).

Further, we focus on an analysis of polynomiality/rationality of d(t). Firstly, if a given curve c(t)
is a rationally parameterized curve, when is also the curve d(t) rational? In other words, if c(t) is a
NURBS curve, when is also d(t) a NURBS curve? We can distinguish two cases:

1. c(t) is a Pythagorean hodograph (PH) curve: the defining property of planar PH curves (for more
details see [35] and references cited therein) is that square of the norm of its hodograph is a square

of some rational function. This implies that the square root
√

c′x(t)2 + c′y(t)2 in (2.6) cancels.

Thus, dx(t) is rational if and only if dy(t) and dz(t) are rational and
√

1− g2(t)

g(t)
= q(t)

for some rational function q(t). Thus, g2(t) must be of the form

g2(t) =
1

1 + q2(t)
, q(t) ∈ R(t). (2.9)

It is obvious that expressions (2.7) and (2.8) lead to exactly the same condition.

2. c(t) is not a Pythagorean hodograph curve: dx(t) is rational if and only if dy(t) and dz(t) are
rational and √

1− g2(t)

g(t)

√
c′x(t)2 + c′y(t)2 = q(t)

for some rational function q(t). Thus, g2(t) must be of the form

g2(t) =
c′x(t)

2 + c′y(t)
2

c′x(t)2 + c′y(t)2 + q2(t)
, q(t) ∈ R(t). (2.10)

It is again obvious that expressions (2.7) and (2.8) lead to exactly the same condition.

We can summarize this part in the following proposition.

Proposition 1 Let c(t) be a given NURBS curve, representing boundary curve of a NURBS surface.

Then there exists another NURBS curve d(t) such that the ruled surface (2.3) fulfils angle distribution

(2.2) for given f(t) along c(t) if and only if either c(t) is a Pythagorean hodograph curve and g2(t) =
cos2 f(t) is of the form (2.9) for some q(t) ∈ R(t), or g2(t) = cos2 f(t) is of the form (2.10) for some

q(t) ∈ R(t).
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Secondly, we can ask, whether there exists a polynomial parameterization d(t), if the given curve
c(t) is polynomial. We can use the similar approach as above but we have to distinguish between the
cases represented by (2.6), (2.7) and (2.8) now:

1. dx(t) is polynomial if and only if dy(t) and dz(t) are polynomial and

c′x(t)(dy(t)− cy(t))

c′y(t)
± dz(t)

√
1− g2(t)

g(t)

√
c′x(t)2 + c′y(t)2

c′y(t)
= q(t)

for some polynomial function q(t). Thus, g2(t) must be of the form

g2(t) =
dz(t)

2(c′x(t)
2 + c′y(t)

2)

(cy(t)c′x(t)− dy(t)c′x(t) + q(t)c′y(t))2 + dz(t)2(c′x(t)2 + c′y(t)2)
, q(t) ∈ R[t];

(2.11)

2. dy(t) is polynomial if and only if dx(t) and dz(t) are polynomial and

c′y(t)(dx(t)− cx(t))

c′x(t)
± dz(t)

√
1− g2(t)

g(t)

√
c′x(t)2 + c′y(t)2

c′x(t)
= q(t)

for some polynomial function q(t). Thus, g2(t) must be of the form

g2(t) =
dz(t)

2(c′x(t)
2 + c′y(t)

2)

(cx(t)c′y(t)− dx(t)c′y(t) + q(t)c′x(t))2 + dz(t)2(c′x(t)2 + c′y(t)2)
, q(t) ∈ R[t];

(2.12)

3. dz(t) is polynomial if and only if dx(t) and dy(t) are polynomial and

g√
1− g2(t)

c′x(t)(cy(t)− dy(t)) + c′y(t)(dx(t)− cx(t))√
c′x(t)2 + c′y(t)2

= q(t)

for some polynomial function q(t). Thus, g2(t) must be of the form

g2(t) =
q2(t)(c′x(t)

2 + c′y(t)
2)

(cy(t)c′x(t)− dy(t)c′x(t)− cx(t)c′y(t) + dx(t)c′y(t))2 + q2(t)(c′x(t)2 + c′y(t)2))
,

q(t) ∈ R[t]. (2.13)

Proposition 2 Let c(t) be a given B-spline curve, representing a boundary curve of a B-spline surface.

Then there exists another B-spline curve d(t) such that the ruled surface (2.3) fulfils angle distribution

(2.2) for given f(t) along c(t) if and only if g2(t) = cos2 f(t) is of the form (2.11), (2.12) or (2.13) for

some q(t) ∈ R[t].

Example 1 Let c(t) be a Bézier curve given by control points P0 = (0, 0, 0)⊤, P1 = (1, 2, 0)⊤ , P2 =
(4, 1, 0)⊤ , P3 = (5,−1, 0)⊤, i.e.,

c(t) = (t(3 + 6t− 4t2), t(6− 9t+ 2t2), 0)⊤, t ∈ [0, 1],

and let
cos f(t) =

= 2(2+3t−6t2+3t3)
√
5−16t+52t2−56t3+20t4√

84−52t−51t2+1648t3−2518t4−3604t5+15641t6−22072t7+16108t8−6016t9+916t10
.

We want to know if there exists a polynomial d(t) (as c(t) is polynomial) such that r(s, t) defined in (2.3)
fulfils given f(t). Thus, we need to check if cos f(t) is of the form (2.11). Let us arbitrarily choose dy(t),
dz(t), e.g.

dy(t) =
1

2
t(9− 18t+ 5t2), dz(t) = −2− 3t+ 6t2 − 3t3.
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Then, the necessary and sufficient condition for the existence of a polynomial dx(t) is that there exists

a polynomial q(t) such that (2.11) holds. Thus, we can substitute components of c(t), dy(t), dz(t) and

f(t) into (2.11) and solve for q(t). We obtain

q(t) =
1

2
(1− 3t− 3t2 + 5t3).

Thus, the exact solution exists! Then, with the help of (2.6) we arrive at

dx(t) =
1

2
(1 + 3t+ 9t2 − 3t3).

It is obvious that this example is artificial. For general function f(t), there is no polynomial q(t) and

d(t) (see below). In this particular case, we just wanted to show that if we start from the solution (we

basically started with d(t) and computed the corresponding f(t) in this example), we can reconstruct

the exact solution.

On the other hand, if we choose another angle function, e.g.

cos f(t) = t2,

then we can test if there exists at least some rational curve d(t) such that r(s, t) defined in (2.3) fulfils

given f(t) with the help of expression (2.10). Substituting components of c(t) and f(t) to (2.10) and

solving with respect to q(t) we obtain

q(t) = ±
√
−20t8 + 56t7 − 52t6 + 16t5 + 15t4 − 56t3 + 52t2 − 16t+ 5

2t2 (t2 − 3t+ 1)

which is not rational. According to Proposition 1 we can conclude that there exists no exact solution of

the above mentioned problem for this choice of the angle function f(t).

Remark 4 Propositions 1 and 2 imply that an exact solution, represented by a B-spline/NURBS curve

d(t), for a given B-spline/NURBS curve c(t) exists only for a very special form of the given function f(t)
representing an angle distribution along c(t), i.e., only in very rare cases. In practice, f(t) is usually

given as a polynomial function which is clearly not of the form mentioned in Propositions 1 and 2. Thus,

this problem does not have an exact solution in most cases. This motivates us to formulate an algorithm

for finding an approximate solution which is demonstrated and studied in the next paragraph.

Approximate solution In this part, we formulate an algorithm for finding an approximate solution to
the problem stated in the previous paragraph, derive an upper bound for the error of approximate angle
distribution and study an approximation order of the method.

Algorithm starts with a given regular B-spline curve c(t) = (x(t), y(t), 0), t ∈ [0, 1], which is
described by its control polygon {Pi}ni=0 and knot vector U , and with a function f(t) describing the
desired angle distribution along c(t).

In the first step, we determine the exact solution r(s, t) = c(t) + sv(t), (s, t) ∈ R × [0, 1], where
v(t) is a vector field along c(t) such that

(0, 0, 1)⊤.
v(t)

||v(t)|| = cos f(t).

Thus, v(t) is of the form
v(t) = R(f(t)).(0, 0, 1)⊤ ,

where R(f(t)) is the rotation matrix describing the counterclockwise rotation around the unit tangent
vector

w(t) =
1√

x′(t)2 + y′(t)2
(x′(t), y′(t), 0)⊤,
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Algorithm 1 Finds an approximate tangent ruled surface along a boundary curve of a B-spline surface
with the prescribed angle distribution
Input: Control points {Pi}, i = 0, . . . , n of a boundary curve c(t), t ∈ [0, 1], knot vector U , vector

z = (zi), angle function f(t)
Output: Control points {P̄i}, i = 0, . . . , n of c̄(t)

1: Compute the exact tangent surface parameterization:

r(s, t) = c(t) + s

(
sin(f(t))y′(t)√
x′(t)2 + y′(t)2

,− sin(f(t))x′(t)√
x′(t)2 + y′(t)2

, cos(f(t))

)
, (s, t) ∈ R× [0, 1]

2: Determine the initial control polygon of ĉ(t):

P̂i = (Pi,x, Pi,y, zi) , i = 0, . . . , n, ĉ(t) = bsplinecurve({P̂i}, U, t)

3: Set the control points of c̄(t) with unknown shifts:

P̄i = P̂i + (Xi, Yi, Zi) , i = 0, . . . , n, c̄(t) = bsplinecurve({P̄i}, U, t)

4: Initialization of an objective function:
F = 0

5: Form the objective function for the follow-up minimization:
6: for k = 0→ N do
7: T = k/N ⊲ Select the parameter in the interval [0, 1]
8: Q ∈ r(s, T ) ∩ (z = ĉz(T )) ⊲ Compute an intersection point of the ruling r(s, T )
9: with the plane parallel with xy-plane

10: F = F + ‖c̄(T )−Q‖2 ⊲ F is a function of unknowns Xi, Yi, Zi

11: end for
12: Minimize the objective function by solving a linear system of equations:

{(
X̄i, Ȳi, Z̄i

)}
= solve

(
∂F

∂Xi
= 0 ∧ ∂F

∂Yi
= 0 ∧ ∂F

∂Zi
= 0

)

13: return P̄i = P̂i +
(
X̄i, Ȳi, Z̄i

)
, i = 0, . . . , n

i.e.,

R(f(t)) = w(t)w(t)⊤ + cos f(t)(I−w(t)w(t)⊤) +

+ sin f(t)




0 −wz(t) wy(t)
wz(t) 0 −wx(t)
−wy(t) wx(t) 0


 .

We obtain

v(t) =

(
sin(f(t))y′(t)√
x′(t)2 + y′(t)2

,− sin(f(t))x′(t)√
x′(t)2 + y′(t)2

, cos(f(t))

)⊤

. (2.14)

Thus, we found a non-rational parameterization of a ruled surface r(s, t) such that the angle between its
ruling r(s, T ) and the vector (0, 0, 1)⊤ is f(T ), for any T ∈ [0, 1].

Then, the approximation starts with selecting a suitable initial control polygon of a B-spline curve
ĉ(t) which will be refined to the final approximation curve c̄(t) in the follow-up minimization procedure.
Let us emphasize that the number of control points and the knot vector of ĉ(t) and c̄(t) (i.e., also the
degree) are not arbitrary, they must be the same as for c(t) because c(t) and c̄(t) must fit into the same
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Figure 2.5: Illustration for the proof of Theorem 1: For an arbitrary t ∈ [0, 1], the points c(t), ĉ(t), c̄(t),
p(t) represent the points on a given curve, initial approximation curve, final approximation curve and
exact curve on ruled surface r(s, t), respectively, and generally form a tetrahedron (left) and illustration
for x (right).

control net of a final B-spline/NURBS surface and we do not want to change the number of control points
and knot vector of c(t).

Because of our consideration the given curve c(t) being a planar curve in xy-plane (which is mo-
tivated by the practical example of modelling an inner surface of a Pelton turbine bucket) we choose
control points {P̂i}ni=0 of ĉ(t) to have x- and y-coordinates the same as {Pi}ni=0, only z-coordinates are
changed. The choice of z-coordinate zi of the point P̂i is arbitrary with one exception: zi 6= 0 must hold.
Thus, vector of z-coordinates z = (zi)

n
i=0 of control points {P̂i}ni=0 is another input to the algorithm.

Since we need to refine the control points {P̂i}ni=0 such that the corresponding B-spline curve is the
best approximation of the selected points on r(s, t), we introduce new control points

P̄i = P̂i + (Xi, Yi, Zi) , i = 0, . . . , n (2.15)

of the final approximation B-spline curve c̄(t) with unknown shifts (Xi, Yi, Zi), i = 0, . . . , n. Then we
sample the B-spline curve ĉ(t) and for each selected point ĉ(T ) on the curve we find the corresponding
point Q(T ) on the ruling r(s, T ), obtained for the same parameter value T , lying in the plane paral-
lel to xy-plane and going through the point ĉ(T ). Then the differences of such points Q(T ) and the
corresponding points c̄(T ) give us an objective function

F =

N∑

i=0

‖c̄(i/N) −Q(i/N)‖2, i = 0, . . . , N

which we need to minimize. Therefore, we solve the system of linear equations

∂F

∂Xi
= 0 ∧ ∂F

∂Yi
= 0 ∧ ∂F

∂Zi
= 0, i = 0, . . . , n

and the solution is substituted back to (2.15). This gives us the control points {P̄i}ni=0 of the approxima-
tion curve c̄(t). Consequently, we obtain the approximate ruled surface

r̄(s, t) = (1− s)c(t) + sc̄(t)

which approximately determines the tangent surface along c(t) and which gives approximate angle dis-
tribution along c(t). The obtained control points {P̄i}ni=0 are then used as the neighbouring row/column
of boundary control points {Pi}ni=0 in the control net describing a B-spline/NURBS surface and the
same angle distribution along c(t) is guaranteed also for the B-spline surface. The whole algorithm is
summarized in Algorithm 1.

23



f1(t) f2(t)

Parts Error Ratio Error Ratio

1 0.102455 / 0.052222 /

2 0.002531 40.4773 0.00301 17.3495

4 0.000062 39.4252 0.00017 28.226

8 1.586 · 10−6 26.5405 6.142 · 10−6 22.2259

16 5.976 · 10−8 20.9415 2.766 · 10−7 19.017

32 2.854 · 10−9 18.4016 1.454 · 10−8 17.4878

64 1.551 · 10−10 17.1868 8.317 · 10−10 16.7394

128 9.024 · 10−12 16.5895 4.969 · 10−11 16.3687

256 5.43 · 10−13 16.2939 3.0355 · 10−12 16.1841

512 3.338 · 10−14 16.1468 1.875 · 10−13 16.0920

1024 2.068 · 10−15 16.0733 1.165 · 10−14 16.045

2048 1.286 · 10−16 16.037 7.263 · 10−16 16.023

Table 2.1: Errors and their improvements (ratios of two consecutive errors) for Example 2

Remark 5 In the previous, we chose for simplicity (and because of the motivation by the practical

example of a Pelton turbine bucket) a planar input curve c(t) and an angle was determined with respect

to the unit normal vector u of a plane containing the curve c(t), i.e., u = (0, 0, 1)⊤ .

Nevertheless, it is possible to generalize the algorithm also for an arbitrary regular curve c(t) =
(x(t), y(t), z(t))⊤ , t ∈ [0, 1] and vector u = (ux, uy, uz)

⊤ which fulfil that c′(t) is not co-linear with

u for all t ∈ [0, 1]. Then, w(t) is a perpendicular projection of c′(t) to the plane perpendicular to u

and v(t) is computed analogously. This gives us the exact tangent surface r(s, t). Further, the control

points {P̂i}ni=0 of ĉ(t) are chosen as translated control points {Pi}ni=0 in direction of u and the rest of

the algorithm is exactly the same.

In the following we will show that the error of angle distribution approximation is bounded by the
approximation error resulting from Algorithm 1.

Theorem 1 Let ĉ(t) = (x̂(t), ŷ(t), ẑ(t)) be the B-spline curve defined in Step 2 of Algorithm 1, p(t) =
(px(t), py(t), pz(t)) be the curve on the ruled surface r(s, t) defined in Step 1 of Algorithm 1 such that

pz(t) = ẑ(t) and c̄(t) = (x̄(t), ȳ(t), z̄(t)) be its B-spline approximation computed using Algorithm 1.

Let f(t) and f̄(t) be functions describing the exact and approximate angle distributions along c(t),
respectively. Then it holds

sin |f(t)− f̄(t)| ≤ δ max
t∈[0,1]

‖p(t)− c̄(t)‖,

where δ = max
t∈[0,1]

1
|ẑ(t)−z(t)| .

PROOF: For arbitrary t, with the help of the triangle inequality (see Fig. 2.5 (left)) we obtain

‖p(t)− c(t)‖ ≥ |ẑ(t)− z(t)| .

Further, |f(t)− f̄(t)| ≤ α(t), α(t) ∈ 〈0, π2 〉 and it holds that

sinα(t) =
x

‖p(t) − c(t)‖ .
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Figure 2.6: The inner surface of a Pelton turbine bucket (red) with quadratic (top row) and quartic
(bottom row) distribution of angle along an outlet curve (green) measured with respect to the reference
vector (blue) and the comparison of the exact (black) and the approximate (green) angle distributions,
together with an error plot (thin blue, the corresponding scale is on on the right) (right column).

Moreover, as x ≤ ‖p(t) − c̄(t)‖ (see Fig. 2.5 (right)) we can write

sinα(t) ≤ ‖p(t) − c̄(t)‖
‖p(t) − c(t)‖ .

Thus, we obtain

sin |f(t)− f̄(t)| ≤ sinα(t) ≤ ‖p(t)− c̄(t)‖
‖p(t)− c(t)‖ ≤

1

|ẑ(t)− z(t)| ‖p(t)− c̄(t)‖.

Finally, by denoting δ = max
t∈[0,1]

1
|ẑ(t)−z(t)| , the statement follows. �

Apart from deriving a bound for the error of an approximate angle distribution obtained with the help
of Algorithm 1, we also analyze the approximation order of our above mentioned algorithm. We apply
Algorithm 1 on a given B-spline curve c(t) and a given angle function f(t) and we obtain a surface
which approximately satisfies the given angle distribution f(t). Further, we analyze the obtained angle
distribution on the resulting surface – the approximation error corresponds to the Hausdorff distance
between the exact and approximate angle distributions. Then, we insert a new knot into each knot
span (with the help of knot insertion algorithm – see [69]) and the process repeats for new data. We
examine the ratio of two consecutive errors and we find out that the approximation order of the mentioned
algorithm is 4, see Example 2.

Example 2 Let us consider the functions f1(t) = π
6 t

2 + π
180 and f2(t) = 4

13t
4 − 3

5t
3 −

1
9t

2 − 1
12t + 5

9 and the B-spline curve on the interval t ∈ [0, 1] with the control points

{(0, 0, 0)⊤, (1, 2, 0)⊤ , (2, 2, 0)⊤, (4, 0, 0)⊤} and the knot vector (0, 0, 0, 0, 1, 1, 1, 1). Table 2.1 sum-

marizes the approximation error and its improvement (ratio of two consecutive errors). The error was

obtained by measuring the Hausdorff distance. The improvement ratio tends to 16 = 24 in both cases

which indicates that the approximation order of the above mentioned procedure is 4.
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Figure 2.7: The Pelton turbine bucket.

Remark 6 Let us emphasize that refining a boundary curve c(t), i.e., increasing the number of knot

spans in order to decrease the approximation error obtained in Algorithm 1, is not always appropriate

because B-spline description (i.e., control net and knot vectors) of the corresponding B-spline surface

becomes more complex.

In the following example, we applied Algorithm 1 to the particular case of the model of a Pelton
turbine bucket and its outlet curve and we show results for different functions describing the angle dis-
tribution along the outlet curve.

Example 3 In this example, we show the results obtained for the Pelton turbine bucket model and its

outlet curve with the help of Algorithm 1 for two functions, in particular,

1. f1(t) =
π
6 t

2 + π
180 , t ∈ [0, 1], see Fig. 2.6 (top row), based on the analysis of the existing and

used bucket,

2. f2(t) = 4
13t

4 − 3
5t

3 − 1
9t

2 − 1
12t +

5
9 , t ∈ [0, 1], see Fig. 2.6 (bottom row), based on the

recommendations presented in [77].

Let us point out that an outlet curve on the model is composed of fourteen parts. Fig. 2.6 (right column)

shows the difference in comparison of the exact and approximate angle distributions. Refining the B-

spline model of an inner surface of the Pelton turbine bucket would lead to the better angle function

approximation (as demonstrated in Example 2), but also to the more complex B-spline model.

2.1.2 Outer surface

We use another approach for a model of the Pelton turbine bucket outer surface. The boundary curves
are derived from boundary curves of the inner surface with the help of approximation of variable offsets
by B-spline curves. Thus the parameters for the outer surface are

• ds(t) ... function of distance along the splitter,

• do(t) ... function of distance along the outlet curve,

• dd(t) ... function of distance along the curve determining the depth of inner surface,

• dc(t) ... function of distance along the cutout curve.

26



Figure 2.8: Creating B-spline surface representing the outer surface.
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Figure 2.9: Guide vanes (purple) and runner blades (green) of KT.

We start with the curve derived from splitter (see Fig. 2.8 (top row, left)) and the curve derived from
outlet curve (see Fig. 2.8 (top row, right)) and we use the ds(t) and do(t) to determine the B-spline curve
that approximates variable offset of the splitter or outlet curve. The cutout curve (preserving dc(t)) is
computed analogically to the previous curves (see Fig. 2.8 (second row, right)). In the Fig. 2.8 (second
row, right) is shown the curve that is derived as the variable offset of the depth curve and we satisfy the
parameter dd(t). The specific shape of the curve is determined by the different pressure on the bucket.
Moreover, the curve that forms the back side of the bucket is added (Fig. 2.8 (third row, left)) the curve
is similar to the curve that defines the depth of the outer surface. The last curve is the one that forms the
front side of the bucket (Fig. 2.8 (third row, right)).

Further, the outer surface is divided into four parts, their edges are specific parts of the boundary
curves. The three of them are derived as bicubic Coons patches (cf. [24]) for given boundary. Coons
patches are subsequently transformed to B-spline surfaces by finding their corresponding control nets
and knot vectors (see Fig. 2.8 (last row, left)). This process is based mainly on the conversion of the
polynomial functions to the B-spline basis functions it also means to use the knot insertion and knot
deletion algorithms (see more in [69]). Now, when the control points of three parts are defined, we
correct some control points to obtain the result surface with C2 continuity, i.e., the control points around
the common curves are corrected such that the C2 continuity conditions are fulfilled (see more in Section
2.2.1). The front piece patch with the part of a splitter and a cut-out is obtained as a B-spline surface
(see Fig. 2.8 (last row, right)). Because this part includes sharp passage we enforce only G1 continuity
conditions around the corresponding part of the boundary. In Fig. 2.7 the final Pelton bucket is shown
exported to the Rhinoceros software. There can be seen that there is added surface along the splitter.
This is just for technical reasons because it is not possible to construct the bucket with zero thickness
along the the splitter.

2.2 Kaplan turbine blade

In the following sections we describe the creation of Kaplan turbine (KT) blades with B-spline/NURBS
curves and surfaces. There are two types of blades in KT: guide vanes and runner blades. The guide
vanes serve to streamline the flow of water before it reaches the runner blades. On the other hand, the
runner blades transform the energy of the flow. From the geometric point of view we start with the
description of 2D profile of the blade and its geometric parameterization. The construction of 2D profile
is composed of several steps, we start with the camber line which is subsequently “enveloped” by the
function describing the thickness of the blade. This principle of the 2D blade profile construction is
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Figure 2.10: Illustrative figure of the camber line with the basic parameters.
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Figure 2.11: Camber line represented as quadratic B-spline curve. Control points are marked red and the
joint point is green.

motivated by NACA profiles (cf. [18, 48, 58]). We present several options to describe the camber line
parameterization and the function of thickness (e.g. choice of different degrees of the final curve), thus
it is possible to obtain an optimal shape of the blade in the future with respect to the flow in turbine. The
2D blade profile is mapped to the cylindrical surface (in case of the runner blades) or transformed and
mapped to the conical surface (in case of the guide vanes). The final blade surface is created from several
different blade profiles, as it is described in the second part of this section. Both profiles (planar and
spatial) are modified so that the continuity of curves is Cp−1, where p is the degree of the approximation
B-spline curve everywhere, except the leading edge where it is G2. The guide vanes and runner blades
are shown in Fig. 2.9.

2.2.1 Camber line

Firstly, the description of the camber line which is subsequently enveloped by the function of thickness is
presented. In order to obtain the camber line, two options are proposed, depending on the degree and the
number of curves that are used for modelling of the camber line. The following parameters are common
in all demonstrated cases. If they are not sufficient for the determination of the curve, we mention other
parameters in the relevant sections. The basic parameters are:

• length of the reference chord c ,

• maximum relative camber v
c
,

• position of maximal camber d
c
,

• angle of attack β1 (between the chord and the tangent of the camber line),

• trailing-edge angle β2 (between the chord and the tangent of the camber line).

In the following cases, we consider c = 1 and we also maintain the global maximum of the camber line
in the point (d, v). The angles are without orientation, i.e. only the size of the angle is given. The camber
line is positioned such that the beginning is in the origin of the Cartesian coordinate system and the end
of the camber line lies on the x-axis. The basic parameters are shown in Fig. 2.10.

29



Parabolic case - 2 curves

At first the camber line is described such that two parabolic curves are connected in the point (d, v). The
continuity of the camber line is G1, i.e. the adjacent control points to the connecting point and the point
(d, v) are collinear1. The fulfilment of C0 conditions, i.e., the curves have the same point of continuity,
is clear from the construction of the knot vector which is in the form

U = (0, 0, 0,
1

2
,
1

2
, 1, 1, 1).

The point (d, v) is the global maximum of the final parametrization of the curve and the tangent vector
in this point is collinear with the x-axis. Control points (with the included continuity conditions G1) are
the following:

P = {(0, 0), (v cotα1, v), (d, v), (1 − v cot β2, v), (1, 0)}.
Unfortunately, it is not possible to increase the given continuity to C1 in this case, because there are

not enough degrees of freedom2.
In Fig. 2.11, the camber line constructed as quadratic B-spline curve is illustrated, relevant parameters

were chosen so that the camber line corresponds to the profile NACA 4412: v = 0.04, d = 0.4, β1 =
0.19739555984988075, β2 = 0.13255153229667402.

Cubic case - 2 curves

Other possibility of modelling the camber line is to use higher degree curves. If we use only one cubic
curve we do not have the required number of degrees of freedom to fullfil the condition that the point
(d, v) is the maximum of the curve. Therefore, B-spline curve composed of two cubic segments is chosen
similarly to the previous case. The joint point has the coordinates (d, v) and the continuity of the curve
is C2. The conditions for the control points are derived from the relations for derivatives of the B-spline
curve. Control points of the s−th derivative of the B-spline curve given by the control polygon {Pi}ni=0,
where n+ 1 is the number of control points, are given by the recurrent relation (see more in [69])

Pk
i =

p− k + 1

ui+p+1 − ui+k

(Pk−1
i+1 −Pk−1

i ), k = 1, · · · , s, i = 0, · · · , n− s, (2.16)

where P0
i = Pi and relevant values of knots can be found from the knot vector which is

U = (0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

)

and m is the size of the knot vector. For a higher derivatives, it is necessary to change of the knot vector
to

U ′ = (0, . . . , 0︸ ︷︷ ︸
p−k

, up−k, . . . , um−p−k, 1, . . . , 1︸ ︷︷ ︸
p−k

).

From (2.16) for our case (n = 6 and U = (0, 0, 0, 0, 1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1)), it is clear that the following

conditions must be fulfilled

P3 −P2 = P4 −P3, (2.17)

P1 − 2P2 +P3 = P5 − 2P4 +P3. (2.18)

Then the continuity in the point P3 is C2 because the equation (2.17) stands for the conditions for the
continuity of the first derivative and equation (2.18) for the continuity of the second derivative. The
continuity C0 arise from the choice of the knot vector which is in the form

U = (0, 0, 0, 0,
1

2
,
1

2
,
1

2
, 1, 1, 1, 1).

1Continuity G
1 is the continuity of tangents, i.e., it does not depend on the size of the given vectors.

2Continuity C
1 is the continuity of tangent vectors.
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Figure 2.12: Camber line represented as cubic B-spline curve. Control points are marked red, joint point
is marked green.

By direct computations, it could be shown that control points that satisfy the conditions (2.17), (2.18)
and also maintain the basic parameters are the following:

P =

{
(0, 0),

(
−(4d− 4P2x − 1) cos β1 sinβ2

cos β2 sin β1 + cos β1 sin β2
,−(4d − 4P2x − 1) sin β1 sin β2

cos β2 sin β1 + cos β1 sinβ2

)
, (P2x, v), (d, v),

(2d − P2x, v),

(
(4d − 4P2x − 1) cos β2 sinβ1
cos β2 sin β1 + cos β1 sin β2

+ 1,−(4d − 4P2x − 1) sin β1 sin β2
cosβ2 sin β1 + cos β1 sin β2

)
, (1, 0)

}
.

As it is seen from the coordinates of control points, the curve is not unambiguously determined by
the given parameters and the coordinate P2x still needs to be determined, e.g. by minimization of second
differences, i.e. we establish objective function

F =

4∑

i=0

(Pi − 2Pi+1 +Pi+2)
2 .

Through the derivation of F according to unknown variables (in our case according to P2x) we get a
linear equation for P2x, and its solution gives us the remaining variable so that coordinates of all control
points are determined. The minimization of second differences can be understood as minimization of
curvature of the control polygon.

Fig. 2.12 shows the control points obtained with the help of cubic B-spline curve, the relevant
parameters are chosen so that the result curve corresponds to the NACA profile 4412: v = 0.04, d = 0.4,
β1 = 0.19739555984988075, β2 = 0.13255153229667402.

2.2.2 The function of thickness

The function of thickness is defined with the following parameters:

• the length of the reference chord c,

• maximum relative thickness vt
c

,

• position of maximal thickness dt
c

,

• ending offset kt,

• output angle γ.

If the given process of the description of the function of thickness enables it, the radius of osculating
circle r will be prescribed in the beginning (i.e. parameter, which amends the curvature at the beginning).
Similarly as in the case of the camber line, we consider c = 1 and furthermore in the point (dt, vt), it
is necessary to have the global maximum. The output angle is taken without orientation, i.e. only the
size of the angle is given. The curve describing the function of thickness is set in a manner so that the
beginning is located in the origin of the Cartesian coordinate system. With regard to the tangent in the
beginning point, we assume that it is collinear with the direction of the y-axis because the tangent of
the final profile in the leading edge must be orthogonal to the camber line. The basic parameters are
illustrated in Fig. 2.13.
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Parabolic case - 2 curves

At first we introduce the possibility, when the function of the thickness is described with the help of
B-spline curve with two quadratic segments. Two parabolic curves are connected in point (dt, vt) and
the continuity of thickness function is G1. The continuity C0 is implied directly from the knot vector,
which is

U = (0, 0, 0,
1

2
,
1

2
, 1, 1, 1).

Point (dt, vt) is the point of global maximum of the final B-spline curve. Control points (described
already with the G1 continuity conditions) are the following:

P = {(0, 0), (0, vt), (dt, vt), (1 + (kt − vt) cot γ, vt), (1, kt)}.

In this case, there is not enough degrees of freedom to include the parameter of radius of curvature in the
beginning. The radius can be retrospectively computed from the parameterization of the curve with the
help of the first curvature that is in the form

(1κ)2 =
(K′(t)×K′′(t))2

(K′(t) ·K′(t))3
, (2.19)

where K(t) is parameterization of given curve and then radius r is

r =
1
1κ

.

Fig. 2.14 shows the function of thickness defined by quadratic B-spline curve. Relevant parameters
(except for the radius r) are set such that the thickness corresponds to the chosen NACA profile 4412:
vt = 0.06, dt = 0.3, γ = 0.13939996933185556, kt = 0.0012599999999999777. Calculated radius is
r = 0.024.

Cubic case - 2 curves

Now, we describe the thickness function with B-spline curve composed of two cubic segments. Advan-
tage is that there are more degrees of freedom to include the radius r. Analogically to the case of camber
line with two cubics, we obtain the coordinates of points not only from prescribing the parameters but
also with the help of the continuity conditions of the first and second derivatives (equation (2.17) and
(2.18)). Control points are in the form

P =

{
(0, 0), (0, P1y ),

(−1 + 4dt − kt cot γ + P1y cot γ

4
, vt

)
, (dt, vt), (2.20)

(2dt +
1

4
(1− 4dt + kt cot γ − P1y cot γ), vt), (1 + (kt − P1y) cot γ, P1y), (1, kt)

}
.

(0, 0)

(dt
c
, vt
c
)

(c, kt)

γ

r

Figure 2.13: Illustrative figure of thickness function with basic parameters.
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Figure 2.14: The function of thickness represented as quadratic B-spline curve. Control points are
marked red and the joint point is green.

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

Figure 2.15: The function of thickness represented as cubic B-spline curve. Control points are marked
red and the joint point is green.

As it is shown in the expression for control points, there is still one degree of freedom which can be used
for the radius of the curvature in the beginning. If we know r, we can calculate the coordinate P1y from
the equation (2.19) where K(t) is the general parameterization depending on control points (2.20) and
the knot vector

U = (0, 0, 0, 0,
1

2
,
1

2
,
1

2
, 1, 1, 1, 1).

After solving this equation, the curve is determined unambiguously. The continuity of the curve of
thickness is C2.

Fig. 2.15 shows the function of thickness described by cubic B-spline curve. The relevant parameters
were again chosen so that the curve corresponds to NACA profile 4412: vt = 0.06, dt = 0.3, γ =
0.13939996933185556, kt = 0.0012599999999999777, r = 0.0158674.

2.2.3 Blade profile in 2D

In order to get the final 2D profile of the blade, it is necessary to use several steps. At first, it is crucial to
map the function of thickness on the camber line as it is described in the following paragraphs. To map
the thickness on the camber line, the relevant values of thickness function are applied on the normals
of the camber line to obtain point-wise description of the blade profile. Consequently, these points are
approximated by suitably chosen B-spline curve. The final polygon is modified such that the surrounding
of the leading edge is G2. The whole process can be divided into three steps:

1. Applying the thickness to the normals of the camber line

Firstly, the corresponding function of thickness is applied on the normal of camber line. We
sample the camber line and compute the normal vectors in the sample points. Normals are shown
in Fig. 2.16 (top). Then we sample also the function of thickness. Let us assume that the function
of thickness and the camber line have the same length of chord c. For each point on the camber line
we look for the point on the thickness function such that it has the same coordinate x. Searching
for points is done approximately, i.e. we find the first point among sampled points on the thickness
function such that its x-coordinate xt fulfills xt > xs, where xs x-coordinate of the point on
camber line. Further, y-coordinate of this point on the thickness function is mapped on the normal
at the given point of the camber line in both directions. Output of this operation is a set of points
of the resulting 2D profile. Applying the function of thickness to the camber line is shown in
Fig. 2.16 (bottom). The last step is to sort the points, for example from the trailing edge along the
suction side to the leading edge, analogously on the pressure side.

2. Approximation with a B-spline curve
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Figure 2.16: Top: Normals of the camber line. Bottom: Applying the thickness to several points of the
camber line.

If we have a set of points of the final 2D profile, we can approximate these points with a B-spline
curve of the chosen degree. The algorithm described in Algorithm 2 is adopted. Input to the
algorithm are points {Bi}mi=0, that we desire to approximate, initial control polygon {Pi}ni=0 of
B-spline curve that approximates given points and the knot vector U of the final curve (thus we
also choose the degree of final curve). The points of the initial control polygon are suitably chosen
from points {Bi}mi=0. In Fig. 2.17 (top) approximation points and the initial control polygon are
shown. Then, for each point {Bi}mi=0 we look for parameter value ui of the closest point on the B-
spline curve c(u) determined by the control polygon {Pi}mi=0 and the knot vector U. Finally, least
squares method is used to find the translation points {Pi}mi=0 to new positions and to minimize the
least squares of the approximation. Algorithm is iterative, i.e., the resulting transformed polygon is
used in the following iteration. After running the algorithm on several examples it has been shown
that it is enough to proceed one or two iteration to obtain the error that is less than 10−2-10−3.

At first the algorithm is used to the points on the pressure side and then on the suction side. The
final B-spline curve is composed of these two results and the connecting point is the leading edge
point, i.e. point (0, 0). The final knot vector is obtained from the corresponding knot vectors of the
each approximation curve. The output is one B-spline curve with the control polygon {Ri}2n−1

i=0

and knot vector V .

There is a small change in the Algorithm 2 to guarantee the C1 continuity. The prescribed tangent
vector in the leading edge has to be the same for suction and pressure side, thus also the last but
one control point is maintained (not just the first and the last control points). In the blade profile
case, the tangent vector is determined such that we apply algorithm for the suction side of the curve
and we compute tangent vector from the result B-spline curve. This tangent vector is prescribed
for the pressure side of the B-spline curve.
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Figure 2.17: Top: Input to approximation - approximation points (yellow), the choice of the initial
control polygon (green). Middle: Output of approximation after the continuity correction with new
polygon (purple). Bottom: Comparison with the profile NACA 4412 (point of NACA profile are marked
blue).

3. Correction of the continuity

To have curvature continuity G2 in the leading edge point, it is necessary to change the neighbour-
ing control points of the leading edge, that lies at the origin of the Cartesian coordinate system.
Algorithm 3 describes the necessary correction. Input is control polygon, index of the control point
of the leading edge and the radius of the osculating circle. The conditions are obtained from the
equation (2.19) in the leading edge point.

In Fig. 2.17 (middle) the result of the approximation with the corrected continuity is shown. We
chose the parameters such that the result corresponds to the profile NACA 4412. The camber line is
represented as quadratic B-spline curve, the thickness function as cubic B-spline curve (see Sections
2.2.1 and 2.2.2). The final curve is cubic B-spline curve and the knot vector is

(0, 0, 0, 0, 1/10, 1/5, 3/10, 2/5, 1/2, 1/2, 1/2, 3/5, 7/10, 4/5, 9/10, 1, 1, 1, 1).

Approximation error corresponding to the Hausdorff distance is 0.00312274 for the suction side and
0.00313807 for the pressure side before G2 correction and 0.00316664 for the suction side and
0.00303038 for the pressure side after G2 correction. The error could be improved by applying more
iterations (using the result as the input for approximation process). In Fig. 2.17 (bottom), the comparison
with the NACA 4412 is shown.

2.2.4 3D profile of guide vanes/runner blades

In this section we focus on the modelling of 3D blade profiles computed from the 2D blade profiles (de-
scribed in the previous paragraphs). The 2D profiles are transformed (scaling, rotation, circle inversion)
and then mapped to a cylindrical surface or to a conical surface according to the type of the blade (runner
blades or guide vanes respectively). The common number of the cylindrical surfaces is from three to
seven for the runner blade and there is just one conical surface for the guide vane. The result of this
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Algorithm 2 CurveApproximation2D(Points, InitialControlPolygon, KnotVector)
Input: Approximation points {Bi}mi=0, initial control polygon {Pi}ni=0 (P0 = B0, Pn = Bm), knot

vector U
Output: Control polygon {P̄i}ni=0,

1: c(t)← parameterization of B-spline curve determined by {Pi}ni=0 and U
2: For each point Bi, i = 1, . . . ,m−1, search for the closest point on c(t), represented by its parametric

value, i.e.,
Ti = min

0≤t≤1
||Bi − c(t)||, i = 1, . . . ,m− 1

3: Add the unknown translations to the control points (we maintain the first and the last control points),
i.e.,

P̂i = Pi + (Xi, Yi), i = 1, . . . , n − 2

4: Compute the parameterization of the corresponding B-spline curve ĉ(t)
5: Assemble the objective function for the minimization

F =
m−1∑

i=1

||ĉ(Ti)−Bi||2

6: Find the minimum of the objective function F by solving the linear system of equations

{(X̂i, Ŷi)} = solve
(

∂F

∂Xi

= 0 ∧ ∂F

∂Yi

= 0, i = 1, . . . , n− 2

)

7: return P̄i = Pi + (X̂i, Ŷi)

section is the B-spline description of the 3D blade profiles as the preparation step for the final B-spline
description of the blade.

2.2.4.1 Profiles of the runner blades of KT

The 2D blade profiles determining runner blade are mapped to cylindrical surfaces with the given radii.
Without the loss of generality we assume that the axis of the all cylindrical surfaces is identical to the
z-axis and the radius is r. 3D blade profile is determined by the following parameters:

• 2D blade profile with the unit length and with the control points {Pi}ni=0,

• radius of the cylindrical surface r,

• number of blades in the runner n,

• rotation of the blade γ,

• the centre of rotation (x0, y0),

• the length of the chord c of the 2D blade profile.

At first, we translate the planar blade profile (defined in Section 2.3.1) such that the centre of rotation
coincides with the origin of the Cartesian coordinate origin. The transformation matrix is in the form

T =




1 0 −x0
0 1 −y0
0 0 1


 .
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Algorithm 3 G2ControlPolygon2D(ControlPolygon, Index, Curvature)
Input: Control polygon {Pi}ni=0, index k of the control point corresponding to the multiple knot in the

knot vector, curvature κ
Output: Control polygon {P̃i}ni=0,

1: Translation of the control points such that the new point P̄k lies in the origin

P̄i =




1 0 −Pk,x

0 1 −Pk,y

0 0 1


 ·




Pi,x

Pi,y

1




2: p← degree of the B-spline curve
3: Determination of the tangent vector direction t = (tx, ty) in P̄k

t =
P̄k − P̄k−1

||P̄k − P̄k−1||

4: To guarantee G2 continuity, substitute the B-spline parameterization with control points {P̄i}ni=0 in
(2.19) and obtain the correction of the control point coordinates that are neighbours to P̄k

P̄k−1 = −t
√
p− 1

2p

√
|P̄k−2,ytx − P̄k−2,xty|

κ
, P̄k+1 = t

√
p− 1

2p

√
|P̄k+2,ytx − P̄k+2,xty|

κ

5: Translation of the points to the original position

P̃i =




1 0 Pk,x

0 1 Pk,y

0 0 1


 ·




P̄i,x

P̄i,y

1




Then, the scaling is applied such that the result has the chord length c. As we start with the profile
with the length 1, we apply simple dilatation

S =




c 0 0
0 c 0
0 0 1


 .

Subsequently, we rotate the profile with γ around the origin, the rotation matrix is

R =




cos γ − sin γ 0
sin γ cos γ 0
0 0 1


 .

Control points (in homogeneous coordinates) of dilatated and rotated profiles are computed as

P̄i = R · S ·T ·P⊤
i , i = 0, . . . , n,

where input points Pi, i = 0, . . . , n are again in homogeneous coordinates (the third coordinate 1 is
append to planar coordinates). The example of several transformed profiles is in Fig. 2.18 (left).

The mapping of the blade to the cylindrical surface with radius r and z-axis can be realized with
the transformation to the cylindrical coordinates. Lets identify the plane where we constructed the blade
profile with the tangent plane to the cylindrical surface in point (r, 0, 0) along its generatrix, each point
in this plane has coordinates X0 = (r, y, z). The corresponding coordinates on the cylindrical surface
are

X =
(
r sin

y

r
, r cos

y

r
, z
)
. (2.21)
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Algorithm 4 G2ControlPolygon3D(ControlPolygon, Index, Curvature, Plane)
Input: Control polygon {Pi}ni=0, index k of the control point corresponding to the multiple knot in the

knot vector, curvature κ, orthonormal vectors e1, e2
Output: Control polygon {P̃i},

1: Translation of the control points that the new point P̄k lies in the origin

P̄i =




1 0 0 −Pk,x

0 1 0 −Pk,y

0 0 1 −Pk,z

0 0 0 1


 ·




Pi,x

Pi,y

Pi,z

1




2: p← degree of the B-spline curve
3: Project the points P̄k−2, P̄k−1, P̄k+1, P̄k+2 to the plane defined by point P̄k and vectors e1, e2, i.e.

P̄j = (P̄j − P̄k) · e1 e1 + (P̄j − P̄k) · e2 e2 + P̄k, j = k − 2, k − 1, k + 1, k + 2

4: Determination of the tangent vector direction P̄k in the form t =
P̄k−P̄k−1

||P̄k−P̄k−1||
5: To guarantee G2 continuity, substitute the B-spline parameterization with control points {P̄i}ni=0 in

(2.19) and obtain the correction of the control point coordinates that are neighbours to P̄k

P̄k−1 = −t
√
p− 1

2p

4
√

t.Mk−2.t√
κ

, P̄k+1 = −t
√
p− 1

2p

4
√

t.Mk+2.t√
κ

where

Mq =




0 0 0 0
−2P̄q,xP̄q,y P̄ 2

q,x − P̄ 2
q,y 0 0

−2P̄q,xP̄q,z −2P̄q,yP̄q,z P̄ 2
q,x − P̄ 2

q,z 0

0 0 0 P̄ 2
q,y + P̄ 2

q,z




6: Translation of the control polygon to the original position

P̃i =




1 0 0 Pk,x

0 1 0 Pk,y

0 0 1 Pk,z

0 0 0 1


 ·




P̄i,x

P̄i,y

P̄i,z

1




Now, we take the components of 2D blade profile B-spline parameterization and substitute them for y
and z coordinates in (2.21) and we obtain parametric expression on the cylindrical surface. However, the
obtained parameterization (after the substitution) is not polynomial or rational and it can not be directly
described as the B-spline/NURBS curve. Thus, it is necessary to employ approximation of that curve.

We apply Algorithm 5 to approximate the curve on the cylinder by a B-spline curve and then Algo-
rithm 4 to improve the continuity for the approximation B-spline curve to G2 at the leading point. Firstly,
points of the 3D profile located on the cylinder are found. These points are going to be approximated.
Initial control polygon, that is input in Algorithm 5, is obtained by mapping the control polygon of B-
spline curve on the cylindrical surface. The next step is correction to maintain G2 continuity of the final
curve with the help of Algorithm 4. Plane ̺, where the control points are arranged (see Algorithm 4), is
chosen as tangent plane to the cylindrical surface in the leading edge point. Moreover, its two orthonor-
mal directions are represented by the direction of camber line and the corresponding orthogonal vector
in ̺. The direction of camber line is computed as the rotation of the vector collinear to the plane xy
placed in the leading edge in the plane ̺ around the normal to the cylindrical surface and the angle of
rotation is β1 + γ, where β1 is attack angle and γ is output angle. After improvement of control polygon
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Algorithm 5 CurveApproximation3D(Points, InitialControlPolygon, Knot vector)
Input: Approximate points {Bi}mi=0, initial control polygon {Pi}ni=0 (P0 = B0, Pn = Bm), knot

vector U
Output: Control polygon {P̄i}ni=0,

1: c(t)← parameterization of B-spline curve determined by {Pi}ni=0 and U
2: For each point Bi, i = 1, . . . ,m−1, search for the closest point on c(t), represented by its parametric

value, i.e.,
Ti = min

0≤t≤1
||Bi − c(t)||, i = 1, . . . ,m− 1

3: Add the unknown translation to the control points (we maintain the first and the last control points)

P̂i = Pi + (Xi, Yi, Zi), i = 1, . . . , n− 2

4: Compute parameterization of the corresponding B-spline curve ĉ(t)
5: Assemble the objective function F for the minimization

F =
m−1∑

i=1

||ĉ(Ti)−Bi||2

6: Find the minimum of the objective function by solving the linear system of equations

{(X̂i, Ŷi, Ẑi)} = solve
(

∂F

∂Xi
= 0 ∧ ∂F

∂Yi
= 0,

∂F

∂Zi
= 0, i = 1, . . . , n− 2

)

7: return P̄i = Pi + (X̂i, Ŷi, Ẑi)

we use Algorithm 5, separately to suction side and pressure side. Then we combine the two results to
one final B-spline curve. Because the points Pk−2 and Pk+2 are changed (k is index of the control
point corresponding to the leading edge), we again apply Algorithm 4 for G2 continuity. There is also
possibility to repeat this process to decrease the error of approximation. In practical examples it has been
shown that two or three iteration are enough as the error is less than 10−2-10−3. The result B-spline
parameterization of profile on the cylindrical surface is G2 continuous (see Fig. 2.18 (right)).

2.2.4.2 Guide vanes profile of KT

For the guide vanes of KT we also start with the construction of a planar blade profile. This profile is
mapped to a conical surface which could be that the profile is mapped to the tangent plane of conical
surface. This simplified variant could be used for optimization cycle when the blade is computed in every
step of optimization. In the following the both approaches are presented.

Without loss of generality we assume that the conical surface has the axis coincident with z-axis,
its base is in the plane xy with centre at the origin, radius r and vertex of the cone V is on z-axis and
has coordinates V = (0, 0, v). Blade profile is in the plane σ, which is a tangent plane of the conical
surface in its generatrix that goes through (r, 0, 0). During the modelling of blade we work with the
local coordinate system, origin is (r, 0, 0), local x-axis is collinear to global y-axis and local y-axis
corresponds to the generatrix that goes through (r, 0, 0) in global coordinate system.

First of all we apply several transformations to the 2D blade profile in the plane (see Fig. 2.19).
The profile is scaled such that the resulting chord length is c and rotated around the origin about the
angle ξ. Then we translate the blade such that the trailing edge is on the y-axis. Before the blade profile
is mapped on the conical surface it has to be mapped to a circular mesh with the help of conformal
transformation. The reason is to preserve angles also after mapping on the conical surface. Circular
mesh has the following parameters: input radius ri, output radius ro and the width of circular mesh
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Figure 2.18: Left: Transformed blade profiles. Right: Mapping to the cylinders.
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Figure 2.19: Top: Transformation of 2D profile for guide vanes – scaling (orange), rotation (purple) and
translation (green); Bottom: Profile in circular mesh.

b = ri − ro. The new coordinates are

x̂ = roe
Kx,

ŷ = Ky,

where K =
ln

ri
ro

b
.

In the following paragraphs we assume that this circular mesh is lying in the plane tangent to the
conical surface (if not it can be done by simple transformations - translation and rotation depending on
the position of the cone).

The next step (not the necessary one) is to map the transformed profile to the conical surface. Let X0

be the point in plane σ (see Fig. 2.20 (left)) and we want to find the corresponding point on the conical
surface. Firstly, we find B0 in plane σ that has the same distance from V0 as point X0 and lies on y-axis,
i.e.,

B0 =
(
0,
√

r2 + v2 − d
)
,

where d = dist(X0,V0) is Euclidean distance of two points. Hence, we can derive coordinates of B in
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Figure 2.20: Illustrative figures for deriving the formulas of mapping to the cone.

global coordinates system. From the triangle resemblance (see Fig. 2.20 (right)) it follows

B = (Bx, By, Bz) =

(
d√

r2 + v2
r, 0,

√
r2 + v2 − d√

r+v2
v

)
.

The last thing is determination of angle ϕ that is used to rotate B around z-axis, to obtain X. As it holds

ϕ

π
=

α

β
,

where

α = arccos

−−−→
V0X0 · (0,−1)⊤

||−−−→V0X0||
and β =

πr√
r2 + v2

,

we deduce
ϕ =

α

β
π.

Then, coordinates of point X on the conical surface, corresponding to X0 in plane σ, are

X = (Bx cosϕ,Bx sinϕ,Bz) .

With this method we are capable to map blade profile to the corresponding cone. We just substitute
the components of blade profile parameterization for X0 and then we obtain parametric expression on
the conical surface (see Fig. 2.21). Of course, neither polynomial, nor rational parameterization is
obtained and it is necessary to employ approximation of that curve. Thus, we also apply the process
of approximation analogous to the one described in Section 2.2.4.1. The only change is in the plane
̺ that we choose as tangent to the conical surface in the leading edge. To sum up, the guide vane is
characterized with one profile that is subsequently mapped to the adjacent cones or tangent planes. The
final non-trimmed blade is defined by two profiles and it is linear in the direction of the blade axis (see
Section 2.2.5.3). The profiles and the blade before trimming are shown in Fig. 2.22.

2.2.5 Construction of the final blade from 3D profiles

This part is devoted to the description of the final blade that is created from 3D profile(s). The resulting
surface represents the runner blade. First of all the construction of trailing edge is presented and then the
construction of the control net is described followed by process of trimming.
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Figure 2.21: Planar profile (pink) mapped to the cone.

2.2.5.1 The trailing edge of runner blade

The trailing edge is given by points Qi, i = 0, . . . , l − 1, where l is the number of cylinders, which are
the trailing edge points of the 3D blade profiles on circular surfaces described in Section 2.2.4.1. The
goal is to obtain cubic B-spline curve that interpolates given data. Thus, we search control polygon and
knot vector of the result curve. The first step is to construct spline curve q(t) that interpolates given
points. The spline curve is parametrized by centripetal parameterization and the boundary conditions are
vanishing second derivatives. The parameters ti identify points Qi on q(t)

q(ti) = Qi.

Then, we transform interpolation cubic spline curve to B-spline form. Let us denote the tangent
vector for each point Qi as tQi

= q′(ti). The control points are

Pi = q(ti), i = 0, 3, 6, . . . , 3l − 3,

and

Pi+1 = Pi +
1

3
tQi

, Pi+2 = Pi+3 −
1

3
tQi+1

, i = 0, 3, 6, . . . , 3l − 3.

The corresponding knot vector is based on Qi, where each trailing edge point adds one triple knot in
the knot vector (0, 0, 0, 0, 1, 1, 1, 1). The specific knots could be obtained by chordal or centripetal
parameterization.

The resulting B-spline curve is used for the following construction of the final blade. The trailing
edge is shown in Fig. 2.23.

2.2.5.2 Construction of the final runner blade

The set-up for the final construction of the blade surface consists of profiles on cylindrical surfaces and
the B-spline description of the trailing edge of the blade. If we know the desired setting we can describe
the final control net of the blade.
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Figure 2.22: Left: Profiles of the guide vane. Right: Guide vane before trimming.

The resulting B-spline surface has degrees (N, 3), where N is the degree of the B-spline curves
representing 3D profiles. Thus, the first knot vector of the final surface is defined by the B-spline rep-
resentation of 3D blade profiles, the second knot vector corresponds to the number of profiles – each
profile adds one triple knot in the base knot vector (0, 0, 0, 0, 1, 1, 1, 1), the particular values of knots
are determined by chordal or centripetal parameterization. The control net has m × n control points
{Pi,j}m−1,n−1

i,j=0 , where n is the number of control points for one profile on the cylindrical surface and
m = 3(l − 1) and l is the number of these profiles.

The initialization of the control net starts with adding already known curves – the control points of
trailing edges to the first and the last columns and the control points of the 3D profiles into the rows such
that two free rows are between two spatial profiles.

The final surface should be at least C1 continuous across the profiles (which are G2 continuous), thus
the control points fulfill the conditions

Pi+4,j = 2Pi+3,j −Pi+2,j , i = 0, 3, . . . , 3l − 3, j = 0, . . . , n− 1, (2.22)

that are added to the control net.
The next step is to compute the control points of the leading edge with the minimization of the second

differences. The leading edge goes through the leading points of 3D blade profiles. The leading edge of
the resulting blade is C1 cubic B-spline curve and the objective function is in the form

F =

m−2∑

i=0

(Pi,k − 2Pi+1,k +Pi+2,k)
2 ,

where k is the index of the column corresponding to the leading edge and the variables are unknown
control points in the k-th column. The linear system is obtained after computing the derivative of F with
respect to all unknowns. The solution of this system are the control points of the leading edge.

The next step is to ensure G2 continuity of the control polygons “adjacent” to control polygons of
3D profiles (but still ensuring C1 continuity across the profiles). It means we apply Algorithm 4 on the
points Pi+2,j , Pi+4,j , i = 0, 3, . . . , 3(l − 2), j = k − 2, k − 1, k + 1, k + 2. In the remaining rows (the
second and the last but one rows), it holds

Pi,k+1 = (1 + ai)Pi,k − aiPi,k−1, i = 1,m− 1,

where real coefficients ai are included as variables in the final minimization. We calculate the control
points in the (k − 1)-th and (k + 1)-th columns by minimizing the second differences. The objective
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Figure 2.23: The input data for the trailing edge are grey points. The trailing edge is pink and the result
control polygon is dashed black.

functions are

F1 =

m−2∑

i=0

(Pi,k−1 − 2Pi+1,k−1 +Pi+2,k−1)
2 ,

F2 =

m−2∑

i=0

(Pi,k+1 − 2Pi+1,k+1 +Pi+2,k+1)
2 .

We obtain two linear systems of equations and the unknowns are the control points of (k − 1)-th and
(k + 1)-th columns.

There are still unknown points in the control net that are computed with the global minimization of
third differences. This minimization is applied on all rows and columns. The objective function is

G =

n−1∑

j=1

m−3∑

i=0

(Pi+3,j − 3Pi+2,j + 3Pi+1,j −Pi,j)
2+

m−1∑

i=1

n−3∑

j=0

(Pi,j+3 − 3Pi,j+2 + 3Pi,j+1 −Pi,j)
2 .

G is differentiated with respect to all unknowns and the linear system of equation is obtained.
The last step is to correct the second and the last but one rows around the leading edge. These

polygons are just G1 continuous (it follows from the previous rules) and we correct them to be G2

continuous around the leading edge. We apply Algorithm 4 that change points Pi,k−1, Pi,k+1, i =
1,m − 1 with the help of points Pi,k−2, Pi,k, Pi,k+2, i = 1,m − 1 and the given curvatures that are
obtained as linear interpolation of the first two (or the last two) profile curves. The illustrative figure of
control net is shown in Fig. 2.24.

2.2.5.3 Trimming by spheres

The guide vanes can be rotated around their axis to regulate the flow and there are not allowed any spaces
between the guide vanes and the turbine housing. Thus, the guide vanes are trimmed by the spheres.
These spheres correspond to the description of turbine housing where the guide vanes are situated.

The result of the trimming process should be a curve that is the intersection of the blade and the
sphere. Let b(u, v) be the parameterization of the blade and S = (Sx, Sy, Sz)

⊤ be the centre of sphere
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Figure 2.24: Left: KT blade with important curves. Right: Illustrative figure of control net.

Figure 2.25: Guide vanes after trimming.

with radius r. The sphere is described by implicit equation

(x− Sx)
2 + (y − Sy)

2 + (z − Sz)
2 = r2. (2.23)

The components of blade parameterization are substituted to (2.23) and we obtain implicitly given curve
c(u, v) = 0 in the parametric space of b(u, v) and its points are parameters of intersection curve of blade
with the sphere. It is not necessary to solve the cases with no intersection or with the partial intersection.
By sampling c(u, v) = 0 in the parametric domain and substituting the points to the parametrization of
b(u, v), we obtain intersection points that define the curve common to the sphere and the blade. The
next step is approximation of these points by a B-spline curve with Algorithm 5 that has same properties
(degree, knot vector) as the original boundary curve of b(u, v). The result control polygon is corrected
such that the final curve is G2 around the leading edge (see Algorithm 4). The input to the trimming
process is shown in Fig. 2.22 (right) and the final blade is shown in Fig. 2.25.

2.2.5.4 Trimming by general surface

Similar process of trimming as for the guide vane is applied to the runner blade. The only change is that
the trimming surface is general surface of revolution. There are two possibilities:
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1. the inner trimming surface is precise description of turbine housing and the outer trimming surface
is sphere (see Fig. 2.26 (left column))

2. the inner trimming surface is approximation of the inner turbine housing and the outer trimming
surface is cylinder (see Fig. 2.26 (right column))

The second case is analogical to the case of trimming by spheres (cf. Section 2.2.5.3) because the
approximation surface of inner turbine housing is not divided into several parts and consists only of one
spline surface. Fig. 2.26 (top, right) shows the implicitly given curve in parametric space of the blade
before trimming. The boundary of the trimmed blade is shown in Fig. 2.26 (middle, right) and the blades
after trimming with turbine housing are shown in Fig. 2.26 (bottom, right).

For the first case, the inner part of housing used for trimming includes several types of surfaces that
can be described implicitly: cylinder, sphere, torus and cone. This type of trimming generates the volume
with five patches (see Section 3.3) and it is more complicated thus it is used mainly for analyzing the
flow through turbine not for the optimization process. Let’s describe the second process in more detail.
Firstly, we do exactly the same process as for the sphere (described in Section 2.2.5.3) for each surface
that characterize the turbine housing (i.e. for cylinder, sphere, torus and cone). Now, the only difference
is that the resulting trimming curve in parameter space of untrimmed surface is composed of several
parts and could be C0 continuous (Fig. 2.26 (top, left)). The boundary of the blade is shown in Fig. 2.26
(middle, left) and the blades after trimming with turbine housing are shown in Fig. 2.26 (bottom, left).

2.3 Blades of Francis turbine

The procedure of modelling of FT blades is similar to the modelling of KT blades. There are three types
of blades: stay vanes, guide vanes and runner blades in FT. The stay vanes and guide vanes has the same
shape and they are prismatic in the direction of the blades axis. The development of the B-spline surface
for runner blade is more complicated.

2.3.1 Stay vanes and guide vanes of FT

The stay vanes are situated in the spiral case and the guide vanes are placed before the runner. Both
of them serve to streamline the flow of water. From the geometric point of view the planar profile of
stay/guide vane is same as for KT guide vanes (described in previous Section 2.2). It means that we start
with description of camber line that is followed by definition of the function of thickness (for more infor-
mation see Sections 2.2.1 and 2.2.2). There are similar parameters included in the final parameterization
and the final blade is G2 continuous.

2.3.1.1 2D profile

See Sections 2.2.1, 2.2.2 and 2.2.3 for creating 2D profile of KT blades since the process for FT does not
change.

2.3.1.2 Construction of the final blade

For finding B-spline description of stay/guide vanes it is necessary to know only 2D blade profile and
one additional parameter

• hd ... height of the blade,

that is same for the stay vane and guide vane and corresponds to the distance between disks of spiral
(see section 3.2.1). 2D profile in the plane yz is also computed in the plane x = hd and the control
net is determined. The final blade is linear in the direction of the blade axis. Fig. 2.27 (left) shows
the guide vane where the parameters are: v = 0.00625909, d = 0.506391, β1 = −0.00585567, β2 =
−0.0242671, vt = 0.0738626, dt = 0.386106, γ = −0.00585567, kt = 0.00554457.
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Figure 2.26: Trimming process of runner blade, trimming by inner housing (red), trimming by outer
housing (yellow), leading edge (pink) and trailing edge (blue). Left: Runner blades of KT trimmed with
the exact turbine housing, parametric space (top), blade before trimming (right), blade after trimming
together with turbine housing (bottom). Right: Runner blades of KT trimmed with the approximate
turbine housing, parametric space (top), blade before trimming (right), blade after trimming together
with turbine housing (bottom).
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Figure 2.27: Left: B-spline surface and the control net of the guide vane FT. Right: The guide vanes of
FT.

2.3.2 Runner blades of FT

The following process is divided into several steps. Preprocessing consists of composing trailing and
leading edge from given parameters, computing the parametric sections of the runner from its B-spline
volume parameterization (3D profiles are approximated on these sections) and the last step is to define
intersections of the trailing/leading edge with these parametric sections. We map these intersections to
a general plane that is determined by a normal vector defined by trailing/leading edge points and point
on the x-axis. 2D blade profiles are created in this plane and they have the same parameters as for stay
vanes/guide vanes. Moreover, we transform 2D profiles such that mapped intersections correspond with
the leading/trailing edge points. 2D blade profiles are mapped to the parametric sections and 3D blade
profiles are obtained. The last part of the process is devoted to the computation of B-spline surface
representing blade.

2.3.2.1 Preprocessing

There are several components that should be defined before determining blade profiles of the runner
blade.

1. Trailing edge and the leading edge

The trailing edge has the following parameters – two points and two vectors

• Ao ... starting point of trailing edge,

• Bo ... ending point of trailing edge,

• tAo ... starting tangent vector,

• tBo ... ending tangent vector.

The trailing edge is represented as cubic B-spline curve. From the numerous experiments, the sui-
table choice seems to be B-spline curve with three segments (this number of parts was discovered
after experiments with data from the Francis turbine blade provided by MAVEL a.s.). If no other
shape restrictions or requirements are given, the remaining control points are computed with mini-
mization of second differences. Similarly, the leading edge has four parameters (Al, Bl, tAl

, tAl
)

and the B-spline representation is also cubic with three parts and the rest of degrees of freedoms
are determined by minimization of second differences, if no other shape requirements are given.
Fig. 2.28 shows the trailing and the leading edge.
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Figure 2.28: Left: Sections of the runner (the hub is orange and the turbine housing is red). Right: 2D
profile mapped to the hub, trailing edge (pink) and leading edge (green) together with the control points.

2. The plane for 2D blade profiles

The special plane that serves as the plane where 2D blade profiles are constructed is determined
from the previous parameters of leading/trailing edge. The plane is given as

p(u, v) : X = (Ahx, 0, 0) + u−→s + v(1, 1, 0), (2.24)

where Ahx is the x coordinate of the hub (see Section 3.2.4) and the direction vector −→s depends
on the parameters of leading and trailing edge. The vector −→s is

−→s =
(An −Bn) + (Ao −Bo)

2
.

Fig. 2.28 shows the plane for construction of 2D profiles.

3. Parametric sections

The sections of runner that are used for mapping 2D profiles are determined from B-spline volume
parameterization of the runner. This parameterization is defined the inner and outer surfaces of
runner. The linear transition is between the outer and inner part of runner described as B-spline
surfaces, i.e. the last knot vector of B-spline volume representation B(u, v, w) is

W = (0, 0, 1, 1).

The sections are obtained for parameters w = wi, where i = 0, . . . ,m − 1 and m is number of
profiles. Fig. 2.28 shows different sections of runner.

4. Intersections of parametric sections and edges

The next preprocessing step is to find intersections of the leading and trailing edges with parametric
sections. The intersections are found by solving the system of nonlinear equations (e.g. by using
Newton method)

r(u, v) = e(t),

where r(u, v) is the parameterization of the section and e(t) parameterization of trailing/leading
edge.
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Figure 2.29: The runner blades of FT.

2.3.2.2 2D profile

The planar blade profile is computed for parameters not different from the ones in Section 2.3.1. The
main difference is in the plane where they are constructed (stay/guide vanes are made in the yz-plane).
The specific plane is defined in (2.24) and the blade profile is constructed as the one described in the
Sections 2.2.1, 2.2.2 and 2.2.3.

2.3.2.3 3D profile

First of all, 2D blade profile is sampled and then mapped to the parametric volume sections presented
in Section 2.3.2.1 with the help of orthogonal projection where projection direction is given as normal
vector of the plane (2.24). The next step is to used Algorithm 5 to approximate these mapped points by a
B-spline curve (this process is divided into two parts – suction and pressure side). This process is applied
to each 2D blade profile constructed in the special plane (2.24). The described steps determine 3D blade
profiles that are necessary for the construction of the final B-spline surface shown in the next paragraph.

2.3.2.4 Construction of the final blade

The final blade of FT is constructed in the same way as KT blades (see section 2.2.5.2). It means that
the resulting B-spline surface contains m × n control points, where n is the number of control points
determining one 3D blade profile in the runner section and m = 3(l − 1), where l is the number of
these profiles. The construction of the control net starts with adding the already known curves to the net:
3D blade profiles (rows of the net), trailing edges (the first and the last columns) and leading edge (n+1

2
column). After adding continuity conditions the remaining control points are computed with the help of
minimization of third differences (see Section 2.2.5.2 for more details). The final B-spline surface is C1

continuous across the profiles, profile curves are G2 continuous and degrees are (N, 3), where N is the
degree of profile curves on the runner blade sections. The knot vectors also depend on the knot vector of
the profile curves and the number of profile curves because one profile curve adds triple knot to the base
knot vector (0, 0, 0, 0, 1, 1, 1, 1). On the contrary to KT blade, the FT blade does not have to be trimmed
because the FT runner blades are stationary and do not rotate around their axes. The runner of FT with
blades is shown in Fig. 2.29.
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It is the glory of geometry that from so
few principles, fetched from without, is
able to accomplish so much.

Isaac Newton

3
B-spline volume parameterizations

This chapter contains mainly the description of methods and approaches used fo finding the volume pa-
rameterizations of Kaplan and Francis turbines. These methods provide so-called parametric geometric
models, i.e., for given shape parameters the corresponding B-spline model respecting these shape pa-
rameters is constructed. Such parametric geometric models allow to describe a wide range of different
shapes just by one model. The volume B-spline models are necessary for analysis of the flow through
the turbine utilizing IGA. The process of analysis is followed by optimization of water turbine blades to
improve the desired properties of water turbines (efficiency, reduction of cavitation etc.). This chapter is
organized as follows. We mention more general methods for determining B-spline volumes in the first
part of this chapter. The second section is devoted to parts of water turbines and their parameterizations
as boundaries for B-spline volumes. In the last section, the results for B-spline volumes of KT and FT
are presented as the main part of this chapter.

3.1 Methods for determining B-spline/NURBS volumes

In this section, we present two methods required for the description B-spline/NURBS volumes arising
in the context of water turbines. The first one is a method of determining approximate B-spline volume
of revolution, which is obtained by rotation of surface around the given axis. The second method is
more general and the input are six surfaces forming boundary of the resulting volume. For increasing the
speed of the follow-up computations based on isogeometric analysis, we parametrized all surfaces and
volumes just by polynomial B-spline functions. Thus, we apply polynomial approximation wherever it
was required.

3.1.1 Polynomial approximation of a circle/circular arc

If it is possible to accept small-enough error in the description of a circle/circular arc, the standard
rational parameterization can be replaced by polynomial approximation. There are several approaches
but the method presented in [30] is adopted in the following. The polynomial approximation of circular
arc starts with searching control points of a Bézier curve. We know that the first and the last control
points are the first and last points of a circular arc which we approximate and the rest of the control
points lie on the tangents of the circular arc. Thus, we would like to find the distance of the second and
the third control point from the boundary ones (see Fig 3.1). The distance is obtained as

K = 4
tan(α4 )

3
, (3.1)

where α ≤ π
2 is a central angle of circular arc (details of the computation are in [30]). The control points

of the unit circle with the centre at the origin approximated with polynomial functions are

P = {(0, 1), (K, 1), (1,K), (1, 0), (1,−K), (K,−1), (0,−1),
(−K,−1), (−1,−K), (−1, 0), (−1,K), (−K, 1), (0, 1)} , (3.2)
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Figure 3.1: The control points of the approximation of the unit circle with the centre at the origin.

where all weights are equal to one. To approximate the whole circle at least four circular arcs are needed
(then α = π

2 ). The corresponding knot vector is

U = (0, 0, 0, 0, 1/4, 1/4, 1/4, 1/2, 1/2, 1/2, 3/4, 3/4, 3/4, 1, 1, 1, 1).

For example the approximation error for the circular arc with central angle π
2 is 2× 10−6.

3.1.2 Approximate B-spline volume of revolution

Let us consider two B-spline curves c(t) and c′(t) such that

c(t) =
l∑

k=0

PkNk,r(t) =
l∑

k=0

(xk, yk, zk)Nk,r(t),

c′(t) =

l∑

k=0

P′
kNk,r(t) =

l∑

k=0

(x′k, y
′
k, z

′
k)Nk,r(t),

Nk,r(t), k = 0, . . . , l are B-spline basis functions for the knot vector W = (w0, . . . , wl+r+1).
Let us assume that x-axis is the rotation axis. Then, each of the curves c(t), c′(t) defines an appro-

ximate B-spline surface of revolution s(v,w), s′(v,w), respectively, such that

s(v,w) =

12∑

j=0

l∑

k=0

Pj,kNj,3(v)Nk,r(w),

s′(v,w) =
12∑

j=0

l∑

k=0

P′
j,kNj,3(v)Nk,r(w), (3.3)

where

{Pj,k}12,lj=0,k=0 = {dkRj + (xk, 0, 0)}12,lj=0,k=0,

{P′
j,k}12,lj=0,k=0 = {d′kRj + (x′k, 0, 0)}12,lj=0,k=0,

and dk =
√

y2k + z2k, d′k =
√

y′2k + z′2k and

{Rj}12j=0 = {(0, 0, 1), (0,K, 1), (0, 1,K), (0, 1, 0), (0, 1,−K), (0,K,−1), (0, 0,−1),
(0,−K,−1), (0,−1,−K), (0,−1, 0), (0,−1,K), (0,−K, 1), (0, 0, 1)} ,
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Figure 3.2: Left: B-spline annulus with r1 = 400, r2 = 1000 and the centre in the origin with the control
net. Middle: Approximate B-spline volume of revolution of degree (3, 3, 2) with its generatrix (yellow).
Right: Control net of approximate B-spline volume.

where K is defined in (3.1). Further, Nj,3(v), j = 0, . . . , 12 are B-spline basis functions for the knot
vector

V = (0, 0, 0, 0, 1/4, 1/4, 1/4, 1/2, 1/2, 1/2, 3/4, 3/4, 3/4, 1, 1, 1, 1).

Joining the control nets {Pj,k}12,lj=0,k=0 and {P′
j,k}

12,l
j=0,k=0 to one control net

{Qi,j,k}1,12,li=0,j=0,k=0,

where

{Q0,j,k}12,lj=0,k=0 = {Pj,k}12,lj=0,k=0,

{Q1,j,k}12,lj=0,k=0 = {P′
j,k}12,lj=0,k=0,

determines approximate B-spline volume of revolution, which is defined as

v(u, v, w) =

1∑

i=0

12∑

j=0

l∑

k=0

Qi,j,kNi,1(u)Nj,3(v)Nk,r(w),

where Ni,1(u) are B-spline basis functions for the knot vector U = (0, 0, 1, 1). The example of appro-
ximate B-spline volume of revolution is in Fig. 3.2.

3.1.3 Revision of algorithms for construction of planar and volume domains for given
boundary

The method for finding B-spline or NURBS volume parameterization for given boundary in water tur-
bines is described in the following Section 3.1.4. Some steps of this method include different algorithms
for obtaining the parameterization for given boundary curves or boundary surfaces. This section is de-
voted to brief revision of the used algorithms (precise definitions of algorithms and their analysis are in
[24, 34, 40, 15, 91]).
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3.1.3.1 2D methods

Let b1(u), b2(v), b3(u) and b4(v) be four boundary B-spline curves , u ∈ [0, 1], v ∈ [0, 1], fulfilling
the conditions

b1(1) = b2(0), b2(1) = b3(1), b3(0) = b4(1), b4(0) = b1(0). (3.4)

Assume that each boundary B-spline curve bl is determined by the control points Bl
k, where k =

0, . . . , n, for l = 1, 3 and k = 0, . . . ,m, for l = 2, 4, the non-periodic knot vector Ul and the de-
gree pl. We want to find a control net for planar B-spline surface describing domain s(u, v) given by
four boundary curves bl. We assume without loss of generality that the domain of the paramatric surface
is the unit square, i.e., 0 ≤ u, v ≤ 1. If the curves b1(u) and b3(u) do not have same degrees or knot
vectors we use the algorithms for degree elevation or knot insertion (see [69]) to obtain the same knot
vectors or degrees (analogously for the pair b2(v) and b4(v)). See Fig. 3.3 (top, left) for the initial
setting.

There are several methods for finding the parameterization, i.e., methods how to find the control
points Pi,j , where i = 0, . . . , n and j = 0, . . . ,m. For all mention methods it holds

Pi,0 = B1
k, P0,j = B4

k, Pi,m = B3
k, Pn,j = B2

k.

The methods are:

• Discrete Coons patch

This method comes from the bilineary blended Coons patch and it can be easily modified to dis-
crete version for control points

Pi,j =

(
1− i

n

)
P0,j +

i

n
Pn,j +

(
1− j

m

)
Pi,0 +

j

m
Pi,m −

−
[
1− i

n
i
n

] [ P0,0 P0,m

Pn,0 Pn,m

] [
1− j

m
j
m

]
.

The process of computing the control net is very computationally inexpensive, on the other hand
the resulting parameterization is sometimes not injective and postprocess needs to be accomplished
to obtain valid (bijective) parameterization. See Fig. 3.3 (top, right) that shows the discrete Coons
patch application.

• Spring model

The spring model possesses similar qualities as discrete Coons patch. This method uses “elastic
strings” to construct edges in the control net, i.e,

4Pi,j = Pi+1,j +Pi−1,j +Pi,j+1 +Pi,j−1. (3.5)

This leads to solving simple system of linear algebraic equations. Other options of this model are
obtained by adding different constants to different edges. The result of this method is shown in
Fig. 3.3 (middle, left).

• Mean Value coordinates

This method uses initial control net P̂i,j (can be computed either by discrete Coons patch or by
spring model) and its boundary points P̂k, k = 0, . . . , 2m+ 2n− 1 (counter clockwise arranged)
where arbitrary point P could be defined as an affine combination of the boundary control points

P =
2m+2n−1∑

k=0

λk(P)P̂k, where λk(P) =
wk(P)∑2m+2n−1

k=0 wk(P)
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Methods

Functionals
Ql Qu Qo Qs Qa

SPR 0.850981 3.44547 0.0175097 0.0139665 0.163767

DCP 0.890113 5.77134 0.0261811 0.0276505 0.169803

GM (0.1, 0.1) 0.837359 2.71164 0.0157024 0.0120443 0.15917

MN 0.855965 2.91335 0.0180346 0.0130495 0.163879

NL (0.1, 0.1, 0.3, 0.2, 0.1) 0.839481 2.92738 0.0133441 0.00921776 0.159155

Table 3.1: Functionals for the planar parameterization: SPR – spring method, DC – discrete Coons patch,
GM – method with geometric measure with corresponding weights (wl, wu), MN – mean value method
and NL – non-linear case with weights (wl, wu, wo, ws, wa). Initial parameterization for MN and NL
methods is GM (0.1, 0.1). The result parameterizations are shown in Fig. 3.3.

and weights are defined by

wk(P) =
2

‖p̂k‖

( |p̂k−1, p̂k|
‖p̂k−1‖‖p̂k‖+ 〈p̂k−1, p̂k〉

+
|p̂k, p̂k+1|

‖p̂k‖‖p̂k+1‖+ 〈p̂k, p̂k+1〉

)
,

where p̂k is vector defined by points P̂k and P, 〈·, ·〉 is inner product and |·, ·| is determinant.

The new control net is then obtained as

Pi,j =
2m+2n−1∑

k=0

λk(P̂i,j)Pk,

i.e, we use weights of initial control net to compute new one. See Fig. 3.3 (bottom, left).

• Method with geometric measures

This method focus on the properties of the parameterization and the linear direct method is used.
The optimization problem is solved and objective function is

min
P∗

i,j

[wlQl(Pi,j) + wuQu(Pi,j))] (3.6)

where P∗
i,j are unknown inner points and Pi,j is the whole control net including boundaries. Para-

metric length functional Ql(Pi,j) is defined as

Ql(Pi,j) =

∫

Ω

‖su‖2 + ‖sv‖2dudv (3.7)

and uniformity functional Qu(Pi,j) is defined as

Qu(Pi,j) =

∫

Ω

‖suu‖2 + 2‖suv‖2 + ‖svv‖2dudv. (3.8)

The choice of weights wl and wu is more discussed in [15]. Fig. 3.3 (middle, right) shows the
result of this approach with geometric measures.
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b1(u)

b2(v)

b3(u)

b4(v)

Figure 3.3: Planar parameterization methods. Top: Given boundary curves (left) and discrete Coons
patch (right) with control net. Middle: Spring model with control net (left) and geometric measures case
(right) with control net for weights are wl = wu = 0.1. Bottom: Mean value coordinate method (right)
with control net and non-linear case (left) with control net for weights wl = wu = wa = 0.1, wo = 0.3,
ws = 0.2. Initialization parameterization for the previous two methods is geometric measure case with
the weigths wl = wu = 0.1.
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Methods

Functionals
Ql Qu Qo Qs Qa

SPR 3.12749 7.4222 0.102625 0.0110431 1.0442

DCP 3.20202 12.267 0.157006 0.0199801 1.03363

GM (0.1, 0.1) 3.11473 6.38167 0.0932294 0.00958371 1.03419

NL (0.1, 0.1, 0.3, 0.2, 0.1) 3.11411 6.38422 0.0921767 0.00948747 1.03357

Table 3.2: Functionals for the volume parameterization: SPR – spring method, DC – discrete Coons
patch, GM – method with geometric measure with corresponding weights (wl, wu) and NL – non-linear
case with weights (wl, wu, wo, ws, wa), where initial parameterization for NL method is GM (0.1, 0.1).
The result parameterizations are shown in Fig. 3.5.

Figure 3.4: Given boundary surfaces for volume parameterization, visible three surfaces (left) and non-
visible three surfaces (middle) with control nets (right).

• Non-linear case

Now, the more complex objective function than (3.6) is used and another functionals are added.
More precisely, the objective function for minimization is now in the form

min
P∗

i,j

[wlQl(Pi,j) + wuQu(Pi,j) + woQo(Pi,j) + wsQs(Pi,j) + waQa(Pi,j)]

where Ql(Pi,j) and Qu(Pi,j) were defined in (3.7) and (3.8). The orthogonality functional is in
the form

Qo(Pi,j) =

∫

Ω

(su · sv)2dudv, (3.9)

skewness functional is determined as

Qs(Pi,j) =

∫

Ω

(
(su · sv)2

(su · su)(sv · sv)

)2

dudv (3.10)

and the area functional is

Qa(Pi,j) =

∫

Ω

|su, sv |2dudv, (3.11)

The previous method with geometric measures is used for initialization. Application of this non-
linear method is shown in Fig. 3.3 (bottom, right).
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Figure 3.5: Volume parameterization methods. Left: Resulting parameterizations. Middle: Inner para-
metric surfaces. Right: Control nets. Top: Discrete Coons patch. Second row: Spring model. Third
row: Geometric measures case with weights wl = wu = 0.1. Bottom: Non-linear method with weights
wl = wu = wa = 0.1, wo = 0.3, ws = 0.2, initial parameterization is geometric measure case with the
weigths wl = wu = 0.1.

58



Table 3.1 shows the comparison of values of functionals defined in (3.7), (3.8), (3.9), (3.10) and
(3.11) for different approaches that are shown in Fig. 3.3.

3.1.3.2 3D methods

The similar problem can be solved in 3D to find volume parameterizations. Now, let ba(u, v) be six
boundary B-spline surfaces, u ∈ [0, 1], v ∈ [0, 1]. Assume that each boundary surface ba is determined
by the control points Ba

r,s, the non-periodic knot vectors Ua, Va and the degrees pa, qa. We want to
find a control net for B-spline volume describing domain v(u, v, w) given by six boundary surfaces ba.
We assume without loss of generality that the parametric domain is the unit cube, i.e., 0 ≤ u, v, w ≤ 1.
Then, we assume that the boundary surfaces fulfill compatibility conditions analogous to the planar case
(3.4). If it is necessary (to change the boundary surfaces degrees or knot vectors when the corresponding
pairs of boundaries differ) we use the algorithms for degree elevation or knot insertion (cf. [69]). See
Fig. 3.4 for the initial setting.

Our goal is to find the control points Pi,j,k for v(u, v, w). The methods described in the following
paragraphs are generalized approaches of 2D methods:

• Discrete Coons patch

Let P0,j,k,Pn,j,k,Pi,0,k,Pi,m,k,Pi,j,0,Pi,j,l be the control nets of boundary surfaces correspond-
ing to control nets Ba

r,s, a = 0, . . . , 5. Then, the control points of the control net are

Pi,j,k =

(
1− i

n

)
P0,j,k +

i

n
Pn,j,k +

(
1− j

m

)
Pi,0,k +

j

m
Pi,m,k +

(
1− k

l

)
Pi,j,0 +

+
k

l
Pi,j,l −

[
1− i

n
i
n

] [ P0,0,k P0,m,k

Pn,0,k Pn,m,k

][
1− j

m
j
m

]
−

−
[
1− j

m
j
m

] [ Pi,0,0 Pi,0,l

Pi,m,0 Pi,m,l

][
1− k

l
k
l

]
−

−
[
1− k

l
k
l

] [ P0,j,0 Pn,j,0

P0,j,l Pn,j,l

][
1− i

n
i
n

]
+

+
k

l

([
1− i

n
i
n

] [ P0,0,l P0,m,l

Pn,0,l Pn,m,l

][
1− j

m
j
m

])
+

+

(
1− k

l

)([
1− i

n
i
n

] [ P0,0,0 P0,m,0

Pn,0,0 Pn,m,0

][
1− j

m
j
m

])
.

See Fig. 3.5 (top) that shows resulting parameterization of discrete Coons Patch.

• 3D Spring model

This method is generalized spring model from (3.5). Now, it holds

6Pi,j,k = Pi+1,j,k +Pi−1,j,k +Pi,j+1,k +Pi,j−1,k +Pi,j,k−1 +Pi,j,k+1.

This again leads to solving linear system of algebraic equations for unknown control points.
Fig. 3.5 (second row) shows application of the 3D spring model.

• Method with geometric measures

This approach includes minimization of objective function

min
P∗

i,j,k

[wlQl(Pi,j,k) + wuQu(Pi,j,k))],
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where P∗
i,j,k are unknown inner points and Pi,j,k is the whole control net including boundaries.

Parametric length functional Ql(Pi,j,k) is defined as

Ql(Pi,j,k) =

∫

Ω

‖su‖2 + ‖sv‖2 + ‖sw‖2dudvdw (3.12)

and uniformity functional Qu(Pi,j) is defined as

Qu(Pi,j,k) =

∫

Ω

‖suu‖2 + 2‖suv‖2 + 2‖suw‖2 + 2‖svw‖2 + ‖svv‖2 + ‖sww‖2dudvdw. (3.13)

The choice of weights wl and wu is more discussed in [15]. Fig. 3.5 (third row) shows the result
parametrization for this approach with geometric measures.

• Non-linear case

Now, the objective function is extended by three functionals to

min
P∗

i,j,k

[wlQl(Pi,j,k) + wuQu(Pi,j,k) + woQo(Pi,j,k) + wsQs(Pi,j,k) + waQa(Pi,j,k)],

where Ql(Pi,j,k) and Qu(Pi,j,k) were defined in (3.12) and (3.13). The orthogonality functional
is in the form

Qo(Pi,j,k) =

∫

Ω

(su · sv)2 + (su · sw)2 + (sw · sv)2dudvdw, (3.14)

skewness functional is determined as

Qs(Pi,j,k) =

∫

Ω

(
(su · sv)2

(su · su)(sv · sv)

)2

+

(
(su · sw)2

(su · su)(sw · sw)

)2

+

(
(sv · sw)2

(sv · sv)(sw · sw)

)2

dudvdw

(3.15)
and the volume functional is

Qa(Pi,j,k) =

∫

Ω

|su, sv , sw|2dudvdw. (3.16)

The previous method with geometric measures is used for initialization. Application of this non-
linear method is shown in Fig. 3.5 (bottom).

Table 3.2 shows the comparison of above mentioned methods for the example shown in Fig. 3.5.

3.1.4 B-spline/NURBS volume for given boundary

The second type of volume which occurs in the volumetric parameterization of water turbines is defined
by six general boundary surfaces. Two of them lie on the inner/outer housing of the turbine. We apply
the following steps:

1. determine boundary curves of the patch (parts of the blades or boundaries of the neighbouring
volumes),

2. determine surfaces for the given boundary curves

(a) for the surfaces with the boundary curves on the housing of turbine we apply

• find the B-spline description of the boundary curves in the parametric space of the hous-
ing of turbine,
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Figure 3.6: Left: Points on the turbine housing for parameters (bottom) from the sampled parametric
space of turbine housing (top). Right: Boundary surfaces that are not parts of the turbine housing.

• determine the inner control points of the B-spline surface for the given boundary in the
parametric space of the housing of turbine (for example, we can use discrete Coons
patch in 2D or some other planar algorithms – see Section 3.1.3),

• sample the surface in the parametric space and find the corresponding points that lie on
the housing between the boundary curves,

• approximate the surface on the housing,

(b) in the case that all boundary curves do not lie on the housing, we apply discrete Coons patch
algorithm or spring model described in Section 3.1.3,

3. for the final hexahedron we compute the inner control points with the discrete Coons patch algo-
rithm in 3D described in Section 3.1.3.

Fig. 3.6 shows some steps of the process.

3.2 Parts of water turbines as the boundaries for NURBS volumes

Besides turbine blades (mentioned in the previous chapter) our intention is also to describe all other
surfaces representing all other parts of turbine as B-spline/NURBS surfaces. Thus, we present also other
parts of turbines: the spiral shaped pipe with stay vanes (entrance of vertical KT and FT), turbine housing
for KT, part with guide vanes in FT, runner of FT and draft tube. All presented geometric models are
polynomial because the approach described in Section 3.1.1 is used for surfaces of revolution or for
parameterization of circle. Several parts of FT and KT described in this section are shown in Fig. 3.8
and 3.7.
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Figure 3.7: Kaplan turbine defined with B-spline parameterizations.

3.2.1 Spiral shaped pipe

The task of the spiral shaped pipe is to bring water into the part with guide vanes. The entrance pipe,
which is formed of several sections defined by circular arcs with the ellipse at the end (in the whole
spiral part these ellipses determine disks with the stay vanes). At the beginning of the entrance pipe the
truncated cone is placed, and at the end there is a section connecting the first/last stay vane. The spiral
shaped pipe has the following parameters:

• r1 ... radius of the inlet circle of the truncated cone,

• d1 ... the length of the truncated cone,

• ns ... the number of segments in the spiral shaped pipe,

• rs ... radius of the circular arc forming the section of the spiral shaped pipe,

• rc ... distance between the centre of the section and the centre of the spiral that lies on the axis of
the turbine,

• as ... angle of rotation of spiral section,

• rd1 ... inner distance of the disk from the axis of turbine,

• rd2 ... outer distance of the disk from the axis of turbine,

• hd ... distance between the disks,

• wd ... width of the disk.

Fig. 3.9 shows the parameters of the spiral section together with the control polygon. The knot vector
corresponding to the direction of the flow of water depends on the number of sections. The surface is
bicubic and the second knot vector is

U = (0, 0, 0, 0, 1/12, 1/12, 1/12, 2/12, 2/12, 2/12, 3/12, 3/12, 3/12, 4/12, 4/12, 4/12, 5/12, 5/12,

5/12, 6/12, 6/12, 6/12, 7/12, 7/12, 7/12, 8/12, 8/12, 8/12, 9/12, 9/12, 9/12, 10/12, 10/12,

10/12, 11/12, 11/12, 11/12, 1, 1, 1, 1)
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Figure 3.8: Right: Francis turbine defined with B-spline surfaces: the entrance pipe - spiral (yellow),
part with guide vanes (green), runner (blue) a draft tube (purple).
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hd
wd

d1

r1

Figure 3.9: Left: The section of spiral pipe with parameters; Right: The beginning of the spiral case
(without disks) with parameters.

The control points of the section and the example of specific parameters are in Appendix A. Stay vanes
and their geometric representation are described in Section 2.3.1, we just remind that hd is also the
parameter for the height of the stay vane.

3.2.2 Part with guide vanes and runner in KT

In this section we describe inner and outer surfaces of blade canal of Kaplan turbine - part containing
the guide vanes and the runner. The final surfaces are determined as approximate B-spline surfaces of
revolution. Firstly, we model the generatrix of the revolution surface, which is consequently rotated
around the axis of the turbine. Description of the turbine housing split into two parts - outer turbine
case and inner turbine case. We start with the outer part and in each case we consider the turbine axis is
identical with the z-axis.

Meridian of outer surface consists of lines and circular arcs, the curve is placed so that it lies in
xz-plane. B-spline description of the generatrix is based on determination of control points that are
dependent on the parameters, for example lengths of lines, angles and radii of circular arcs (see Fig. 3.10
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Figure 3.10: Top: Outer surface of a main section of turbine containing guide vanes and a runner (left)
and inner surface of a main section of turbine containing guide vanes and a runner (right); Bottom:
Generatrix with parameters of the outer surface (left) and of the inner surface (right).

(bottom, left)), and the knot vector

U = (0, 0, 0, 0, 0.03791, 0.03791, 0.03791, 0.44541, 0.44541, 0.44541,

0.62725, 0.62725, 0.62725, 0.65869, 0.65869, 0.65869, 0.6744, 0.6744, 0.6744,

0.69027, 0.69027, 0.69027, 0.75117, 0.75117, 0.75117, 0.79769, 0.79769, 0.79769,

0.82095, 0.82095, 0.82095, 0.91826, 0.91826, 0.91826, 1, 1, 1, 1) .

The knot vector is determined by the chordal parameterization of generatrix. We do not present the
specific coordinates of control points because they have complicated description. The next step is to
form approximate surface of revolution. Thus, the second knot vector is

V = (0, 0, 0, 0, 1/4, 1/4, 1/4, 2/4, 2/4, 2/4, 3/4, 3/4, 3/4, 1, 1, 1, 1).

This determines the outer turbine case uniquely for the given parameters, an example of the outer surface
is shown in Fig. 3.10 (top, left).

The construction of inner surface is analogous to the outer turbine case. There are also lines and
circular arcs, but the knot vector of generatrix (see Fig. 3.10 (bottom, right)) is different

U = (0, 0, 0, 0, 0.30372, 0.30372, 0.30372, 0.35068, 0.35068, 0.35068,

0.45344, 0.45344, 0.45344, 0.62045, 0.62045, 0.62045, 0.66963, 0.66963, 0.66963,

0.73411, 0.73411, 0.73411, 0.75117, 0.75117, 0.75117, 0.79594, 0.79594, 0.79594,

0.80648, 0.80648, 0.80648, 0.88463, 0.88463, 0.88463, 1, 1, 1, 1) .
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Figure 3.11: New generatrixes (red) for the hub and turbine housing of KT.

rsr

rd1

Figure 3.12: Part with guide vanes with parameters.

Generatrix lies in xz-plane and control points are dependent on the parameters (lengths of lines, angles
and radii of circular arcs). The second knot vector is same as in the outer case because we use polynomial
approximation of the circle again, i.e.

V = (0, 0, 0, 0, 1/4, 1/4, 1/4, 2/4, 2/4, 2/4, 3/4, 3/4, 3/4, 1, 1, 1, 1).

B-spline surface is shown in Fig. 3.10 (top, right).
For the optimization process, the simplified versions of inner and outer surfaces were constructed.

The generatrix of inner surface is replaced by spline curve that interpolates important points. This leads
to C2 continues generatrix, instead of C0 continuous original version. The approximate the original
generatrix of turbine housing by the line and the generatrix of outer surface is simplified to a line segment
which leads to outer surface corresponding to approximate cylinder (see Fig. 3.11).

3.2.3 Part with guide vanes in FT

The following paragraphs include the description of the part with the guide vanes together with the
parameters characterizing its shape. The guide vanes situated in this part of turbine are described in
Section 2.3.1. The part with the guide vanes is composed of two anuli. The parameters are:

• hd ... the height of the part with the guide vanes,

• rd1 ... radius of the outer circle,
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Figure 3.13: Top: Hub with the generatrix. Bottom: Shroud with the generatrix.

• rsr ... radius of the inner circle,

and it holds that hd is same as the distance between the disks in the spiral shaped piped and rd1 is also
the distance of the disk from the axis of turbine (see Section 3.2.1), rsr is the parameter of the runner
(see more in Section 3.2.4). The parameters of the part with the guide vanes are shown in Fig. 3.12. The
knot vectors are

U = (0, 0, 0, 0, 1/4, 1/4, 1/4, 2/4, 2/4, 2/4, 3/4, 3/4, 3/4, 1, 1, 1, 1),

V = (0, 0, 1, 1).

3.2.4 Hub and shroud of FT

This part is devoted to the FT runner that is situated between the guide vanes and the draft tube. The
runner is constructed from two surfaces of revolution. For the B-spline description it is necessary to
define the generatrices of the surfaces. The generatrix of the hub is cubic B-spline curve with three parts
and the parameters are

• Ah ... starting point,

• Bh ... ending point,

• tAh
... starting tangent vector,

• tBh
... ending tangent vector.

analogically for the outer surface As, Bs, tAs , tBs . Because the prescribed parameters do not define all
of the control points the remaining ones are computed by the minimalization of the second differences
(see Section 2.2.5.2). Knot vectors are same for the both surfaces:

U = (0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1),

V = (0, 0, 0, 0, 1/4, 1/4, 1/4, 2/4, 2/4, 2/4, 3/4, 3/4, 3/4, 1, 1, 1, 1).

Fig. 3.13 shows B-spline surfaces of hub (top) and shroud (bottom).
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Rr

Ur

Figure 3.14: Top: Three parts of the draft tube: 1) cone part, 2) L-part a 3) diffuser (left); parameters of
the elbow part (right). Bottom: NURBS volume of draft tube (left), see Appendix B for given parameters;
parameterization of the draft tube section (right).

3.2.5 Draft tube

Draft tube is a device for water drainage after it leaves the runner, which means that it is located at the
end of a water turbine behind the runner. It serves to two purposes:

• Decrease of kinetic energy – diffuser

The draft tube makes it possible to recover kinetic energy of water still remaining in the discharge
from runner. The draft tube expands in the direction of water flow, which leads to the decrease of
outlet water speed, i.e., the draft tube behaves as a diffuser.

• Expansion of potential energy

The hydraulic turbine does not have to be placed under the bottom water surface, if draft tube
is included. Moreover, the pressure behind the runner is lowered because of the weight of water
column in draft tube.
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Further, it also creates consistent streamflow to the tailrace and, as follows from the above mentioned
properties, it reduces exit loss. Due to mentioned purposes the draft tube is very important part of the
water turbine.

The shape of the draft tube depends on the placement of the hydroelectric power station, it could be
straight or elbow.

First of all, we describe different parts of a draft tube. We focus on the description of specific sections
of a draft tube because these parts are just transitional surfaces between two consecutive sections. At the
beginning of the draft tube (i.e., after the runner) the sections are circles, it means that at the beginning of
a draft tube there are parts of cones. At the end, sections of draft tube are represented by rectangles with
rounded corners. As the draft tube has to be simply manufactured, transitional surfaces between circle
and rounded rectangle or two rectangles with rounded corners needs to be composed of developable
surfaces. The geometric description of straight draft tube follows.

We start with forming the rounded rectangle section, because approximate B-spline description of
circle section follows from the B-spline description of the rounded rectangle section. The given parame-
ters of this section are:

• v + 2r ... height of section,

• s+ 2r ... width of section,

• r ... radius,

• S ... centre of section .

The corresponding knot vector is

U = (0, 0, 0, 0, 1/8, 1/8, 1/8, 2/8, 2/8, 2/8, 3/8, 3/8, 3/8, 4/8, 4/8, 4/8, 5/8, 5/8, 5/8,

6/8, 6/8, 6/8, 7/8, 7/8, 7/8, 1, 1, 1, 1) .

The example of rounded rectangle section is shown in Fig. 3.14 (bottom right). For the circle section
we need the same number of control points as in the rounded rectangle section and the same knot vector.
It is necessary to obtain planes and cones in particular parts of the transitional surface between circle and
rounded rectangle. This requires to use multiple control points (the control points lying on a circle are
tripled). In Appendix B the control points of specific section of draft tube are shown.

Finally, we need to define the second knot vector to determine the B-spline surface of a draft tube. It
depends on the number of sections and also on the position of sections. To obtain a good distribution of
parametric lines, the second knot vector is obtained with the help of chordal parameterization.

In the case of elbow draft tube, it has 3 parts (see Fig. 3.14 (top left)), where the first and last parts
are same as for the straight draft tube. The elbow part is composed of rounded rectangles that are rotated.
Then, two parameters for each section in elbow part are added (see Fig. 3.14 (top right))

• Rr ... radius of rotation,

• Ur ... angle of rotation.

The next steps are analogous as for the straight version of draft tube, it means that transitional surfaces
are computed between each two sections. See more approaches of draft tube geometric description in
[55].

3.2.5.1 B-spline volume in draft tube

To create the volume parameterization of the draft tube we need to parametrize each section as a surface
for given boundary. Each boundary curve that describes the section in draft tube is divided into four
pieces and then the discrete Coons patch is applied to find the inner points (see Fig. 3.14 (bottom right)).
Thus, the final volume is just linear transition between surfaces that describe sections in draft tube (see
Fig. 3.14 (bottom left)).
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Figure 3.15: Top: The special part segment before guide vanes (left) and the part behind guide vanes.
Bottom: The part between the guide vanes (right) and the whole 3-patch model (left).
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Figure 3.16: Top: Patch before the blade (left) and patch behind the blade (right). Bottom: Left patch
(left) and right patch (right).

3.3 Volume parameterizations in KT

In this section we present segmentation of Kaplan turbine and we analyze each part in the terms of
B-spline volume parameterization.

As it was mentioned in the introduction, KT was divided into several parts because it is not possible
to describe the volumetric parameterization in one piece from the geometric point of view (the problem
arises especially in parts where blades are situated). The first basic segmentation of KT is into two parts:
blade canal and the draft tube. Volumetric parameterization of a draft tube has already been given in
Section 3.2.5. Segmentation of a blade canal of a KT is divided into four parts: entrance volume, part
with guide vanes, the section between blades and part with runner blades.

3.3.1 3-patch model with guide vanes

As the optimization process includes only runner blade, we use volume model of a blade canal with only
guide vanes (without runner blades) to determine the input velocity field to the runner. Thus, the 3-patch
model is constructed. It is divided into three parts - part before the guide vanes, part between the guide
vanes and the part behind the guide vanes. We consider the zero thickness of the guide vanes to simplify
the model.

3.3.1.1 Volume parameterizations before and behind the guide vanes

Both segments are parametrized as approximate B-spline volumes of revolution (described in sec-
tion 3.1.2). But each of the volume also includes the part before the leading edges of guide vanes and
part after the trailing edges of guide vanes. The approach described in Section 3.1.4 is used to construct
this special parts (see Fig. 3.15 (top)).
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Figure 3.17: Left: 5-patches model of KT runner. Right: Simplified 2-patch model.

3.3.1.2 Volume between guide vanes

The last part is segment between the guide vanes. The method from Section 3.1.4 was applied and the
volume is shown in Fig. 3.15.

3.3.2 Volume parameterizations surrounding the runner blade

3.3.2.1 5 patch model

First model of volume parameterization consists of 5 different volumes:

• patch before the blade (Fig. 3.16 (top, left)),

• left patch (Fig. 3.16 (bottom, left)),

• right patch (Fig. 3.16 (bottom, right)),

• patch behind the blade (Fig. 3.16 (top, right)),

• patch above the blade (red part in Fig. 3.17 (left)).

First four patches are computed as volumes for the given boundary (see Section 3.1.4). The last patch
above the blade is approximate B-spline volume of revolution (cf. Section 3.1.2). The special boundary
surface that is between two neighbouring blades is computed as average surface of suction side of one
blade and pressure side of the other one. The whole multi-patch domain contain non-conformal interfaces
due to the patch above the blade. In Fig. 3.17 (left) all 5 patches are shown.

3.3.2.2 2 patch model

The two patch model is just simplified version of the 5-patches model. The housing of turbine is slightly
changed (see Section 3.2.2) and thus the patch above the blade does not exist. We also consider the zero
thickness of the blade. The advantage of this model is that there is conformal coupling between patches.
2-patch model is shown in Fig. 3.17 (right).

The obtained patches determined by discrete Coons method (see Section 3.1.3.2) were improved by
the non-linear method described also in Section 3.1.3.2. The reason that we use the Discrete coons patch
as the initial net for the non-linear case and not the geometric measure type method or the spring model is
that these methods do not provide usable control nets (with respect to the required property of positivity
of Jacobian of the mapping from parametric to physical space) Numerous experiments has shown that
the best choice of the initial net is the Discrete coons patch. Table 3.3 shows the values of the functionals
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Methods

Functionals
Ql Qu Qo Qs Qa

lin
ea

r
m

et
ho

ds

SPR 1.51862 204.847 0.120681 0.248637 0.00784428

DCP 1.70954 456.453 0.0877296 0.272752 0.00505827

GM (0.1, 0) 1.11447 101.389 0.116958 0.316071 0.00763666

GM (0, 0.1) 1.39603 54.945 0.0784048 0.273317 0.00461025

GM (0.1, 0.1) 1.38397 54.951 0.0774842 0.270953 0.00460024

no
n-

lin
ea

r
m

et
ho

d NL (0, 0.1, 0.1, 0, 0) 1.3974 54.955 0.0782107 0.272159 0.0046381

NL (0, 0.1, 0.1, 0, 0.2) 1.39769 54.9543 0.0782092 0.272193 0.0046312

NL (0, 0.1, 0.1, 0.1, 0.2) 1.39548 54.9589 0.074213 0.264629 0.00465491

Table 3.3: Functionals for the right patch: SPR – Spring method, DC – discrete Coons patch, GM –
method with geometric measure with corresponding weights (wl, wu) and NL – non-linear case with
weights (wl, wu, wo, ws, wa). All methods are described in Section 3.1.3.2.

Figure 3.18: Left: The B-spline volume parameterization between FT guide vanes. Right: The B-spline
volume parameterization around FT runner blade

described in Section 3.1.3.2 for the right patch and Table 3.4 shows the values of the functionals for the
left patch.

From linear methods, the best result provides geometric measures method. Based on the choice of
weights, much better results with respect to Ql and Qu than for discrete Coons patch or spring model
can be obtained, and also other mentioned functionals are typically better. In this complicated case of
finding volume parameterization of runner wheel, it is possible to observe from Table 3.3 that non-linear
approach covering also functionals Qo, Qs and Qa does not lead significantly better results. Focusing on
the particular functional by increasing its weight, slightly better results for functional are obtained, but
the difference is not significant. To sum up, it seems that reasonable approach for construction of control
nets of volumetric parameterizations of runner wheel is geometric measures method which is fast (from
the point of view of computation time) and gives good results.

More generally speaking, from the point of view of consequent computations based on isogeometric
analysis, our main focus are functionals Qu, Qo and Qa to obtain uniformly distributed and as much
as orthogonal parameter lines and also equal-sized elements. This helps to obtain good results from
consequent computations and to make the process of mesh refinement easy and reasonable. That is why
the results for these functional are the most important ones and the non-linear method should be focused
on these terms (by increasing their weights).
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Methods

Functionals
Ql Qu Qo Qs Qa

lin
ea

r
m

et
ho

ds

SPR 1.47465 203.827 0.0911955 0.236379 0.00590249

DCP 1.70742 427.362 0.0902625 0.282364 0.00456441

GM (0.1, 0) 1.10451 99.157 0.118705 0.312064 0.00626679

GM (0, 0.1) 1.40323 52.3234 0.0776653 0.252377 0.00420853

GM (0.1, 0.1) 1.39031 52.3298 0.0766468 0.250889 0.00418781

no
n-

lin
ea

r
m

et
ho

d NL (0, 0.1, 0.1, 0, 0) 1.40493 52.3343 0.0778659 0.251706 0.0042271

NL (0, 0.1, 0.1, 0, 0.2) 1.40488 52.3342 0.0778757 0.251658 0.00422394

NL (0, 0.1, 0.1, 0.1, 0.2) 1.40349 52.3349 0.0776486 0.249077 0.00422058

Table 3.4: Functionals for the left patch: SPR – spring method, DC – discrete Coons patch, GM –
method with geometric measure with corresponding weights (wl, wu) and NL – non-linear case with
weights (wl, wu, wo, ws, wa). All methods are described in Section 3.1.3.2.

3.4 Volume parameterizations in FT

B-spline volume parameterizations of the part with the guide vanes and around the FT runner blade are
described in the following paragraphs. We omit the parameterization of the entrance spiral shaped pipe
because it is not symmetric surface of revolution. Moreover, we know that water leaves the entrance pipe
evenly at a constant angle. As the periodic conditions are used for the flow analysis it is sufficient to
determine B-spline volumes for specific parts of the turbine (that depends on the number of the blades).

3.4.1 FT volume parameterization between guide vanes

The volume parameterization in the surroundings of the guide vanes is linear in the direction of the tur-
bine axis, because guide vanes have prismatic shape. Moreover, the construction of the parameterization
is based just on the planar net between guide vanes described with the help of discrete Coons patch.
B-spline volume parameterization between guide vanes is shown in Fig. 3.18 (left).

3.4.2 FT volume parameterizations around runner blade

For the B-spline volume parameterization around the FT runner blade we apply the same procedure as
described in the Section 3.3.2. The volume is composed of two patches: suction and pressure patch. For
the simplification we use also the zero thickness at the trailing edge. In Fig. 3.18 (right) patches around
the runner blade are shown.
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If people do not believe that mathematics is
simple, it is only because they do not realize
how complicated life is.

John von Neumann

Conclusion

This thesis is focused on geometric modelling in industrial applications and we concentrate on models of
water turbines (Pelton turbine, Kaplan turbine, Francis turbine). We use modern geometric approaches
(B-spline/NURBS description) to describe water turbine hydraulic profiles. Such geometric models are
then used to analyze the flow through the turbine and optimize the shape of water turbine parts via isoge-
ometric analysis (IGA). The proposed geometric parameterizations of water turbines involve parameters
to generalize the description of models. Therefore, we are able to make the process of shape optimization
of turbines with the help of flow simulation for obtaining optimal flow inside the turbine to maximize
the utility properties more efficient and more automatized. Currently, the results of flow simulations are
usually obtained only for one particular model and the turbine models in CAD are subsequently manu-
ally modified with help of experience of designers to improve selected utility quantities (e.g. efficiency,
cavitation). It can be seen that this is not a fully automatic process and results are often kept as secrets
of companies.

In the second chapter we presented geometric models of a Pelton turbine bucket, Kaplan turbine and
Francis turbine blades. In Chapter 2 we described a model of the Pelton turbine bucket that we divided
into two parts – inner and outer surface. We needed to impose several given parameters and we found out
that the most difficult part is to satisfy the given angle distributions along an outlet curve and a splitter
which are boundary curves of a B-spline surface representing the inner surface of the bucket. We studied
the existence of an exact solution of this problem, i.e., under which conditions on a given boundary
curve and/or prescribed angle distribution a tangent ruled surface of a resulting B-spline surface can be
found. It turned out that such conditions are very strict and an exact solution exists only in very special
cases. Thus, we formulated an algorithm for finding an approximate solution of this problem, studied
its approximation order and derived a bound on the approximation error. This part covers the main
contribution and the main new results of the thesis. The second chapter was also devoted to geometric
models of other water turbine blades. We presented methods for describing guide vanes and runner blade
of Kaplan turbine as B-spline surfaces. Further, the methods for Francis turbine blades (stay vanes, guide
vanes and runner blades) were also proposed to describe them in the context of B-spline objects. The
main concept of the B-spline surface description of the blades was inspired by NACA airfoils and it is
based on definition of important curves (camber line and thickness function).

In Chapter 3 we focused on B-spline volume parameterizations of computational domains from its
boundary B-spline surfaces. Firstly, we described several methods used for the determination of B-spline
volume parameterizations. The next part showed the description of the boundary surfaces in turbines,
i.e., turbine housing entrance of the turbine, runner and draft tube. The main part of the last chapter was
devoted to the B-spline volumes of Kaplan turbine parts and Francis turbine segments.

In the future we are going to concentrate on the following problems:

• Incorporation of methods which allow local and adaptive refinement of computational B-
spline/NURBS meshes (which is not the case of standard B-spline/NURBS objects) also to the
case of modelling water turbines. For example THB-splines can be used as modern approach
allowing such local refinement.

• Propose methods for finding analysis-suitable volume B-spline/NURBS/THB parameterizations
of spiral shaped pipes used for Francis and vertical Kaplan turbine for consequent flow simulation
with IGA and shape optimization.
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• Study of general approaches for finding volume B-spline/NURBS/THB parameterizations of ob-
ject bounded by a set of B-spline/NURBS surfaces.

• Finish the model of Pelton turbine and analyze the flow through this type of turbine. Unfortunately,
we need to study the problem of multiphase flow that is characterized as a flow in which more than
one fluid is present (in Pelton turbine the bucket goes through two phases, the first with water and
the second one is in the air).
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Appendix A

Control points of spiral shaped pipe

Let us assume section in xy-plane, that is subsequently transformed, parameters are described in the part
3.2.1
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tan(π
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3 . The rest of the points for i = 0, . . . , 17 are

Pb
i =



−1 0 0

0 1 0

0 0 1


 ·Pa

18−i.

The points for the section are
Pj = R · (Pc

j)
⊤

where j = 0, . . . , 36, Pc = Pa∪Pb and R is the rotation matrix that rotates point around x-axis through
angle as.
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The example set of parameters for the specific spiral shaped pipe

Consider the following parameters (nomenclature is mention in Section 3.2.1):

• The entrance cone

– r1 = 138.33,

– d1 = 424.03,

• Disks

– rd1 = 234.7,

– rd2 = 284.2,

– hd = 33.5,

– wd = 15,

• The sections of the spiral ns = 23

section as rc rs

1 0 388.05 131.74

2 15 385.05 128.76

3 30 381.93 125.74

4 45 378.75 122.66

5 60 375.53 119.55

6 75 372.24 116.38

7 90 368.88 113.16

8 105 365.46 109.87

9 120 361.94 106.51

10 135 358.34 103.09

11 150 354.65 99.574

12 165 350.82 95.961

13 180 346.88 92.246

14 195 342.78 88.411

15 210 338.51 84.436

16 225 334.03 80.302

17 240 329.29 75.978

18 255 324.26 71.437

19 270 318.85 66.631

20 285 312.93 61.493

21 300 306.34 55.956

22 315 298.78 49.911

23 316.43 298.78 49.911
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Appendix B

Control points of the rounded rectangle in the draft tube

The section that lies in xz-plane and the centre is (0, 0, 0) has the control points (parameters are described
in Section 3.2.5)

P = {(s/2 + r, 0,−v/2, 1), (s/2 + r, 0,−v/2 −Kr, 1), (s/2 +Kr, 0,−v/2 − r, 1),

(s/2, 0,−v/2 − r, 1), (s/4, 0,−v/2 − r, 1), (−s/4, 0,−v/2 − r, 1),

(−s/2, 0,−v/2 − r, 1), (−s/2 −Kr, 0,−v/2 − r, 1), (−s/2 − r, 0,−v/2 −Kr, 1),

(−s/2− r, 0,−v/2, 1), (−s/2 − r, 0,−v/4, 1), (−s/2 − r, 0, v/4, 1),

(−s/2− 2r, 0, v/2, 1), (−s/2 − r, 0,+v/2 +Kr, 1), (−s/2 −Kr, 0, v/2 + r, 1),

(−s/2, 0, v/2 + r, 1), (−s/4, 0, v/2 + r, 1), (s/4, 0, v/2 + r, 1),

(s/2, 0, v/2 + r, 1), (s/2 +Kr, 0, v/2 + r, 1), (s/2 + r, 0, v/2 +Kr, 1)

(s/2 + r, 0, v/2, 1), (s/2 + r, 0, v/4, 1), (s/2 + r, 0,−v/4, 1), (s/2 + r, 0,−v/2, 1)} ,

where the last coordinate is the weight and K = 4
tan π

8

3 .

Parameters for the elbow draft tube

The specific parameters for draft tube shown in Fig. 3.14:

• Cone

– re1 = 260 (input radius),

– re2 = 307.71 (output radius),

– de = 700 (length),

• Diffuser

– d = 1500 (length)

– s = 456.99

– v = 456.99

– r = 32.5

• Radius of the rotation

– Rr = 600,

section Ur s v r

1 14.286 312.18 297.39 148.69

2 28.571 316.93 287.36 143.68

3 42.857 321.98 277.61 138.81

4 57.143 327.31 268.16 134.08

5 71.429 332.94 259 129.5

6 85.714 338.85 250.12 125.06

7 100 345.05 241.54 120.77
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