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Abstrakt

Náplńı disertačńı práce je studium kvazilineárńıch parabolických a eliptických úloh

s p-Laplaciánem popisuj́ıćıch difuzńı proces. Text je rozdělen do dvou část́ı. V prvńı

části se zabýváme Cauchyovou úlohou pro parabolický p-Laplacián. Zaměř́ıme se

na otázku jednoznačnosti/nejednoznačnosti řešeńı a platnosti principu maxima. V druhé

části zkoumáme eliptickou okrajovou úlohu v jedné dimenzi. Detailně se zaj́ımáme

o p-trigonometrické funkce, které se využ́ıvaj́ı v teoretickém i numerickém studiu parabol-

ických i eliptických úloh s p-Laplaciánem.

Kĺıčová slova p-Laplacián, kvasilineárńı, parabolické PDR, reakčně difuzńı rovnice,

existence, jednoznačnost, kompaktńı nosič, silný princip maxima, dolńı řešeńı, horńı

řešeńı, p-trigonometrické funkce, p-hyperbolické funkce, aproximace, analytické funkce,

diferenciálńı rovnice v komplexńım oboru, rozš́ı̌reńı do komplexńıho oboru



Abstract

The Thesis is devoted to the study of quasilinear parabolic and elliptic problems with

diffusion driven by the p-Laplacian. The Thesis is divided into two parts. The first

part concerns uniqueness/nonuniqueness and validity/nonvalidity of the strong maxi-

mum principle of the solution of the Cauchy problem for the parabolic p-Laplacian. The

second part concerns elliptic boundary value problems in one dimension. In particular,

we provide detailed study of p-trigonometric functions which are usefull in theoretical

and numerical treatment of parabolic and elliptic problems with the p-Laplacian.

Keywords p-Laplacian, Quasilinear, parabolic PDE, reaction-diffusion equation, ex-

istence, uniqueness, compact support, strong maximum principle, subsolution, superso-

lution, p-trigonometric functions, p-hyperbolic functions, approximation, analytic func-

tions, differential equation in complex domain, extension to complex domain



Zusammenfassung

Die Dissertation widmet sich der Untersuchung von quasilinearen parabolischen und el-

liptischen Problemen mit Diffusion durch den p-Laplace-Operator. Die Arbeit gliedert

sich in zwei Teile. Der erste Teil betrifft die Eindeutigkeit/Uneindeutigkeit und

Gültigkeit/Ungültigkeit des starken Maximumprinzips der Lösung des Anfangswertprob-

lems für parabolische Probleme. Der zweite Teil betrifft elliptische Randwertprobleme in

einer Dimension. Insbesondere bieten wir detaillierte Studien von p-trigonometrischen

Funktionen, die in der theoretischen und numerischen Behandlung parabolischer und

elliptischer Probleme mit dem p-Laplace-Operator nützlich sind.

Schlüsselwörter p-Laplacian, quasilinearen, parabolische PDG, Reaktionsdiffusion-

sgleichung, Existenz, Eindeutigkeit, kompaktem Träger, starke Maximumprinzip, Un-

terlösung, Oberlösung, p-trigonometrischen Funktionen, p-Hyperbelfunktionen, Approx-

imation, Analytische Funktionen, Differentialgleichung im Komplexen, Analytische Fort-

setzung
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CHAPTER I

Introduction

The nonlinear operator ∆p u
def
= div

(
|∇u|p−2∇u

)
with p > 1 and the related problems

have attracted a lot of attention over the last decades. The operator ∆p is a generaliza-

tion of the classical Laplacian (∆2 ≡ ∆) and hence it is usually called the p-Laplacian.

Let us first consider general problem
∂
∂tb(u)−∆p u = h in (0,T )× Ω ,

u = 0 on (0,T )× ∂Ω ,

u(0,x) = u0(x) in Ω .

(1.1)

Here, Ω is a bounded domain in RN , N ∈ N, with C1+µ (Hölder) boundary ∂Ω (an

interval for N = 1), µ ∈ (0,1), T > 0, b : R+ → R+, b ∈ C1(R+), and b′(s) > 0 for

all s > 0. The functions h and u0 as well as the definition of solution of (1.1) will be

specified later in the special cases.

In the context of Physics, problem (1.1) can be interpreted, among others, as a model of

fluid flow through porous media in turbulent regime (see Leibenson [39] or Diaz and

De Thelin [23]). This phenomenon arises in many different fields of human activity, e.g.

food industry (sugar processing, Missbach [46–49]), civil engineering (building of rock-

fill dams, Wilkins [56]), and/or extraction of natural resources (water Smreker [55];

oil and natural gas, Leibenson [39]). In other context, problem (1.1) appears also in

mathematical models of sandpile growth (Aronsson et al. [5] and Evans et al. [26]),

image analysis (Kuijper [35]), and climatology (Bermejo et al. [12]).

In Section 1.1.1, we derive (1.1) from the continuity equation for compressible fluid (gas)

using experimentally verified nonlinear generalization of Darcy constitutive law. Note

that we follow approach of Leibenson [39] who modelled motion of natural gas in a



1.1. Mathematical Models Involving p-Laplacian

porous medium. To the best of our knowledge, it is work [39] where the derivation of an

equation of the type (1.1) appears for the first time in the history in all three dimensions.

The rest of the thesis is devoted to the existence and the uniqueness results for (1.1).

Special attention is paid to generalized sine function denoted by sinp, which is the princi-

pal eigenfunction of the p-Laplacian in one dimension. More precisely, sinp is absolutely

continuous function such that |ϕ′|p−2ϕ′ is also absolutely continuous and it satisfies

following nonlinear eigenvalue problem −
(
|ϕ′|p−2ϕ′

)′
= (p− 1) |ϕ|p−2 ϕ , x ∈ (0,πp) a.e.

ϕ(0) = ϕ(πp) = 0 ,
(1.2)

and it is normalized as ϕ′(0) = 1. Here

πp
def
=

2π

p sin (π/p)
. (1.3)

1.1. Mathematical Models Involving p-Laplacian

1.1.1. Fluid Flow through Porous Medium

The aim of the Section 1.1.1 is to derive a problem of type (1.1). Leibenson [39, pp.

503 – 505] studied movement of natural gas in a porous medium in 1945. We will

follow his work and hence we will assume that the porous medium is nondeformable,

isotropic, and homogeneous at macroscopic scale and the gas is a homogeneous mixture.

The conditions on the porous medium cause that the porosity n is constant and the

condition on the gas ensures that its density depends on pressure only. We also suppose

that the examined thermodynamic process is polytropic, i.e. it obeys the relation:

P

%γ
= βγ . (1.4)

Here, % = %(t,x) is the density, P = P (t,x) is the pressure, γ > 1 is the polytropic index

of the process, and β > 0 is a constant.

The flow of the gas (as of any fluid) in the porous medium is governed by continuity

equation in the form

n
∂%

∂t
+ div (%q) = 0 (1.5)

and an appropriate constitutive law which relates specific discharge vector q = nv and

pressure gradient ∇P . Specific discharge vector is volumetric flux per unit area and

the term %q represents mass flux per unit area. Vector field v(t,x) : (0,T ) × Ω → R3

2



1.1. Mathematical Models Involving p-Laplacian

describes velocity distribution. We refer to Bear [6, Section 6.2] for derivation of (1.5)

for homogeneous mixture.

For real world case N = 3, the continuity equation (scalar equation) contains four

variables and hence it is necessary to add other three equations. These equations provide

relation between three components of the gradient of the state (scalar) variable % and

of the flux (vector) variable q. In most of real world problems, the constitutive law has

to be obtained experimentally. Initial experimental work was done by Darcy [20] who

studied filtration of water through pipe filled with sand (as one dimensional problem).

He observed that

− P ′ = H

L
= const. v . (1.6)

Here, H/L is pressure slope (loss) and v is velocity. The constant depends on the

physical properties of the porous medium and the fluid within (and does not depend on

the velocity). This constant is obtained experimentally. To the best of our knowledge

(see Benedikt et al. [11]), Smreker [55] was the first one who questioned validity of

Darcy’s law (1.6) for large velocities. Based on observations on real water wells, he

proposed the following constitutive law for turbulent flow of water in a porous medium

− P ′ = H

L
= const. vm , v > 0 , (1.7)

with 1 < m < 2. Constitutive law (1.7) was verified experimentally, e.g. by Miss-

bach [49]. In Missbach’s experiments, the porous medium was simulated by large pipe

filling with tiny uniform glass balls. The fluid was pure water free of air bubbles (water

was heated-up and subsequently cooled-down) and it flew through the porous medium

under constant pressure until the volume of passed water was 1000 cm3. Time was mea-

sured by stopwatch. Missbach studied how the fluid’s velocity depends on the size of

the glass balls, the height of the layer of glass balls, and, in particular, on the pressure

slope. He confirmed the validity of (1.7) and the linear dependence of the velocity on

the height of the layer of glass balls. He also found out that the exponent m in (1.7)

decreased as the diameter of the glass balls decreased.

Similar power law,

%v = −C
∣∣∣∣∂P∂x

∣∣∣∣s−1 ∂P

∂x
,

1/2 < s < 1, holds also for compressible fluid. In isotropic homogeneous 3D porous

medium, the constitutive law has the following form:

%v = −C|∇P1|s−1∇P1 , (1.8)

3



1.2. From Parabolic to Eigenvalue Problem

where P1 = P (γ+1)/γ (see Leibenson [39]). Plugging (1.8) into (1.5), we obtain

n
∂

∂t

P 1
γ+1

1

β

− C div
(
|∇P1|s−1∇P1

)
= 0

by (1.4). Setting s = p− 1 we get (1.1) with h ≡ 0 and b(u) =
n

Cβ
u

1
γ+1 .

1.1.2. Nonlinear Reaction-Diffusion

We interpret (1.1) as the problem of fluid flow through porous media only in [11], where

we study the origin of a problem of type (1.1). In the rest of our work, problem (1.1)

is a model of nonlinear (slow or fast) diffusion where u is concentration. The diffusion

process is governed by continuity equation

∂u

∂t
+ div j = h , (1.9)

where j = j(t,x,u,∇u) : (0,T ) × Ω × R × RN → R is the flux of diffusing material and

h = h(t,x,u,∇u) : (0,T ) × Ω × R × RN → R. The constitutive relation for diffusion

processes (Fick’s law) states

j = −D∇u , (1.10)

where D = D(t,x) is the diffusion coefficient which depends on the diffusing material

(see Drábek and Holubová [24] for more details). In some circumstances, the dif-

fusion coefficient depends also on u and/or ∇u, see [5] and/or [26]. We suppose that

D(t,x,u,∇u)
def
= |∇u|p−2. Combining (1.9) and (1.10), we get problem (1.1) for b(u) ≡ u.

If 1 < p < 2, the diffusion coefficient is high for small |∇u| and, hence, diffusion is fast

in this case. On the contrary, the diffusion coefficient is low for small |∇u| and hence

diffusion is slow, see Figure 1.1. We will address this problem in Section 2.2 in detail.

Let us note that we considered stationary problem −∆pu = h (x,u,∇u) in Ω ,

u = 0 on ∂Ω

in master thesis Kotrla [33].

1.2. From Parabolic to Eigenvalue Problem

Problem (1.1) has attracted a lot of attention of mathematicians for many decades.

Let us mention the classical work of Lions [41] where (1.1) is introduced as a suitable

4



1.2. From Parabolic to Eigenvalue Problem

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

|∇u|

D(t,x,u,∇u) = |∇u|p−2

Figure 1.1: Diffusion coefficient D(t,x,u,∇u) = |∇u|p−2 restricted to the plain |∇u| × D for p = 30
(dashed line) and p = 30

29
(continuous line).

representative of a wider class of quasilinear parabolic problems. At first, assume that

b(u) ≡ u, h(t,x,u) ≡ h(t,x), and u0 ∈ L2(Ω). Then, problem (1.1) possesses the unique

solution u ∈ Lp
(

(0,T )→W 1,p
0 (Ω)

)
(or u ∈ Lp ((0,T )→ V ), V

def
= W 1,p

0 (Ω)∩L2 (Ω) for

1 < p < 2) under the conditions h ∈ Lp′
(

(0,T )→W−1,p′(Ω)
)

(or h ∈ Lp′ ((0,T )→ V ′)

for 1 < p < 2). We refer the reader to [41], Théorème 1.1, p. 156, Théorème 1.2, p. 162

and Section 1.5.2, p. 166. Bochner spaces Lp((0,T )→ X) will be defined in Section 2.1.

Padial et al. [51] widely discuss the question of the existence and the uniqueness of weak

solution of problem (1.1) with b(u) ≡ u and h(t,x,u) = λ|u|p−2u+f(x,t) in [51, Appendix

A]. It follows from the validity of weak comparison principle (see [57, Proposition 2.3.1,

p. 190] for appropriate version) that the solution is unique when the right h(t,x,u) is

Lipschitz function in u.

Later the sufficient conditions for the existence and the uniqueness of (the certain type of)

a solution of (1.1) is studied by, e.g Ladyzhenskaya at al. [36], Alt and Luckhaus [2],

and Diaz and De Thelin [23]. On the other hand, nonuniqueness results are obtained,

for instance employing reaction term h = h(u) which is not a Lipschitz function near

u = 0, in the following works: Guedda [30] in one-dimensional case, Bobkov and

Takáč [14], and Merchán et al. [44].

5



1.2. From Parabolic to Eigenvalue Problem

In Section 2.1, we provide a nonuniqueness result for the following special case of (1.1):
∂u
∂t −∆p u = q(x)uα in (0,T )× Ω ,

u = 0 on (0,T )× ∂Ω ,

u(0,x) = 0 in Ω ,

(1.11)

where α ∈ (0,1) and q ∈ C(Ω), q ≥ 0, q 6≡ 0. It is easy to see that problem (1.11) has at

least the trivial solution. We take advantage of method of monotone iterations to show

that problem (1.11) possesses (under some restriction on α) a nontrivial, nonnegative,

weak solution

u ∈ C
(
[0,T ]→ L2 (Ω)

)
∩ Lp

(
(0,T )→W 1,p (Ω)

)
in both, singular case (1 < p < 2) and degenerate case (2 < p < +∞). Moreover, we

are able to construct a nontrivial solution with compact support in the degenerate case.

In particular, problem (1.11) with p > 2 exhibits the finite speed of propagation.

By our assumption on q, there exists x0 ∈ Ω such that q(x0) > 0. Moreover, q is

continuous and hence we are able to choose R > 0 such that q ≥ q0 ≡ const > 0 on

BR(x0)
def
=
{
x ∈ RN : |x− x0| < R

}
and BR(x0) ⊂ Ω. It appears that u = θ(t)ϕ̃β1 (x)

with some β > 1 is a suitable subsolution for problem (1.11) (see Benedikt et al. [7]).

Function θ(t) is the unique solution of
d
dtθ(t) = q0

2 θ
α(t) in (0,T ) ,

θ(0) = 0 ,

θ(t) > 0 , for t > 0

and

ϕ̃1(x) =

 ϕ1(x) for x ∈ BR(x0) ,

0 for x ∈ Ω \BR(x0) .

Here, ϕ1 ∈W 1,p
0 (BR(x0)) is the first eigenfunction of the following eigenvalue problem: −∆p ϕ = λ |ϕ|p−2 ϕ in BR(x0) ,

ϕ = 0 on ∂BR(x0) .
(1.12)

Note that ϕ1 is normalized by ϕ1(x0) = 1. We say that λ ∈ R is an eigenvalue of

(1.12) if there exists a nontrivial solution of (1.12), which is called an eigenfunction.

6



1.2. From Parabolic to Eigenvalue Problem

The first eigenfunction ϕ1 is associated with the least eigenvalue λ1. The structure of

the spectrum of (1.12) is still a challenging open problem unless N = 1. Anane [3]

proved that the first eigevalue λ1 is simple and isolated for the general domain Ω, and

the corresponding eigenfunction ϕ1 is positive on Ω.

We use method of monotone iterations in Benedikt at el. [7] and [9] as was mentioned

before. More precisely, we use iteration scheme
∂un
∂t −∆p un = q(x)uαn−1 in (0,T )× Ω ,

un = 0 on (0,T )× ∂Ω ,

un(0,x) = 0 in Ω

(1.13)

for n ∈ N with u0 = u = θ(t)ϕ̃β1 (x). The method is constructive and, hence, we may

use (1.13) also to find a numerical approximation of solution of (1.11). In one space

dimension, Boulton and Lord [15] employ Galerkin method to solve
∂u

∂t
− ∂

∂x

(∣∣∣∣∂u∂x
∣∣∣∣p−2 ∂u

∂x

)
= g ,

u(0,x) = 0 , x ∈ (0,1) ,

u(t,0) = u(t,1) = 0 , t > 0 ,

(1.14)

where g ∈ L2(0,1). Besides the usual sine basis, they also consider the basis

{sinp (kπp x)}+∞k=1 in their experiments. Binding et al. [13] established the existence

of p0 > 1 such that, for p > p0, the system of functions {sinp (kπp x)}+∞k=1 forms a Riesz

basis of L2(0,1) and a Schauder basis of Lr(0,1) for any 1 < r < +∞. The procedure

how to find an appropriate number p0 was corrected and improved by Bushell and

Edmunds [18], where the value p0 was established as the solution of the transcendent

equation
2π

p0 sin(π/p0)
=

2π2

π2 − 8
.

The results obtained for p = 10 in [15] are visualized for two special choices of g in [15,

Figure 9, p. 2708]. It is assumed there that

g(x) =

 1 , x ∈
(

1
4 ,3

4

)
,

0 , otherwise

and/or g(x) ≡ 1 for x ∈ (0,1). In both cases, the optimal basis for Galerkin method

is not the usual sine basis, but there exists p1 such that the application of the ba-

sis {sinp1 (kπp1 x)}+∞k=1 provides the smallest spatial error under the assumption that

7



1.3. Organization of Thesis

the solution approaches steady state (t is sufficiently large). Nevertheless, we are

interested in a solution for small t, where the computation advantage of the basis

{sinp1 (kπp1 x)}+∞k=1 over the classical sine basis is not clear. Another disadvantage of

the basis {sinp1 (kπp1 x)}+∞k=1 is a computational overhead in obtaining the basis. In [15],

the inverse function of sinp,

arcsinp(x) =

∫ x

0

1

(1− sp)1/p
ds , x ∈ [0,1] ,

is used to obtain sinp. Then, the function sinp on [0,πp/2] is evaluated using numerical

inverse of the function arcsinp which is a time consuming process. Hence, it is important

to find a new more efficient numerical implementation of sinp. We address the task in

Chapter 3, where we extend sinp into Maclaurin series convergent on (−πp/2,πp/2) under

the assumption p is an even integer.

1.3. Organization of Thesis

Chapter 2 is based on the joint articles of the author with Jiř́ı Benedikt, Petr Girg,

and Peter Takáč [9], [10] and also the joint article by above stated authors with

Vladimir E. Bobkov [7]. We study a quasilinear parabolic problem (1.1) involving the

p-Laplacian on space-time domain (0,T )×Ω with Ω bounded in RN . In the introduction

of Chapter 2, we formulate two model cases which exhibit strikingly different behaviour.

In Section 2.1, the existence of a nontrivial, nonnegative, weak solution is obtained for

a reaction function h(t,x,u) = q(x)uα which does not satisfy a local Lipschitz condition

(problem (1.11)). Section 2.2 is motivated by very classical property of the linear heat

equation (namely, the infinite speed of propagation). Let u(t,x) ∈ C∞([0,T ) × Ω) is

a positive solution of heat equation (p = 2) with an appropriate initial and boundary

conditions. Then, the solution admits an infinite speed of propagation, i.e. u(t,x) ≡ 0

on [0,T ) × Ω or there exists τ ∈ (0,T ) such that u(t,x) > 0 for any (t,x) ∈ (0,τ) × Ω.

We will study such phenomenon for p 6= 2. At first, we show that there exists a solution

of (1.11) with compact support provided p > 2. Hence, the solution possesses a finite

speed of propagation (see Definition 2.8). Conversely, suppose that 1 < p < 2 and

there exists a continuous, nonnegative, weak solution of parabolic problem (1.1) with

h(t,x,u) ≡ f(t,x). Then, the solution possesses an infinite speed of propagation (see

Definition 2.12).

Chapter 3 is based on the results on generalized sine (see (1.2)), which appears in article

by the author [34] and in the joint work with Petr Girg [27], [28], and [29]. Beside the

Maclaurin series of sinp, it is also devoted to some other properties of p-trigonometric

8



1.3. Organization of Thesis

and p-hyperbolic functions in real and complex domain. In the introduction of Chap-

ter 3, we discuss the property of solution of prototypical initial value problem which is

used to define generalized sine and hyperbolic sine functions. Moreover, we explain how

generalized sine functions can be used in numerical methods to treat certain parabolic

problems of type (1.1) as well as certain boundary value problems in one dimension

steady states of (1.1) for N = 1). In Section 3.1, the main emphasis is laid on dif-

ferentiability of generalized sine since sinp possesses different order of differentiability

from sine in general. The most interesting result is that sinp(·) ∈ C∞(−πp/2,πp/2) for

p > 1 even. In Section 3.2, we obtain desired Maclaurin series and generalized Maclau-

rin series of sinp for p > 1 be an even integer and an odd integer, respectively. Then,

local convergence of Maclaurin series of sinp around x = 0 follows from Paredes and

Uchiyama [52]. We prove that the (generalized) Maclaurin series converge toward sinp

on (−πp/2,πp/2) for p > 1 be an integer. Finally, we use Maclaurin series to extend sinp

to complex domain in Section 3.3. We also study generalization of hyperbolic sine and

its properties in complex domain. In particular, we suppose p be an even integer and

provide a generalization of the well-known identity

sin(z) = −i sinh(iz) .

9



CHAPTER II

Quasilinear Parabolic Problem

Let us recall two special cases of problem (1.1) which are considered in Chapter 2. In

Section 2.1, we are interested in the existence nontrivial, nonnegative, weak solution (see

Definition 2.5) of problem
∂u
∂t −∆p u = q(x)uα in (0,T )× Ω ,

u = 0 on (0,T )× ∂Ω ,

u(0,x) = 0 in Ω .

(2.1)

Here α ∈ (0,1) and potential q satisfies

(Q) q ∈ C(Ω), q ≥ 0, and q(x0) > 0 for some x0 ∈ Ω.

In Section 2.2, we show that (2.1) possesses a (possibly different) solution with compact

support in (0,T )× Ω provided p > 2. Later, we consider problem
∂
∂tb(u)−∆p u = f(t,x) in (0,T )× Ω ,

u = 0 on (0,T )× ∂Ω ,

u(0,x) = u0(x) in Ω ,

(2.2)

where f = f(t,x) : (0,T )× Ω→ R and u0 : Ω→ R are continuous and nonnegative. We

assume that there exists a continuous solution of (2.2) and prove that it exhibits infinite

speed of propagation (see Definition 2.12).

2.1. Nonuniqueness Results

We recall a concept of weak (or generalized) solution at first. Let X be Banach space

equipped with the norm ‖ · ‖X . In PDE theory, we search for a solution u : [0,T ] ×



2.1. Nonuniqueness Results

Ω → R. Hence, X will be a function space (Lebesgue or Sobolev space). A function

v(t) : [0,T ] → X assigns to any t ∈ [0,T ] a function w(x) from appropriate Lebesgue

or Sobolev space. We need to introduce a Bochner integral which generalized Lebesgue

integral for functions with values in Banach space (see, e.g. Zeidler [58, Appendix, p.

1009])

Definition 2.1. A function vs : [0,T ]→ X is called a step function if there exists m ∈ N,
vi ∈ X and (Lebesgue) measurable disjoint sets Mi ⊂ [0,T ], |Mi| < +∞, 1 ≤ i ≤ m such
that

vs(t) =

m∑
i=1

χMi(t)vi .

Function v : [0,T ]→ X is Bochner measurable if there exists a sequence {vn}+∞n=1 of step
functions such that limn→+∞ vn(t) = v(t) for almost all t ∈ [0,T ].

Any almost everywhere continuous function v is Bochner measurable provided X is

separable. Now we are able to define a Bochner integral.

Definition 2.2. Let vs : [0,T ]→ X be step function. Then∫ T

0
vs(t) dt =

m∑
i=1

|Mi|vi .

A Bochner measurable function v : [0,T ] → X is Bochner integrable if there exists a
sequence {vn}+∞n=1 of step functions such that

lim
n→+∞

∫ T

0
‖v − vn‖X dt = 0 .

Let v be Bochner integrable function and {vn}+∞n=1 be corresponding sequence of step
functions. Then ∫ T

0
v(t) dt

def
= lim

n→+∞

∫ T

0
vn(t) dt .

Finally, we define function spaces Lp
(
(0,T )→W 1,p (Ω)

)
and Lp

(
(0,T )→W−1,p′ (Ω)

)
.

Definition 2.3. Bochner space Lp
(
(0,T )→W 1,p (Ω)

)
contains all Bochner measurable

functions v(t) : [0,T ]→W 1,p (Ω) such that

‖v‖Lp((0,T )→W 1,p(Ω))
def
=

(∫ T

0
‖v(t)‖p

W 1,p(Ω)
dt

) 1
p

< +∞ .

Analogously, Bochner space Lp
(

(0,T )→W−1,p′ (Ω)
)

contains all Bochner measurable

functions v(t) : [0,T ]→W−1,p′ (Ω) such that

‖v‖Lp((0,T )→W−1,p′ (Ω))
def
=

(∫ T

0
‖v(t)‖p

W−1,p′ (Ω)
dt

) 1
p

< +∞ .

11



2.1. Nonuniqueness Results

Further, we also need to define space C
(
[0,T ]→ L2 (Ω)

)
Definition 2.4. Space of continuous functions C

(
[0,T ]→ L2 (Ω)

)
is set of all functions

v(t,·) : [0,T ]→ L2 (Ω) which satisfy

lim
n→+∞

|tn − t| = 0⇒ lim
n→+∞

‖v(tn,·)− v(t,·)‖L2(Ω) = 0

for any sequences {tn}+∞n=1, tn ∈ [0,T ] and t ∈ [0,T ].

We are ready to define a weak solution (following Padial et al. [51, Definition 2.1, p.

605]).

Definition 2.5. A function u(t,x) is called a weak solution of the problem (2.1) if

u ∈ C
(
[0,τ ]→ L2 (Ω)

)
∩ Lp

(
(0,τ)→W 1,p

0 (Ω)
)

for every τ ∈ (0,T ) and u(t,x) satisfies (2.1) in the weak sense, i.e.∫
Ω
u(τ ,x)φ(τ ,x) dx−

∫ τ

0

〈
u(s,·),∂φ

∂s
(s,·)

〉
ds

+

∫ τ

0

∫
Ω
|∇u(s,x)|p−2∇u(s,x) · ∇φ(s,x) dx ds (2.3)

=

∫ τ

0

∫
Ω
q(x)uα(s,x)φ(s,x) dx ds

for all τ ∈ (0,T ] and all test functions

φ ∈ Lp
(

(0,T )→W 1,p
0 (Ω)

)
∩W 1,p′

(
(0,T )→W−1,p′ (Ω)

)
.

Here, 〈·,·〉 stands for duality paring between W 1,p
0 (Ω) and W−1,p′(Ω).

Remark 2.6. A function u satisfying Definition 2.5 with “≤” and “≥” instead of “=” in
(2.3) is called a weak subsolution and supersolution, respectively.

Once we define the solution we are able to study the existence of nontrivial solution of

(2.1). Since q is continuous and positive at least at some x0 ∈ Ω by (Q), there exists

R > 0 such that q(x) ≥ q0 ≡ const > 0 for all x ∈ BR(x0). Then we denote by ϕ1,R

the normalized (ϕ1,R (x0) = 1) eigenfunction corresponding to the first eigenvalue λ1 of

−∆p : W 1,p
0 (BR(x0))→W−1,p′(BR(x0)) and by

ϕ̃1,R(x)
def
=

ϕ1,R(x) for x ∈ BR(x0) ,

0 for x ∈ Ω \BR(x0) ,
(2.4)

the natural zero extension of ϕ1,R from BR(x0) to the whole of Ω.

12



2.2. Speed of Propagation

Theorem 2.7 ( [7], Theorem 1.1, p. 2). Assume that 0 < α < min{1,p − 1} and (Q)
are satisfied. Then there exists T > 0 small enough, such that problem (2.1) possesses
(besides the trivial solution u ≡ 0) a nontrivial, nonnegative weak solution which is
bounded below by a subsolution u : (0,T )× Ω→ R+ of type

u(x,t) = θ(t)ϕ̃1,R(x)β ≥ 0 in (0,T )× Ω , (2.5)

where θ : [0,T ] → R+ is a strictly increasing, continuously differentiable function with
θ(0) = 0, and β ∈ (1,∞) is a suitable number.

Sketch of proof: It was shown in [7] that (2.5) is a subsolution of problem (2.1) with

θ : [0,S]→ R+ which is the positive solution of the Cauchy problem

dθ

dt
(t) =

q0

2
θα(t) for t ∈ (0,S) ; θ(0) = 0 ,

such that 0 < θ(t) <∞ for every t ∈ (0,S). We choose the supersolution u = ‖q‖
1

1−α
L∞(Ω)t

and show that u < u for all x ∈ Ω and all t > 0 small enough. Finally, the existence

of a weak solution is obtained via method of monotone iterations (see Derlet and

Takáč [22]). �

2.2. Speed of Propagation

In Section 2.1, the existence of a nontrivial, nonnegative weak solution of problem (2.1)

was obtained via method of monotone iterations, where we used positive spatially con-

stant supersolution

u(t,x) = ‖q‖
1

1−α
L∞(Ω)t . (2.6)

Now, our aim is to show that there exists a solution of (2.1) with a compact support in

(0,T )×Ω provided p > 2. In other words, the solution admits finite speed of propagation

in the following sense.

Definition 2.8. Let a weak positive solution of (2.1) have a compact support at some
time 0 < t0 < T . We say that u possesses a finite speed of propagation if there exists
0 < τ < T − t0 such that u has compact support on [t0,t0 + τ)× Ω.

We prove the existence of the solution by the same method as in Section 2.1, but we use

Barenblatt-type supersolution

u(t,x) = (1 + σt)

[
1−

(
|x− ξ|
ε+ %t

)2
] 1

1−α

+

, ξ ∈ Ω is fixed , (2.7)
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2.2. Speed of Propagation

instead of (2.6). Here the symbol [v(t,x)]+
def
= max {v(t,x),0} for any (t,x) ∈ (0,T )× Ω.

Let K = ‖q‖L∞(Ω) and 0 < T < 1/(Kα). Then ε > 0 is chosen such that Bε(ξ) ⊂ Ω

and σ = σ(K,T ,α) and % = %(T ,α,p,σ,ε) are chosen such that u is a supersoluiton of the

problem (2.1) (see [9, Theorem 2.1, p. 996] for more details). Let us note that the choice

of supersolution (2.7) guarantees the existence of a solution with compact support only

for t ∈ (0,T0) such that Bε+%t(ξ) ⊂ Ω. We may also construct a multi-bump solution

using (2.7) as a supersolution.

Definition 2.9. A function u(t,x) is an m-bump solution of the problem (2.1) if it is a
weak solution of the problem (2.1) and it satisfies following properties:

1. u : [0,T ]× Ω→ R is continuous, u ≥ 0 in [0,T ]× Ω, and u 6≡ 0;

2. u has a compact support

supp(u)
def
= {(t,x) ∈ [0,T ]× Ω: u(t,x) > 0} in [0,T ]× RN ,

supp(u) ⊂ [0,T ]× Ω;

3. there exist precisely m (m ∈ N = {1,2,3, . . . }) pairwise disjoint, connected compact
subsets Kk (k = 1,2, . . . ,m) of Ω such that

supp(u) ⊂ [0,T ]× (∪mk=1Kk) ;

4. for all t ∈ (0,T ] and k = 1,2, . . . ,m,

{x ∈ Kk : u(t,x) > 0}

is a nonempty connected open subset of Ω.

We find a solution with one bump around some ξ ∈ Ω such that q(ξ) > 0. The existence

of point ξ is ensured by hypothesis (Q).

Theorem 2.10 ( [9], Theorem 1.3, p. 995). Let 2 < p <∞, 1/(p− 1) < α < 1, and let
Ω ⊂ RN be a bounded domain with Lipschitz boundary. Assume that q satisfies hypothesis
(Q), ξ ∈ Ω is such that q(ξ) > 0, r > 0 satisfies Br(ξ) ⊂ Ω , and 0 < T0 < ∞. Then
there exists some T ∈ (0,T0] such that the initial-boundary value problem (2.1) possesses
a nontrivial, nonnegative solution u : (0,T )× Ω→ R+ such that

1. u(t,ξ) > 0 for all t ∈ (0,T );

2. u(t,x) = 0 for all x ∈ Ω \Br(ξ) and all t ∈ (0,T ).

In addition, if Ω = BR(ξ) is a ball with radius R centered at ξ, 0 < r < R <∞, and q is
radially symmetric about ξ, i.e. q(x) ≡ q(|x− ξ|) for x ∈ Ω, then the nontrivial solution
u above can be constructed radially symmetric about ξ in the space variable x ∈ Ω, i.e.
u(t,x) ≡ u(t,|x− ξ|).

14



2.2. Speed of Propagation

Sketch of proof: We choose ε = r/4 > 0 and 0 < T < min{1/(Kα),T0}. Then we obtain

that (2.7) is a supersolution of the problem (2.1) such that u(t,ξ) = 1 + σt ≥ 1 and

u(t,x) = 0 for all x ∈ Ω \ Br/2(ξ), both for all t ∈ [0,T ′], T ′ = min{r/(4%),T}. The

supersolution is also positive on Br/4(ξ) for any time t ∈ [0,T ′] and, moreover,

u(t,x) ≥ (1 + σt)2−
1

1−α ≥ 2−
1

1−α on B√2r
8

(ξ) .

Then we use a subsolution (2.5) with R = r
√

2/8 < r. Since θ(t) is continuous and

θ(0) = 0 in (2.5), we may choose T such that

u(t,x) ≤ 2−
1

1−α

for all x ∈ Br(ξ) and t ∈ [0,T ]. In particular, we find the subsolution u and the

supersolution u such that u ≤ u for all x ∈ Br(ξ) and t ∈ [0, min{T ′,T}]. Let us

redefine T = min{T ′,T} due to the statement of Theorem 2.10. Now it remains to apply

monotone iteration method to obtain desired solution with compact support in Ω. �

We use Theorem 2.10 to prove an existence of an m-bump solution (see Figure 2.1).

Theorem 2.11 ( [9], Theorem 3.1, p. 1003). Let 2 < p < ∞, 1/(p − 1) < α < 1,
and let Ωk ⊂ Ω, k = 1,2,3, . . . ,m, be a family of pairwise disjoint subdomains of the
domain Ω ⊂ RN , and let 0 < T0 < ∞. Furthermore, let 0 ≤ q ∈ C(Ω) and ξk ∈ Ωk

be such that q(ξk) > 0, k = 1,2,3, . . . ,m. Then there exists some T ∈ (0,T0] such
that the initial-boundary value problem (2.1) possesses a nontrivial, nonnegative solution
u : (0,T )× Ω→ R+ such that

1. u(t,ξk) > 0 for all k = 1,2, . . . ,m and all t ∈ (0,T );

2. u(t,x) = 0 for all x ∈ Ω \ ∪mk=1Ωk and all t ∈ [0,T ].

Finite speed of propagation of a solution of (2.1) appears for p > 2 since the diffusion is

slow (weak or degenerate) in the case. In the case 1 < p < 2, the diffusion is fast (strong,

singular), see Figure 1.1. Hence there is a chance that a solution of (2.2) possesses infinite

speed of propagation in the sense of following Definition 2.12.

Definition 2.12. A weak positive solution of (2.2) possesses an infinite speed of prop-
agation if, for any fixed t0 ∈ (0,T ), the solution u(t0,·) is either positive on Ω or else
identically zero on Ω.

Indeed this phenomenon was confirmed for any continuous, nonnegative solution of (2.2)

in Khin and Su [32] for unbounded domain Ω and in [10] for bounded domain Ω. The

continuity assumption is meaningful at least in the two special situations b(s) ≡ s for all

s ∈ R+ and b(s) = sσ for all s ∈ R+ with σ ∈ R is a constant p − 1 ≤ σ < +∞. Then
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2.2. Speed of Propagation

x

u(t,x)

a solution inbetween

a pair of sub-

and supersolutions

Figure 2.1: A multi-bump solution.

any solution is continuous due to the regularity result by Chen and DiBenedetto [19,

Theorem 1, p. 320] or Ivanov [31, Proposition 3.1 and 3.2, p. 28] in the first case

and [31, Eq. (1.7), p. 23] combined with [31, Proposition 3.1 and 3.2, p. 28] in the

latter case. Let us formulate Theorem 2.13 following up infinite speed of propagation of

solution of (2.2) where Ω ⊂ RN is not necessary bounded for a moment. We also assume

that both, f and u0, are continuous and nonnegative for simplicity.

Theorem 2.13 ( [10], Theorem 1.1, p. 96). Let 1 < p < 2, N ≥ 1 and assume that
b : R+ → R+ is a continuously differentiable function in (0, +∞) with b′ > 0, b(0) = 0,
and such that

lim
s→0+

s2−p b′(s)

| log s|p−1
= 0 . (2.8)

Finally assume that u : [0,T ) × Ω → R+ is a continuous, nonnegative, weak solution of
(2.2). Then, for any fixed t0 ∈ (0,T ), the solution u(t0,·) is either positive everywhere
on Ω or else identically zero on Ω.

In particular, if u(0,ξ) = u0(ξ) > 0 for some ξ ∈ Ω, then there exists τ ∈ (0,T ] such
that u(t,x) > 0 for all (t,x) ∈ (0,τ) × Ω, i.e. the strong maximum principle is valid in
the (N + 1)-dimensional space-time cylinder (0,τ) × Ω. The number τ ∈ (0,T ) can be
estimated from below by

τ = sup{T ′ ∈ (0,T ] : u(t,ξ) > 0 for all t ∈ [0,T ′)} > 0 .
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2.2. Speed of Propagation

Sketch of proof: Let t0 ∈ (0,T ) be fixed and denote Z ≡ Z(t0) = {x ∈ Ω: u(t0,x) = 0}.
Our aim is to show that Z is both, open and closed in Ω. The latter one easily follows

from the continuity of u on connected set Ω. The proof is trivial if Z is empty set. Let

x1 ∈ Z and we prove that also B d
2

(x1) ⊂ Z where d = dist (x1,∂Ω). We assume by

contradiction that there exists x2 ∈ B d
2

(x1) and x2 /∈ Z. Due to the continuity of u,

there exists R ∈ (0,|x1 − x2|) and τ ∈ (0,t0) such that

η
def
= inf

(t,x)∈[t0−τ ,t0]×BR(x2)
u(t,x) > 0 .

By triangle inequality, |x1 − x2| < dist (x2,∂Ω) and hence there exists R∗ such that

0 < R < |x1 − x2| < R∗ < dist (x2,∂Ω). We will construct a subsolution v : [t0 − τ ,t0]×(
BR∗(x2) \BR(x2)

)
→ R+ of problem (2.2) satisfying

1. v(t0 − τ ,x) = 0 for all x ∈ BR∗(x2) \BR(x2);

2. v(t0,x1) > 0;

3. v(t,x) = 0 for all x ∈ ∂BR∗(x2) and for all t ∈ [t0 − τ ,t0];

4. v(t,x) ≤ η for all x ∈ ∂BR(x2) and all t ∈ [t0 − τ ,t0].

Properties 1, 3, and 4 guarantee that 0 ≤ v(t,x) ≤ u(x,t) also on(
(t0 − τ ,t0]×

(
BR∗(x2) \BR(x2)

))
by the weak comparison principle. Property 4 provide a contradiction with x1 ∈ Z. It

follows that Z(t0) = Ω since x1 ∈ Z by assumption. Assume that

v(t,x) = z(R+ ω(t− t0 + τ)− |x− x2|) ,

where ω =
R∗ −R

τ
and

z(ζ) =

 exp
[
−(εζ)−1/ε

]
if ζ ∈ (0, +∞) ,

0 if ζ ∈ (−∞,0]

with ε > 0 sufficiently small. Then v satisfies the conditions 1. - 4. (see [10]). �

Let us note that the method of construction of the subsolution v is taken from [32].
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2015 Nonuniqueness of solutions of initial-value problems for parabolic p-

Laplacian; Benedikt, J., Bobkov, V. E., Girg, P., Kotrla, L., Takáč, P.; Electron.

J. Differential Equations; [7].

Abstract:

We construct a positive solution to a quasilinear parabolic problem in a bounded

spatial domain with the p-Laplacian and a nonsmooth reaction function. We obtain

nonuniqueness for zero initial data. Our method is based on sub- and supersolu-

tions and the weak comparison principle.

Using the method of sub- and supersolutions we construct a positive solution to a

quasilinear parabolic problem with the p-Laplacian and a reaction function that is

non-Lipschitz on a part of the spatial domain. Thereby we obtain nonuniqueness

for zero initial data.

Reviewed by Haifeng Shang (MR3335768):

“In this paper, the authors study the problem
ut − div

(
|∇u|p−2∇u

)
= q(x)|u|α−1u in Ω× (0,T ),

u(x,t) = 0 on ∂Ω× (0,T ),

u(x,0) = 0 in Ω,

(1)

where 1 < p <∞, 0 < α < 1, 0 < T <∞ and the potential q satisfies

q ∈ C
(
Ω
)

, q ≥ 0, and q(x0) > 0 for some x0 ∈ Ω. (2)

Moreover Ω ⊂ RN is bounded domain with C1+µ-boundary δΩ, where 0 < µ < 1.

Using the method of sub- and supersolution and a weak comparison principle,

the authors prove the following nonuniqueness result:

Theorem 1. Assume that 0 < α < min{1,p − 1} and condition (2) is satisfied.

Then there exists T > 0 small enough, such that problem (1) possesses (besides

the trivial solution u ≡ 0) a nontrivial, nonnegative weak solution

u ∈ C([0,T ],L2(Ω)) ∩ L2((0,T ),W 1,p(Ω)),

which is bounded below by a subsolution u : Ω× (0,T )→ R+ of form

u(x,t) = θ(t)ϕ̃β1,R(x) ≥ 0 in Ω× (0,T ),
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where θ : [0,T ] → R+ is a strictly increasing, continuously differentiable function

with θ(0) = 0, and β ∈ (1,∞) is a suitable number.”

Cited by:

1. Laister, R., Robinson, J. C., Sierzega, M. A necessary and sufficient condition

for uniqueness of the trivial solution in semilinear parabolic equations. J.

Differential Equations 262, 10 (2017), 4979–4987.

2016 Nonuniqueness and multi-bump solutions in parabolic problems with

the p-Laplacian; Benedikt, J., Girg, P., Kotrla, L., Takáč, P.; J. Differential

Equations; [9]

Abstract:

The validity of the weak and strong comparison principles for degenerate parabolic

partial differential equations with the p-Laplace operator ∆p is investigated for

p > 2. This problem is reduced to the comparison of the trivial solution (≡ 0, by

hypothesis) with a nontrivial nonnegative solution u(x,t). This problem is closely

related also to the question of uniqueness of a nonnegative solution via the weak

comparison principle. In this article, realistic counterexamples to the uniqueness of

a nonnegative solution, the weak comparison principle, and the strong maximum

principle are constructed with a nonsmooth reaction function that satisfies neither

a Lipschitz nor an Osgood standard “uniqueness” condition. Nonnegative multi-

bump solutions with spatially disconnected compact supports and zero initial data

are constructed between sub- and supersolutions with supports of the same type.

Reviewed by Juha K. Kinnunen (MR3419719):

“Assume that Ω ⊂ RN is a bounded domain with C1+µ-boundary δΩ, where

0 < µ < 1. Let p > 2, α ∈ (0,1), and 0 < T <∞.

This paper considers the nonlinear parabolic problem
ut − div

(
|∇u|p−2∇u

)
= q(x)uα in Ω× (0,T ),

u(x,t) = 0 for (x,t) ∈ ∂Ω× (0,T ),

u(x,0) = 0 for x ∈ Ω,

(1)

where potential q is assumed to satisfy q ∈ C
(
Ω̄
)
, q ≥ 0 and q(x0) > 0 for some

x0 ∈ Ω.

The main goal of the paper is to construct nontrivial nonnegative solution to (1)

with multiple positive bumps that have pairwise disjoint supports with respect
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to the space variable. This is closely related to the question of uniqueness of

a nonnegative solution. In particular, this paper gives counterexamples to the

uniqueness of a nonnegative solution, a weak comparison principle and a strong

maximum principle with a nonsmooth reaction function f(x,u) = q(x)uα that

satisfies neither a Lipschitz nor an Osgood type uniqueness condition.

By the strong maximum principle for linear parabolic equations, this phenomenon

is impossible for semilinear parabolic problems of the form (1) when p = 2. Each

single bump solution is obtained by constructing a Barenblatt type supersolution

and using it as an upper bound for a monotone iteration procedure, starting from

a nontrivial nonnegative subsolution.”
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8. Zhan, H., Feng, Z. Stability of hyperbolic-parabolic mixed type equations

with partial boundary condition. J. Differential Equations 264, 12 (2018),
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2017 The strong maximum principle in parabolic problems with the p-

Laplacian in a domain; Benedikt, J., Girg, P., Kotrla, L., Takáč, P. ; Appl.

Math. Lett.; [10]
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Abstract:

We establish a strong maximum principle for a nonnegative continuous solution

u : Ω × [0,T ) → R+ of a doubly nonlinear parabolic problem in a space-time

cylinder Ω × (0,τ) with a domain Ω ⊂ RN and a sufficiently short time interval

(0,τ) ⊂ (0,T ). Our method takes advantage of a nonnegative subsolution derived

from an expanding spherical wave.

2018 Origin of the p-Laplacian and A. Missbach; Benedikt, J., Girg, P., Kotrla,

L., Takáč, P.; Electron. J. Differential Equations; [11]

Abstract:

We describe the historical process of derivation of the p-Laplace operator from a

nonlinear Darcy law and the continuity equation. The story begins with nonlinear

flows in channels and ditches. As the nonlinear Darcy law we use the power law

discovered by O. Smreker and verified in experiments by A. Missbach for flows

through porous media in one space dimension. These results were generalized

by S. A. Christianovitch and L. S. Leibenson to porous media in higher space

dimensions. We provide a brief description of Missbach’s experiments.

Reviewed by Philip Broadbridge (MR3762803):

“ When immersed in the spectral properties of exotic nonlinear elliptic operators,

it is too easy to lose sight of their origins in practical mathematical modelling,

and the mathematical insight that they provide. To this end, the authors make a

valuable contribution in providing an objective historical account, to answer the

question ”How did the p-Laplacian ∆p originate?” Here,

∆pu = ∇ ·
(
|∇u|p−2∇u

)
.

This relatively short, mathematically relevant historical article draws on a wealth

of background material. I learnt that the porous media models of the mid-19th

century were grounded in channel flow and pipe flow models of 18th-century French

engineers. Thereafter, a number of theoretical and experimental studies in both

Western and Eastern Europe (with some groups ignorant of concurrent and an-

tecedent work) questioned how the Darcy law should be modified to account for

nonlinear dependence of hydraulic head gradient |∇Φ| on fluid speed v. The refer-

enced literature from the early to mid-20th century makes it apparent that there

remains some controversy on whether that relationship must reduce to the linear

Darcy law at low Reynolds numbers. The simplest representatives of the opposing

views are the Forchheimer equation (with a 6= 0) and the Missbach equation (with
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a = 0) in |∇Φ| = a+bvm; m > 0. In relation to conventional groundwater flow the-

ory, the classic 20th-century texts of Polubarinova-Kochina and of Bear are given

here. I would also mention [E. C. Childs, An introduction to the physical basis

of soil water phenomena, Wiley-Interscience, London, 1969]. Childs indicated how

the Darcy law can be derived from the Navier-Stokes equations.”
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CHAPTER III

Generalized Trigonometric and Hyperbolic Functions

Chapter 3 is mainly devoted to generalized sine and hyperbolic sine functions. These

functions are closely related to initial value problem
−
(
|û ′|p−2û ′

)′
= λ̂ |û|p−2 û ,

û(0) = 0 ,

û ′(0) = α̂ ,

(3.1)

where λ̂ ∈ R and α̂ > 0. Problem (3.1) was studied in Elbert [25]1 in the particular

case λ̂ = p − 1 and α̂ = 1 and/or in Del Pino, Elgueta and Manasevich [21] for

λ̂ > 0. Multiplying the equation in (3.1) by û ′ and integrating from 0 to x, we obtain∫ x

0

∣∣∣û ′(s; λ̂,α̂)
∣∣∣p−2

û ′(s; λ̂,α̂)û ′′(s; λ̂,α̂) ds

+
λ̂

p− 1

∫ x

0

∣∣∣û (s; λ̂,α̂)
∣∣∣p−2

û(s; λ̂,α̂)û ′(s; λ̂,α̂) ds

= 0 .

Hence we get ∣∣∣û ′(x; λ̂,α̂)
∣∣∣p +

λ̂

p− 1

∣∣∣û(x; λ̂,α̂)
∣∣∣p = α̂ p , x ∈ R . (3.2)

1 I would like to thank to Prof. Lomtatidze for pointing out that it was J. D. Mirzov [45] who
treated the eigenvalue problem (1.2) already in 1979 (i.e. 2 years before Elbert’s work was published).
More precisely, he studied oscillatory properties of solutions of the Emden-Fowler type systems. The
eigenvalue problem (1.2) is covered as a special case of his results. Unfortunately, I received this infor-
mation in July 2018 when the Thesis was almost completed. Therefore, I do not include these interesting
results into the Thesis in detail.



It follows that

λ̂

p− 1
û p ≤ α̂ p for λ̂ > 0 , and α̂ p − λ̂

p− 1
û p > 0 for λ̂ < 0 .

Since α̂ > 0, there is δ > 0 such that û′ > 0 on (0,δ). Therefore

û ′ =
p

√
α̂ p − λ̂

p− 1
û p (3.3)

on (0,δ). Integrating (3.3) from 0 to x again, we have∫ x

0

û ′(s; λ̂,α̂)

p

√
α̂ p − λ̂

p−1 û
p(s; λ̂,α̂)

ds = x

on (0,δ). Substitute σ = û(s; λ̂,α̂), we obtain∫ û(x)

0

1

p

√
α̂ p − λ̂

p−1σ
p

dσ = x . (3.4)

Remark 3.1. Already in 1879, Lundberg [42] studied the properties of a solution y(x) of
the integral equation

x =

∫ y(x)

0

ds

(1− sn)
m
n

,

where m,n ∈ N, n ≥ m and
m

n
is either irreducible fraction or 1.

Let λ̂ < 0. Since f(σ) = 1/ p

√
α̂ p − λ̂

p−1σ
p is continuous for any σ ≥ 0, û is continuous

whenever û ′ is positive. Consequently, û ′ is continuous on the same interval. Hence

from û(0) = 0, û ′(0) = α̂, and (3.2) we obtain û ′(x) > 0 for any x > 0. It is easy to see

that odd extension of û satisfies (3.1) for any x ∈ R. We denote by sinhp the solution

of (3.1) with λ̂ = −p+ 1 and α̂ = 1. In Section 3.3, we will study extension of sinhp to

complex domain.

Henceforth let λ̂ > 0. Since f(σ) = 1/ p

√
α̂ p − λ̂

p−1σ
p is continuous provided α̂ p− λ̂

p−1σ
p ≥

0, û(x; λ̂,α̂) is continuous on [0,π̂p(λ̂,α̂)/2) and consequently û ′(x; λ̂,α̂) is continuous on

the same interval by (3.3). Here

π̂p(λ̂,α̂)
def
= 2

∫ α̂(p−1)
1
p

λ̂
1
p

0

1

p

√
α̂ p − λ̂

p−1σ
p

dσ ,
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i.e. π̂p(λ̂,α̂)/2 is the point, where û(x; λ̂,α̂) achieves its maximum. Hence, δ = π̂p/2. Let

us show that the value π̂p(λ̂,α̂) is finite. Indeed,

π̂p(λ̂,α̂) = 2

∫ 1

0

α̂(p− 1)

α̂pλ̂

(
λ̂

α̂p(p− 1)t

) p−1
p

(1− t)−
1
p dt

= 2
(p− 1)

1
p α̂

1
p
−1

pλ̂
1
p

∫ 1

0
t
1
p
−1

(1− t)−
1
p dt

= 2
(p− 1)

1
p α̂

1
p
−1

pλ̂
1
p

B

(
1

p
,1− 1

p

)
,

where B stands for Beta function. The value π̂p(λ̂,α̂) < +∞ since B(a,b) is convergent

for any a > 0 and any b > 0. Moreover,

π̂p(λ,α̂) = 2
(p− 1)

1
p α̂

1
p
−1

pλ̂
1
p

Γ

(
1− 1

p

)
Γ

(
1

p

)
= 2

(p− 1)
1
p α̂

1
p
−1

pλ̂
1
p

π

sin(π/p)
(3.5)

by Andrews et al. [4, Theorem 1.1.4, p. 5, and Theorem 1.2.1, p. 9]. Gamma function

Γ and Beta function B are defined as usual (see, e.g. Chapter 1 of the handbook [4]).

Integral (3.4) defines the unique solution û(x; λ̂,α̂) on [0,π̂p(λ̂,α̂)/2] such that

û ′(π̂(λ̂,α̂)/2; λ̂,α̂) = 0 by (3.2). Moreover, û(π̂p(λ̂,α̂)− x; λ̂,α̂) = û(x; λ̂,α̂) also satisfies

(3.1) with û ′(0; λ̂,α̂) = −α̂ and, hence, the function

Ŝp(x; λ̂,α̂)
def
=


û(x; λ̂,α̂) x ∈ [0,π̂p(λ̂,α̂)/2) ,

û(π̂p(λ̂,α̂)− x; λ̂,α̂) x ∈ (π̂p(λ̂,α̂)/2,π̂p(λ̂,α̂)] ,

û(−x; λ̂,α̂) x ∈ [−π̂p(λ̂,α̂),0)

(3.6)

extended on R as 2π̂p(λ̂,α̂)-periodic function is the unique continuous solution of (3.1)

by (3.2).

Let us assume the particular case λ̂ = p − 1 and α̂ = 1. We defined πp by (1.3) in

Chapter 1. It follows from (3.5) that

πp = π̂p(p− 1,1) .

It is easy to see that Ŝp(x; p − 1,1) is a solution of eigenvalue problem (1.2). Hence we

may equivalently define the function sinp as the unique solution of initial value problem
−
(
|u′|p−2u′

)′
= (p− 1) |u|p−2 u ,

u(0) = 0 ,

u′(0) = 1 .

(3.7)
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Definition 3.2. Let p > 1. Function sinp is defined as the solution of (3.7) and cosp is
its first derivative.

Remark 3.3 (Different definition of sinp). The notation sinp was used originally for

Ŝp(x; 1,1) in [21]. Denote Sp(x) = Ŝp(x; 1,1) for simplicity. Then

(
S′p
)p

(x) +
Spp (x)

p− 1
= 1 (3.8)

by (3.2). Lindqvist [40] equivalently define function Sp via the integral∫ Sp(x)

0

1

p

√
1− 1

p−1σ
p

dσ = x

and obtain the relation

Spp
p− 1

+
Cp
′

p′

p′ − 1
= 1 .

Here p′ > 1 is a conjugate exponent to p, i.e. 1/p + 1/p′ = 1, and function Cp :[
0,
π̂p(1,1)

2

]
→
[
0,(p− 1)1/p

]
is defined by

∫ (p−1)1/p

Cp(x)

ds

(1− sp/(p− 1))1/p
= x .

Let us note that function Cp is not the first derivative of Sp, but it satisfies the relation

Sp(x) = Cp

(πp
2
− x
)

(see [40, Eq. (3.5), p. 277]). It is easy to verify that

sinp(x) = (p− 1)
− 1
pSp((p− 1)

1
px) .

by (3.2). Definition 3.2 is used, e.g. in Binding at al. [13], Boulton and Lord [15],
Bushell and Edmunds [18] and/or Lang and Edmunds [38].

By (3.4), sinp satisfies ∫ sinp(x)

0

1

(1− σp)1/p
dσ = x

on
[
0,
πp
2

]
. Hence there exists inverse function

arcsinp(x)
def
=

∫ x

0

1

(1− σp)1/p
dσ for x ∈ [0,1] . (3.9)

Let us note that arcsinp can be extended to [−1,1] as an odd function. Then we obtain

sinp (arcsinp(x)) = x for x ∈ [−1,1] .
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We also introduce Gauss’ hypergeometric function 2F1(a,b,c,z), where a,b,c ∈ C are

parameters and z ∈ C is variable. The inquiring reader can found a general definition

of 2F1 and its properties, e.g. in Abramowitz and Stegun [1, Chap. 15] and/or

in [4, Chap. 2]. Let x ∈ [0,1). Then the real integral∫ x

0

1

(1− σp)1/p
dσ = x 2F1

(
1

p
,
1

p
,1 +

1

p
;xp
)

by [4, Theorem 2.2.1, p. 65] and

x 2F1

(
1

p
,
1

p
,1 +

1

p
;xp
)

=
+∞∑
k=0

Γ
(
k + 1

p

)
(kp+ 1)k!Γ

(
1
p

)xkp+1

by the definition of 2F1. The series converge absolutely for |x| < 1 by [4, Theorem 2.1.1,

p. 62]. Hence

arcsinp(x) =
+∞∑
k=0

Γ
(
k + 1

p

)
(kp+ 1)k!Γ

(
1
p

)xkp+1 for x ∈ [0,1) . (3.10)

We apply the well-known procedure of inverting series (see, e.g. Morse and Fesh-

bach [50, §4.5]) to the series (3.10) and we formally obtain

sinp(x) = x− 1

p(p+ 1)
xp+1 − (p2 − 2p− 1)

2p2(p+ 1)(2p+ 1)
x2p+1 + . . . . (3.11)

The main goal of Chapter 3 is to find Maclaurin series of functions sinp. Let us provide

two applications of sinp which motivate our work. In Section 1.2, we mentioned the work

of Boulton and Lord [15] in order to provide an application of the functions sinp in

solving parabolic problems involving the p-Laplace operator (eq. (1.11)). In [15], the

basis {sinp (kπp x)}+∞k=1 is used in numerical implementation of Galerkin method to find

an approximate solution of the boundary-initial value problem

∂u

∂t
− ∂

∂x

(∣∣∣∣∂u∂x
∣∣∣∣p−2 ∂u

∂x

)
= g , in (0, +∞)× (0,1) ,

u(t,0) = u(t,1) = 0 , for t > 0 ,

u(0,x) = 0 , in (0,1) ,

(3.12)

where g ∈ L2(0,1). The choice of basis {sinp (kπp x)}+∞k=1 leads to a very good approxi-

mation of solution of (3.12) with only few terms of the basis in use provided t is sufficient

large.
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The other application is generalized Prüfer transformation where sinp and cosp are used

instead of classical sine and cosine functions, respectively. Generalized Prüfer transfor-

mation is a very powerful theoretical tool in studying various initial and/or boundary

value problems for the quasilinear equation of the type (or some of its generalization)

−
(
|u′|p−2u′

)′ − q(x)|u|p−2u = f(x)

(under various conditions on q and f), see, e.g. Elbert [25], Reichel and Walter [53],

and/or Benedikt and Girg [8]. The numerical algorithm based on shooting method

and generalized Prüfer transformation is introduced in Brown and Reichel [16] and

it is used to determine the eigenvalues and the corresponding eigenfunctions of the

radially symmetric p-Laplace operator. The usage of Prüfer transformation includes

the evaluation of Sp (see Remark 3.3 for relation between Sp and sinp) and hence the

efficiency of the algorithm relies also on the ability to find the values of Sp or sinp fast.

In [16], it is done by solving (3.8) numerically with Sp(0) = 0 and S′p(0) = 1.

An explicit formula for coefficients of Maclaurin series of sinp could help speed up the

above stated methods. However it is very difficult to determine the coefficients in general

and we are not able to deal with this problem for all p > 1. As a starting point for

further research in this direction, we provide such formulas for any p being an integer

greater than 2. Let us note that even this partial result can already be used in practical

applications, since (3.12) with p → +∞ is considered as a model for sandpile growth

(see [5] and [26] for more details).

3.1. Basic Properties of p-Trigonometric Functions

Function sinp possesses many properties as classical sine has. Some of the most basic

properties are listed in the following proposition.

Proposition 3.4 ( [29], Lemma 4.1, p. 106). Let p > 1. Functions sinp and cosp have
the following basic properties.

1. sinp(x) > 0 for x ∈ (0,πp), sinp(0) = 0, sinp(x) = sinp(πp − x) for x ∈ (
πp
2 ,πp),

and sinp(x) = − sinp(−x) for x ∈ (−πp,0). The function sinp extends to R as
2πp-periodic function.

2. sinp is strictly increasing on (−πp
2 ,

πp
2 ).

3. cosp(x) > 0 for x ∈ (−πp
2 ,

πp
2 ), cosp(−πp

2 ) = cosp(
πp
2 ) = 0 and cosp(x) < 0 for

x ∈
[
−πp,− πp

2

)
∪
(πp

2 ,πp
]
.

4. For all n ∈ N, if sin
(2n−1)
p (·) exists on (−πp

2 ,
πp
2 ), then it is even function on

(−πp
2 ,

πp
2 ).
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Figure 3.1: Comparison of sinp functions.

5. For all n ∈ N, if sin
(2n)
p (·) exists on (−πp

2 ,
πp
2 ), then it is odd function on (−πp

2 ,
πp
2 ).

Let as note that superscript (n) denotes n-th derivative. The comparison of functions

sinp, p = 1.1, 3, 60 and classical sine function is visualized in Figure 3.1. Solution of

(3.7) has to satisfy an analogy to the well-known Pythagorean identity (see (3.2) and/or

Elbert [25]).

Proposition 3.5. Functions sinp and cosp satisfy

| cosp(x)|p + | sinp(x)|p = 1 , x ∈ R , (3.13)

for any p > 1.

Remark 3.6. The curves which satisfy

xn

an
+
yn

bn
= 1 a,b,n > 0
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were studied by G. Lamé already in 1818 (see Lamé [37]). Their modern form∣∣∣x
a

∣∣∣n +
∣∣∣y
b

∣∣∣n = 1 (3.14)

is also known as superellipse. Obviously p trigonometric identity (3.13) is special case
of (3.14) with a = b = 1. Hence sinp and cosp provide possible parametrization of some
Lamé curves.

Following formulas for second derivative of sinp ensue directly from (3.13).

Proposition 3.7 ( [27], Lemma 4.2, p. 106). For all p > 1

sin′′p(x) = − sinp−1
p (x) cos2−p

p (x) for x ∈
(

0,
πp
2

)
, (3.15)

and
sin′′p(x) = sinp−1

p (−x) cos2−p
p (x) for x ∈

(
−πp

2
,0
)
.

Relation (3.15) plays key role in our work since it enables us to express n-th derivative

of sinp(x) for x ∈ (0,πp/2) in the form

2n−2−1∑
k=0

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) , (3.16)

for any n ∈ N, n ≥ 2. We assume for the rest of Section 3.1 that n denotes the

order of derivative and it satisfies above stated restriction. The method, how to find

an appropriate real numbers ak,n and qk,n, will be shown later. We are able to prove

following theorems concerning differentiability of sinp using (3.16) and Propositions 3.4

and 3.7.

Proposition 3.8 ( [27], Lemma 4.3, p. 107). Let p ∈ R \ {2} such that p > 1.

1. If p > 2, then the function sinp(·) ∈ C1(R) and sinp(·) 6∈ C2(R).

2. If p ∈ (1,2), then the function sinp(·) ∈ C2(R) and sinp(·) 6∈ C3(R).

Theorem 3.9 ( [27], Theorem 3.1, p. 105). Let p = 2(m+ 1), m ∈ N. Then

sin2(m+1)(·) ∈ C∞
(
−
π2(m+1)

2
,
π2(m+1)

2

)
.

Theorem 3.10 ( [27], Theorem 3.2, p. 105). Let p ∈ R \ {2m}, m ∈ N, p > 1. Then

sinp(·) ∈ Cdpe(−πp/2,πp/2) ,

but
sinp(·) 6∈ Cdpe+1(−πp/2,πp/2) .
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3.1. Basic Properties of p-Trigonometric Functions

Theorem 3.11. Let p ∈ (1,2).

1. If p′ /∈ N , then sinp(·) ∈ Cdp
′e−1(0,πp) , but sinp(·) /∈ Cdp

′e(0,πp) .

2. If p′ is odd, then sinp(·) ∈ Cp
′−1(0,πp) , but sinp(·) /∈ Cp

′
(0,πp) .

3. If p′ is even, then sinp(·) ∈ C∞(0,πp) .

Let us recall that 1/p + 1/p′ = 1. Above stated results are summarized in Table 3.1.

All theorems are proved in [27] except Theorem 3.11. Nevertheless, the proof proceeds

in the same steps as the proofs of Theorem 3.9 and Theorem 3.10. Let us provide a

main ideas of the proof. At first, it is necessary to introduce some notions from formal

languages.

p x in (0,
πp
2 ) (−πp

2 ,
πp
2 ) R (0,πp)

p = 2 C∞ C∞ C∞ C∞

p = 2k k ∈ N \ {1} C∞ C∞ C1 C1

p = 2k + 1 k ∈ N C∞ Cp C1 C1

p ∈ R \ N p > 2 C∞ Cdpe C1 C1

p ∈ (1,2) p′ /∈ N C∞ C2 C2 Cdp
′e−1

p ∈ (1,2) p′ odd C∞ C2 C2 Cp
′−1

p ∈ (1,2) p′ even C∞ C2 C2 C∞

Table 3.1: The order of differentiability of sinp.

Definition 3.12. (Salomaa and Soittola [54], I.2, p. 4, and/or Manna [43], p.
2–3, p. 47, and p. 78) An alphabet (denoted by V ) is a finite nonempty set of letters. A
word (denoted by w) over an alphabet V is a finite string of zero or more letters from
the alphabet V . The word consisting of zero letters is called the empty word. The set
of all words over an alphabet V is denoted by V ∗ and the set of all nonempty words
over an alphabet V is denoted by V +. For strings w1 and w2 over V , their juxtaposition
w1w2 is called catenation of w1 and w2, in operator notation cat : V ∗ × V ∗ → V ∗ and
cat(w1,w2) = w1w2. We also define the length of the word w, in operator notation
len : V ∗ → N ∪ {0}, which for a given word w yields the number of letters in w when
each letter is counted as many times as it occurs in w. We also use reverse function
rev : V ∗ → V ∗ which reverses the order of the letters in any word w (see [43, p. 47, p.
78]).
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3.1. Basic Properties of p-Trigonometric Functions

We consider the alphabet V = {0,1} and the set of all nonempty words V +. Thus words

in V + are, e.g.

“0”,“1”,“01”,“10”,“11” . . . .

For instance, cat(“1110”,“011”) = “1110011”, and

rev(“010011000”) = “000110010” ,

len(“010011000”) = 9 .

Symbol (k)2,n−2 denotes the string of the length n−2 which represents binary expansion

of any k ∈ N ∪ {0} (it means, e.g. for k = 5 and n = 6 (5)2,4 =“0101”). We also define

a set

T
def
= {a sinqp(·) cos1−q

p (·) : a,q ∈ R}

of functions defined on (0,πp/2). One can easy see that T ⊂ C∞(0,πp/2) since sinp(x) > 0

and cosp(x) > 0 for any x ∈ (0,πp/2) by Proposition 3.4. It remains to introduce symbolic

operators (rewriting rules) Ds : T → T and Dc : T → T , as follows:

Ds a sinqp(·) cos1−q
p (·) =

 aq sinq−1
p (·) cos

1−(q−1)
p (·) , q 6= 0 and a 6= 0 ,

0 , otherwise ,
(3.17)

and

Dc a sinqp(·) cos1−q
p (·) =

 −a(1− q) sinq+p−1
p (·) cos

1−(q+p−1)
p (·) , q 6= 1 and a 6= 0 ,

0 , otherwise .

(3.18)

Obviously
d

dx
f(x) = Ds f(x) + Dc f(x)

for any f ∈ T . The application with f = sinq0p (·) cos1−q0
p (·) + sinq0+p

p (·) cos1−q0−p
p (·),

q0 ∈ R\{0,1}, is visualized on Figure 3.2. The special cases q0 = 1 and q0 = 0 are shown

on Figures 3.3 and 3.4, respectively. Now we are ready to define a composition Dk,n,

k ∈ N, 0 ≤ k ≤ 2n−2 − 1, of n− 2 symbolic operators (rewriting rules) Ds and Dc. The

procedure takes two steps:

Step 1 We create an ordered n− 2-tuple dk,n−2 ∈ {Ds , Dc}n−2 (cartesian product of sets

{Ds , Dc} of length n − 2) from rev ((k)2,n−2) such that for 1 ≤ i ≤ n − 2, dk,n−2

contains Ds on the i-th position if rev ((k)2,n−2) contains “0” on the i-th position,

and dk,n contains Dc on the i-th position if rev ((k)2,n−2) contains “1” on the i-th

position (e.g. we obtain d5,4 = (Dc , Ds , Dc , Ds) for k = 5 and n = 6).
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3.1. Basic Properties of p-Trigonometric Functions

Step 2 We define Dk,n as the composition of operators Ds , Dc in the order they appear in

the ordered n− 2-tuple dk,n−2 (e.g. we obtain D5,6 = (Dc ◦Ds ◦Dc ◦Ds) for k = 5

and n = 6).

Let us point out that it is possible to recover the index k from the positions of Dc in

Dk,n. We will denote by j(k) ≥ 0 the number of Dc in Dk,n and, if j(k) 6= 0, we denote

by i1,i2, . . . ,ij(k) its positions counted from back (i.e. in the order of application of Ds

and/or Dc). Then

k = 2n−2−(i1−1) + 2n−2−(i2−1) + . . .+ 2n−2−(ij(k)−1) . (3.19)

If j(k) = 0, k = 0. We can prove by induction that

sin(n)
p (x) =

2n−2−1∑
k=0

Dk,n sin′′p(x) =
2n−2−1∑
k=0

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) , x ∈

(
0,
πp
2

)
,

and it follows from (3.17) and (3.18) that

qk,n = j(k)(p− 1) + (n− 2− j(k))(−1) + p− 1 . (3.20)

Coefficient ak,n corresponding to Dk,n is obtained by recursion with base case a0 = −1

and inductive clause

ai+1 =

 qi · ai if Ds is applied ,

−(1− qi)ai if Dc is applied ,
(3.21)

i ∈ N, 0 ≤ i ≤ n− 2. The exponent qi can be obtained from (3.20) with j equals to the

number of Dc occurred on the last i positions in Dk,n. The alternative way to obtain qi

is to use recursive formula with base case q0 = p− 1 and inductive clause

qi+1 =

 qi − 1 if Ds is applied ,

qi + p− 1 if Dc is applied .
(3.22)

For D5,6, we obtain q1 = p− 2, q2 = 2p− 3, q3 = 2p− 4, and q4 = 3p− 5 and hence

a5,6 = (−1)(p− 1)(−1)(1− (p− 2))(2p− 3)(−1)(1− (2p− 4))

= (−1)j(k)+1(p− 1)(3− p)(2p− 3)(5− 2p) .

Finally we get to the problem of differentiability. It easily follows from (3.16) that

sinp(x) ∈ C∞ (0,πp/2) since sinp(x) > 0 and cosp(x) > 0 for any x ∈ (0,πp/2) by

Proposition 3.4. Due to Proposition 3.4, Part 1, the same statement holds for any
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3.1. Basic Properties of p-Trigonometric Functions

interval I ⊂ R, which has empty intersection with the set {kπp/2, k ∈ Z}. Continuity

in the points x = 0 and x = πp/2 depends only on terms in (3.16), where qk,n ≤ 0 and

1− qk,n ≤ 0, respectively. Otherwise

lim
x→0+

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) = 0 (3.23)

and

lim
x→πp/2−

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) = 0 . (3.24)

Continuity at x = 0: Let p > 1 be an integer. Than it can be proved (see [27, Lemma

4.6, p. 113]) that qk,n ∈ N∪{0} or ak,n = 0 for any 0 ≤ k ≤ 2n−2−1. Hence the possible

issue may occurs for

n = (j(k) + 1)p+ 1 (3.25)

by the condition qk,n = 0. Otherwise

lim
x→0+

sin(n)
p (x) = 0

by (3.23),

lim
x→0−

sin(n)
p (x) = 0 = lim

x→0+
sin(n)

p (x)

by the oddness or evenness of sin
(n)
p (·), and

sin(n)
p (0) = lim

x→0+
sin(n)

p (x)

by the definition of the first derivative and L’Hôspital’s rule.

Let n = p + 1 for a moment. Then q0,p+1 = 0 by (3.20). Moreover it is the first order

of derivative of sinp where the discontinuity may occur by (3.25). If p is odd, function

sin
(p+1)
p (x) has jump discontinuity at x = 0, since it is odd function and

lim
x→0+

a0,p+1 sin
q0,p+1
p (x) cos

1−q0,p+1
p (x) = a0,p+1 = −(p− 1)! > 0 .

It is the only nonzero limit by (3.20). Otherwise, sin
(p+1)
p (·) is even function for p even.

Hence sin
(p+1)
p (·) is continuous since the only nonzero limit

lim
x→0+

a0,p+1 sin
q0,p+1
p (x) cos

1−q0,p+1
p (x) = a0,p+1 = −(p− 1)! < +∞

and

sin(p+1)
p (0) = lim

x→0+
sin(n)

p (x)
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3.1. Basic Properties of p-Trigonometric Functions

by the definition of the first derivative and L’Hôspital’s rule again. Let p be even and

n = ip+ 1, i ∈ N \ {1}. Then n is odd and hence sin
(ip+1)
p (·) is even function. Moreover

lim
x→0+

sin(ip+1)
p (x) =

2ip−1−1∑
k=0

ak,ip+1 lim
x→0+

sin
qk,ip+1
p (x) cos

1−qk,ip+1
p (x)

=
2ip−1−1∑
k=0

qk,ip+1=0

ak,ip+1 < +∞ .

Hence it can be prove by induction that sin
(n)
p (·) is continuous for any n ∈ N provided p

is an even integer.

Let us assume now that p is not an integer. Then the first possibly discontinuous

derivative is sin
(dpe+1)
p (·) by the condition qk,n ≤ 0. Actually,

lim
x→0+

sin(dpe+1)
p (x) = lim

x→0+
a0,dpe+1 sin

q0,dpe+1
p (x) cos

1−q0,dpe+1
p (x) = −∞

since q0,dpe+1 < 0 and qk,dpe+1 > 0 for k 6= 0 by (3.20).

Continuity at x = πp/2: For p > 2,

lim
x→πp/2−

sin′′p(x) = − lim
x→πp/2−

sinp−1
p (x) cos2−p

p (x) = −∞

and, hence, it remains to deal with the case p ∈ (1,2). It follows from (3.24) that

sin
(n)
p (·) is continuous provided qk,n < 1 for all 0 ≤ k ≤ 2n−2 − 1. We reformulate (3.20)

for s(k) = n− 2− j(k) which denotes the number of occurrences of Ds in Dk,n. Then

qk,n = (p− 1)(n− 2− s(k)) + (−1)s(k) + p− 1 (3.26)

which follows that

qk,n =
1

p′ − 1
(n− 1− s(k))− s(k) . (3.27)

Then, the condition qk,n ≥ 1 is equivalent to

n ≥ (s(k) + 1)p′ ≥ p′ .

Hence, sinp(·) ∈ Cdp
′e−1 (0,πp). It is easy to see that

q2dp′e−2−1,dp′e =
dp′e − 1

p′ − 1
> 1

for p > 1 such that p′ /∈ N and, hence, sin
(dp′e)
p (·) /∈ C(0,πp). We recall that D2dp′e−2−1,dp′e

is composition of Dc only which implies that s
(

2dp
′e−2 − 1

)
= 0.
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3.2. Macluarin Series

Let p be such that p′ > 2 is an integer and n = p′. It follows that

q2p′−2−1,p′ =
1

p′ − 1
(p′ − 1) = 1

by (3.27). Due to the reflection sinp(x) = sinp(πp − x) for x ∈ (0,πp/2), we obtain that

sin
(p′)
p (·) is continuous for p′ even and it has jump at x = πp/2 for p′ odd.

We prove that qk,n ≤ 1 or ak,n = 0 for any n ∈ N and any 0 ≤ k ≤ 2n−2− 1. At first, let

us show that

qk,n ∈
{

l

p′ − 1
,l ∈ Z,l ≤ n− 1

}
(3.28)

for all n ∈ N and all 0 ≤ k ≤ 2n−2 − 1. Indeed, let lk = n− 1− s(k)p′. Then lk ∈ Z for

all 0 ≤ k ≤ 2n−2 − 1 and

qk,n =
1

p′ − 1
(n− 1− s(k))− s(k) =

n− 1− s(k)p′

p′ − 1
=

lk
p′ − 1

by (3.27). The proof continues by induction on n. The first exponent q0,2 = p− 1 ≤ 1.

Let qk0,n0 ≤ 1 and apply Ds and Dc to obtain q2k0,n0+1 and q2k0+1,n0+1, respectively.

Then, q2k,n+1 ≤ 0 by (3.17). The application of Dc should be divided into two cases.

Let qk0,n0 = 1 at first. Then, a2k0+1,n0+1 = 0 by (3.18). If qk0,n0 < 1, then qk0,n0 ≤
(p′ − 2)/(p′ − 1) by (3.28). Hence,

q2k0+1,n0+1 = qk0,n0 + p− 1 = qk0,n0 +
1

p′ − 1
≤ 1 .

It follows from (3.27) that qk,n = 1 if and only if n = ip′, i ∈ N. Henceforth, the proof

takes similar steps as in the previous case. Let us emphasise that p and p′ are even

integers simultaneously only if p = 2.

3.2. Macluarin Series

Paredes and Uchiyama [52] proved that there exists analytic function F (y) such that

sinp(x) = xF (|x|p) =
+∞∑
n=0

αnx|x|np (3.29)

on some neighbourhood of the origin, say on (−ε,ε). We will assume that p > 2 is an

integer. The goal of this section is to derive an explicit formula for the coefficients αn

and the radius of convergence of generalized Maclaurin series (3.29). It follows from

(3.29) that there exist Maclaurin series

Mp(x) =
+∞∑
i=0

ᾱix
i
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3.2. Macluarin Series

with ᾱi = 0 for i 6= np+1 for any n ∈ N∪{0}, which is convergent on some neighbourhood

of origin such that

sinp(x) = Mp(x)

on [0,ε). Hence

ᾱnp+1 =
limx→0+ sin

(np+1)
p (x)

(np+ 1)!

and, in particular, αn = ᾱnp+1 due to the uniqueness of the coefficients of Maclaurin

series and oddness of sinp. Maclaurin series of inverse function

arcsinp(x) =
+∞∑
j=0

βjx
j

with

βj =


Γ
(
i+ 1

p

)
(ip+1)Γ

(
1
p

)
i!

if j = ip+ 1 for some i ∈ N ∪ {0} ,

0 otherwise ,

converge on [0,1). Hence

sinp(arcsinp(x)) =
+∞∑
i=0

cix
i , (3.30)

on [0,δ) for some δ > 0. Here

ci =
∑

k∈N,j1,j2,j3,...,jk∈N
j1+j2+j3+...+jk=i

αk · βj1 · βj2 · βj3 · . . . · βjk .

Moreover,

ci =

 1 , i = 1 ,

0 , otherwise ,

since sinp(arcsinp(x)) = x and the series on right hand side of (3.30) converges for some

x 6= 0. It follows that the series in (3.30) converges for any x ∈ R and, in particular,

1 =
+∞∑
i=0

ci =
+∞∑
i=0

∑
k∈N,j1,j2,j3,...,jk∈N
j1+j2+j3+...+jk=i

αk · βj1 · βj2 · βj3 · . . . · βjk ,

where βj ≥ 0, j ∈ N, α1 = limx→0+ cosp(x) = 1, and αk ≤ 0, k ≥ 2. The latter inequality

follows from

sin(n)
p (x) ≤ 0 on

(
0,
πp
2

)
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3.2. Macluarin Series

which is proved in [27, Lemma 4.7, p. 114] for any n ∈ N, n ≥ 2. Hence, all positive

terms in
+∞∑
i=0

∑
k∈N,j1,j2,j3,...,jk∈N
j1+j2+j3+...+jk=i

αk · βj1 · βj2 · βj3 · . . . · βjk , (3.31)

satisfy k = 1 and j1 = i. In particular

+∞∑
i=0

α1βi = arcsinp(1) =
πp
2

and
+∞∑
i=0

∑
k≥2,j1,j2,j3,...,jk∈N
j1+j2+j3+...+jk=i

αk · βj1 · βj2 · βj3 · . . . · βjk = 1− πp
2
.

It follows that (3.31) converges absolutely and also any rearrangement of any subseries

has to converge absolutely. It means that

+∞∑
n=0

αn(
M∑
j=0

βj)
n

converges absolutely for any M ∈ N because it is rearranged subseries of (3.31). Since

limM→+∞
∑M

j=0 βj = πp/2 and bj is positive for any j ∈ N, series Mp(x) converges

absolutely on (−πp/2,πp/2). That series converges toward sinp by (3.29) provided p is

even, but it does not converge toward sinp for p odd. These results are summarized in

following two theorems:

Theorem 3.13 ( [27], Theorem 3.3, p. 106). Let p = 2(m + 1) for m ∈ N. Then the
Maclaurin series Mp(·) of sinp(·) converges on (−πp/2,πp/2).

Theorem 3.14 ( [27], Theorem 3.4, p. 106). Let p = 2m+ 1, m ∈ N. Then the formal
Maclaurin series Mp(·) converges on (−πp/2,πp/2). Moreover, the formal Maclaurin
series Mp(·) converges towards sinp(·) on [0,πp/2), but does not converge towards sinp(·)
on (−πp/2,0).

We are also able to provide the explicit formula for the coefficient αn. We omit terms

with zero coefficients αn in Theorem 3.15 and change the notation such that α1 is the

first nonzero coefficient, α2 is the second nonzero coefficient, etc.

Theorem 3.15. Let p > 2 be an integer and

sinp(x) =

+∞∑
n=0

αnx|x|np , x ∈
(
−πp

2
,
πp
2

)
. (3.32)
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3.3. Extension to Complex Domain

Then α0 = 1, α1 = − 1

p(p+ 1)
, and for n ≥ 2,

αn =
(−1)n

(np+ 1)!

p∑
i1=1
i1 6=p−1

2p∑
i2=i1+1
i2 6=2p−1

. . .

(n−1)p∑
in−1=in−2+1
in−1 6=(n−1)p−1[

i1−1∏
m1=1

(p− 1− (m1 − 1))

]
(1− (p− 1− (i1 − 1))

·

[
i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))

]
(1− (2(p− 1)− (i2 − 2))) · . . . · (3.33)

·

 in−1−1∏
mn−1=in−2+1

((n− 1)(p− 1)− (mn−1 − (n− 1)))


· (1− ((n− 1)(p− 1)− (in−1 − (n− 1)))) [n(p− 1)− (in−1 − n+ 1)]! .

The proof of Theorem 3.15 is very technical and we refer the curious reader to [34]. We

only sketch the proof here. Since

lim
x→0+

sin(np+1)
p (x) =

2np−1−1∑
k=0

qk,np+1=0

ak,np+1 ,

it is important to characterize k, 0 ≤ k ≤ 2np−1−1 such that qk,np+1 = 0. We use (3.19),

i.e.

k = 2np−1−(i1−1) + 2np−1−(i2−1) + . . .+ 2np−1−(in−1−1).

The number of application of Dc in Dk,np+1 is exactly n − 1 which follows from the

condition qk,np+1 = 0 (see (3.20)). Then we find all allowable composed operators

Dk,np+1 with exactly n − 1 operators Dc (we exclude the composed operators when we

should apply Dc on the term with q = 1, see (3.18)). Then we used recursive formulas

(3.21) and (3.22) to obtain desired ak,np+1 for any k such that qk,np+1 = 0.

Let us note that above stated procedure is not the only way how to get the coefficients

for series (3.29). One can use inverse of Maclaurin series of arcsinp(·) as was shown at

the beginning of Chapter 3. In our approach, the evaluation of the coefficients does not

involve a numerical inversion which is usually expensive operation in terms of computa-

tional effort.

3.3. Extension to Complex Domain

This section is devoted to extension of sinp to complex domain. The only attempt (even

formal) known by us was done by Lindqvist [40] who proposed a definition of sinp as
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the solution of
d

dz
(w′)p−1 + wp−1 = 0 w(0) = 0 , w′(0) = 1

in complex domain for p > 1. But Lindqvist himself conjectured that real function

sinp(x) and complex function w(z) of real variable could be different. Let us note that

we use x for real variable and z for complex variable in this section. We define complex

function sinp(z) on Bp
def
= {z ∈ C : |z| < πp/2} naturally by its Maclaurin series provided

p ∈ N, p > 2.

Definition 3.16. Let p ∈ N, p > 2, and z ∈ Bp. Then

sinp(z) =

+∞∑
n=0

αnz
np+1 , (3.34)

where

αn = lim
x→0+

sin
(np+1)
p (x)

(np+ 1)!
.

We also define

cosp(z) =
d

dz
sinp(z) .

Then the following question arises: “Do above defined functions satisfy initial value

problem (3.7) in the sense of differential equations in complex domain?” It was O. Došlý

who motivated our work by asking the question. Let us consider initial value problem
−(u′)p−2u′′ − up−1 = 0 ,

u(0) = 0 ,

u′(0) = 1

(3.35)

in complex domain.

Theorem 3.17 ( [28],Theorem 2.1, p. 226). Let p = 2(m+ 1), m ∈ N, then the unique
solution of the initial value problem (3.35) on Bp is the function sinp(z).

Theorem 3.18 ( [28], Theorem 3.1, p. 229). Let p = 2m+ 1, m ∈ N. Then the unique
solution u(z) of the complex initial value problem (3.35) differs from the solution sinp(x)
of the Cauchy problem (3.7) for z = x ∈ (−πp/2,0).

The proofs of Theorems 3.17 and 3.18 are based on the fact that (3.35) possesses the

unique analytic solution at least on some small disk centered at the origin. The solution

can be written as a power series which coincides with the series on the right hand side
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of (3.34) since, in real domain, (3.35) is equivalent to (3.7) for x > 0. Nevertheless, the

real restriction of the series on the right hand side of (3.34) to real axis,

+∞∑
n=0

αnx
np+1 ,

does not converge toward sinp(x) even in real domain by Theorem 3.14 provided p is

odd.

There are some interesting results concerning sinp(z) in complex domain. At first let us

mention that there is no hope for sinp(z) to be entire function for p ∈ N, p > 2, since it

satisfies an analogy of p-trigonometric identity (3.13), i.e.

cospp(z) + sinpp(z) = 1

on some disc Dr, r > 0, in complex domain centered at the origin (see [29, Lemma 13,

p. 4]). Then we can use Proposition 3.19 which confirms our statement.

Proposition 3.19 ( [17], Theorem 12.20 on p. 433). Let f and g be entire functions
and for some positive integer n satisfy identity

fn + gn = 1 .

1. If n = 2, then there is an entire function h such that f = cos ◦h, g = sin ◦h.

2. If n > 2, then f and g are each constant.

Further, let us consider following initial value problem
(u′)p−2u′′ − up−1 = 0 ,

u(0) = 0 ,

u′(0) = 1 .

(3.36)

Then there exists r > 0 such that (3.36) has the unique solution on complex disc Dp
def
=

{z ∈ C : |z| < r} by [29, Lemma 16, p. 6] and the following definition makes sense.

Definition 3.20. Let p ∈ N,p > 2. The complex function sinhp(z) is defined on Dp as

the unique solution of the initial-value problem (3.36) and coshp(z)
def
= sinh′p(z) for all

z ∈ Dp.

Then we are able to prove an analogy to well known formula sin(z) = −i sin(iz).
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Theorem 3.21 ( [29], Theorem 20, p. 6). Let p = 4l + 2, l ∈ N. Then

sinp(z) = −i sinhp(iz) , (3.37)

cosp(z) = coshp(iz) (3.38)

for all z ∈ Bp. Moreover,

sinhp(z) =

∞∑
k=0

(−1)kαkz
kp+1 . (3.39)

Let us note that the coefficients of Maclaurin series of sinhp alternates sign whereas the

coefficients of Maclaurin series of sinp are negative except the first provided p = 4l + 2,

l ∈ N. It follows from (3.39) and the fact that α1 = 1 and αk ≤ 0 for k ≥ 2.

Theorem 3.22 ( [29], Theorem 21, p. 6). Let p = 4l, l ∈ N. Then

sinp(z) = −i sinp(iz) , (3.40)

cosp(z) = cosp(iz) (3.41)

for all z ∈ Bp.

The statements of previous Theorems 3.21 and 3.22 are visualized on Figure 3.1.

Theorem 3.23 ( [29], Theorem 22, p. 6). Let p = 4l, l ∈ N. Then

sinhp(z) = −i sinhp(iz) , (3.42)

coshp(z) = coshp(iz) (3.43)

for all z ∈ Dp.

3.4. Related Articles of the Author

2014 Differentiability properties of p-trigonometric functions; Girg, P., Kotrla,

L.; Electron. J. Differ. Equ. Conf.; [27]

Abstract:

p-trigonometric functions are generalizations of the trigonometric functions. They

appear in context of nonlinear differential equations and also in analytical geometry

of the p-circle in the plain. The most important p-trigonometric function is sinp(x).

For p > 1, this function is defined as the unique solution of the initial-value problem(
|u′(x)|p−2u′(x)

)′
= (p− 1)|u(x)|p−2u(x), u(0) = 0, u′(0) = 1 ,
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for any x ∈ R. We prove that the n-th derivative of sinp(x) can be expressed in

the form
2n−2−1∑
k=0

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) ,

on (0,πp/2), where πp =
∫ 1

0 (1 − sp)−1/p ,ds, and cosp(x) = sin′p(x). Using this

formula, we proved the order of differentiability of the function sinp(x). The most

surprising (least expected) result is that sinp(x) ∈ C∞ (−πp/2,πp/2) if p is an even

integer. This result was essentially used in the proof of theorem, which says that

the Maclaurin series of sinp(x) converges on (−πp/2,πp/2) if p is an even integer.

This completes previous results that were known e.g. by Lindqvist and Peetre

where this convergence was conjectured.

2015 Generalized trigonometric functions in complex domain; Girg, P., Kotrla,

L.; Mathematica Bohemica; [28]

Abstract:

In this paper we study extension of p-trigonometric functions sinp and cosp to

complex domain. For p = 4,6,8, . . . , the function sinp satisfies initial value problem

which is equivalent to 
− (u′)p−2 u′′ − up−1 = 0 ,

u(0) = 0 ,

u′(0) = 1

(*)

in R. In our recent paper [27], we showed that sinp(x) is a real analytic function

for p = 4,6,8, . . . on (−πp/2,πp/2), where πp/2 =
∫ 1

0 (1 − sp)−1/p. This allows

us to extend sinp to complex domain by its Maclaurin series convergent on disc

{z ∈ C : |z| < πp/2}. The question is whether this extensions sinp(z) satisfies

(*) in the sense of differential equations in complex domain. This interesting

question was posed by Došlý and we show that the answer is affirmative. We also

discuss difficulties concerning extension of sinp to complex domain for p = 3,5,7 . . . .

Moreover, we show that the structure of the complex valued initial value problem

(*) does not allow entire solutions for any p ∈ N, p > 2. Finally, we provide some

graphs of real and imaginary parts of sinp(z) and suggest some new conjectures.

2016 p-trigonometric and p-hyperbolic functions in complex domain; Girg, P.,

Kotrla, L.; Abstr. Appl. Anal.; [29]
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Abstract:

In this paper we study extension of p-trigonometric functions sinp and cosp and of p-

hyperbolic functions sinhp and coshp to complex domain. Our aim is to answer the

question under what conditions on p these functions satisfy well known relations for

usual trigonometric and hyperbolic functions, such as e.g. sin(z) = −i · sinh(i · z).
In particular, we prove in the paper that for p = 6,10,14, . . . the p-trigonometric

and p-hyperbolic functions satisfy very analogous relations as their classical coun-

terparts. Our methods are based on the theory of differential equations in the

complex domain using the Maclaurin series for p-trigonometric and p-hyperbolic

functions.

Reviewed by Mehdi Hassani (MR3498048):

“The authors generalize the properties of hyperbolic functions such as the well-

known relations sin z = −i sinh(iz), cos z = cosh(iz), cos z = sin′ z, cosh z =

sinh′ z, cos2 z+ sin2 z = 1, and cosh2 z− sinh2 z = 1 with z ∈ C to have their coun-

terparts for generalized p-trigonometric and p-hyperbolic functions. Also, they

provide visualizations of the results obtained by introducing several graphs, in-

cluding Lamécurves. ”

2018 Maclaurin series for sinp with p > 2 be an integer; Kotrla, L.; Electron. J.

Differential Equations; [34]

Abstract: We find an explicit formula for the coefficients αn, n ∈ N, of the gener-

alized Maclaurin series for sinp provided p > 2 is an integer. Our method is based

on an expression of the n-th derivative of sinp in the form

2n−2−1∑
k=0

ak,n sinp−1
p (x) cos2−p

p (x) , x ∈
(

0,
πp
2

)
,

where cosp stands for the first derivative of sinp. The formula allows us to compute

the nonzero coefficients

αn =
limx→0+ sin

(np+1)
p (x)

(np+ 1)!
.
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multi-bump solutions in parabolic problems with the p-Laplacian. J. Differential

Equations 260, 2 (2016), 991–1009.

• Benedikt, J., Girg, P., Kotrla, L., and Takáč, P. The strong maximum
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2014, One-dimensional p-Laplacian - the First eigenfunction and bifurcation.3
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NONUNIQUENESS OF SOLUTIONS OF INITIAL-VALUE
PROBLEMS FOR PARABOLIC p-LAPLACIAN

JIŘÍ BENEDIKT, VLADIMIR E. BOBKOV, PETR GIRG,

LUKÁŠ KOTRLA, PETER TAKÁČ

Abstract. We construct a positive solution to a quasilinear parabolic problem

in a bounded spatial domain with the p-Laplacian and a nonsmooth reaction

function. We obtain nonuniqueness for zero initial data. Our method is based
on sub- and supersolutions and the weak comparison principle.

Using the method of sub- and supersolutions we construct a positive solu-

tion to a quasilinear parabolic problem with the p-Laplacian and a reaction
function that is non-Lipschitz on a part of the spatial domain. Thereby we

obtain nonuniqueness for zero initial data.

1. Introduction

The problem of uniqueness and nonuniqueness of solutions to various types of
initial (and boundary) value problems for quasilinear parabolic equations has been
an interesting research topic for several decades (see, e.g., Fujita and Watanabe
[3] and the references therein, Guedda [4], Ladyzhenskaya and Ural’tseva [6], and
Oleinik and Kruzhkov [10]).

In this work we focus on the following problem with the p-Laplacian and a
(partly) nonsmooth reaction function:

∂u

∂t
−∆pu = q(x)|u|α−1u for (x, t) ∈ Ω× (0, T ) ;

u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ) ,

u(x, 0) = 0 for x ∈ Ω .

(1.1)

Here, ∆pu := div
(
|∇u|p−2∇u

)
denotes the p-Laplacian for 1 < p < ∞, α ∈ (0, 1)

is a given number, 0 < T <∞, and the potential q satisfies
(Q) q ∈ C(Ω), q ≥ 0, and q(x0) > 0 for some x0 ∈ Ω.

We assume that Ω ⊂ RN is a bounded domain with a C1+µ-boundary ∂Ω where
µ ∈ (0, 1).

In particular, we deal with degenerate (singular) diffusion if 2 < p < ∞ (1 <
p < 2, respectively) and the reaction function f(x, u) := q(x)|u|α−1u. Notice that
if q(x0) > 0 then the function u 7→ f(x0, u) satisfies neither a local Lipschitz nor

2000 Mathematics Subject Classification. 35B05, 35B30, 35K15, 35K55, 35K65.
Key words and phrases. Quasilinear parabolic equations with p-Laplacian; nonuniqueness for
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an Osgood (see [11]) condition near u = 0 provided α ∈ (0, 1). The case p = 2
(the Laplace operator) was treated in Fujita and Watanabe [3] by entirely different
methods based on the Green’s function for the heat equation. An important special
case, N = 1, 1 < p < ∞, and q(x) ≡ λ > 0 (a constant), was treated in Guedda
[4] also by different methods. The main purpose of the present article is to fill
in the gap left open for 1 < p < ∞, p 6= 2, and q ∈ C(Ω), q ≥ 0, where q is not
necessarily positive everywhere in Ω. Because of this possibly nonuniform positivity
of q over Ω, the method used in [4] cannot be applied here. We use a different
approach based on sub- and supersolutions and the weak comparison principle.
As a trivial consequence of the fact that problem (1.1) possesses a nontrivial non-
negative solution (see our main result, Theorem 1), we conlude that the weak
comparison principle does not hold for problem (1.1) considered with nontrivial
initial conditions, say, in W 1,p

0 (Ω).
Observe that our assumption (Q) implies that there exists R > 0 such that

q(x) ≥ q0 ≡ const > 0 for all x ∈ BR(x0) where

BR(x0) := {x ∈ RN : |x− x0| < R} ⊂ Ω.

Let (λ1, ϕ1,R) denote the first eigenpair for the operator −∆p : W 1,p
0 (BR(x0))→

W−1,p′(BR(x0)); that is,

−∆pϕ1,R = λ1,R ϕ
p−1
1,R in BR(x0) ;

ϕ1,R = 0 on ∂BR(x0) ,
(1.2)

and ϕ1,R ∈ W 1,p
0 (BR(x0)) is normalized by ϕ1,R(x0) = 1. Note that this normal-

ization yields 0 < ϕ1,R(x) ≤ 1 for all x ∈ BR(x0). Moreover, we denote by

ϕ̃1,R(x) :=

{
ϕ1,R(x) for x ∈ BR(x0) ;
0 for x ∈ Ω \BR(x0) ,

(1.3)

the natural zero extension of ϕ1,R from BR(x0) to the whole of Ω. Our main
theorem is the following nonuniqueness result.

Theorem 1.1. Assume that 0 < α < min{1, p − 1} and (Q) are satisfied. Then
there exists T > 0 small enough, such that problem (1.1) possesses (besides the
trivial solution u ≡ 0) a nontrivial, nonnegative weak solution

u ∈ C
(
[0, T ]→ L2(Ω)

)
∩ Lp

(
(0, T )→W 1,p(Ω)

)
which is bounded below by a subsolution u : Ω× (0, T )→ R+ of type

u(x, t) = θ(t)ϕ̃1,R(x)β ≥ 0 in Ω× (0, T ) ,

where θ : [0, T ] → R+ is a strictly increasing, continuously differentiable function
with θ(0) = 0, and β ∈ (1,∞) is a suitable number.

In contrast with this nonuniqueness result, several uniqueness results have been
established in [2].

Remark 1.2. Assume that q ∈ L∞(Ω) satisfies 0 ≤ q(x) ≤ λ1 a.e. in Ω, where λ1

stands for the principal eigenvalue of −∆p with zero Dirichlet boundary conditions
on Ω. Then the condition α < p − 1 is essential for obtaining our nonuniqueness
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result. Namely, if α = p − 1 then u ≡ 0 is the unique weak solution of (1.1). The
uniqueness follows directly from the following standard energy estimate:

1
2

d
dt

∫
Ω

|u(x, t)|2 dx+
∫

Ω

|∇u|p dx =
∫

Ω

q(x)|u|p dx ≤ λ1

∫
Ω

|u|p dx .

By the variational characterization of λ1 (Poincaré’s inequality in Lindqvist [8]),
we get

1
2

d
dt

∫
Ω

|u(x, t)|2 dx ≤ −
∫

Ω

|∇u|p dx+ λ1

∫
Ω

|u|p dx ≤ 0 ,

which implies u(x, t) ≡ 0 in Ω× (0, T ), thanks to u(x, 0) ≡ 0 in Ω.

A weaker result than our Theorem 1.1 has recently been published in Merchán,
Montoro, and Peral [9, Theorem 2.2, p. 248]. There, a very strong uniform posi-
tivity condition on the potential q is assumed, q0 = infΩ q > 0. This means that it
suffices to treat the constant case q(x) ≡ q0 = const > 0 and then use the resulting
solution as a subsolution for the general case q(x) ≥ q0 = const > 0. In contrast,
our Theorem 1.1 above does not assume q0 > 0; we assume only q ≥ 0 and q 6≡ 0 in
Ω. Nevertheless, our proof of this result, especially our construction of a nonzero
subsolution, is simpler than in [9].

2. Proof of Theorem 1.1

Note that ϕ̃1,R defined in (1.3) is continuous on Ω and ϕ̃β1,R is continuously dif-
ferentiable for any constant β > 1. We need to establish a few additional properties
of ϕ1,R(x) ≡ ϕ1,R(|x − x0|) = ϕ1,R(r), with r = |x − x0| and the usual harmless
abuse of notation.

Lemma 2.1. If β ∈ (0,∞) then

−∆p

(
ϕβ1,R

)
= βp−1ϕ

(p−1)(β−1)−1
1,R

[
λ1,Rϕ

p
1,R − (p− 1)(β − 1)|∇ϕ1,R|p

]
(2.1)

holds pointwise a.e. in BR(x0). In particular, for β ≥ 1 we have

−∆p(ϕ
β
1,R)

ϕβ1,R
≤ C ≡ const <∞ pointwise a.e. in BR(x0) . (2.2)

Proof. Any function u : BR(x0) → R that is radially symmetric around x0 can be
written as u(x) = u(r) where r = |x−x0|. Using this notation we obtain, by formal
differentiation,

∆pu(|x− x0|) = div
(
|u′(r)|p−2u′(r)

x− x0

r

)
=
(
|u′(r)|p−2u′(r)

)′
+
N − 1
r
|u′(r)|p−2u′(r) .

(2.3)

It is well-known that the first eigenfunction ϕ1,R is radially symmetric around x0,
positive, and C2 in BR(x0) \ {x0}, see e.g. [1]. Therefore, we get a.e. in BR(x0),

∆p

(
ϕβ1,R(r)

)
=
(
βp−1ϕ

(p−1)(β−1)
1,R |ϕ′1,R|p−2ϕ′1,R

)′
+
N − 1
r

βp−1ϕ
(p−1)(β−1)
1,R |ϕ′1,R|p−2ϕ′1,R
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= βp−1
{

(p− 1)(β − 1)ϕ(p−1)(β−1)−1
1,R |ϕ′1,R|p

+ ϕ
(p−1)(β−1)
1,R

(
|ϕ′1,R|p−2ϕ′1,R

)′
+
N − 1
r

ϕ
(p−1)(β−1)
1,R |ϕ′1,R|p−2ϕ′1,R

}
= βp−1ϕ

(p−1)(β−1)−1
1,R

{
(p− 1)(β − 1)|ϕ′1,R|p − λ1,Rϕ

p
1,R

}
= βp−1ϕ

(p−1)β
1,R

{
(p− 1)(β − 1)

|ϕ′1,R|p

ϕp1,R
− λ1,R

}
.

Hence,
−∆p

(
ϕβ1,R

)
≤ βp−1λ1,Rϕ

(p−1)β
1,R

for β ≥ 1. For p ≥ 2 this yields

−∆p

(
ϕβ1,R

)
ϕβ1,R

≤ βp−1λ1,Rϕ
(p−2)β
1,R ≤ βp−1λ1,R ,

thanks to our normalization 0 < ϕ1,R ≤ 1. On the other hand, for 1 < p < 2,

−∆p

(
ϕβ1,R

)
ϕβ1,R

= βp−1ϕ
(p−2)β
1,R

{
λ1,R − (p− 1)(β − 1)ϕ−p1,R|ϕ

′
1,R|p

}
. (2.4)

Since ϕ1,R is radially decreasing and satisfies the Hopf maximum principle on the
boundary of BR(x0), we can choose ε > 0 such that ϕ′1,R(r) < ϕ′1,R(R)/2 < 0 for
all r ∈ (R− ε,R).

Hence, (2.4) implies (2.2) for R − ε ≤ r < R provided ε > 0 is small enough,
such that

λ1,R − (p− 1)(β − 1)ϕ−p1,R|ϕ
′
1,R|p ≤ 0 for R− ε ≤ r < R .

At the same time, the ratio −∆p

(
ϕβ1,R

)
/ϕβ1,R is bounded for 0 < r ≤ R− ε. Thus,

estimate (2.2) holds a.e. in BR(x0). �

Proposition 2.2. Assume that 0 < α < min{1, p−1} and (Q) are satisfied. Given
any fixed number S ∈ (0,∞), we define

u(x, t) := θ(t)ϕ̃1,R(x)β for (x, t) ∈ Ω× [0, S] ,

where β > 1, ϕ̃1,R is given by (1.3), and θ : [0, S]→ R+ is the positive solution of
the Cauchy problem

dθ
dt

(t) =
q0

2
θα(t) for t ∈ (0, S) ; θ(0) = 0 , (2.5)

such that 0 < θ(t) < ∞ for every t ∈ (0, S). Then u : Ω × (0, S) → R+ is a
subsolution of problem (1.1) in a smaller domain Ω×(0, σ), i.e., for t ∈ (0, σ) only,
where σ ∈ (0, S) is small enough.

Proof. We will show that the following inequality holds

∂u

∂t
−∆pu ≤ q(x)|u|α−1u.

Using 0 < α < min{1, p− 1}, equation (2.5), and the continuity of θ : [0, S)→ R+,
we get

dθ
dt
≤ − Cθ(t)p−1 + q0θ(t)α for all t ∈ [0, σ] , (2.6)
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where σ ∈ (0, S) is small enough, such that θ(t)p−1−α ≤ q0/(2C) holds for all
t ∈ [0, σ].

Inserting the inequality

ϕ−β1,R∆p(ϕ
β
1,R) ≥ −C ≡ const

in Ω from Lemma 2.1, inequality (2.2), into (2.6), we obtain

dθ
dt
≤ ϕ−β1,R∆p(ϕ

β
1,R)θ(t)p−1 + q0θ(t)α

≤ ϕ−β1,R∆p(ϕ
β
1,R)θ(t)p−1 + q0ϕ

(α−1)β
1,R θ(t)α,

thanks to the normalization 0 < ϕ1,R ≤ 1 in BR(x0) combined with (α− 1)β < 0.
Finally, multiplying by ϕβ1,R, we arrive at

dθ
dt
ϕβ1,R ≤ ∆p(ϕ

β
1,R)θ(t)p−1 + q0θ(t)αϕα1,R

≤ ∆p(ϕ
β
1,R)θ(t)p−1 + q(x)θ(t)αϕα1,R .

This inequality, combined with our definition of the function ϕ̃1,R, guarantees that
u(x, t) = θ(t)ϕ̃1,R(x) is a subsolution to problem (1.1). �

Proof of Theorem 1.1. First, let us observe that u(x, t) = ‖q‖
1

1−α
∞ t is a supersolution

of (1.1) for 0 < t ≤ 1. Indeed, a straightforward calculation shows that

∂u

∂t
−∆pu = ‖q‖

1
1−α
∞ ≥ q(x)

(
‖q‖

1
1−α
∞ t

)α
= q(x)|u|α−1u

holds for 0 < t ≤ 1, since q ∈ C(Ω), q ≥ 0, and ‖q‖∞ = supx∈Ω q(x).
Second, we show now that u ≤ u for all x ∈ Ω and all t > 0 sufficiently small,

say, 0 < t ≤ σ. Evidently,

u(x, t) = θ(t)ϕ̃1(x)β = c1t
1

1−α ϕ̃1(x)β ≤ c1t
1

1−α ≤ u(x, t) = ‖q‖
1

1−α
∞ t

for 0 < t ≤ σ, where σ satisfies

σα ≤ ‖q‖∞/c1−α1 .

Now it remains to show the existence of weak solution u for (1.1), such that

u ≤ u ≤ u in Ω× (0, T ) , where T := min{σ, σ} > 0.

Let us define a sequence of functions un : Ω × (0, T ) → R recursively for n =
1, 2, 3, . . . , such that un is the unique weak solution of

∂un
∂t
−∆pun = q(x)|un−1|α−1un−1, (x, t) ∈ Ω× (0, T ),

un(x, 0) = 0, x ∈ Ω,

un(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

(2.7)

with u0 = u. By a weak solution of (2.7), we mean a Lebesgue-measurable function
un : Ω× (0, T )→ R that satisfies

un ∈ C([0, T ]→ L2(Ω)) ∩ Lp
(
(0, T )→W 1,p

0 (Ω)
)



6 J. BENEDIKT, V. E. BOBKOV, P. GIRG, L. KOTRLA, P. TAKÁČ EJDE-2015/38

and the equation∫
Ω

un(x, t)φ(x, t) dx−
∫ t

0

∫
Ω

un(x, s)
∂φ

∂t
(x, s) dxds

+
∫ t

0

∫
Ω

|∇un(x, s)|p−2〈∇un(x, s),∇φ(x, s)〉dx ds

=
∫ t

0

∫
Ω

q(x)|un−1(x, s)|α−1un−1(x, s)φ(x, s) dxds

(2.8)

for every t ∈ (0, T ) and every test function

φ ∈ C
(
[0, T ]→ L2(Ω)

)
∩ Lp

(
(0, T )→W 1,p

0 (Ω)
)
∩W 1,p′

(
(0, T )→W−1,p′(Ω)

)
.

The questions of existence and uniqueness of weak solutions of problems of type
(2.7) obtained by monotone iterations have been discussed in [12, Appendix A,
§A.1]. Let us deduce from the fact that u0 = u is a subsolution of (1.1) the
inequalities un−1 ≤ un in Ω × (0, T ) for every n = 1, 2, 3, . . . . The proof is by
induction on n. The first inequality, u0 ≤ u1 in Ω × (0, T ), holds by the Weak
Comparison Principle (see [12, Lemma 4.9, p. 618]) and the fact that u0 = u is a
subsolution of (1.1). Now assume that un−1 ≤ un in Ω × (0, T ) for some n ∈ N.
Then we have

∂un
∂t
−∆pun = |un−1|α−1un−1 ≤ |un|α−1un =

∂un+1

∂t
−∆pun+1

in Ω × (0, T ) and consequently un ≤ un+1 in Ω × (0, T ) again, by [12, Lemma
4.9, p. 618]. Therefore, monotonicity holds: u = u0 ≤ u1 ≤ u2 ≤ · · · ≤ u in
Ω × (0, T ). The comparison with the supersolution u is deduced again from the
Weak Comparison Principle. Hence, un is uniformly bounded in Ω × (0, T ) by
u ≤ u ≤ u. A global regularity result from [7, Theorem 0.1, p. 552] (cf. [12,
Lemma 4.6, p. 617]) guarantees un ∈ C1+γ, 1+γ

2 (Ω × [0, T ]) uniformly for n ∈ N,
where γ ∈ (0, 1) is independent of n. We follow the notations and definitions of
Hölder spaces of functions on Ω × [0, T ] from [5, Chpt. 1, p. 7]. Thus, by the
Arzelà-Ascoli theorem, {un} is relatively compact in C1,0(Ω × [0, T ]). Hence, the
sequence {un} possesses a subsequence which converges to u ∈ C1,0(Ω × [0, T ]).
Therefore, in the weak formulation of (2.8) we may pass to the limit as n → ∞,
thus verifying that the limit function u is a weak solution of (1.1) in Ω × (0, T ),
such that u ≤ u ≤ u. �
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1. Introduction

The main purpose of this article is to investigate the validity of the weak and strong compari-
son principles for degenerate parabolic partial differential equations with the p-Laplace operator 
�p for p > 2. In its simplest form, this problem is reduced to the comparison of the trivial solu-
tion (≡ 0, by hypothesis) with a nontrivial nonnegative solution u(x, t). In this special setting, the 
problem is closely related also to the question of uniqueness of a nonnegative solution. Typically, 
the validity of the weak comparison principle implies the uniqueness of a solution. Conditions 
on existence, uniqueness, and regularity have been studied, e.g., in Ladyzhenskaya et al. [12], 
Ladyzhenskaya and Ural’tseva [13], and Oleı̆nik and Kružkov [16]. On the other hand, impor-
tant examples of nonuniqueness for standard parabolic problems, even with the regular Laplace 
operator � (i.e., p = 2) and a nonsmooth reaction function, have been constructed first in Fu-
jita and Watanabe [10], then in Redheffer and Walter [18], and for the p-Laplace operator in 
DiBenedetto et al. [8] and Guedda [11], and more recently in Bobkov and Takáč [4], Merchán et 
al. [15], and Benedikt et al. [2]. Most of these nonuniqueness examples show the nonuniqueness 
of the trivial solution (≡ 0) to a given parabolic initial-boundary value problem with the trivial 
initial and boundary conditions. More specifically, the following parabolic problem,

∂u

∂t
− �pu = q(x)uα for (x, t) ∈ � × (0, T ) ;
u(x, t) = 0 for (x, t) ∈ ∂� × (0, T ) ,

u(x,0) = 0 for x ∈ �, (1.1)

is considered in these examples. Here, �pu def= div
(|∇u|p−2∇u

)
denotes the p-Laplacian for 

1 < p < ∞, α ∈ (0, 1) is a given number, 0 < T < ∞, and the potential q satisfies the following 
condition:

(Q) q ∈ C(�), q ≥ 0, and q(x0) > 0 for some x0 ∈ �.

We extend q to the whole of RN by q ≡ 0 in RN \� if needed. Although we assume that � ⊂R
N

is a bounded domain with a C1+μ-boundary ∂� where μ ∈ (0, 1), the validity of our parabolic 
problems extends from the bounded domain � × (0, T ) to all of RN × (0, T ); i.e., to the case of 
the whole space RN in place of �. This is a trivial consequence of the fact that all our weak solu-
tions to a problem of type (1.1), and sub- and supersolutions as well, will be spatially supported 
in a compact subset of �. Hence, when working with such a (weak) solution u:� × (0, T ) →R, 
we extend it automatically to an “entire” solution ̃u: RN × (0, T ) → R defined by

ũ(x, t)
def=
{

u(x, t) for (x, t) ∈ � × (0, T ) ;
0 for (x, t) ∈ (RN \ �

)× (0, T ) .

A nontrivial nonnegative solution to (1.1) is often constructed by nondecreasing monotone it-
erations starting from a nontrivial nonnegative subsolution, cf. Bobkov and Takáč [4], Merchán et 
al. [15], and Benedikt et al. [2]. In this approach, originating in Sattinger [20], which we use also 
in our present work, a suitable supersolution has to be constructed that provides an upper bound
for the monotone iterations. Besides a spatially constant function, a simple example of such a 
supersolution is the well-known Barenblatt solution (and its modifications), cf. DiBenedetto et 
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Fig. 1. A multi-bump solution.

al. [8] and Samarskii et al. [19]. An important advantage of a Barenblatt-type supersolution is 
its compact support with respect to the space variable x ∈ �. This property allows us to use 
also linear combinations of several supersolutions that have pairwise disjoint supports in order 
to construct more complicated and, perhaps, also more surprising examples.

Our main results are formulated for problem (1.1) and can be outlined as follows. Of 
course, the zero function u ≡ 0 is a solution. In particular, we focus on the degenerate diffu-

sion 2 < p < ∞ and the nonsmooth reaction function f (x, u) def= q(x)uα for (x, u) ∈ � × R+, 

0 < α < 1, where R+
def= [0, +∞). Notice that if q(x0) > 0 then the function u 
→ f (x0, u)

satisfies neither a local Lipschitz nor an Osgood condition near u = 0 provided α ∈ (0, 1), 
see Osgood [17]. The case p = 2 was treated in Fujita and Watanabe [10] by different meth-
ods based on the Green’s function for the heat equation. An important special case, N = 1, 
1 < p < ∞, and q(x) ≡ λ > 0 (a constant), was treated in Guedda [11] also by different meth-
ods. The main purpose of the present article is to obtain nontrivial nonnegative solutions with 
multiple positive “bumps” that have pairwise disjoint compact supports with respect to the space 
variable x ∈ �. The bump supports, contained in �, do not overlap during a given time inter-
val [0, T ]; this is impossible if p = 2, by the strong maximum principle (Hopf’s lemma) for 
linear parabolic problems (Friedman [9]), cf. Aguirre and Escobedo [1, Cor. 2.6, p. 190]. Each 
single bump solution is obtained by constructing a Barenblatt-type supersolution and using it as 
an upper bound for nondecreasing monotone iterations, starting from a nontrivial nonnegative 
subsolution (cf. [2]), that converge to the desired single bump solution described in Theorem 1.3. 
(See Fig. 1.)

Definition 1.1. A weak subsolution (supersolution, and solution, respectively) to problem (1.1)
has been defined in DiBenedetto et al. [8, §3.1, p. 23]. We say that a weak subsolution (superso-
lution, or solution)

u ∈ C
(
[0, T ] → L2

loc(�)
)

∩ Lp
(
(0, T ) → W

1,p

loc (�)
)
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to problem (1.1) is an m-bump subsolution (supersolution, or solution) if it has the following 
properties:

(a) u : � × [0, T ] → R is continuous, u ≥ 0 in � × [0, T ], and u �≡ 0;
(b) u has a compact support

supp(u)
def= closure {(x, t) ∈ � × [0, T ]:u(x, t) > 0} in R

N × [0, T ] ,

supp(u) ⊂ � × [0, T ];
(c) there exist precisely m (m ∈ N = {1, 2, 3, . . .}) pairwise disjoint, connected compact subsets 

Kk (k = 1, 2, . . . , m) of � such that

supp(u) ⊂ (∪m
k=1Kk

)× [0, T ] ;

(d) for all t ∈ (0, T ] and k = 1, 2, . . . , m,

{x ∈ Kk:u(x, t) > 0}

is a nonempty connected open subset of �.

Notice that an m-bump subsolution (supersolution, or solution) may have identically zero 
initial values (for t = 0). We use an analogous definition if the interval [0, T ] is replaced by 
[t0, T ] with 0 ≤ t0 < T .

Theorem 1.2. Let 2 < p < ∞, 1/(p − 1) < α < 1, and let Ik = [ak, bk]; k = 1, 2, 3, . . . , m, 
be a family of pairwise disjoint compact intervals in R, −∞ < a1 < b1 < a2 < b2 < · · · <

am < bm < +∞, and let 0 < T0 < ∞. Furthermore, let ξk ∈ (ak, bk) be an arbitrary point; 
k = 1, 2, 3, . . . , m. Then there exists some T ∈ (0, T0] such that the initial-boundary value prob-
lem ⎧⎪⎨⎪⎩

∂u

∂t
− �pu = u(x, t)α for x ∈ (a1, bm) ,0 < t < T ;
u(a1, t) = u(bm, t) = 0 for 0 < t < T ;
u(x,0) = 0 for x ∈ (a1, bm) ,

(1.2)

possesses a nontrivial nonnegative solution u: (a1, bm) × (0, T ) → R+ such that

(i) u(ξk, t) > 0 for all k = 1, 2, . . . , m and all t ∈ (0, T );
(ii) u(x, t) = 0 for all x ∈R \ ∪m

k=1(ak, bk) and all t ∈ (0, T ).

Hence, u is a multi-bump solution with at least m bumps. This theorem is derived from the 
special case of a one-bump solution that we formulate below in a domain � ⊂ R

N . A careful 
inspection of our proof of Theorem 1.3 below reveals that the solution u: (a1, bm) × (0, T ) → R+
from Theorem 1.2 has precisely m bumps. This claim follows from the fact that each iterate un+1
defined in Eq. (2.17) has precisely one bump, by the uniqueness of the weak solution un+1 to 
problem (2.17) in our proof of Theorem 1.3. (See Fig. 2.)
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Fig. 2. Our choice of sub- and supersolutions; the graphs grow in time in the direction of the arrows.

Theorem 1.3. Let 2 < p < ∞, 1/(p − 1) < α < 1, and let � ⊂ R
N be a bounded domain with 

Lipschitz boundary. Assume that q satisfies hypothesis (Q), ξ ∈ � is such that q(ξ) > 0, and

Br(ξ)
def= {x ∈ R

N : |x − ξ | ≤ r} ⊂ �

and 0 < T0 < ∞. Then there exists some T ∈ (0, T0] such that the initial-boundary value prob-
lem (1.1) possesses a nontrivial nonnegative solution u: � × (0, T ) → R+ such that

(i) u(ξ, t) > 0 for all t ∈ (0, T );
(ii) u(x, t) = 0 for all x ∈ � \ Br(ξ) and all t ∈ (0, T ).

In addition, if � = BR(ξ) is a ball with radius R centered at ξ , 0 < r < R < ∞, and q is 
radially symmetric about ξ , i.e., q(x) ≡ q(|x − ξ |) for x ∈ �, then the nontrivial solution u
above can be constructed radially symmetric about ξ in the space variable x ∈ �, i.e., u(x, t) ≡
u(|x − ξ |, t).

Both theorems will be derived from more general results in Section 3 that are too “technical” 
to state at this point.

As remarked above, Theorem 1.2 (Theorem 1.3, respectively) may be reformulated for so-
lutions u(x, t) extended by zero values for all x ∈ R (x ∈ R

N , respectively). Such extended 
solutions are typical for the slow diffusion case (p > 2) and provide a new type of solutions, in 
addition to the spatially constant solutions obtained in Aguirre and Escobedo [1, Cor. 2.6, p. 190]
for the regular diffusion (p = 2).

This article is organized as follows. In Section 2 we construct Barenblatt-type supersolutions 
which are nonnegative, nontrivial, and compactly supported in the spatial domain. We apply 
these supersolutions to prove Theorem 1.3 which provides the most important tool for proving 
more interesting results stated in Section 3. These supersolutions play also a decisive role in 
obtaining the solutions in Theorem 1.2. We employ Theorem 1.3 to establish our main results 
with multiple bumps in Section 3, Theorem 3.1 with m-bumps, and Theorem 3.2 with a variable 
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number of bumps increasing in time. Alternatively, we use Barenblatt-type supersolutions to 
prove analogous results for radially symmetric solutions in Theorem 3.4.

2. A Barenblatt-type supersolution

Recall that a subsolution, supersolution, and solution

u ∈ C
(
[0, T ] → L2

loc(�)
)

∩ Lp
(
(0, T ) → W

1,p

loc (�)
)

to problem (1.1) in the weak sense are formally defined in the same way as in [8, §3.1, p. 23].
We look for a supersolution with compact support and properties similar to solutions in The-

orems 1.2 and 1.3 (Properties (i) and (ii)), cf. Definition 1.1. The form of this supersolution 
is motivated by the well-known Barenblatt solution (see [8], eq. (3.3) on p. 63). As usual, the 
symbol a+ = max{a, 0} stands for the nonnegative part of a ∈ R.

Theorem 2.1. Let p > 2, 1/(p − 1) < α < 1, 0 ≤ q ∈ L∞(�) where � ⊂ R
N is an arbitrary 

domain, K = ‖q‖L∞(�) > 0, 0 < T < 1/(Kα), and let ε > 0 be such that Bε(0) ⊂ �. Define

σ
def= K

1 − KT α
and 


def= 1

2
σε(1 − α) + 2p−1(1 + σT )p−1α(p − 1)

(1 − α)p−1εp−1
. (2.1)

Then the radially symmetric, nonnegative nontrivial function

u(x, t) ≡ u(|x|, t) def= (1 + σ t)

[
1 −

( |x|
ε + 
t

)2
] 1

1−α

+
(2.2)

is a supersolution of problem (1.1) in RN × (0, T ). Furthermore, we have

∂u

∂t
,

∂u

∂xi

, �pu ∈ Cγ (RN × [0, T ]) (2.3)

with some γ ∈ (0, 1) depending only on p and α.

Proof. We abbreviate r = |x| for x ∈ R
N . Since we are interested in a radially symmetric su-

persolution u(x, t) ≡ u(r, t) only in the interior of its support, the following calculations are 
performed only for 0 < r < ε + 
t where 0 ≤ t ≤ T . The boundary points r = 0 and r = ε + 
t

are treated separately, thanks to the regularity in (2.3). If we wish that supp (u ( · , t)) ⊂ � for all 
t ∈ [0, T ], then we need to take T > 0 small enough, such that, in addition to T < 1/(Kα), also 
Bε+
T (0) ⊂ � holds. However, as we consider problem (1.1) in RN × (0, T ) below, it will not 
be necessary to require that Bε+
T (0) ⊂ �.

Abbreviating

[. . .] ≡
[

1 −
(

r

ε + 
t

)2
]

∈ (0,1) for 0 < r < ε + 
t ,

we calculate
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∂u

∂t
(r, t) = σ [. . .]

1
1−α + 1 + σ t

1 − α
[. . .]

α
1−α

2
r2

(ε + 
t)3

= [. . .]
α

1−α

(
σ + r2 2
 − σε(1 − α) + σ t
(1 + α)

(1 − α)(ε + 
t)3

)
≥ [. . .]

α
1−α

(
σ + r2 2
 − σε(1 − α)

(1 − α)(ε + 
t)3

)
,

then

∂u

∂r
(r, t) = 1 + σ t

1 − α
[. . .]

α
1−α

−2r

(ε + 
t)2
,∣∣∣∣∂u

∂r

∣∣∣∣p−2
∂u

∂r
= −

(
2

1 − α

)p−1( 1 + σ t

(ε + 
t)2

)p−1

rp−1 [. . .]
α(p−1)

1−α , (2.4)

and finally

− ∂

∂r

(∣∣∣∣∂u

∂r

∣∣∣∣p−2
∂u

∂r

)
=
(

2

1 − α

)p−1( 1 + σ t

(ε + 
t)2

)p−1

×
{
(p − 1)rp−2 [. . .]

α(p−1)
1−α + rp−1 α(p − 1)

1 − α
[. . .]

αp−1
1−α

−2r

(ε + 
t)2

}
=
(

2

1 − α

)p−1( 1 + σ t

(ε + 
t)2

)p−1

(p − 1)rp−2

× [. . .]
αp−1
1−α

[
1 −

(
r

ε + 
t

)2

− 2r2α

(ε + 
t)2(1 − α)

]

≥ −
(

2

1 − α

)p−1( 1 + σ t

(ε + 
t)2

)p−1

(p − 1)rp−2 2r2α

(ε + 
t)2(1 − α)

× [. . .]
αp−1
1−α

≥ − [. . .]
α

1−α
r2

(1 − α)(ε + 
t)3

2p(1 + σ t)p−1α(p − 1)

(1 − α)p−1(ε + 
t)p−1
[. . .]

α(p−1)−1
1−α

≥ − [. . .]
α

1−α
r2

(1 − α)(ε + 
t)3

2p(1 + σT )p−1α(p − 1)

(1 − α)p−1εp−1
(2.5)

for 0 < r < ε + 
t . Recall that [. . .] ∈ (0, 1) and α(p − 1) > 1.
We apply these estimates to the p-Laplacian of a radially symmetric function with r = |x|,

�pu(x, t) = ∂

∂r

(∣∣∣∣∂u

∂r
(r, t)

∣∣∣∣p−2
∂u

∂r
(r, t)

)
+ N − 1

r

∣∣∣∣∂u

∂r
(r, t)

∣∣∣∣p−2
∂u

∂r
(r, t)

≤ ∂

∂r

(∣∣∣∣∂u

∂r
(r, t)

∣∣∣∣p−2
∂u

∂r
(r, t)

)
, (2.6)

thanks to ∂u
∂r

(r, t) ≤ 0, by our choice of u(r, t) in (2.2) combined with (2.4).
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These inequalities yield the following lower bound for the left-hand side of the equation in 
(1.1):

L.H.S. ≡ ∂u

∂t
− �pu

≥ [. . .]
α

1−α

[
σ + r2

(1 − α)(ε + 
t)3

(
2
 − σε(1 − α) − 2p(1 + σT )p−1α(p − 1)

(1 − α)p−1εp−1

)]
= σ [. . .]

α
1−α ,

thanks to our choice of 
 in (2.1). Now we estimate from above the right-hand side of the equation 
in (1.1):

R.H.S. ≡ q(x)uα ≤ Kuα(r, t) = K(1 + σ t)α [. . .]
α

1−α

≤ K(1 + σ tα) [. . .]
α

1−α .

Comparing the last two estimates and using (2.1), we arrive at

L.H.S. ≥ R.H.S.,

i.e.,

∂

∂t
u(x, t) − �pu(x, t) ≥ q(x)uα(x, t) for 0 < |x| < ε + 
t , 0 ≤ t ≤ T . (2.7)

From the formulas above for ∂u/∂t , ∂u/∂r , and �pu we deduce that all partial derivatives ∂u/∂t , 
∂u/∂xi , and �pu exist in the classical sense and belong to Cγ (RN × [0, T ]) with some γ ∈
(0, 1). Consequently, ineq. (2.7) holds pointwise in the entire space–time domain RN × (0, T ). It 
is now easy to conclude that our function u(x, t) is a supersolution to problem (1.1) in the sense 
of [8, §3.1, p. 23]. �

The Barenblatt-type supersolution provided by formula (2.2) in Theorem 2.1 will now be used 
to construct the one-bump solution in the proof of Theorem 1.3 below. A suitable subsolution has 
been constructed in [2, Prop. 2.2, p. 4] as follows:

Assuming q(x) ≥ q0 ≡ const. > 0 on an open ball BR(x0) ⊂ �, we construct a nontrivial 
nonnegative subsolution u(x, t) to the auxiliary problem

∂u

∂t
− �pu ≤ q0u

α in R
N × (0, T ) (2.8)

that is supported in a compact subset of BR(x0) × [0, T ]. Consequently, u is also a subsolution 
to the original problem (1.1).

Let (λ1,R, ϕ1,R) denote the first eigenpair for the operator

−�p:W 1,p

0 (BR(x0)) → W−1,p′
(BR(x0)) ,

that is,
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−�pϕ1,R = λ1,R ϕ
p−1
1,R in BR(x0) ; ϕ1,R = 0 on ∂BR(x0) . (2.9)

Here ϕ1,R ∈ W
1,p

0 (BR(x0)) is normalized by ϕ1,R(x0) = 1; this normalization yields 0 <
ϕ1,R(x) ≤ 1 for all x ∈ BR(x0). Moreover, we denote by

ϕ̃1,R(x) :=
{

ϕ1,R(x) for x ∈ BR(x0) ;
0 for x ∈ R

N \ BR(x0) ,
(2.10)

the natural zero extension of ϕ1,R from BR(x0) to the whole of RN . Clearly, ϕ̃1,R ∈ W 1,p(RN).
The following lemma is a version of [2, Lemma 2.1] with complete hypotheses and a correct 

proof.

Lemma 2.2. If β ∈ (0, ∞) then

−�p

(
ϕ

β

1,R

)
= βp−1ϕ

(p−1)(β−1)−1
1,R

[
λ1,Rϕ

p

1,R − (p − 1)(β − 1)|∇ϕ1,R|p] (2.11)

holds pointwise a.e. in BR(x0). In particular, if p ≥ 2 and β ≥ 1, or else 1 < p < 2 and β > 1, 
then we have

−�p(ϕ
β

1,R)

ϕ
β

1,R

≤ C ≡ const < ∞ pointwise a.e. in BR(x0) . (2.12)

Proof. Any function u: BR(x0) → R that is radially symmetric around x0 can be written as 
u(x) = u(r) where r = |x − x0|, by harmless abuse of notation. Using this notation we obtain, 
by formal differentiation,

�pu(|x − x0|) = div
(
|u′(r)|p−2u′(r)x − x0

r

)
=
(
|u′(r)|p−2u′(r)

)′ + N − 1

r
|u′(r)|p−2u′(r) . (2.13)

It is well-known that the first eigenfunction ϕ1,R is radially symmetric around x0, positive, and 
C2 in BR(x0) \ {x0}, see e.g. [3]. Therefore, we get a.e. in BR(x0),

�p

(
ϕ

β

1,R(r)
)

=
(
βp−1ϕ

(p−1)(β−1)

1,R |ϕ′
1,R|p−2ϕ′

1,R

)′ + N − 1

r
βp−1ϕ

(p−1)(β−1)

1,R |ϕ′
1,R|p−2ϕ′

1,R

= βp−1
{
(p − 1)(β − 1)ϕ

(p−1)(β−1)−1
1,R |ϕ′

1,R|p

+ϕ
(p−1)(β−1)

1,R

(
|ϕ′

1,R|p−2ϕ′
1,R

)′ + N − 1

r
ϕ

(p−1)(β−1)

1,R |ϕ′
1,R|p−2ϕ′

1,R

}
= βp−1ϕ

(p−1)(β−1)−1
1,R

{
(p − 1)(β − 1)|ϕ′

1,R|p − λ1,Rϕ
p

1,R

}
= βp−1ϕ

(p−1)β

1,R

{
(p − 1)(β − 1)

|ϕ′
1,R|p
ϕ

p

1,R

− λ1,R

}
.
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Hence,

−�p

(
ϕ

β

1,R

)≤ βp−1λ1,Rϕ
(p−1)β

1,R

for β ≥ 1. For p ≥ 2, the last inequality yields

−�p

(
ϕ

β

1,R

)
ϕ

β

1,R

≤ βp−1λ1,Rϕ
(p−2)β

1,R ≤ βp−1λ1,R ,

thanks to our normalization 0 < ϕ1,R ≤ 1. On the other hand, for 1 < p < 2,

−�p

(
ϕ

β

1,R

)
ϕ

β

1,R

= βp−1ϕ
(p−2)β

1,R

{
λ1,R − (p − 1)(β − 1)ϕ

−p

1,R|ϕ′
1,R|p}. (2.14)

Since ϕ1,R is radially decreasing and satisfies the Hopf maximum principle on the boundary of 
BR(x0), we can choose ε > 0 such that ϕ′

1,R(r) < ϕ′
1,R(R)/2 < 0 for all r ∈ [R − ε, R).

Hence, assuming β > 1, (2.14) implies (2.12) for R − ε ≤ r < R provided ε > 0 is small 
enough, such that

λ1,R − (p − 1)(β − 1)ϕ
−p

1,R|ϕ′
1,R|p ≤ 0 for R − ε ≤ r < R .

At the same time, the ratio −�p

(
ϕ

β

1,R

)
/ϕ

β

1,R is bounded for 0 < r ≤ R − ε. Thus, estimate (2.12)
holds a.e. in BR(x0). �

The following proposition is a special case of [2, Prop. 2.2, p. 4]. Recall that q(x) ≥ q0 ≡
const. > 0 on an open ball BR(x0) ⊂ � specified before Lemma 2.2.

Proposition 2.3. Assume that 2 < p < ∞, 0 < α < 1, and (Q) are satisfied. Given a ball 
BR(x0) ⊂ � and a fixed number T0 ∈ (0, ∞), we define

u(x, t) := θ(t)ϕ̃1,R(x)β for (x, t) ∈ R
N × [0, T0] ,

where β > 1, ϕ̃1,R is given by (2.10), and θ : [0, T0] → R+ is the nonnegative solution of the 
Cauchy problem

dθ

dt
(t) = q0

2
θα(t) for t ∈ (0, T0) ; θ(0) = 0 , (2.15)

such that 0 < θ(t) < ∞ for every t ∈ (0, T0). Then u : RN × (0, T0) → R+ is a subsolution 
of problem (1.1) in a smaller domain � × (0, T ), i.e., for x ∈ � and t ∈ (0, T ) only, where 
T ∈ (0, T0) is small enough.

Proof. Since the proof of [2, Prop. 2.2, p. 4] contains minor misprints, we provide the corrected 
proof below, under the more general hypotheses 1 < p < ∞ and 0 < α < min{1, p − 1} used in 
[2, Prop. 2.2, p. 4].



J. Benedikt et al. / J. Differential Equations 260 (2016) 991–1009 1001

We will show that the following inequality holds

∂u

∂t
− �pu ≤ q(x)uα .

Using 0 < α < min{1, p − 1}, equation (2.15), and the continuity of θ : [0, T0) → R+, we get

dθ

dt
≤ − Cθ(t)p−1 + q0θ(t)α for all t ∈ [0, T ] , (2.16)

where T ∈ (0, T0) is small enough, such that θ(t)p−1−α ≤ q0/(2C) holds for all t ∈ [0, T ], and 
the constant C > 0 has been specified in Ineq. (2.12).

Inserting the inequality

ϕ
−β

1,R�p(ϕ
β

1,R) ≥ −C ≡ const

in � from Lemma 2.2, inequality (2.12), into (2.16), we obtain

dθ

dt
≤ ϕ

−β

1,R�p(ϕ
β

1,R)θ(t)p−1 + q0θ(t)α ≤ ϕ
−β

1,R�p(ϕ
β

1,R)θ(t)p−1 + q0ϕ
(α−1)β

1,R θ(t)α,

thanks to the normalization 0 < ϕ1,R ≤ 1 in BR(x0) combined with (α − 1)β < 0. Finally, mul-
tiplying by ϕβ

1,R , we arrive at

dθ

dt
ϕ

β

1,R ≤ �p(ϕ
β

1,R)θ(t)p−1 + q0θ(t)αϕ
αβ

1,R

≤ �p(ϕ
β

1,R)θ(t)p−1 + q(x)θ(t)αϕ
αβ

1,R .

This inequality, combined with our definition of the function ϕ̃1,R, guarantees that u(x, t) =
θ(t)ϕ̃1,R(x)β is a subsolution to problem (1.1). �
Proof of Theorem 1.3. We apply the well-known monotone iteration method from Sattinger 
[20] as adapted to parabolic problems with the p-Laplacian in Derlet and Takáč [7]. In fact, 
for ordinary differential equations, the method of monotone iterations dates back to the work of 
Osgood [17].

An ordered pair of sub- and supersolutions in Proposition 2.3 and Theorem 2.1, respectively, 
is chosen as follows. Let ξ ∈ � and 0 < r < ∞ be such that Br(ξ) ⊂ �, q(ξ) > 0, and let K =
‖q‖L∞(�) and 0 < T0 < ∞. We choose ε = r

4 > 0 and 0 < T < min{ 1
Kα

, T0} in Theorem 2.1. 
This choice of T determines the positive constants σ and 
 in eq. (2.1). Let us denote T ′ =
min{ r

4

, T }. Hence,

ε + 
t ≤ r

2
and

[
1 −

( |x − ξ |
ε + 
t

)2
]

+
= 0 whenever |x − ξ | ≥ r

2
and t ∈ [0, T ′] .

Let u denote the (radially symmetric) supersolution constructed in Theorem 2.1 centered at a 
given point ξ ∈ � instead of ξ = 0 ∈ R

N . We will not need the radial symmetry of u about 
ξ in the remaining part of the proof. Our choice of the constants ε and T ′ above guarantees 
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u(ξ, t) = 1 + σ t ≥ 1 and u(x, t) = 0 for all x ∈R
N \ Br/2(ξ), both for all t ∈ [0, T ′]. We choose 

the radius R = r
√

2/8 in Proposition 2.3; hence,

1 −
( |x − ξ |

ε + 
t

)2

≥ 1

2
for all x ∈ BR(ξ) and t ∈ [0, T ′] .

Consequently, we have

u(x, t) ≥ (1 + σ t)2− 1
1−α ≥ 2− 1

1−α .

We may choose T ∈ (0, ∞) in Proposition 2.3 small enough such that

u(x, t) ≤ 2− 1
1−α holds for all x ∈ Br(ξ) and t ∈ [0, T ] ,

thanks to 0 < R < r . Setting T ′′ = min{T ′, T } > 0 and recalling our extensions of u and u to all 
of � × [0, T ′′], we observe that the inequality u ≤ u is valid in all of � × [0, T ′′]. In addition, 
we recall that u and u is a pair of sub- and supersolutions to problem (1.1) in � × (0, T ′′). Since 
the constant T from Theorem 2.1 does not appear explicitly any more, we relabel T ′′ ( ≤ T ) by 
T in order to keep our notation compatible with the statement of Theorem 1.3.

We start our monotone iteration procedure from the subsolution u1(x, t) = u(x, t) described 
in Proposition 2.3. For each n = 1, 2, 3, . . . we define un+1(x, t) recursively to be the unique 
weak solution to following initial-boundary value problem:⎧⎪⎪⎨⎪⎪⎩

∂un+1

∂t
− �pun+1 = q(x)uα

n for (x, t) ∈ � × (0, T );
un+1(x, t) = 0 for (x, t) ∈ ∂� × (0, T );
un+1(x,0) = 0 for x ∈ �.

(2.17)

Since u(x, t) = u1(x, t) ≤ u(x, t) for (x, t) ∈ � × (0, T ), it follows from (2.17) that u = u1 ≤
u2 ≤ · · · ≤ un ≤ u implies also un ≤ un+1 ≤ u, by induction on n = 1, 2, 3, . . .. Thus, we have 
constructed a monotone increasing sequence of subsolutions u = u1 ≤ u2 ≤ · · · ≤ un ≤ · · · to 
problem (1.1) bounded above by the supersolution u. Standard regularity and compactness ar-
guments from [7] now guarantee that the sequence {un}∞n=1 converges uniformly in � × [τ, T ], 
for any τ ∈ (0, T ), to a continuous function u:� × (0, T ] → R. Since also un(x, 0) ≡ 0 for 
each n = 1, 2, 3, . . ., we obtain also u(x, 0) ≡ 0. By such a regularity result proved in Lieberman 
[14, Thm. 0.1, p. 552], one obtains also the convergence in C1+γ,(1+γ )/2(� × [τ, T ]) for any 
τ ∈ (0, T ). It is proved in [7] that u is a weak solution to problem (1.1) in the sense of [8, §3.1, 
p. 23] (cf. Definition 1.1) and it satisfies u ≤ u ≤ u. Finally, the properties of u and u yield the 
conclusion of Theorem 1.3.

If � = BR(ξ), 0 < r < R < ∞, and q is radially symmetric about ξ , then also all subsolutions 
u = u1 ≤ u2 ≤ · · ·un ≤ · · · constructed above are radially symmetric about ξ , by the uniqueness 
of the weak solution un+1(x, t) to the initial-boundary value problem (2.17). The starting subso-
lution, u1 = u, is radially symmetric about ξ , by construction in Proposition 2.3. Consequently, 
also the limit u:� × [0, T ] → R of the monotone increasing sequence un ↗ u (n → ∞) is 
radially symmetric about ξ , as desired, u ≤ u. �
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3. Main results

Theorem 1.2 is a special one-dimensional case of the following more general result.

Theorem 3.1. Let 2 < p < ∞, 1/(p − 1) < α < 1, and let �k ⊂ �; k = 1, 2, 3, . . . , m, be a fam-
ily of pairwise disjoint subdomains of the domain � ⊂ R

N , and let 0 < T0 < ∞. Furthermore, 
let 0 ≤ q ∈ C(�) and ξk ∈ �k be such that q(ξk) > 0; k = 1, 2, 3, . . . , m. Then there exists some 
T ∈ (0, T0] such that the initial-boundary value problem (1.1) possesses a nontrivial nonnegative 
solution u: � × (0, T ) → R+ such that

(i) u(ξk, t) > 0 for all k = 1, 2, . . . , m and all t ∈ (0, T );
(ii) u(x, t) = 0 for all x ∈ � \ ∪m

k=1�k and all t ∈ [0, T ].

Proof. We will apply Theorem 1.3 in each subdomain �k; k = 1, 2, . . . , m, separately. In fact, by 
Theorem 1.3 we may replace each subdomain �k by an open ball Brk (ξk) ⊂ � with a sufficiently 
small radius rk > 0. Furthermore, we may replace each rk by any r ∈ R satisfying 0 < r <

min{r1, r2, . . . , rm}. In particular, the balls Br(ξk) ⊂ �; k = 1, 2, . . . , m, have pairwise disjoint 
closures Br(ξk). Now, by Theorem 1.3, there exists a nontrivial nonnegative solution uk: � ×
(0, T ) → R+ such that

(i) uk(ξk, t) > 0 for all t ∈ (0, T );
(ii) uk(x, t) = 0 for all x ∈ � \ Br(ξk) and all t ∈ [0, T ].

In order to keep our construction more explicit, we may assume that each solution uk is radially 
symmetric about ξk .

The supports of functions uk being pairwise disjoint, we conclude that also the sum u =∑m
k=1 uk is a weak solution to problem (1.1) satisfying 0 ≤ uk ≤ u in � × (0, T ) and u = uk

in �k × [0, T ] for each k = 1, 2, . . . , m. This function, u, satisfies conditions (i) and (ii); the 
theorem is proved. �

Inspecting the proof of Theorem 3.1, one may generalize this theorem as follows.

Theorem 3.2. Let 2 < p < ∞, 1/(p − 1) < α < 1, and let �k ⊂ �; k = 1, 2, 3, . . . , m, be a 
family of pairwise disjoint subdomains of the domain � ⊂ R

N . Assume that 0 ≤ q ∈ C(�) and
ξk ∈ �k is such that q(ξk) > 0; k = 1, 2, 3, . . . , m. Finally, let T ∈ (0, T0] be the time constant 
obtained in Theorem 3.1 and let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm < T . Then the initial-boundary value 
problem (1.1) possesses a nontrivial nonnegative solution u: � × (0, T ) → R+ such that

(i0) u(x, t) = 0 for all (x, t) ∈ �k × [0, tk]; k = 1, 2, . . . , m;
(i+) u(ξk, t) > 0 for all t ∈ (tk, T ); k = 1, 2, . . . , m;
(ii) u(x, t) = 0 for all x ∈ � \ ∪m

k=1�k and all t ∈ [0, T ].

Remark 3.3. It is obvious from condition (ii) that u is a weak solution to (1.1) also in the entire 
space–time domain RN × (0, T ), i.e., we may replace � by the entire space RN .

Proof of Theorem 3.2. In the proof of Theorem 3.1 above, we replace the function uk by the 
time-shifted function
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ûk(x, t)
def=
{

0 for x ∈ �, t ∈ [0, tk];
uk(x, t − tk) for x ∈ �, t ∈ (tk, T ) ; (3.1)

k = 1, 2, . . . , m. The remaining part of the proof is identical. �
For the porous medium equation, related results have been obtained in de Pablo and Vázquez 

[5,6].
In many technical constructions in the proofs of our results and those in [2,4–6,10,15], spa-

tially radially symmetric sub- and/or supersolutions to various (auxiliary) parabolic problems 
have played a crucial role. This is the main reason why we formulate the following analogue 
of Theorems 1.2 and 3.1 for radially symmetric solutions in a ball � = BR(0) centered at the 
origin, 0 < R < ∞. Recall that we use the standard notation for radially symmetric functions: 
q(x) ≡ q(|x|) = q(r) and u(x, t) ≡ u(|x|, t) = u(r, t) with the radial variable r = |x| for x ∈ R

N .

Theorem 3.4. Let 2 < p < ∞, 1/(p − 1) < α < 1, 0 < R < ∞, and let Ik = [ak, bk]; k =
1, 2, 3, . . . , m, be a family of pairwise disjoint compact intervals in (0, R], 0 < a1 < b1 < a2 <

b2 < · · · < am < bm ≤ R, and let 0 < T0 < ∞. Assume that q: [0, R] → R+ is a continuous 
function and ξk ∈ (ak, bk) such that q(ξk) > 0; k = 1, 2, 3, . . . , m. Then there exists some T ∈
(0, T0] such that the initial-boundary value problem

⎧⎪⎨⎪⎩
∂u

∂t
− �pu = q(|x|)u(x, t)α for |x| < R ,0 < t < T ;
u(x, t) = 0 for |x| = R ,0 < t < T ;
u(x,0) = 0 for |x| < R ,

(3.2)

possesses a nontrivial nonnegative solution u(x, t) ≡ u(|x|, t), u: [0, R) × (0, T ) → R+ such 
that

(i) u(ξk, t) > 0 for all k = 1, 2, . . . , m and all t ∈ (0, T );
(ii) u(r, t) = 0 for all r ∈ [0, R] \ ∪m

k=1(ak, bk) and all t ∈ (0, T ).

Remark 3.5. We may combine Theorems 1.3 and 3.4 in order to generalize the latter (Theo-
rem 3.4) to the case when the family of intervals Ik ; k = 0, 1, 2, . . . , m, contains also an interval 
[0, b0] with 0 < b0 < a1. Clearly, if q(0) > 0, we may apply Theorem 1.3 in the ball Bb0(0) in 
order to obtain a nontrivial nonnegative solution u0 to problem (3.2), u0: [0, R] × (0, T ) → R+, 
such that u0(0, t) > 0 for all t ∈ (0, T ) and u0(r, t) = 0 for all r ∈ [b0, R] and all t ∈ [0, T ]. The 
remaining functions uk for k = 1, 2, . . . , m can be taken from Theorem 3.4 (see our construction 
of u and u in its proof below).

Proof of Theorem 3.4. We abbreviate �k = Bbk
(0) \ Bak

(0), an open spherical shell centered 
at the origin. The closures �k of �k ; k = 1, 2, . . . , m, are pairwise disjoint, concentric spherical 
shells. The function q being continuous on [ak, bk] with q(ξk) > 0 for some ξk ∈ (ak, bk), there 
is a number δk ∈R such that

0 < δk < min {ξk − ak, bk − ξk}

and
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q(|x|) ≥ qk
def= 1

2
q(ξk) > 0 holds for all

x ∈ �k
def=
{
x ∈ R

N : ξk − δk ≤ |x| ≤ ξk + δk

}
⊂ �k .

Abbreviating by �k the interior domain of the compact spherical shell �k , we denote by λ1,k the 

first eigenvalue of the operator −�p: W 1,p

0 (�k) → W
−1,p′
0 (�k), 1/p + 1/p′ = 1. This eigen-

value is simple with an eigenfunction ϕ1,k ∈ C1
(
�k

)
, which is radially symmetric and can be 

normalized by ϕ1,k(|x|) > 0 for all x ∈ �k and supx∈�k
ϕ1,k(|x|) = 1.

By (2.11) in Lemma 2.2, we have

−�p

(
ϕ

β

1,k(r)
)

= βp−1
[
ϕ

β

1,k(r)
]p−1

{
λ1,k − (p − 1)(β − 1)

|ϕ′
1,k(r)|p
ϕ

p

1,k(r)

}
.

Hence,

−�p

(
ϕ

β

1,k(r)
)

≤ βp−1λ1,kϕ
(p−1)β

1,k (r) ,

for β ≥ 1. Since p ≥ 2, for all r ∈ (ξk − δk, ξk + δk) this yields

−�p

(
ϕ

β

1,k

)
ϕ

β

1,k

≤ βp−1λ1,kϕ
(p−2)β

1,k ≤ βp−1λ1,k = const ≡ C ,

thanks to our normalization 0 < ϕ1,k ≤ 1. Let us denote

ϕ̃1,k(r) =
{

ϕ1,k(r) for ξk − δk < r < ξk + δk ;
0 for r ∈R+ \ (ξk − δk, ξk + δk) ,

and

uk(x, t) := θ(t)ϕ̃1,k(x)β for (x, t) ∈R
N × [0, T0] ,

where function θ(t) is defined by (2.15), with q0 = min {q1, q2, . . . , qm}. Calculations similar to 
those in the proof of Proposition 2.3 given in [2, Prop. 2.2, pp. 4–5] yield that

uk:�k × (
0, T

) 
→ R+

is a subsolution to problem (3.2) for some T sufficiently small, 0 < T ≤ T0. In fact, since β > 1, 
uk , extended by zero to 

(
R

N \ �k

) × (
0, T

)
, is a subsolution to problem (3.2) in all of RN ×(

0, T
)
. Since θ is independent of k, so is T . Consequently, also the sum u =∑m

k=1 uk yields a 
subsolution to problem (3.2) in RN × (

0, T
)

which is supported in ∪m
k=1�k .

A supersolution u to problem (3.2) in RN × (
0, T

)
is constructed in an analogous way, u =∑m

k=1 uk . Let 0 < τ < 1
Kα

where K = ‖q‖L∞(BR). Denote
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σ = K

1 − Kτα
, εk = 1

2
(δk + min{ξk − ak, bk − ξk}) ,

ρk = p − 2

p − 1
σ(1 − α)εk + (1 + στ)p−1(p − 1)pα

(1 − α)p−1(p − 2)p−1ε
p−1
k

+ (N − 1)(1 + στ)p−1(p − 1)p−2

ak(1 − α)p−2(p − 2)p−2ε
p−2
k

,

T = min

{
T0, τ,

1

2
1
(min{ξ1 − a1, b1 − ξ1} − δ1) , . . . ,

1

2
m

(min{ξm − am,bm − ξm} − δm)

}
.

Then u(x, t) = �m
k=1uk(x, t) is a supersolution on BR × [0, T ], where

uk(x, t) = (1 + σ t)

⎡⎣1 −
( ||x| − ξk|

εk + 
kt

) p−1
p−2

⎤⎦
1

1−α

+
.

Since the supports of uk are pairwise disjoint, it suffices to show that each uk is a supersolution 
on �k × [0, T ]; more precisely, we have

∂uk

∂t
− �puk ≥ q(x)uα

k for all t ∈ [0, T ] , 0 < ||x| − ξk| < εk + 
kt .

In order to simplify lengthy expressions, we abbreviate the bracket

[. . .]k ≡
⎡⎣1 −

( |r − ξk|
εk + 
kt

) p−1
p−2

⎤⎦ for r = |x| ∈ (ξk − εk − 
kt, ξk + εk + 
kt) .

Indeed, we estimate

∂uk

∂t
(r, t) = σ [. . .]

1
1−α

k + 1 + σ t

1 − α
[. . .]

α
1−α

k

p − 1

p − 2


k|r − ξk|
p−1
p−2

(εk + 
kt)
p−1
p−2 +1

= [. . .]
α

1−α

k

(
σ + |r − ξk|

p−1
p−2

−σ(1 − α)(p − 2)(εk + 
kt) + (1 + σ t)(p − 1)
k

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1

)

= [. . .]
α

1−α

k

(
σ + |r − ξk|

p−1
p−2

(p − 1)
k − σ(1 − α)(p − 2)εk + σ
kt (1 + α(p − 2))

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1

)

≥ [. . .]
α

1−α

k

⎛⎝σ + |r − ξk|
p−1
p−2

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1

(
(p − 1)
k − σ(1 − α)(p − 2)εk

)⎞⎠ ,

by t ≥ 0 and 
k > 0. We further estimate the radial p-Laplacian in several steps:

∂uk

∂r
(r, t) = −1 + σ t

1 − α
[. . .]

α
1−α

k

p − 1

p − 2

|r − ξk|
1

p−2

(εk + 
kt)
p−1
p−2

sgn(r − ξk) ;



J. Benedikt et al. / J. Differential Equations 260 (2016) 991–1009 1007

∣∣∣∣∂uk

∂r

∣∣∣∣p−2
∂uk

∂r
=
(

(1 + σ t)(p − 1)

(1 − α)(p − 2)

)p−1

[. . .]
α(p−1)

1−α

k

|r − ξk|
p−1
p−2

(εk + 
kt)
(p−1)2
p−2

sgn(r − ξk) ,

and

− ∂

∂r

(∣∣∣∣∂uk

∂r

∣∣∣∣p−2
∂uk

∂r

)
=
(

(1 + σ t)(p − 1)

(1 − α)(p − 2)

)p−1 sgn(r − ξk)

(εk + 
kt)
(p−1)2
p−2

×
{

−α(p − 1)

1 − α
[. . .]

αp−1
1−α

p − 1

p − 2

|r − ξk|
p

p−2

(εk + 
kt)
p−1
p−2

sgn(r − ξk)

+ [. . .]
α(p−1)

1−α
p − 1

p − 2
|r − ξk|

1
p−2 sgn(r − ξk)

}

= [. . .]
αp−1
1−α

k

(
1 + σ t

1 − α

)p−1 (
p − 1

p − 2

)p |r − ξk|
1

p−2

(εk + 
kt)
(p−1)2

p−2

×
⎧⎨⎩−α(p − 1)

1 − α

|r − ξk|
p−1
p−2

(εk + 
kt)
p−1
p−2

+ [. . .]k

⎫⎬⎭
≥ − [. . .]

α
1−α

k

(
1 + σ t

1 − α

)p−1 (
p − 1

p − 2

)p |r − ξk|
1

p−2

(εk + 
kt)
(p−1)2
p−2

× α(p − 1)

1 − α

|r − ξk|
p−1
p−2

(εk + 
kt)
p−1
p−2

= − [. . .]
α

1−α

k

|r − ξk|
p−1
p−2

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1

× (1 + σ t)p−1(p − 1)p+1α

(1 − α)p−1(p − 2)p−1(εk + 
kt)p−1

( |r − ξk|
εk + 
kt

) 1
p−2

≥ − [. . .]
α

1−α

k

|r − ξk|
p−1
p−2

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1

× (1 + στ)p−1(p − 1)p+1α

(1 − α)p−1(p − 2)p−1ε
p−1
k

,

since [. . .]k ∈ (0, 1), αp − 1 > α, |r−ξk |
εk+
kt

∈ (0, 1), and t ∈ [0, τ ].
Furthermore, we have

N − 1

r

∣∣∣∣∂uk

∂r

∣∣∣∣p−2
∂uk

∂r
= − [. . .]

α(p−1)
1−α

k

|r − ξk|
p−1
p−2

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1
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× (N − 1)(1 + σ t)p−1(p − 1)p−1

r(1 − α)p−2(p − 2)p−2(εk + 
kt)p−2

≥ − [. . .]
α

1−α

k

|r − ξk|
p−1
p−2

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1

× (N − 1)(1 + στ)p−1(p − 1)p−1

ak(1 − α)p−2(p − 2)p−2ε
p−2
k

,

due to [. . .]k ∈ (0, 1), p − 1 > 1, r > ak , and t ∈ [0, τ ].
Finally,

∂uk

∂t
(x, t) − �puk(x, t)

= ∂uk

∂t
(r, t) − ∂

∂r

(∣∣∣∣∂uk

∂r
(r, t)

∣∣∣∣p−2
∂uk

∂r
(r, t)

)
− N − 1

r

∣∣∣∣∂uk

∂r
(r, t)

∣∣∣∣p−2
∂uk

∂r
(r, t)

≥ [. . .]
α

1−α

k

{
σ + |r − ξk|

p−1
p−2

(1 − α)(p − 2)(εk + 
kt)
p−1
p−2 +1

×
(

(p − 1)
k − σ(1 − α)(p − 2)εk − (1 + στ)p−1(p − 1)p+1α

(1 − α)p−1(p − 2)p−1ε
p−1
k

− (N − 1)(1 + στ)p−1(p − 1)p−1

ak(1 − α)p−2(p − 2)p−2ε
p−2
k

)}

= σ [. . .]
α

1−α

k = K(1 + στα)[. . .]
α

1−α

k ≥ K(1 + σ t)α[. . .]
α

1−α

k

= Kuα(r, t) ≥ q(x)uα(x, t) ,

thanks to our choice of 
k .
By a simple time-continuity argument, there exists some T ∈R,

0 < T ≤ min{T0, T , T } ,

such that u ≤ u in RN × [0, T ]. The desired solution u(x, t) ≡ u(|x|, t) in Theorem 3.4 is now 
obtained by monotone iterations as in the proof of Theorem 1.3, cf. (2.17). �
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a b s t r a c t

We establish a strong maximum principle for a nonnegative continuous solution
u : Ω × [0, T ) → R+ of a doubly nonlinear parabolic problem in a space–time
cylinder Ω × (0, τ) with a domain Ω ⊂ RN and a sufficiently short time interval
(0, τ) ⊂ (0, T ). Our method takes advantage of a nonnegative subsolution derived
from an expanding spherical wave.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The strong maximum principle in parabolic problems in a spatial domain Ω ⊂ RN describes a propagation
property for the mass or energy in a variety of mathematical reaction–diffusion models, including quasilinear
models with convection and absorption studied in [1–5]. These kinds of models exhibit the following two
phenomena, among others:

Finite speed of propagation. In our recent work [1] we have constructed nontrivial nonnegative solutions
with compact support in the space variable x ∈ RN and zero initial data for a quasilinear parabolic problem
with the p-Laplacian for p > 2 (weak, degenerate diffusion) and a nonsmooth reaction function (only Hölder-
continuous). The positivity of the solution appears thanks to a nonsmooth reaction function, whereas the
compact support expands with finite speed, thanks to p > 2.

In contrast, infinite speed of propagation has been suggested in the work of Khin and Su [4]. In our present
work we establish this phenomenon in the “complementary” case of 1 < p < 2 (strong, singular diffusion).
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More precisely, we prove a strong maximum principle for the following quasilinear parabolic problem:
∂

∂t
b (u(x, t))−∆pu(x, t) = f(x, t) for (x, t) ∈ Ω × (0, T ) ;

u(x, 0) = u0(x) for x ∈ Ω ;
u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ) .

(1.1)

As usual, we abbreviate ∆pu ≡ div(|∇u|p−2∇u). Our most important hypothesis is 1 < p < 2. In addition,
we assume the following standard hypotheses: b : R+ → R+ is a continuous function, b(0) = 0, and
b ∈ C1 (0,+∞) with b′ > 0 in (0,+∞). For simplicity, we assume that both, f : Ω × (0, T ) → R and
u0 : Ω → R, are continuous and nonnegative. The following kind of strong maximum principle describes the
propagation with infinite speed throughout the domain Ω .

Theorem 1.1. Let 1 < p < 2, N ≥ 1 and assume that b : R+ → R+ is as above and satisfies also

lim
s→0+

s2−p b′(s)
| log s|p−1 = 0. (1.2)

Finally, assume that u : Ω × [0, T )→ R+ is a continuous, nonnegative, weak solution of (1.1). Then, for
any fixed t0 ∈ (0, T ), the solution u(·, t0) is either positive everywhere on Ω or else identically zero on Ω .

In particular, if u(ξ, 0) = u0(ξ) > 0 for some ξ ∈ Ω , then there exists τ ∈ (0, T ] such that u(x, t) > 0
for all (x, t) ∈ Ω × (0, τ), i.e., the strong maximum principle is valid in the (N + 1)-dimensional space–time
cylinder Ω × (0, τ). The number τ ∈ (0, T ) can be estimated from below by

τ = sup {T ′ ∈ (0, T ] : u(ξ, t) > 0 for all t ∈ [0, T ′)} > 0. (1.3)

A related, spatially localized result around ξ ∈ R is proved in [6]. The initial positivity hypothesis
u0(ξ) > 0 is not required. It is obtained for any t > 0 small enough, i.e., u(ξ, t) > 0, from a positive sub-
solution that can be constructed if f = f(u) is only Hölder continuous as u ↘ 0. Since the subsolution is
positive only on a small ball BR(x0) ⊂ Ω , also the positivity of u may be spatially localized. In fact, we
have constructed such a solution for p > 2 in our work [1, Theorem 1.3]. Our present result, Theorem 1.1,
is of somewhat different nature. We do not work with a nonsmooth reaction function f = f(u), that would
produce a nontrivial, nonnegative solution u(x, t) for every t > 0 small enough, in spite of u0 ≡ 0 in RN .
Rather, we assume the positivity of the initial data u0(ξ) > 0 at some point ξ ∈ Ω and derive from it that
u > 0 throughout Ω × (0, τ), where τ ∈ (0, T ). By the finite time extinction property proved in Chen and
DiBenedetto [7, p. 323] and DiBenedetto [2, Chapt. VII, Section 3, Prop. 3.1], if 1 < p < 2 and f(x, t) ≡ 0
then one has u(x, t) ≡ 0 for all t ≥ T ∗, provided T ∗ > 0 is sufficiently large. Their proof makes use of a
spatially localized result related to our Theorem 1.1, see Chen and DiBenedetto [7, Theorem 2, p. 323]. The
same results are established also in A.V. Ivanov [8, p. 32] Theorems 6.2 and 6.3, in a more general setting.

2. Proof of the main result

Our continuity hypothesis on the solution u : Ω × [0, T ) → R in Theorem 1.1 has been verified in the
following two important situations:

(a) For b(s) ≡ s for all s ∈ R+, see Chen and DiBenedetto [7, Theorem 1, p. 320] and A.V. Ivanov [8, p. 28],
Propositions 3.1 and 3.2.

(b) For b(s) = sσ for all s ∈ R+, where σ ∈ R is a constant, (0 <) p − 1 ≤ σ < +∞, see A.V. Ivanov [8,
Eq. (1.7), p. 23] combined with [8, p. 28], Propositions 3.1 and 3.2.
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Proof of Theorem 1.1. Let us fix any t0 ∈ (0, T ) and denote Z ≡ Z(t0) = {x ∈ Ω : u(x, t0) = 0}. Our aim is
to prove that either Z = Ω or else Z = ∅. It is sufficient to prove that Z is an open subset of Ω since it is
closed thanks to the continuity of u and the connected set Ω possesses only two open and closed subsets, Ω
and ∅.

Let x1 ∈ Z. We prove that Bd/2(x1) ⊂ Z where d = dist(x1, ∂Ω). Note that if Ω = RN then
d = ∞. We assume, by contradiction, that x2 ̸∈ Z for some x2 ∈ Bd/2(x1). In other words, we have
u(x2, t0) > u(x1, t0) = 0 and |x1 − x2| < 1

2d = 1
2 dist(x1, ∂Ω). Consequently, since dist(x2, ∂Ω) > 1

2d

holds by the triangle inequality, we have |x1 − x2| < dist(x2, ∂Ω). Due to the continuity of u, there exist
R ∈ (0, |x1 − x2|) and τ ∈ (0, t0) such that

η
def= inf

(x,t)∈BR(x2)×[t0−τ,t0]
u(x, t) > 0. (2.1)

Notice that BR(x2) ∩ Z(t) = ∅ for all t ∈ [t0 − τ, t0].

Let us fix a constant R∗ ∈ (|x1 − x2|,dist(x2, ∂Ω)). Hence, 0 < R < |x1 − x2| < R∗ < dist(x2, ∂Ω). We
will construct a subsolution v :


BR∗(x2) \BR(x2)


× [t0 − τ, t0]→ R+ of problem (1.1) satisfying

(a) v(x, t0 − τ) = 0 for all x ∈ BR∗(x2) \BR(x2);
(b) v(x1, t0) > 0;
(c) v(x, t) = 0 for all x ∈ ∂BR∗(x2) and for all t ∈ [t0 − τ, t0];
(d) v(x, t) ≤ η for all x ∈ ∂BR(x2) and all t ∈ [t0 − τ, t0].

The properties (a) and (c) guarantee v(x, t) = 0 ≤ u(x, t) for all

(x, t) ∈

BR∗(x2) \BR(x2)× {t0 − τ}


∪ (∂BR∗(x2)× [t0 − τ, t0]) .

Furthermore our choice of η in Eq. (2.1) entails u(x, t) ≥ η for all x ∈ ∂BR(x2) and for all t ∈ [t0 − τ, t0].
Combining this inequality with (d), we obtain 0 ≤ v(x, t) ≤ u(x, t) for all x ∈ ∂BR(x2) and for all
t ∈ [t0 − τ, t0].

Then the weak comparison principle in the space–time domain

Q
def=

BR∗(x2) \BR(x2)


× (t0 − τ, t0]

guarantees that 0 ≤ v(x, t) ≤ u(x, t) holds for all (x, t) ∈ Q. The reader is referred to Alt and Luckhaus
[9, Thm. 2.2, p. 325], Dı́az [10, Thm. 3, p. 313], and Otto [11, Thm. on p. 25] for the appropriate version of
the weak comparison principle. In particular, thanks to |x1−x2| < R∗ in property (c), we obtain (x1, t0) ∈ Q
and u(x1, t0) ≥ v(x1, t0) > 0 which is the desired contradiction with our choice of x1 ∈ Z. We have proved
that the set Z(t0) is open in Ω . Since Z(t0) ∋ x1 is also relatively closed in Ω and Ω is connected, we
conclude that Z(t0) = Ω as claimed. This concludes the proof of the main part of the theorem.

To construct the desired subsolution v, in analogy with [4, pp. 599–600], proof of Theorem 4.1, we
construct it in the form of a spherically symmetric wave

v(x, t) = z (R+ ω(t− t0 + τ)− |x− x2|) , (x, t) ∈ BR∗(x2)× [t0 − τ, t0] , (2.2)

with the velocity ω ∈ (0,+∞) to be determined later and the function z : R→ R+ satisfying the differential
equation

dz
dξ = fε(z(ξ)) for ξ ∈ R; z(0) = 0. (2.3)
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The crucial point of our construction is a suitable choice of the nonnegative function fε : R+ → R+ which
depends on a small parameter ε ∈ (0, 1). We choose

fε(s)
def=

s |log s|1+ε if s ∈ (0,+∞) ,

0 if s ∈ (−∞, 0] .
(2.4)

Clearly, fε is a continuous function on R with the derivative

f ′ε(s) =


(|log s| − 1− ε) |log s|ε if 0 < s < +∞,
0 if −∞ < s < 0.

Furthermore, given any fixed η0 ∈ (0, 1), the integral

ζ0 ≡ ζ0(ε) def=
 η0

0

ds

fε(s)
converges and satisfies ζ0(ε)↗ +∞ as ε↘ 0. Finally, the classical method of separation of variables applied
to the initial value problem (2.3) yields the following formula for the unknown function z ≡ zε : R→ R+:

z(ζ) =


exp

− (ε · ζ)−1/ε


if ζ ∈ (0,+∞) ,

0 if ζ ∈ (−∞, 0] .
(2.5)

We remark that, for any fixed ζ ∈ (0,+∞), we have zε(ζ)↘ 0 as ε↘ 0.

In order to complete the proof, let us now verify that the function v(x, t) defined in (2.2) has all properties
(a), (b), (c), and (d) stated above.

Property (a): For every x ∈ BR∗(x2) with |x−x2| ≥ R we have v(x, t0− τ) = z(R− |x−x2|) = z(0) = 0.

Property (b): The desired inequality

v(x1, t0) = z(R+ ωτ − |x1 − x2|) > 0

will be satisfied whenever R+ ωτ − |x1 − x2| > 0, i.e., if the number ω ∈ (0,+∞) is chosen such that

ω > ω(x1, t0) def= |x1 − x2| −R
τ

> 0; we take ω def= R∗ −R
τ

.

Property (c): Similarly as above, v(x, t) = 0 for all (x, t) ∈ ∂BR∗(x2) × [t0 − τ, t0] if and only if
R+ω(t−t0 +τ)−R∗ ≤ 0 for all t ∈ [t0 − τ, t0], which is satisfied by our choice of ω = (R∗−R)/τ > ω(x1, t0)
above.

Property (d): For every x ∈ ∂BR(x2) and for all t ∈ [t0 − τ, t0], we have

v(x, t) = z(R+ ω(t− t0 + τ)− |x− x2|) = z(ω(t− t0 + τ))
≤ z(ωτ) ≤ z(R∗) ≡ zε(R∗) ≤ η,

provided ε > 0 is small enough, say, 0 < ε ≤ ε1, by Eq. (2.5). This proves Property (d).

Let us denote the spherical shell A def= BR∗(x2) \ BR(x2) ⊂ Ω ; hence Q = A × (t0 − τ, t0]. It remains to
verify the differential inequality

∂

∂t
b (v(x, t))−∆pv(x, t) ≤ 0 in A× (t0 − τ, t0] (2.6)

in the sense of distributions. Let us fix t ∈ (t0− τ, t0]. Take any nonnegative test function ψ ∈ C1
c (A), ψ ≥ 0.

Recalling our definition (2.2) of v(x, t) = z(R+ ω(t− t0 + τ)− |x− x2|), v ≥ 0, and setting

A+
def= {x ∈ A : v > 0} =


x ∈ RN : R < |x− x2| < R+ ω(t− t0 + τ)


,
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we calculate
∂

∂t


A

b(v)ψ dx+

A

|∇v|p−2∇v · ∇ψdx

= ω


A

b′(z)z′ψdx−

A

(z′)p−1 x− x2

|x− x2|
· ∇ψdx

= ω


A+

b′(z)z′ψdx−

A+

(z′)p−1 x− x2

|x− x2|
· ∇ψdx

= ω


A+

b′(z)z′ψdx−

∂A+


(z′)p−1 x− x2

|x− x2|


· ν(x− x2)ψdσ(x) +


A+

div

(z′)p−1 x− x2

|x− x2|


ψdx

= ω


A+

b′(z)z′ψdx −

|x−x2|=R+ω(t−t0+τ)


(z′)p−1 x− x2

|x− x2|


· x− x2

|x− x2|
ψdσ(x)

+

|x−x2|=R


(z′)p−1 x− x2

|x− x2|


· x− x2

|x− x2|
ψdσ(x)

+

A+


−(p− 1)(z′)p−2z′′

x− x2

|x− x2|
· x− x2

|x− x2|
+ (z′)p−1div x− x2

|x− x2|


ψdx

= ω


A+

b′(z)z′ψdx− 0 + 0 +

A+


−(p− 1)(z′)p−2z′′ + (z′)p−1N − 1

r


ψdx,

owing to z′(R + ω(t − t0 + τ) − |x − x2|) = z′(0) = 0 if |x − x2| ≥ R + ω(t − t0 + τ), and ψ(x) = 0 if
|x− x2| = R.

Furthermore, using the substitution r = |x−x2| ≥ 0 for x ∈ RN , we continue by calculating the following
pointwise estimates for R < r < R+ ω(t− t0 + τ):

∂

∂t


A

b(v)ψdx+

A

|∇v|p−2∇v · ∇ψdx

= ω


A+

b′(z)z′ψdx+

A+


−(p− 1)(z′)p−2z′′ + (z′)p−1N − 1

r


ψdx

=

A+

z′

ωb′(z)− (p− 1)(z′)p−2


f ′ε(z)−

N − 1
(p− 1)r


ψdx, (2.7)

where z = z(R+ω(t− t0 + τ)−|x−x2|) = zε(R+ω(t− t0 + τ)− r) > 0 thanks to R < r < R+ω(t− t0 + τ),
and the expression in the curly bracket is nonpositive,

{. . .} def= ωb′(z)− (p− 1)(z′)p−2

f ′ε(z)−

N − 1
(p− 1)r


≤ 0, (2.8)

by the following calculations: First, we choose η1 ∈ (0, η] such that

s2−pb′(s)
| log s|p−1 ≤

p− 1
2ω for all s ∈ (0, η1].

Next, we choose η2 ∈ (0, η1] such that η2 < 1 and

1
4 |log η2| ≥ max


1 + ε1,

N − 1
(p− 1)R


> 1. (2.9)

This choice guarantees

f ′ε(s) = (| log s| − 1− ε) | log s|ε ≥

|log s| − 1

4 |log η2|

|log s|ε

≥ 3
4 | log s|1+ε whenever 0 < ε ≤ ε1 and 0 < s ≤ η2.
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Taking also R < r < R+ ω(t− t0 + τ), we arrive at

f ′ε(s)−
N − 1

(p− 1)r ≥
3
4 |log s|1+ε − 1

4 |log η2| ≥
1
2 | log s|1+ε. (2.10)

Subsequently, we choose ε2 ∈ (0, ε1] such that

zε(R∗) ≤ η2 (≤ η1 ≤ η) whenever 0 < ε ≤ ε2.

Substituting

s = z(R+ ω(t− t0 + τ)− |x− x2|) = zε(R+ ω(t− t0 + τ)− r)

with R < r < R + ω(t− t0 + τ), we observe that 0 < s ≤ zε(ωτ + R) = zε(R∗) ≤ η2 whenever 0 < ε ≤ ε2.
Hence, we may combine in Eq. (2.10) with z′ = fε(z) from Eq. (2.3) and formula (2.4), to estimate

(p− 1)(z′)p−2

f ′ε(z)−

N − 1
(p− 1)r


≥ p− 1

2 (fε(z))p−2 | log z|1+ε

= p− 1
2 zp−2| log z|(p−1)(1+ε) ≥ p− 1

2 zp−2| log z|p−1,

whence, by Eq. (2.8),

{. . .} ≤ p− 1
2 zp−2| log z|p−1 − p− 1

2 zp−2 · | log z|p−1 = 0.

The last inequality shows that the right-hand side of Eq. (2.7) is nonpositive, as claimed, provided 0 < ε ≤ ε2.
Consequently, the function v defined in Eq. (2.2) satisfies the parabolic inequality (2.6) in Q = A×(t0−τ, t0].

In order to prove the last claim of the theorem, let ξ ∈ Ω be such that u0(ξ) > 0. Thanks to the continuity
of u, the number τ defined in Eq. (1.3) is positive. Applying the main claim of the theorem with an arbitrary
fixed t0 ∈ (0, τ), we conclude that u(ξ, t0) > 0 implies u(x, t0) > 0 for every x ∈ Ω . Hence, we have proved
that u > 0 holds throughout the entire cylinder Ω × (0, τ). �
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[1] J. Benedikt, P. Girg, L. Kotrla, P. Takáč, Nonuniqueness and multi-bump solutions in parabolic problems with the p-
Laplacian, J. Differential Equations 260 (2) (2016) 991–1009.

[2] E. DiBenedetto, Degenerate Parabolic Equations, in: Universitext, Springer-Verlag, New York, 1993.
[3] E. DiBenedetto, U. Gianazza, V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations, in: Springer

Monographs in Mathematics, Springer, New York, 2012.
[4] T.S. Khin, N. Su, Propagation property for nonlinear parabolic equations of p-Laplacian-type, Int. J. Math. Anal. (Ruse)

3 (9–12) (2009) 591–602.
[5] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, in: de

Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1995, Translated from the 1987 Russian
original by Michael Grinfeld and revised by the authors.

http://refhub.elsevier.com/S0893-9659(16)30211-7/sbref1
http://refhub.elsevier.com/S0893-9659(16)30211-7/sbref2
http://refhub.elsevier.com/S0893-9659(16)30211-7/sbref3
http://refhub.elsevier.com/S0893-9659(16)30211-7/sbref4
http://refhub.elsevier.com/S0893-9659(16)30211-7/sbref5


J. Benedikt et al. / Applied Mathematics Letters 63 (2017) 95–101 101
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Abstract. We describe the historical process of derivation of the p-Laplace

operator from a nonlinear Darcy law and the continuity equation. The story

begins with nonlinear flows in channels and ditches. As the nonlinear Darcy
law we use the power law discovered by Smreker and verified in experiments by

Missbach for flows through porous media in one space dimension. These results
were generalized by Christianovitch and Leibenson to porous media in higher

space dimensions. We provide a brief description of Missbach’s experiments.

1. Introduction

The authors of this article have often been confronted with the question on the
origin of the p-Laplace operator. The main goal of the present work is to answer
this question at satisfactory technical and historical levels. We do not attempt to
provide or claim complete answers to many questions that arise in our investigation
of the available resources. In particular, we leave the question of competitiveness
of mathematical models with the p-Laplacian to alternative mathematical models
still widely open in practical applications [51, 58].

2. The Filtration Problem and the Equation

An important task of hydrodynamics engineering throughout the 18th century
was to build reliable water supplies for fast growing urban centers. The need for
water sparked a number new directions in theoretical research on hydrodynamics
and hydrology. Numerous interesting mathematical problems in this area are de-
rived and formulated in the monograph by Jacob Bear [3]. Among them we are
interested in filtration of fluids through porous media and unsaturated flow ; see [3,
Sect. 5.2, 5.10, 5.11] and [3, Sect. 9.4], respectively. A mathematical model for
such phenomena is presented in J. I. Dı́az and F. de Thélin [14]. It is described
by the following nonlinear initial-boundary value problem of parabolic type for the
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unknown function u = u(x, t) of the space and time variables, x and t, respectively:

∂

∂t
b(u)− div φ

(
∇u−K(b(u))e

)
+ g(x, u) = f(x, t) in Ω× (0,∞) ,

u(x, t) = 0 on ∂Ω× (0,∞) ,

b(u(x, 0)) = b(u0(x)) in Ω .

(2.1)

Here, Ω ⊂ RN is a bounded open subset of the N -dimensional Euclidean space RN
with sufficiently smooth boundary ∂Ω, b : R→ R, K : R→ R, and g(x, · ) : R→ R
are continuous functions satisfying some additional hypotheses ([14, Sect. 1]), such
as b being monotone increasing with b(0) = 0, e denotes a given unit vector in RN ,
and for some 1 < p <∞,

φ(ζ) = |ζ|p−2ζ for every ζ ∈ RN . (2.2)

As usual, t ∈ R+ := [0,∞). Finally, f : Ω× (0,∞) → R is (typically) a Lebesgue-
-integrable function standing for sources (if f(x, t) > 0) and sinks (if f(x, t) < 0),
whereas u0 : Ω → R stands for the prescribed initial data, usually assumed to be
Lebesgue-measurable and (essentially) bounded.

For filtration of fluids through porous media in laminar regime one begins with

the continuity equation
∂θ

∂t
+ div v = 0 (2.3)

and the Darcy law v = −K(θ)∇Φ(θ) , (2.4)

where θ = θ(x, t) is the volumetric moisture content, K = K(θ) is the hydraulic
conductivity, and the potential Φ is given by Φ(θ) = ψ(θ) + z with ψ(θ) being the
hydrostatic potential and z the gravitational potential. For instance, if N = 3 then
we fix the unit vector e = (0, 0,−1) ∈ RN in the direction opposite (but parallel) to
the gravitational force, perpendicular to the horizontal plane (x1, x2, 0), so that the
gravitational potential z = z(x) = gx3 + const at the point x = (x1, x2, x3) ∈ R3

yields the gravitational force

G = G(x) = −∇z =
(
0, 0, − ∂z

∂x3

)
= (0, 0,−g) = −ge ∈ R3 .

To simplify our notation, we normalize the gravitational constant to one, g = 1;
hence, G = −∇z = −e ∈ R3. Thus, we obtain

∇Φ(θ) = ψ′(θ)∇θ − e

which, after being inserted into Darcy’s law (2.4), yields

v = −K(θ)ψ′(θ)∇θ +K(θ)e = −∇ϕ(θ) +K(θ)e ∈ R3 (2.5)

where

ϕ(θ) :=
∫ θ

0

K(ϑ)ψ′(ϑ) dϑ for θ ∈ R .

In general, the vector field v stands for the seepage flow which, in our applications,
will be proportional to the fluid velocity, thus denoted by v. It is reasonable to
assume K(ϑ) > 0 and ψ′(ϑ) > 0 (see Bear [3]), so that also ϕ′(ϑ) > 0 holds.
As a consequence, ϕ : R → R is a strictly monotone increasing, continuously
differentiable function.

Beginning in the 1870s, many engineers concerned with fluid dynamics (including
the works in [20, 21, 22, 23, 24, 32, 36, 37, 38, 43, 44, 45, 46, 52, 54, 55, 56, 57, 62,
64, 66, 67]) have discovered that, if the fluid flow is in turbulent regime, the linear



EJDE-2018/16 ORIGIN OF THE p-LAPLACIAN 3

Darcy law (2.4) does not provide the correct relationship between the pressure slope
(force),

F = −∇ϕ(θ) +K(θ)e ,
on the right-hand side and the velocity , v, on the left-hand side of Darcy’s law
(2.4). Oscar Smreker [55, Eqs. (5)–(7), pp. 361–362] shows by rigorous calculations
how linear Darcy’s law leads to a contradiction in a practical problem (dug well,
“Schachtbrunnen” in German). Among several “correction” alternatives to Darcy’s
law, O. Smreker [54, 55, 56] suggested the following power law :

F = −K(θ)∇Φ(θ) = −∇ϕ(θ) +K(θ)e (2.6)

is given by
F = const · |v|p

′−2v with some p′ > 2 , (2.7)
with the power s = (p′ − 2) + 1 = p′ − 1, where the multiplicative constant is
set to one, const = 1, for simplicity. Smreker’s work [54] suggests p′ − 1 = 3/2,
i.e., p′ = 2.5, whereas Reynolds’s measurements [52] show p′ − 1 = 1.723. A. M.
White [62] proposed an analogous relation with p′−1 = 1.8. All such corrections to
Darcy’s law allow only the power range 1 ≤ p′− 1 ≤ 2. Denoting by p = p′/(p′− 1)
the conjugate exponent, i.e., 1

p + 1
p′ = 1, we thus have to deal with the range

3/2 ≤ p ≤ 2 and the velocity
v = |F|p−2F . (2.8)

Inserting (2.6) and (2.8) into the continuity equation (2.3) we finally arrive at
problem (2.1), where b = ϕ−1 denotes the inverse function to ϕ and f ≡ g ≡ 0.

We refer an interested reader to J. I. Dı́az and F. de Thélin [14] for how to obtain
problem (2.1) in a model dealing with unsaturated flow (gas flow, typically). There,
p = 3/2.

It is now evident, that the p-Laplace operator ∆p,

∆pu ≡ div
(
|∇u|p−2∇u

)
, for 1 < p <∞ , (2.9)

is created by the nonlinear power law (2.7) or, equivalently, by (2.8). The continuity
equation (2.3) is standard for both, linear and nonlinear Darcy’s laws. This means
that the origin of the p-Laplacian ∆p is closely tied to who was the first to plug
the power law (2.8) into the continuity equation (2.3) or at least into its stationary
special case div v = 0. There seems to be a wide-spread agreement in the literature
that the power law (2.8) with p = 5/3 was suggested first by Oscar Smreker [54] 1

in 1878 in the equivalent form (2.7) with p′ = 2.5. A number of “power laws” (with
a more general exponent s = p′ − 1) by various authors followed afterwards. We
will discuss the most important ones in the following two sections.

In this context (“Who was the first?”), we should mention the articles by Smreker
[56] from 1881 (used also in his doctoral dissertation [57] in 1914) and by N. E.
Zhukovskii [64] from 1889 (reprinted in his collected works [65] in 1937), in which
they give the explicit formula for the radially symmetric solution, u(x) ≡ u(|x|), of
the so-called p-harmonic equation, ∆pu = 0, for any 1 < p <∞, p 6= N ,

u(r) = C0 + const · r1−µ for every r = |x| > 0 , (2.10)

µ =
N − 1
p− 1

≥ 0, µ 6= 1,

1 Ref. [6] by M. Brenčič provides a “Short description of life and work of Oskar Smreker”.
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see [57, Eq. (I), p. 36] and [65, Eq. (13), p. 19], respectively. Here, C0 ∈ R is a
constant; C0 = u(0) if µ < 1 and C0 = u(+∞) := limr→+∞ u(r) if µ > 1. Although
this formula is valid in any dimension N ≥ 1, both engineers, in [56, 64], treat only
the planar case (N = 2) given by the hydroengineering model. They had never
written down the p-harmonic equation (∆pu = 0) explicitly throughout their entire
articles [56, 64]; rather, they preferred to refer to Smreker’s work in [54] for the
power law. In fact, since every radially symmetric solution u(x) ≡ u(|x|) to the
p-harmonic equation ∆pu = 0 in the plane (N = 2) satisfies the stationary case of
the continuity equation (2.3), div v = 0, which is equivalent to

∆pu(x) = r1−N · d
dr
(
rN−1 |u′(r)|p−2u′(r)

)
= 0 for every r = |x| > 0 ,

both, Smreker [56] and Zhukovskii [64], may have very easily used an alternative
way (e.g., the surface integral over a sphere) to obtain in the plane (N = 2),

r |u′(r)|p−2u′(r) = const for all r = |x| > 0 , x ∈ R2 ,

whence (2.10) follows with N = 2 and µ = 1/(p− 1) > 0 (recall that p 6= N = 2).

3. Flow in a Channel or Porous Media

The rapid development of hydrology in the late 18th and early 19th centuries re-
quired new theoretical background and related new measurement techniques. Much
of this research, particularly by French engineers closely connected with the famous
Parisian engineering school École des ponts et chaussées, was published in 1804 in
the monograph by one of its former directors, baron Gaspard Riche de Prony [50].
This book is a very comprehensive description of French research on water flow
through channels and large pipes. Some studies treat also smaller (thinner) pipes
and hoses which, towards the end of the 19th century, developed into research on
filtration through soil, sand, and other similar porous materials. Mathematically,
all models in this research are set in space dimension one. The spectrum of special-
ists involved in the 18th century research begins with civil engineers (count Pierre
Louis George du Buat [8] and Pierre-Simon Girard [26]), continues with theoretical
engineers and applied mathematicians like de Prony himself and Antoine de Chézy
[9], and ends up with mathematicians (marquess Pierre-Simon de Laplace [33]).
The author, de Prony [50], describes and further develops the research findings of
his former teacher, Antoine de Chézy [9], published in 1775 which contains also his
famous mathematical formula on the average flow velocity. De Prony’s book [50]
was further influenced by the work of P. L. G. du Buat [8] and P.-S. Girard [26].
One of their most important discoveries was the formula for the resistance force
due to adhesion of the fluid to the contact surface, cf. G. R. de Prony [50, pp. 44,
58]:

If u stands for the average flow velocity, then this resistance force, χδs φ(u), is
proportional to a polynomial function φ = φ(u) of degree one to three, where χ, δ,
and s are some positive constants that describe the adhesion to the contact surface,
and

φ(u) = c+ αu+ βu2 + γu3 (3.1)

with some nonnegative constants c, α, β, and γ. We refer to pages 44 and 58 of
de Prony’s book [50]. Calculation of these constants from available measurements
was a subject of strong theoretical and practical interest to civil engineers working
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on the constructions of channels and water pipelines throughout entire France ([50,
pp. 65–90]).

The transformation of the research interests in water flow through channels and
large pipes into research on filtration through porous materials began in mid-19th

century in the work by Henry Darcy [11] in 1856, a French hydroengineer working
in Dijon, with his famous (linear) Darcy law , and by Jules Dupuit [18], another
French engineer and economist, published in 1863, who, in contrast, works with
de Prony’s quadratic law (3.1) (where γ = 0) for the dependence of the resistance
force or pressure loss (difference) on the average flow velocity, u. While Darcy’s
law became quickly a very popular, simple tool for calculating the dependence
of force or pressure on the velocity u for small absolute values of u, de Prony’s
quadratic law has turned out to fit the filtration problems much more accurately
also with higher velocities required to filter a sufficient amount of liquid (water)
needed by a large urban community. Towards the end of the 19th century, several
civil engineers throughout Western Europe have adopted de Prony’s polynomial
formula (3.1) (typically quadratic or cubic) in their investigation of fluid filtration
phenomena; Oscar Smreker [54, 55]2 (an Austrian-born engineer based in the city
of Mannheim, Germany, and active in several neighboring countries) seems to be
the first of them in 1878–1879 (with another work [56] in 1881), followed by C.
Kröber [32] in 1884 and Philipp Forchheimer [20] in 1886 and [21] in 1901 (another
Austrian engineer active also in Germany). Especially Forchheimer’s latter article,
[21], became a landmark in nonlinear fluid dynamics. Owing to Forchheimer’s
tremendous theoretical and practical activity in filtration problems, which includes
several lecture notes and comprehensive textbooks [22, 23, 24], de Prony’s and
Smreker’s quadratic law (3.1), γ = 0, in filtration theory is called Forchheimer’s
equation. We will stick to this terminology in the rest of this article while keeping
in mind earlier contributions by de Prony and Smreker. Smreker’s main merit is
an early application of Forchheimer’s quadratic formula (3.1) in civil engineering,
particularly in the construction of a water supply system to the Alsatian city of
Strasbourg (France) ([54], see the sketches following p. 128). This engineering
project plays the key role in Smreker’s works [54, 55, 56] mentioned above (in
1878–1881). This work (and from his other articles to follow it) is collected in his
doctoral dissertation [57] (Dr.–Ing.) from 1914 at the age of sixty. By then he had
designed and/or built numerous water supply systems in various European cities:
Belgrade, Ljubljana, Lvow (Lemberg), Mannheim, Prague, Trieste, Vilnius, etc.
Greater details on his achievements can be found in M. Brenčič’s survey [6].

Nevertheless, it was Oscar Smreker [54] again who has discovered that, at “low”
velocity levels v, neither the linear Darcy law nor the quadratic (or cubic) de Prony-
-Forchheimer law (3.1) describes the relation between the pressure loss and the
velocity v accurately. He suggested the following correction for the (pressure) slope
h/`,

h

`
=
v2

2g
· ξ where ξ = f(v) for v > 0 , (3.2)

2 In fact, the latter article, [55], was intended to be an introduction to the former one, [54].
The temporal order of publication is publisher’s mistake; see publisher’s remark at the end of the

latter [55].



6 J. BENEDIKT, P. GIRG, L. KOTRLA, P. TAKÁČ EJDE-2018/16

with the gravitational constant (acceleration) g given by g = 9.81 (m/s2) and the
function ξ = f(v) taking the “hyperbolic” form

f(v) = α+
β√
v

for v > 0 (3.3)

with some positive constants α and β. The (positive) quantities h and `, respec-
tively, stand for the difference h of water levels before and after the (horizontal)
filter of length `; cf. Forchheimer [21, Fig. 1, p. 1736] and Smreker [55, pp. 358–
360]. Formulas (3.2) and (3.3) yield a very special, but important case of the famous
power law ,

h

`
=
v3/2

2g
·
(
α
√
v + β

)
≈ β

2g
· v3/2 for v > 0 , (3.4)

with the approximation by the power (β/2g) · v3/2 being valid for small velocities
v > 0. In his work [54, p. 127], Smreker suggests also a much more general relation,
namely,

ξ = f(v) = α+
∞∑
n=1

βn v
−1/n for v > 0 (3.5)

with some nonnegative constants α and βn. This is how the power law
h

`
= const · vs (1 < s < 2) for v > 0 (3.6)

was discovered for the (pressure) slope h/`. Starting with the articles [21, 54], the
precise value of the constant s ∈ (1, 2) was the subject of numerous measurements
and theoretical investigations; s > 1 shows the tendency to approach one (s↘ 1).
Of course, the case s = 1 renders (linear) Darcy’s law . The power law (3.6) for soil
permeability and high water velocity v was confirmed in the experiments performed
by F. Zunker [66] in 1920 with s = 3/2; see also Zunker’s survey article [67]. He
claims that Darcy’s law is applicable to medium water velocities v. In Great Britain,
the two nonlinear Darcy laws, the quadratic law (3.1) (where γ = 0) and the power
law (3.6) (where s = 1.723), appear for the first time in 1883 in the work by Osborne
Reynolds [52, Sect. III, §37, pp. 973–976]. He considers very briefly also Smreker’s
general problem (3.2) (cf. [54, p. 119]). However, the relation of his research findings
to those of O. Smreker [54] is unclear3.

It was not until mid-1930s when Smreker’s power law (3.6) was verified by Alois
Anton Missbach [43] – [46] in many laboratory experiments with sugar juice and
water penetrating a medium consisting of tiny glass balls of constant diameter.
The final comparison of Smreker’s power law with A. Missbach’s laboratory ex-
periments were published in the (now) famous article [46]. His experiments are so
well-documented in the series of articles [43] – [46]4 that many researchers in non-
linear fluid dynamics, especially in the “West” (Americas, Australia, Europe, and
New Zeeland), consider A. Missbach’s article [46] as the verification of Smreker’s
power law (3.6). For this reason, this power law is often called Missbach’s equation
in Western literature (or the Darcy-Missbach equation in [51]). We will use this
terminology in the rest of this article, although many authors from Russia, the
mainland China, and Taiwan prefer to attribute the power law to, e.g., the prolific
Russian engineer S. V. Izbash [29, 30]; see also S. V. Izbash and Kh. Yu. Khaldre

3 Reynolds [52] seems to be unaware of Smreker’s results in [54] published five years earlier.
4 Part VI (Ref. [45]) of Missbach’s work appeared before Part V (Ref. [44]).
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[31] and H. Watanabe [61]. A. Missbach’s work [46] summarizes the results of a
large research program sponsored by several sugar refineries in Czechoslovakia in
the early 1930s on efficient sugar juice filtration. It is the final part (Part VII)
of the series of seven articles on Filtration ability of separated and saturated juices
inspired by the scientific and industrial activities of Missbach’s doctoral adviser,
Jaroslav Dědek, who himself also contributed to this article series (Part III), cf.
J. Dědek and D. Ivančenko [12]. The findings of the research reported in Miss-
bach’s article [46], albeit obtained with penetrating water rather than sugar juice,
were immediately incorporated into industrial sugar production. This article is
written in two parallel originals, Czech and German. Further details on his pro-
fessional involvement with the Czechoslovakian sugar producing industry will be
provided in Section 9. A very practical application of Missbach’s equation to non-
linear Darcy flow (also called non-Darcian flow) is provided in P. M. Quinn, J. A.
Cherry, and B. L. Parker [51]. This flow occurs in high-precision straddle packer
tests conducted in boreholes in a fractured dolostone aquifer using constant rate in-
jection step tests to identify the conditions of change from Darcian to non-Darcian
flow. An interesting comparison of Forchheimer’s and Missbach’s equations, (3.1)
and (3.6), respectively, is available in the survey article by K. P. Stark and R. E.
Volker [58] who, unfortunately, seem to be unaware of O. Smreker’s pioneering work
[54, 55, 56, 57].

4. The Russian School

Significant contributions to the filtration problem in porous materials by Russian
(or Soviet) engineers and scientists began in early 1920s by N. N. Pavlovskii [48]
in a hand-written monograph of 753 pages. It provides a very well-written, up-
-to-date introduction to hydraulics from a (mostly) theoretical point of view, with
plenty of valuable references to the literature. In Russia, this time is characterized
by massive industrialization (1920s and 1930s). In the first chapter, Pavlovskii
surveys constitutive laws (Darcy’s law, Forchheimer’s quadratic and cubic laws,
and the power law). In the second chapter, he suggests a criterion based on the
Reynolds number to establish the validity range of the linear Darcy law and the
range where a nonlinear law must be used instead. According to V. I. Aravin and
S. N. Numerov [2], p. 4 and also p. 33 with a detailed explanation, Pavlovskii’s
work [48] is the first one to use Reynolds number for this purpose. Despite of the
fact that the monograph [48] thoroughly discusses various constitutive laws in its
first two chapters, the partial differential equations used throughout the book to
study the seepage are only linear.

Serious interests in nonlinear (and non-Newtonian) fluid dynamics in the former
Soviet Union began in early 1930s with the works by S. V. Izbash [29, 30], who
has published the power law (3.6) already in 1931 in a monograph available only in
Russian. Decisive contributions to fluid dynamics were made by N. E. Zhukovskii
(see his collected works [65] from 1937), the most relevant for us being [64] from
1889. As we have already mentioned in Section 2, he gives the explicit formula
for the radially symmetric solution, u(x) ≡ u(|x|), of the p-harmonic equation,
∆pu = 0, see [64, Eq. (13), p. 19]. In the same article, [64], Zhukovskii discusses
applicability of various constitutive laws to filtration of water through sandy soil
known to that date, i.e., Darcy’s, Kröber’s, and Smreker’s power-type laws [11, 32,
54], and compares them to scores of available experimental results. For instance, he
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derives Laplace’s equation by inserting the (linear) Darcy law into the differential
equation of continuity. Using the Laplace equation he studies several configurations
of water wells scattered in the field (standalone well, wells in a row, and wells
on a circle). For the standalone case, he finds out that the discrepancy between
theoretical predictions from the formula based on the solution of Laplace’s equation
and the reality (measured data) is too large. To fix this problem, he suggests to
use the velocity v given by Kröber’s and Smreker’s power law [32, 54] −du

dx = i =
const · vp′−1 , 2 < p′ < ∞, cf. eq. (2.8), to be plugged into the stationary case of
the continuity equation (2.3) as described above. In particular, eq. (2.7) plays the
role of the constitutive law.

To the best of our knowledge, all work on nonlinear (and non-Newtonian) fluid
dynamics until 1940, throughout the entire world, treated only spatially one-dimen-
sional problems. ( Smreker’s and Zhukovskii’s radially symmetric planar solution in
[56, 64] mentioned above is essentially one-dimensional.) It was the Russian scientist
S. A. Christianovitch [10] who employed nonlinear constitutive laws (Forchheimer’s
quadratic and cubic laws and Missbach’s power law) to derive nonlinear partial
differential equations for the seepage movement of underground water. He restricts
himself to the spatially two-dimensional case. In the case of the power law, he
obtains the following equation (re-written in contemporary notation):

∆pu ≡ div
(
|∇u|p−2∇u

)
= 0 ,

for the unknown function u = u(x, y). Since he works in two space dimensions, he
can use methods of complex analysis and suggest analytical techniques to obtain
approximations of the solution to this equation with the so-called p-Laplace operator
∆p, 1 < p < ∞. The common (linear) Laplace operator ∆ is obtained for the
(linear) Darcy law (p = 2).

Another notable person in the Russian hydraulic engineering school was L. S.
Leibenson who investigated seepage of oil and gas in the oil and gas fields near the
city of Baku (now Azerbaijan, formerly Soviet Union). Much of his research from
the 1920s and early 1930s was published not only in brief article form, but also as
a survey monograph [35]. His most important findings concern turbulent filtration
of gas in porous medium [36, 37] (see also [40]). It was his article [36] where the
doubly nonlinear parabolic equation,

∂um

∂t
= c∆pu for (x, y, z, t) ∈ R3 × (0, T ) , (4.1)

with m + 1 = p = 3/2, appeared for the first time. Here, u = u(x, y, z, t) is the
unknown function of space and time, and c > 0 is some constant. Thanks to
m = p− 1, eq. (4.1) is called (p− 1)-homogeneous. He used the separation of space
and time variables,

u(x, y, z, t) = v(t)w(x, y, z) ,
in order to obtain the following equation with the so-called 1-Laplacian,

div
(
∇w
|∇w|

)
+A
√
w = 0 , (4.2)

where w = w(x, y, z) is the unknown function of space and A > 0 is a constant.
This article, [36], published in 1945 seems to be the first one to derive and consider
a quasilinear parabolic (time-dependent) problem, eq. (4.1), with the p-Laplace
operator ∆p in space dimension three (defined in eq. (2.9)), albeit for p = 3/2
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only. For the p-harmonic equation, ∆pu = 0 with p = 3/2, Leibenson [36] finds
solutions in the spatially one-dimensional and radially symmetric cases. In contrast,
S. A. Christianovitch [10] (in 1940) treated only a quasilinear elliptic (stationary)
problem, ∆pu = 0, in two space dimensions, but for any 1 < p <∞.

In his next work [37], immediately following [36], L. S. Leibenson allows for a
wider range of values of p, 3/2 ≤ p ≤ 2. Also his doubly nonlinear parabolic
equation (4.1) becomes more general,

∂

∂t

(
u

1
m+1

)
= c∆pu for (x, y, z, t) ∈ R3 × (0, T ) , (4.3)

with m > 0, which is no longer (p − 1)-homogeneous. This equation results from
Leibenson’s studies [37] of filtration of turbulent polytropic gas flow through porous
medium; m > 0 is called the polytropic index of the gas. It is a direct generalization
of an earlier work by L. S. Leibenson [34] which still uses the linear Darcy law,
whereas [37] uses Smreker’s power law5 (3.6). Practically all Leibenson’s results we
have mentioned above are very carefully collected and explained in his monograph
[39] published in 1947; his scientific articles [34, 36, 37, 38] are reprinted in [40].

An important member of the Russian school was also P. Ya. Polubarinova-
Kochina. Her Russian monograph [49] from 1952 (translated into English in 1962)
became quickly a widely used textbook by hydrogeologists all over the world.

5. From Darcy’s law to Forchheimer’s equation
(from linear to nonlinear diffusion)

Although fluid flow through channels, large pipes, and hoses had occupied theo-
retical hydrologists since the 18th century (see de Prony’s equation (3.1)), fluid flow
through porous media attracted major attention much later, in mid-19th century.
We recall from Section 3 the research on filtration through porous materials by
Henry Darcy [11] in 1856 (the linear Darcy law) and by Jules Dupuit [18] in 1863
(working with de Prony’s quadratic law). The idea of the quadratic law (3.1) was
picked up by Ph. Forchheimer who, in his groundbreaking work [21], developed ap-
plications of de Prony’s quadratic law to filtration through porous materials (soil,
in particular),

i = av + bv2 . (5.1)

Here, the quantity i is the (negative) total piezometric head gradient, i = −du
dx ,

v stands for the average seepage velocity, and a and b are nonnegative constants
determined by the properties of the fluid and medium; typically, a > 0 and b >
0. His article [21], published in 1901, meant also the introduction of nonlinear
diffusion after several decades of intensive studies of linear diffusion prompted by
Darcy’s law. A number of workers have inferred that Forchheimer’s equation has
sound physical backing apart from its attraction as a relatively simple nonlinear
expression. We refer the reader to J. Bear, D. Zaslavsky, and S. Irmay [4], for
example, who have derived the Forchheimer relation by inferred arguments from
the fundamental Navier-Stokes equations for the general case when inertia terms
are considered; see also Irmay [28]. A few decades later, in 1930, Ph. Forchheimer
[24] extended his nonlinear Darcy law to

i = av + bvm , (5.2)

5 Leibenson [37] was apparently not aware of Missbach’s work [46].
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where m is a constant typically taking values in the interval (1, 2], i.e., 1 < m ≤ 2.

Remark 5.1. From the point of view of Mathematical Physics, relation (??) means
that if a > 0, then the head gradient i has nearly linear, nontrivial growth

i(v)− i(0) = i = av
(

1 +
b

a
v
)
≈ av (5.3)

for low velocity v. On one hand, this phenomenon was confirmed for certain types
of fluids and media from both theoretical and experimental viewpoints, e.g., in the
work of V. I. Aravin and S. N. Numerov [2], E. Lindquist [41], and J. C. Ward [60].
On the other hand, the nontrivial growth (5.1) (a > 0), which yields

v = v(i) = − a

2b
+

√( a
2b
)2 +

i

b
=

a

2b

(
− 1 +

√
1 +

(2b
a

)2 i
b

)
> 0 if also b > 0 ,

whence v ≈ i/a for i ≥ 0 small, does not occur for other types of fluids and media
studied in M. Anandakrishnan and G. H. Varadarajulu [1], C. R. Dudgeon [16],
C. R. Dudgeon and C. N. Yuen [17], L. Escande [19], A. Missbach [43, 44, 45, 46],
A. K. Parkin [47], A. M. White [62], and J. K. Wilkins [63].

6. Missbach’s power law (nonlinear, power-type diffusion)

In contrast with Forchheimer’s approach to generalizing Darcy’s law, Alois Miss-
bach [46] based his approach to the porous medium problem on numerous experi-
mental results that became available in the 1930s in various rapidly developing in-
dustries, such as sugar and petroleum (oil) production, where certain types of fluids
are filtered through special porous media. Missbach’s experiments were prompted
by theoretical and experimental results obtained much earlier by C. Kröber [32],
O. Reynolds [52], O. Smreker [54], and F. Zunker [66]. The experimental results
obtained during the sugar beet campaign of 1935 in Czechoslovakia led A. Missbach
[46] to verifying the power law relation

i = c vm (6.1)

between the head gradient and the velocity, i and v, respectively, published in
1937. The power m typically takes values in the interval (1, 2). A couple of years
before Missbach’s article appeared, in 1935, A. M. White [62] proposed an analo-
gous relation with m = 1.8. As a porous medium, Missbach used gravels, sands,
and packings of uniform spheres (e.g., tiny glass balls), while in his starting experi-
ments [43] – [45] the fluid was represented by sugar juice of various sugar contents.
However, in his most important work for us, [46], he used water as the penetrating
fluid (Figure 1 below). He found out that the power m stays in (1, 2) and tends
to 1 with the decreasing diameter of the spheres. C. R. Dudgeon [16] carried out
tests on coarse materials serving as porous medium (gravels, sands, and packings of
uniform spheres) and confirmed that while the results followed closely an expression
of Missbach’s form (6.1) the values of c and m were not constant for the particular
material for all fluid flow conditions. These and other experimental results have
confirmed Missbach’s equation (6.1). A theoretical derivation of the special case
of Missbach’s equation (6.1) for m = 3/2 has been given in E. Skjetne and J.-L.
Auriault [53]. The authors of the present article have not been able to find any
reference concerned with a theoretical derivation of Missbach’s equation (6.1) for
an arbitrary power m ∈ (1, 2). The article by A. Brieghel-Müller [7] thoroughly
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surveys almost all results concerning constitutive laws for filtration known up to
1940 and discusses their applicability to filtration processes in sugar production.

Since experiments and measurements play a decisive role in A. Missbach’s work
[43] – [46], we provide a brief description of his apparatus. A. Missbach [46] calls
his experimental laboratory equipment “Apparatus for testing the hydraulic con-
ductivity (permeability, porosity) through a layer of glass balls”.

Figure 1. Apparatus for testing the hydraulic conductivity
through a layer of glass balls.

Figure 1 is a scanned copy of the original figure from Missbach’s work [46], p. 294,
Obr. 1 (in the Czech edition) and p. 424, Abb. 1 (in the German edition). Missbach
[46] credits the use of tiny glass balls to Zunker [66].

Figure 1 description:
(1) Glass tube with strong walls of internal diameter 45 mm, slightly longer

than 200 mm.
(2) Lower sieve.
(3) Upper sieve with a steel spring.
(4) Connecting rubber hose with strong walls.
(5) Tin funnel with a sieve insole.
(6) Thin connection pipe for the differential water manometer.
(7) Faucet for flow regulation.
(8) Outlet for flow regulation.
(9) Screw thread with an inserted filter cloth.

(10) Trench for draining overflowing liquid.
(11) Manometer.
In contrast with earlier filtration experiments (e.g., F. Zunker [66, 67]) which

used a system of parallel capillary tubes having undesirable side effects, A. Missbach
[46] decided to construct an apparatus of a relatively large diameter (45 mm) whose



12 J. BENEDIKT, P. GIRG, L. KOTRLA, P. TAKÁČ EJDE-2018/16

walls do not influence (obstruct, slow down) the fluid flow through the layer of tiny
glass balls. He used glass balls of four (4) different sizes (A, B, C, D; specified
in [46, Table I]) and varied both, the thickness (height) of the layer of glass balls
and the pressure of the fluid penetrating through the layer. The fluid used in
this experiment was tap water, carefully filtered, with no air bubbles and other
“pollutants”. The filtered water was pumped through the outlet for flow regulation
(8) from the bottom, under the atmospheric pressure of up to 0.5 atm, then led
to penetrate through the layer of glass balls upwards. In order to guarantee a
constant fluid flow velocity, v, throughout the horizontal cross section of the glass
tube, a sieve insole (2) is inserted into the glass tube. The upper sieve with a steel
spring (3) prevents the glass balls from being moved upwards by the penetrating
fluid. Finally, the overflowing liquid is drained into the trench (10) and its volume
is measured in a cylindrical vessel.

The thickness of the layer of glass balls, the size of the balls (A, B, C, D), the
vertical pressure difference in the layer, the flow velocity, and many other important
measurements are carefully recorded in [46, Tables II through V]. These experiments
provide evidence for Missbach’s power law relation (6.1).

7. Comparison of the Forchheimer and Missbach equations
(two different types of nonlinear diffusion)

Both, Forchheimer’s and Missbach’s models have been very useful in a number of
various situations. Which of the two nonlinear models is better (i.e., more accurate)
depends strongly on the fluid properties and the velocity v. A brief comparison of
the two models has been carried out e.g. in P. M. Quinn, J. A. Cherry, and B. L.
Parker [51], K. P. Stark and R. E. Volker [58], and numerically in R. E. Volker
[59]. The experimental conditions in [51] seem to be slightly more favorable for
Missbach’s model. We refer to Figure 5 in [51, Chapt. 9, pp. 9–12] for a detailed
comparison of the two models. It is interesting to observe that the authors in [58,
Chapt. 5, pp. 131–196] slightly favor Forchheimer’s model for water penetrating a
porous medium between two horizontal plates (see [58, pp. 144, 185–186, and 196]),
whereas A. Missbach [46] obtains highly favorable results for filtration of water
through a porous medium in a vertical cylinder described in the previous section
(with applications to filtration of saturated sugar juice). Although the laminar flow
regime often obeys the linear Darcy law, it is always nonlinear in character. Thus,
Missbach’s equation applies also to the laminar flow regime and in the transition
to a turbulent regime.

8. Some basic analytic and numerical results for the p-Laplacian

A comprehensive survey on only basic analytic and numerical results for the p-
Laplacian would have to contain literally hundreds of references. As this is not the
purpose of our present article, we have decided to mention only a few ones. Perhaps
the very basic monograph on modern (nonlinear) functional-analytic methods for
the p-Laplacian and similar quasilinear partial differential operators is the classical
book by J.-L. Lions [42]. Besides methods of Nonlinear Analysis it contains also
many applications to various mathematical models. Among important topics are
the global climate modelling treated in J.-I. Dı́az, G. Hetzer, and L. Tello [13] and
nonlinear fluid dynamics in J. I. Dı́az and F. de Thélin [14].
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The spectrum of the (positive) p-Laplace operator −∆p on the Sobolev space
W 1,p

0 (Ω) (that is, a monotone nonlinear operator with the zero Dirichlet boundary
conditions) has been an interesting open problem for decades, with the exception
of the first eigenvalue; see the monograph by S. Fuč́ık, J. Nečas, J. Souček, and
V. Souček [25]. The Fredholm alternative at the first eigenvalue is studied in P.
Drábek, P. Girg, P. Takáč, and M. Ulm [15] in a bounded domain Ω ⊂ RN and in J.
Benedikt, P. Girg and P. Takáč [5] in a bounded open interval Ω ⊂ R1. Bifurcations
at the first eigenvalue are treated in P. Girg and P. Takáč [27].

9. A short sketch of Missbach’s biography

A. Missbach (full name Alois Anton Missbach) was born on the 11th of June,
1897 in Plenkovice near Znojmo, Moravia (present Czech Republic), and baptized
on June 13th, 1897. According to the population statistics office (“matrika”) in
the town of Libáň in Eastern Bohemia (Czech Republic), A. Missbach had moved
to Libáň in 1923 and stayed there until July 26th, 1945. He was employed as a
technical engineer from 1923 through 1945 in the sugar refinery in Libáň where he
performed his research reported in Refs. [43] – [46]. While working full time as an
engineer (the second technical adjunct), he defended his doctoral thesis on June
26th, 1936 at the Czech Technical University in Brno, Moravia. He received the
degree of Doctor of Technical Sciences (Dr. techn.). His thesis advisor was the
well-known expert in Chemistry and sugar production, prof. Ing. Dr. techn. et
Dr. agr. h.c. Jaroslav Dědek.

A. Missbach got married in 1928 in the famous Old Town Hall in the historic
center of Prague, then the capital of Czechoslovakia. According to the statistics
office in Libáň, he moved out to Havraň near the town of Most in Northwestern
Bohemia (Czech Republic). As far as we know from the municipal office of Havraň,
several months later he moved to the nearby village of Lenešice, also near the town
of Most. He was the director of the sugar refinery in Havraň at least during his
stay there. His last residence known to us was the town of Most starting on August
12th, 1953. Both sugar refineries, in Libáň and Havraň, have been closed down
several decades ago.
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[5] J. Benedikt, P. Girg, and P. Takáč, On the Fredholm alternative for the p-Laplacian at higher
eigenvalues (in one dimension), Nonlinear Analysis, T.M.A., 72(6) (2010), 3091–3107. doi:

10.1016/j.na.2009.11.048.
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Zuckerindustrie der tschechoslowak. Repbl., 62(52) (1937/38), 369–372 (in German).
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DIFFERENTIABILITY PROPERTIES OF p-TRIGONOMETRIC
FUNCTIONS

PETR GIRG, LUKÁŠ KOTRLA

Abstract. p-trigonometric functions are generalizations of the trigonometric
functions. They appear in context of nonlinear differential equations and also

in analytical geometry of the p-circle in the plain. The most important p-

trigonometric function is sinp(x). For p > 1, this function is defined as the
unique solution of the initial-value problem

(|u′(x)|p−2u′(x))′ = (p− 1)|u(x)|p−2u(x), u(0) = 0, u′(0) = 1 ,

for any x ∈ R. We prove that the n-th derivative of sinp(x) can be expressed

in the form
2n−2−1X

k=0

ak,n sin
qk,n
p (x) cos

1−qk,n
p (x) ,

on (0, πp/2), where πp =
R 1
0 (1− sp)−1/pds, and cosp(x) = sin′p(x). Using this

formula, we proved the order of differentiability of the function sinp(x). The
most surprising (least expected) result is that sinp(x) ∈ C∞(−πp/2, πp/2) if

p is an even integer. This result was essentially used in the proof of theorem,

which says that the Maclaurin series of sinp(x) converges on (−πp/2, πp/2) if
p is an even integer. This completes previous results that were known e.g. by

Lindqvist and Peetre where this convergence was conjectured.

1. Introduction

In the previous two decades, p-trigonometric functions have attracted attention
of many researchers; see, e.g., [1, 5, 6, 7, 10, 11, 12, 13, 15, 16, 25], and references
therein. The p-trigonometric functions arise from the study of the eigenvalue prob-
lem for the one-dimensional p-Laplacian. We assume p > 1 and say, that λ ∈ R is
an eigenvalue of

−(|u′|p−2u′)′ − λ|u|p−2u = 0 in (0, πp) ,

u(0) = u(πp) = 0 ,
(1.1)

if there is a nonzero function u ∈ W 1,p(0, πp) that satisfy (1.1) in a weak sense.
Here

πp = 2
∫ 1

0

1

(1− sp)1/p
ds =

2π
p sin(π/p)

. (1.2)
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Let us note, that the problem can be considered on any bounded open interval, but
the choice (0, πp) significantly simplifies the calculations. The discreetness of the
spectrum of this eigenvalue problem was established already by Nečas [21]. This
eigenvalue problem was later studied by means of the initial-value problem

−(|u′|p−2u′)′ − λ|u|p−2u = 0 in (0,∞) ,

u(0) = 0, u′(0) = 1 ;
(1.3)

see Elbert [11] for initial work in this direction. Later it was independently studied
by del Pino-Elgueta-Manasevich [8], Ôtani [22] and Lindqvist [14].

Let sinp(x) denote the solution of (1.3) with λ = (p − 1). It follows from [11]
that sinp(x) is positive on (0, πp) and satisfies an identity

| sinp(x)|p + | sin′p(x)|p = 1 ∀x ∈ R , (1.4)

which for p = 2 becomes the familiar identity for sine and cosine. This suggest the
definition cosp(x) := sin′p(x) and justifies the notation sinp(x) and cosp(x). The
identity (1.4) is called p-trigonometric identity. It also follows from [11] that the
eigenvalues of (1.3) form a sequence λk = kp(p−1), k ∈ N and corresponding eigen-
functions are functions sinp(kx), k ∈ N. Thus all the eigenfunctions are determined
by the function sinp(x). It comes as no surprise that the properties of the function
sinp(x) were studied extensively in the previous 30 years. It was shown in [11]
that sinp(x) can be expressed on [0, πp/2] (the p-trigonometric identity (1.4) can
be thought of as the first integral of (1.3)) as the inverse of

arcsinp(x) =
∫ x

0

1
(1− sp)1/p

ds , x ∈ [0, 1] , (1.5)

which is extended to [0, πp] by reflection sinp(x) = sinp(πp − x) and to [−πp, πp] as
the odd function. Finally, it is extended to R as the 2πp-periodic function. The
function arcsinp(x) from (1.5) is extended to [−1, 1] as an odd function. Then

sinp(arcsinp(x)) = x ∀x ∈ [−1, 1] . (1.6)

Note that for p = 2, we obtain classical arcsine and sine from this definition.
The (now familiar) notation sinp appears in [8] for the first time, where the authors
studied homotopic deformation along p to calculate the degree of trivial solutions of
(1.1) in order to establish existence results for the nonlinear problem (|u′|p−2u′)′+
f(t, u) = 0, u(0) = u(T ) = 0, p > 1, T > 0. The homotopy result from [8] initiated
development of bifurcation theory for quasilinear bifurcations.

As a historical remark, let us mention that generalizations of arcsine similar
to (1.5) were studied in a very different context by Lundberg [17] in 1879. It is
interesting to mention that the p-trigonometric functions satisfy certain relations
to geometrical objects such as arclength and area of a circle in a noneuclidean
metric; see Elbert [11], and Lindqvist [15]. The p-trigonometric functions also pos-
sesses some approximation properties in certain function spaces; see, e.g., Binding-
Boulton-Čepička-Drábek-Girg [1], Lang-Edmunds [13] for theoretical research, and
Boulton-Lord [6] for a very interesting computational application in evolutionary
PDEs. In Wood [27], the particular case p = 4 was studied and “p-polar” coordi-
nates in the xy-plane were proposed.

In this article we focus on the differentiability and analyticity properties of p-
trigonometric functions. One can immediately see from (1.2), (1.5), and (1.6) that
sinp(0) = 0 and sinp(πp/2) = 1 for all p > 1. From (1.4) and the definition of
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cosp(x), we obtain cosp(0) = 1 and cosp(πp/2) = 0. It follows from the results in [11,
15, 22] that the possible differentiability issues are located at x = 0 and x = πp/2.
There are several results concerning differentiability and asymptotic behaviour of
sinp(x) at x = 0 and x = πp/2 in Manásevich-Takáč [19] and Benedikt-Girg-Takáč
[2]. In Peetre [25], generalized formal Maclaurin series for sinp(x) were studied
and their convergence was conjectured on (−πp/2, πp/2). The local convergence of
the generalized Taylor series (and/or the generalized Maclaurin series) for sinp(x)
follows from Paredes-Uchiyama [24]. Taking into account that the point x = 0
is often considered as the center for the Taylor (i.e. the Maclaurin) series or the
generalized Taylor (i.e. the generalized Maclaurin) series for sinp(x), we decided
to provide detailed study of the convergence of these series towards sinp(x) on
(−πp/2, πp/2). We were also motivated by work of Ôtani [23], where he studies
properties of the solutions of

(|u′|p−2u′)′ + |u|q−2u = 0 in (a, b) ,

u(a) = u(b) = 0 ,
(1.7)

for general exponents p, q ∈ (1,+∞) with p 6= q. Among other properties he proved
that for p = 2m+2

2m+1 ,m ∈ {0} ∪ N and for q even, any solution of (1.7) belongs to
C∞(a, b). In our case, p = q we find that sinp(x) belongs to C∞(−πp/2, πp/2) if
and only if p is even. Let us also remark that local analytic solutions of the radial
variant of (1.7) were studied in Bognár [4].

Though we are aware that our methods are elementary mathematics, we are
sure that our results will help to better understand the behavior of sinp(x) and its
derivatives in the vicinity of 0. This behavior is crucial in establishing asymptotic
estimates such as those in the proof of the Fredholm alternative for the p-Laplacian
in the degenerate case Benedikt-Girg-Takáč [2, 3]. Moreover, knowledge of the
convergence/nonconvergence of the Taylor and/or the Maclaurin series is very im-
portant in the development of numerical methods for calculating approximations
of function values of p-trigonometric functions. Recently, Marichev [20] from the
Wolfram Research, Inc., pointed out to the first author of this paper in a personal
communication that Mathematica from version 8.0 has a capability to effectively
compute coefficients for sinp(x) for formal generalized Maclaurin power series by
means of the Bell Polynomials. With few lines of Mathematica code one can obtain
partial sums of generalized Maclaurin series for sinp(x) of large order in a couple of
minutes. Thus the question of the convergence of the partial sums of the Maclaurin
series is becoming quite urgent. This was our main motivation to address this topic.

Our main result provides convergence of these partial sums. We treat two cases
separately, p > 2 is an even integer and p > 2 is an odd integer. Namely, for the par-
ticular case sin2(m+1)(x), m ∈ N, x ∈ (−πp/2, πp/2), we show that the Maclaurin se-
ries converges towards the values sin2(m+1)(x) on the interval (−πp/2, πp/2). On the
other hand, we show that the Maclaurin series converge towards sin2m+1(x), m ∈ N,
for x ∈ (0, πp/2) and does not for x ∈ (−πp/2, 0). More precisely, the Maclaurin
series converges on x ∈ (−πp/2, πp/2), but not towards values of sin2m+1(x), m ∈ N
for x ∈ (−πp/2, 0).

The article is organized as follows. In Section 2, we give a definition of the
function sinp(x) by means of a differential equation and also introduce other useful
notation. In Section 3, we state and discuss our main results concerning differentia-
bility and/or non-differentiability of sinp(x) and convergence of Maclaurin series of
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sinp(x). In Section 4, we express higher derivatives of sinp(x) by means of powers of
sinp(x) and cosp(x). Finally, in Section 5, we prove our main results using formulas
for higher derivatives of sinp(x) from Section 4. In Section 6, we conclude with
remarks and open problems.

2. Definitions of p-trigonometric functions

Proposition 2.1. The initial-value problem

−(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0

u(0) = 0, u′(0) = 1 ,
(2.1)

has the unique local solution and moreover any local solution to (2.1) can be con-
tinued to (−∞,+∞).

For uniqueness of the solution see [8, Sect. 3], and for the existence of global
solutions see [9, Lemma A.1].

Definition 2.2. The function sinp(x) is defined as the unique solution of the initial-
value problem (2.1) on R.

For any q > 1 and z ∈ R we define

ϕq(z) =

{
|z|q−2z forz 6= 0 ,
0 for z = 0 .

(2.2)

Note that ϕp′(ϕp(z)) = ϕp(ϕp′(z)) = z provided p > 1 and 1/p + 1/p′ = 1. With
this notation, we can rewrite the initial-value problem (2.1) as an equivalent first-
order system

u′(x) = ϕp′(v(x)) ,

v′(x) = −(p− 1)ϕp(u(x)) ,

u(0) = 0, v(0) = 1 .

(2.3)

Clearly, from the definition of Carathéodory solution, it follows that u(x) = sinp(x)
and v(x) = ϕp(sin′p(x)) must be absolutely continuous on any compact interval
[−K,K], K > 0. Thus sin′p(x) = ϕp′(v(x)) is continuous on any [−K,K], K > 0,
which entails that sin′p(x) = ϕp′(v(x)) is continuous on (−∞,+∞). Thus the
following definition makes sense.

Definition 2.3. For x ∈ R, we define cosp(x) = sin′p(x).

Since cosp(0) = sin′p(0) = 1 and cosp(x) is continuous, there exists an interval
(−c, c) such that cosp(x) > 0 on (−c, c), c > 0. Moreover, since sin′p(0) = 1 and
sinp ∈ C1(R), there exists an interval [0, s), s > 0, such that sinp(x) ≥ 0 on [0, s).

Definition 2.4. For p > 1, let πp denote

2 sup{s > 0 : ∀x ∈ (0, s) holds sinp(x) > 0 ∧ cosp(x) > 0} .

It was shown in [11], that

πp = 2
∫ 1

0

1

(1− xp)1/p
dx =

2π
p · sin(π/p)

,
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for p > 1. It was also shown in [11], that sinp(x) can be expressed on [0, πp/2] as
the inverse of

arcsinp(x) =
∫ x

0

1
(1− sp)1/p

ds x ∈ [0, 1] , (2.4)

and, moreover, it extends to [0, πp] by reflection sinp(x) = sinp(πp − x) and to
[−πp, πp] as the odd function. Finally, it extends to R as the 2πp-periodic function.

Remark 2.5. In the following text, formulas containing higher order derivatives
and powers of sinp(x) and cosp(x) appear. We try to keep our notation as close
as possible to the usual notation for classical trigonometric functions. Thus the
derivatives are denoted by, e.g., sin′p(x), . . . , sin′′′p (x), sin(iv)

p (x) (primes and roman
numerals) and/or, e.g., sin(n)

p (x), sin(2n−1)
p and sin(2n)

p for n ∈ N. On the other
hand, the powers are denoted by sin2

p(x), sin3
p(x), sinqp(x), q ∈ R. Where a confusion

may happen, we denote the powers by, e.g., (sinp(x))m, m ∈ N, to distinguish them
clearly from derivatives. For the convenience of the reader, we write the values of
p as explicit as possible, with a few exceptions such as in the proofs of Theorems
3.3 and 3.4, where this approach would produce very lengthy formulas.

3. Main results

In the sequel, we study derivatives of sinp(x) for p ∈ N, p > 2 on the interval
x ∈ (−πp/2, πp/2). We distinguish two cases p is even, i.e., p = 2(m + 1) and
m ∈ N, and p is odd; i.e., p = 2m + 1 and m ∈ N. In the first case p = 2(m + 1),
the p-trigonometric identity (1.4) takes form

(sin2(m+1)(x))2(m+1) + (cos2(m+1)(x))2(m+1) = 1 , (3.1)

which is valid for any x ∈ R and hence on (−πp/2, πp/2). Note that there is no
absolute value, since there are even powers.

In the second case p = 2k+ 1, we have to distinguish two subcases. For 0 < x <
πp
2 , the p-trigonometric identity takes form

(sin2m+1(x))2m+1 + (cos2m+1(x))2m+1 = 1 . (3.2)

On the other hand, for −πp/2 < x < 0, the p-trigonometric identity takes form

− (sin2m+1(x))2m+1 + (cos2m+1(x))2m+1 = 1 . (3.3)

Since there is only one identity (3.1) for p = 2(m+1), this case has nice smooth-
ness properties on (−πp/2, πp/2) and we obtain a rather surprising result concerning
smoothness of function sinp(x) for even p.

Theorem 3.1. Let p = 2(m+ 1), m ∈ N. Then

sin2(m+1)(x) ∈ C∞
(
−
π2(m+1)

2
,
π2(m+1)

2
)
.

On the other hand, for p = 2m + 1, we have to distinguish two subcases (3.2)
and (3.3), which has damaging effect on the differentiability of sinp(x). Thus the
smoothness is lost when p is odd. The smoothness is also lost if p is not an integer.

Theorem 3.2. Let p ∈ R \ {2m}, m ∈ N, p > 1. Then

sinp(x) ∈ Cdpe(−πp/2, πp/2) ,

but
sinp(x) 6∈ Cdpe+1(−πp/2, πp/2) .
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Here dpe := min{k ∈ N : k ≥ p}.
Our last result gives an explicit radius of convergence of the Maclaurin series

for even p > 2. To the best of our knowledge, all previous results concerning
convergence of series for sinp(x) were only local; see, e.g., [24].

Theorem 3.3. Let p = 2(m + 1) for m ∈ N. Then the Maclaurin series of
sin2(m+1)(x) converges on (−π2(m+1)

2 ,
π2(m+1)

2 ).

Theorem 3.4. Let p = 2m + 1, m ∈ N. Then the formal Maclaurin series of
sin2m+1(x) converges on (−π2m+1

2 , π2m+1
2 ). Moreover, the formal Maclaurin series

of sinp(x) converges towards sin2m+1(x) on [0, π2m+1
2 ), but does not converge towards

sin2m+1(x) on (−π2m+1
2 , 0).

The proofs of Theorems 3.1–3.4 are postponed to Section 5.

4. Derivatives of sinp(x)

The following lemma summarizes basic properties of sinp(x) and cosp(x).

Lemma 4.1. Let p ∈ R, p > 1. Functions sinp(x) and cosp(x) have the following
basic properties.

(1) sinp(x) > 0 on (0, πp), sinp(0) = 0, sinp(x) = sinp(πp − x) for x ∈ (πp2 , πp),
and sinp(x) = − sinp(−x) on (−πp, 0). The function sinp(x) extends to R
as 2πp-periodic function.

(2) sinp(x) is strictly increasing on (−πp/2, πp/2).
(3) cosp(x) > 0 on (−πp/2, πp/2), cosp(−πp2 ) = cosp(

πp
2 ) = 0 and cosp(x) < 0

on
[
−πp,−πp2 ) ∪ (πp2 , πp

]
.

(4) For all n ∈ N, if sin(2n−1)
p (x) exists on (−πp/2, πp/2), then it is even func-

tion on (−πp/2, πp/2).
(5) For all n ∈ N, if sin(2n)

p (x) exists on (−πp/2, πp/2), then it is odd function
on (−πp/2, πp/2).

Statements 1–3 follows from [11]. Statements 4, and 5 are trivial consequence of
statement 1.

Lemma 4.2. For all p ∈ R, p > 1

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) for x ∈ (0, πp/2) , (4.1)

sin′′p(x) = sinp−1
p (−x) · cos2−p

p (x) for x ∈ (−πp/2, 0) . (4.2)

Proof. The identity (4.1) is obtained by a straightforward calculation; see, e.g., [13].
For x ∈ (−πp/2, 0), we obtain from Lemma 4.1 statement 1 and 3 and the identity
(1.4)

sinpp(−x)+cospp(x) = |−sinp(−x)|p+| cosp(x)|p = | sinp(x)|p+| cosp(x)|p = 1. (4.3)

Taking
sinpp(−x) + cospp(x) = 1 (4.4)

into derivative we obtain

− p · sinp−1
p (−x) · cosp(−x) + p · cosp−1

p (x) · sin′′p(x) = 0 . (4.5)

From Lemma 4.1, statements 3 and 4, we obtain

sinp−1
p (−x) · cosp(x) = cosp−1

p (x) · sin′′p(x)
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which yields
sin′′p(x) = sinp−1

p (−x) · cos2−p
p (x) .

�

Lemma 4.3. Let p ∈ R \ {2} such that p > 1.
(1) If p > 2, then the function sinp(x) ∈ C1(R) and sinp(x) 6∈ C2(R).
(2) If p ∈ (1, 2), then the function sinp(x) ∈ C2(R) and sinp(x) 6∈ C3(R).

Proof. By the definition of cosp(x), sin′p(x) = cosp(x). The function cosp(x) ∈
C(R), for all p > 1. Thus sinp(x) ∈ C1(R). By Lemma 4.2,

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) for x ∈ (0, πp/2) .

Taking into account that

lim
x→πp

2 −
sinp−1

p (x) = 1 and lim
x→πp

2 −
cos2−p

p (x) = +∞ for p > 2 ,

we find that
lim

x→πp
2 −

sin′′p(x) = −∞ .

Thus the continuity of sin′′p(x) fails at x = πp/2 for p > 2 and the statement 1 of
Lemma 4.3 follows.

From (2.3), we find that the function v′(x) = −(p−1)ϕp(sinp(x)) is continuous on
R as sinp(x) is continuous on R. We also find that cosp(x) = ϕp′(v(x)) from (2.3).
Taking into account that ϕp′ ∈ C1(R) for p ∈ (1, 2) (observe that p′ = p

p−1 > 2
in this case), we infer that cos′p(x) = ϕ′p′(v(x)) · v′(x) is continuous on R. Thus
sinp(x) is two times continuously differentiable on R for p ∈ (1, 2). On the other
hand, taking

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) on (0,
πp
2

)

into derivative, we obtain

sin′′′p (x) = −(p− 1) sinp−2
p (x) · cos3−p

p (x)− (2− p) · sinp−1
p (x) · cos1−p

p (x) · sin′′p(x) .

Substituting for sin′′p(x) from the later equation into the former, we have

sin′′′p (x) = −(p− 1) sinp−2
p (x) · cos3−p

p (x) + (2− p) · sin2p−2
p (x) · cos3−2p

p (x) .

Since limx→0+ sinp(x) = 0 and limx→0+ cosp(x) = 1, we obtain

lim
x→0+

sin′′′p (x) = −∞

for p ∈ (1, 2). This concludes the proof of statement 2 of Lemma 4.3. �

Let us define the following ‘symbolic’ operators (rewriting rules) defined on ex-
pressions of the form

a · sinqp(x) · cos1−q
p (x) with a, q ∈ R (4.6)

as follows

Ds a · sinqp(x) · cos1−q
p (x) :=

{
a · q · sinq−1

p (x) · cos1−(q−1)
p (x) q 6= 0 ,

0 q = 0 .
(4.7)

Dc a · sinqp(x) · cos1−q
p (x) :=

{
−a · (1− q) · sinq+p−1

p (x) · cos1−(q+p−1)
p (x) q 6= 1 ,

0 q = 1 .
(4.8)
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Let us observe that the results of application Ds and Dc have the form (4.6).
Hence they are also in the domain of definition of Ds and Dc. Thus we can consider
compositions of Dc and Ds of arbitrary length. We will show that the first derivative
of sinqp(x) · cos1−q

p (x) (here a = 1) can be written using these symbolic operators as
follows

d
dx

sinqp(x) · cos1−q
p (x)

= Ds sinqp(x) · cos1−q
p (x) + Dc sinqp(x) · cos1−q

p (x) .

To show this, we have to distinguish three cases q ∈ R \ {0, 1}, q = 1, and q = 0.
Case q ∈ R \ {0, 1}. Here

d
dx

sinqp(x) · cos1−q
p (x)

= q sinq−1
p (x) · cos1−(q−1)

p (x)− (1− q) sinq+p−1
p (x) · cos1−(q+p−1)

p (x)

= Ds sinqp(x) · cos1−q
p (x) + Dc sinqp(x) · cos1−q

p (x) .

Note that the distance between the exponents of sinp(x) in the resulting terms, i.e.,
sinq0−1

p (x) · cos2−q0
p (x) and sinq0+p−1

p · cos2−p−q0
p (x), is exactly p. This is crucial in

the sequel of the paper, because in a sum of the type

c0 sinq0p (x) · cos1−q0
p (x) + c1 sinq0+p

p (x) · cos1−(q0+p)
p (x)

the terms combine together as in the diagram depicted on Fig. 1
Case q = 1. In this case the term sinqp(x) ·cos1−q

p (x) = sinp(x). Thus the derivative
of this term is the single term cosp(x). By the definitions of Ds,Dc, we find that
Ds sinp(x) = cosp(x) and Dc sinp(x) = 0. Thus d

dx sinp(x) = Ds sinp(x)+Dc sinp(x).
The fact Dc sinp(x) = 0 will be reflected in our diagrams by omitting ‘right-down’
edge departing from this node, see Figure 2.
Case q = 0. This case corresponds to sinqp(x) · cos1−q

p (x) = cosp(x). Thus the de-

rivative of this term is the single term − sinp−1
p (x) cos1−(p−1)

p (x). By the definitions
of Ds,Dc, we find that Ds cosp(x) = 0 and

Dc cosp(x) = − sinp−1
p (x) cos1−(p−1)

p (x) .

Thus d
dx cosp(x) = Ds cosp(x)+Dc cosp(x). The fact Ds cosp(x) = 0 will be reflected

in our diagrams by omitting ‘left-down’ edge departing from this node, see Figure
3. Note that since in our diagrams we write powers only, the node corresponding
to − sinp−1

p (x) cos1−(p−1)
p (x) is labeled by sp−1

p c
1−(p−1)
p .

In the same way, we can express higher order derivatives, thus, e.g., the second
derivative of sinqp(x) · cos1−q

p (x) (here a = 1) can be written as

d2

dx2
sinqp(x) · cos1−q

p (x)

= (Ds ◦Ds) sinqp(x) · cos1−q
p (x) + (Dc ◦Ds) sinqp(x) · cos1−q

p (x)

+ (Ds ◦Dc) sinqp(x) · cos1−q
p (x) + (Dc ◦Dc) sinqp(x) · cos1−q

p (x).

To better understand our methods of proof, it is good to have in mind the diagrams
Figures 1–3.

The way how the term in the n-th derivative on the k-th position was derived
from sin′′p(x) can be recovered from n and k as follows. First let us recall some
notation from formal languages.



EJDE-2014/CONF/21 p-TRIGONOMETRIC FUNCTIONS 109

+p

DS

-1

DC

+p-1

DS

-1

DC

+p-1

+p +p

cp
1-q0 sp

q0 cp
1-Hq0+pL sp

q0+p

cp
1-Hq0-1L sp

q0-1 cp
1-Hq0+p-1L sp

q0+p-1 cp
1-Hq0+2 p-1L sp

q0+2 p-1

q � q0
q � q0 + p

Figure 1. Rewriting diagram of the first derivative of c0 sinq0p (x) ·
cos1−q0

p (x) + c1 sinq0+p
p (x) · cos1−(q0+p)

p (x). For the lack of space,
we do not write the coefficients standing in front of these terms and
use short-cuts, i.e., we write sqp instead of sinqp(x) and c1−qp instead
of cos1−q

p (x)

+p

DS

-1

DS

-1

DC

+p-1

+p +p

sp cp
1-H1+pL sp

1+p

cp cp
1-H1+p-1L sp

1+p-1 cp
1-H1+2 p-1L sp

1+2 p-1

q � 1 q � 1+ p

Figure 2. Rewriting diagram of the case q = 1. Recall that we
write sqp instead of sinqp(x) and c1−qp instead of cos1−q

p (x) and do
not write the coefficients

+p

DC

+p-1

DS

-1

DC

+p-1

+p

cp cp
1-p sp

p

sp
p-1 cp

1-Hp-1L cp
1-H2 p-1L sp

2 p-1

q � 0
q � p

Figure 3. Rewriting diagram of the case q = 0. Recall that we
write sqp instead of sinqp(x) and c1−qp instead of cos1−q

p (x) and do
not write the coefficients

Definition 4.4. (Salomaa-Soittola [26, I.2, p. 4,], and/or Manna [18, p. 2–3, p.
47, p. 78]) An alphabet (denoted by V ) is a finite nonempty set of letters. A word
(denoted by w) over an alphabet V is a finite string of zero or more letters from
the alphabet V . The word consisting of zero letters is called the empty word. The
set of all words over an alphabet V is denoted by V ∗ and the set of all nonempty
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words over an alphabet V is denoted by V +. For strings w1 and w2 over V ,
their juxtaposition w1w2 is called catenation of w1 and w2, in operator notation
cat : V ∗ × V ∗ → V ∗ and cat(w1, w2) = w1w2. We also define the length of the
word w, in operator notation len : V ∗ → {0} ∪ N, which for a given word w yields
the number of letters in w when each letter is counted as many times as it occurs
in w. We also use reverse function rev : V ∗ → V ∗ which reverses the order of the
letters in any word w (see [18, p. 47, p. 78]).

For our purposes here, we consider the alphabet V = {0, 1} and the set of all
nonempty words V +. Thus words in V + are, e.g.,

“0”, “1”, “01”, “10”, “11” . . . .

For instance, cat(“1110”, “011”) = “1110011”, and

rev(“010011000”) = “000110010” ,

len(“010011000”) = 9 .

Let n ∈ N, k ∈ {0}∪N, 0 ≤ k ≤ 2n−2−1 and (k)2,n−2 be the string of bits of the
length n− 2 which represents binary expansion of k (it means, e.g., for k = 3 and
n = 5, (3)2,5−2 = “011”). Now we are ready to define Dk,n in two steps as follows.
Step 1 We create an ordered n−2-tuple dk,n−2 ∈ {Ds,Dc}n−2 (cartesian product of

sets {Ds,Dc} of length n−2) from rev((k)2,n−2) such that for 1 ≤ i ≤ n−2,
dk,n−2 contains Ds on the i-th position if rev((k)2,n−2) contains “0” on the
i-th position, and dk,n contains Dc on the i-th position if rev((k)2,n−2)
contains “1” on the i-th position (it means, e.g., for k = 3, and n = 5, we
obtain d3,5−2 = (Dc,Dc,Ds)).

Step 2 We define Dk,n as the composition of operators Ds,Dc in the order they
appear in the ordered n-tuple dk,n−2 (it means, e.g., for k = 3, and n = 5,
we obtain D3,5 = (Dc ◦Dc ◦Ds)).

The following Lemma implies that

sin(n)
p (x) =

2n−2−1∑
k=0

Dk,n sin′′p(x) (4.9)

for all x ∈ (0, πp/2).

Lemma 4.5. Let p ∈ R, p > 1, n ∈ N. Then sin(n)
p (x) exists on (0, πp/2) and it is

continuous. Moreover,

for n = 1 : sin′p(x) = cosp(x) , (4.10)

for n = 2 : sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) , (4.11)

and for n = 3, 4, 5, . . . , k = 0, 1, 2, 3, . . . , 2n−2−1 there exists ak,n ∈ R, lk,n,mk,n ∈
Z such that

Dk,n sin′′p(x) = ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x) , (4.12)

and

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x) . (4.13)
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Moreover, let j(k) ∈ {0} ∪ N be the digit sum of the binary expansion of k =
0, 1, 2, . . . , 2n−2 − 1 (thus j(k) is the number of occurrences of Dc in Dk,n) and let
Dk,n sin′′p(x) 6≡ 0. Then, for k = 0, 1, 2, . . . , 2n−2 − 1, the exponents

qk,n := p · lk,n +mk,n (4.14)

satisfy
qk,n = j(k)(p− 1) + (n− 2− j(k))(−1) + p− 1 . (4.15)

Proof. The cases n = 1 and n = 2 follows immediately from the definition of cosp(x)
and from Lemma 4.2.

We proceed by induction to prove the validity of the statement for n = 3, 4, 5, . . . .
Step 1. Taking (4.11) into derivative, we obtain

sin′′′p (x) = −(p− 1) · sinp−2
p (x) · cos3−p

p (x) + (2− p) · sin2p−2
p (x) · cos3−2p

p (x) .

For k = 0, 1 we obtain a0,3 = −(p− 1), a1,3 = (2− p), l0,3 = 1, l1,3 = 2 m0,3 = −2,
and m1,3 = −2. Hence

sin′′′p (x) =
1∑
k=0

ak,3 · sinp·lk,3+mk,3
p (x) · cos1−p·lk,3−mk,3

p (x) .

Since we assume p > 1 we obtain p − 1 6= 0 and thus by the definition of Ds and
Dk,n

D0,3 sin′′p(x) = Ds(− sinp−1
p (x) · cos2−p

p (x))

= −(p− 1) · sinp−2
p (x) · cos3−p

p (x)

= a0,3 · sinp·l0,3+m0,3
p (x) · cos1−p·l0,3−m0,3

p (x).

Analogously, by the definition of Dc and Dk,n for p 6= 2, we find

D1,3 sin′′p(x) = Dc(− sinp−1
p (x) · cos2−p

p (x))

= −(−1) · (2− p) · sin2p−2
p (x) · cos3−2p

p (x)

= a1,3 · sinp·l1,3+m1,3
p (x) · cos1−p·l1,3−m1,3

p (x) ,

and for p = 2, we obtain

D1,3 sin′′p(x) = Dc(− sin2(x) · cos0
2(x)) = 0 .

Hence,

sin′′′p (x) = Ds sin′′p(x) + Dc sin′′p(x)

= D0,3 sin′′p(x) + D1,3 sin′′p(x)

=
1∑
k=0

Dk,3 sin′′p(x) .

Step 2. Let us assume that sin(n)
p (x) exists, it is continuous on (0, πp/2), and for

all k = 0, 1, 2, . . . , 2n−2 − 1 there exist ak,n ∈ R, lk,n,mk,n ∈ Z such that

Dk,n sin(n)
p (x) = ak,n · sinp·lk,n+mk,n

p (x) · cos1−p·lk,n−mk,n
p (x) , (4.16)

and

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x) . (4.17)
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By the additivity rule of the derivative, we find that

sin(n+1)
p (x) =

d
dx

2n−2−1∑
k=0

ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x)

=
2n−2−1∑
k=0

d
dx

(ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x)) .

(4.18)

For all k = 0, 1, 2, . . . , 2n−2 − 1, we find
d

dx
(ak,n · sinp·lk,n+mk,n

p (x) · cos1−p·lk,n−mk,n
p (x))

= ak,n · (p · lk,n +mk,n) · sinp·lk,n+mk,n−1
p (x) · cos1−(p·lk,n+mk,n−1)

p (x)

+ ak,n(1− p · lk,n −mk,n) · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n−1

p (x) sin′′p(x)

= ak,n · (p · lk,n +mk,n) · sinp·lk,n+mk,n−1
p (x) · cos1−(p·lk,n+mk,n−1)

p (x)

− ak,n(1− p · lk,n −mk,n) · sinp·(lk,n+1)+mk,n−1
p (x) · cos1−(p·(lk,n+1)+mk,n−1)

p (x).
(4.19)

For k = 0, 1, 2, . . . , 2n−2 − 1, we denote

a2k,n+1 := ak,n · (p · lk,n +mk,n) , (4.20)

a2k+1,n+1 := −ak,n · (1− p · lk,n −mk,n) , (4.21)

l2k,n+1 := lk,n , (4.22)

m2k,n+1 := mk,n − 1 , (4.23)

l2k+1,n+1 := lk,n + 1 , (4.24)

m2k+1,n+1 := mk,n − 1 . (4.25)

Hence from (4.18), (4.19), and (4.20)–(4.25) we obtain

sin(n+1)
p (x) =

2n−1−1∑
k′=0

ak′,n+1 · sin
p·lk′,n+1+mk′,n+1
p (x) · cos

1−p·lk′,n+1−mk′,n+1
p (x).

(4.26)
Note that sinp(x) > 0 and cosp(x) > 0 for x ∈ (0, πp/2) by Lemma 4.1, statements
1 and 3, and continuous by Lemma 4.3. Moreover, the function z 7→ zq, defined for
z > 0 and q ∈ R belongs to C∞(0,+∞). Thus the function on the right-hand side
of (4.26) is continuous for x ∈ (0, πp/2) which implies the continuity of sin(n+1)

p (x)
for x ∈ (0, πp/2).

Now, we show that for all k′ = 0, 1, 2, . . . , 2n−2−1: ak′,n+1 ∈ R, lk′,n+1,mk′,n+1 ∈
Z and, moreover,

Dk′,n+1 sin(n)
p (x) = ak′,n+1 · sin

p·lk′,n+1+mk′,n+1
p (x) · cos

1−p·lk′,n+1−mk′,n+1
p (x) .

(4.27)
Let us set

D2k,n+1 := Ds ◦Dk,n , (4.28)

D2k+1,n+1 := Dc ◦Dk,n . (4.29)

Then it follows easily from corresponding binary expansion of k and 2k that

(2k)2,n−1 = cat((k)2,n−2, “0”),
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(2k + 1)2,n−1 = cat((k)2,n−2, “1”)

and also that (4.28), (4.29) cover all 2n−1 of k′ = 0, 1, . . . 2n−1 − 1. Thus our
definitions (4.28) and (4.29) conform the relation between binary expansion of k′ =
2k and/or k′ = 2k + 1 and order of compositions of Ds,Dc in Dk′,n+1.

For k′ = 0, 2, 4, . . . , 2n−1 − 2 even,

Dk′,n+1 sin′′p(x) = D2k,n+1 sin′′p(x) = Ds ◦Dk,n sin′′p(x) . (4.30)

From the induction assumption (4.16), the definition of Ds (4.7) and (4.20), (4.22),
(4.23), we find

Ds(Dk,n sin′′p(x))

= Ds(ak,n · sinp·lk,n+mk,n
p (x) · cos1−p·lk,n−mk,n

p (x))

= ak,n · (p · lk,n +mk,n) · sinp·lk,n+mk,n−1
p (x) · cos1−(p·lk,n+mk,n−1)

p (x)

= a2k,n+1 · sinp·l2k,n+1+m2k,n+1
p (x) · cos1−p·l2k,n+1−m2k,n+1

p (x).

We can treat k′ = 1, 3, 5, . . . , 2n−1 − 1 in the same way using Dc instead of Ds and
(4.8) and (4.21), (4.24), (4.25). This concludes the proof by induction.

It remains to show (4.15). In fact, from the definition (4.8) of Dc, each occurrence
of the symbolic operator Dc in Dk,n increases the exponent q of sinqp(x) by p − 1.
Analogously, from the definition of (4.7) of Ds, each occurrence of the symbolic
operator Ds in Dk,n decreases the exponent q of sinqp(x) by 1. Taking into account
these facts and also that q1,2 = p − 1, the formula (4.15) follows. This concludes
the proof of Lemma 4.5. �

Lemma 4.6. Let p ∈ N, p > 1, and for all n ∈ N, n ≥ 2

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n sinqk,np (x) · cos1−qk,n
p (x) . (4.31)

Then for all n ∈ N, n ≥ 2, and all k ∈ {0} ∪ N, k ≤ 2n−2 − 1

qk,n ∈ {0} ∪ N . (4.32)

Proof. From the definitions (4.7) and (4.8),

q2k,n+1 = qk,n − 1 (we applied DS on the expression)

q2k+1,n+1 = qk,n + p− 1 (we applied DC on the expression)
(4.33)

The proof proceeds by induction in n.
Step 1. From Lemma 4.2, for sin′′p(x) on (0, πp/2) we obtain the formula

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) .

Thus q1,2 = p− 1. By assumption p ∈ N, p > 1 we find q1,2 ∈ N.
Step 2. We distinguish two cases, qk,n ∈ N and qk,n = 0. Let qk,n ∈ N. Then from
(4.33), p ∈ N, p > 1, we obtain

q2k,n+1 = qk,n − 1 ∈ {0} ∪ N,
q2k+1,n+1 = qk,n + p− 1 ∈ N,

which satisfies (4.32). Let qk,n = 0. Then the corresponding term in (4.31) has
form

ak,n · cosp(x) , (4.34)
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since sin0
p(x) ≡ 1 for x ∈ (0, πp/2). Taking (4.34) into derivative, we find

ak,n · cos′p(x) = −ak,n · sinp−1
p (x) · cos2−p

p (x)

and q2k+1,n+1 = p − 1 ∈ N, because p ∈ N, p > 1. This concludes the proof by
induction. �

Lemma 4.7. Let p ∈ N, p ≥ 3. Then for all n ∈ N, n ≥ 2

sin(n)
p (x) ≤ 0 on (0,

πp
2

) .

Proof. By Lemma 4.5 and substitution (4.14), we have

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinqk,np (x) · cos1−qk,n
p (x) . (4.35)

Let Qn denote the set of all values of qk,n attained in the previous expression (this
is to handle possible multiplicities), i.e.,

Qn = {qk,n : k = 0, . . . , 2n−2 − 1} . (4.36)

By Lemma 4.6 for all n ≥ 2 and for all k ≤ 2n−2 − 1, we have qk,n ∈ {0} ∪ N.
Clearly, Qn ⊂ {0}∪N has at most 2n−2 elements and thus there exists i0 ∈ N : 0 <
i0 ≤ 2n−2 − 1 and bijective mapping

qn : {0, 1, 2, . . . i0} = Qn (4.37)

satisfying the order condition

∀i, j = 0, 1, . . . , i0 : i < j ⇒ qi < qj . (4.38)

In the sequel, qi,n stands for qn(i). With this at hand, we add together the co-
efficients in (4.35) corresponding to the same value of powers qk,n and for any
i = 0, 1, . . . , i0 define

ci,n :=
∑

k=0,1,...2n−2−1
qk,n=qi,n

ak,n . (4.39)

Now, we rewrite (4.35) using coefficients ci,n:

sin(n)
p (x) =

i0∑
i=0

ci,n · sin
qi,n
p (x) · cos

1−qi,n
p (x) . (4.40)

Later, we will prove by induction that

∀i = 0, 1, . . . , i0 : ci,n ≤ 0 . (4.41)

By Lemma 4.1 statements 1 and 3, sinp(x) > 0 and cosp(x) > 0 on (0, πp2 ), which
implies that for all q, r ∈ {0} ∪ N and x ∈ (0, πp/2)

sinqp(x) · cosrp(x) > 0 . (4.42)

Thus from (4.40)–(4.42) the statement of Lemma 4.7 follows.
Now it remains to prove by induction in n that (4.41) holds.

Step 1. By Lemma 4.2 we find that

sin′′p(x) = − sinp−1
p (x) · cos2−p

p (x) (4.43)

for all x ∈ (0, πp/2) and so c0,2 = −1 < 0.
Taking the derivative of (4.43) (and after some straightforward rearrangements),

sin′′′p (x) = −(p− 1) · sinp−2
p (x) · cos3−p

p (x) + (2− p) · sin2p−2
p (x) · cos3−2p

p (x) (4.44)
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for x ∈ (0, πp/2). Since p ≥ 3, we have c0,3 = −(p − 1) ≤ −2 ≤ 0 and c1,3 =
(2− p) ≤ −1 ≤ 0 as desired. Taking the derivative (4.44),

sin(iv)
p = −(p− 1) · (p− 2) · sinp−3

p (x) · cos4−p
p (x)+

+ (p− 1) · (3− p) · sin2p−3
p (x) · cos4−2p

p (x)

+ (2− p) · (2p− 2) · sin2p−3
p (x) · cos4−2p

p (x)

− (2− p) · (3− 2p) · sin3p−3
p (x) · cos4−3p

p (x)

= −(p− 1) · (p− 2) · sinp−3
p (x) · cos4−p

p (x)

+ ((p− 1) · (3− p) + (2− p) · (2p− 2)) · sin2p−3
p (x) · cos4−2p

p (x)

− (2− p) · (3− 2p) · sin3p−3
p (x) · cos4−3p

p (x)

(4.45)

for all x ∈ (0, πp/2). Since p ≥ 3 we have c0,4 = −(p − 1) · (p − 2) ≤ −2 ≤ 0,
c1,4 = (p−1)·(3−p)+(2−p)·(2p−2) ≤ −4 ≤ 0, and c2,4 = −(2−p)·(3−2p) ≤ −3 ≤ 0
Step 2. Let us assume that sin(n)

p (x) for n ≥ 4 can be written in the form (4.40)
and

∀i ≤ i0 : ci,n ≤ 0 . (4.46)
The proof falls naturally into two parts.
Case 1. If

qi,n ≥ 1 , (4.47)
then taking the i-th term of (4.40), which is

ci,n · sin
qi,n
p (x) · cos

1−qi,n
p (x) , (4.48)

into derivative we obtain

ci,n · qi,n · sin
qi,n−1
p (x) · cos

1−qi,n+1
p (x)

+ ci,n · (1− qi,n) · sinqi,np (x) · cos
1−qi,n−1
p (x) · sin′′p(x) .

Substituting (4.43) for sin′′p(x) into the previous expression, we obtain

ci,n · qi,n · sin
qi,n−1
p (x) · cos

2−qi,n
p (x)

− ci,n · (1− qi,n) · sinqi,n+p−1
p (x) · cos

−qi,n−p+2
p (x) .

Let us denote

a′2i−1,n+1 := ci,n · qi,n ,
a′2i,n+1 := ci,n · (qi,n − 1) .

By the induction assumption (4.46) and assumption of Case 1 (4.47), we have
a′2i−1,n+1, a

′
2i,n+1 ≤ 0.

Case 2. If qi,n = 0, then i = 0 (by the ordering) and the corresponding term of
(4.40) is

c0,n · sin0
p(x) · cos1

p(x). (4.49)
Taking derivatives in (4.49) we find

− c0,n · sinp−1
p (x) · cos2−p

p (x) . (4.50)

Denote a′1,n+1 := −c0,n which is clearly nonnegative by the induction assumption
(4.46). We consider the second term of (4.40) (i = 1) and take the derivative,

d
dx
c1,n · sin

q1,n
p (x) · cos

1−q1,n
p (x)



116 P. GIRG, L. KOTRLA EJDE-2014/CONF/21

= Ds c1,n · sin
q1,n
p (x) · cos

1−q1,n
p (x) + Dc c1,n · sin

q1,n
p (x) · cos

1−q1,n
p (x) .

Since q0,n = 0, q1,n = p (see Figure 4). Note that the right-hand side of

Ds c1,n sinpp(x) · cos1−p
p (x) = p · c1,n · sinp−1

p (x) · cos2−p
p (x) (4.51)

has the same exponent q = p−1 as (4.50) has. It remains to prove that p·c1,n−c0,n ≤
0. Using (n− 2)-th derivative of sinp(x) we obtain (4.50),

(Dc ◦Ds ◦Ds)c0,n−2 · sin2
p(x) cos−1

p (x) = (Dc ◦Ds)2 · c0,n−2 · sinp(x)

= Dc 2 · c0,n−2 · cosp(x)

= −2 · c0,n−2 · sinp−1
p (x) cos2−p

p (x)

(4.52)

and (4.51),
(Ds ◦Ds ◦Dc)c0,n−2 · sin2

p(x) cos−1
p (x)

= (Ds ◦Ds)c0,n−2 · sin1+p
p (x) cos−pp (x)

= Ds(1 + p) · c0,n−2 · sinpp(x) · cos1−p
p (x)

= p · (1 + p) · c0,n−2 · sinp−1
p (x) · cos2−p

p (x) .

(4.53)

Comparing (4.52) with (4.50), we find that

−c0,n = −2 · c0,n−2 .

In addition, comparing (4.51) and (4.53), we find

p · c1,n = p · (p+ 1) · c0,n−2 .

From the induction assumption, c0,n−2 ≤ 0 and for p ≥ 3, we easily find

p · c1,n − c0,n = (p · (p+ 1)− 2)c0,n−2 ≤ 0

by adding the previous two identities.
In the definition (4.39) of ci,n, we are adding coefficients

a′k,n , k = 0, 1, . . . , 2(i0 + 1)

corresponding to the same value of exponent q. From the both cases, we obtain
ci,n+1 ≤ 0 for all i ∈ N, i ≤ i1, 0 < i1 ≤ 2n−1 − 1. This concludes the proof by
induction. �
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q0,n-2 � 2+ 0 p

q0,n-1 � 1+ 0 p q1,n-1 � 1+ 1 p

q1,n-2 � 2+ 1 p

q2,n-1 � 1+ 2 p

q2,n-2 � 2+ 2 p

q3,n-1 � 1+ 3 p

q0,n � 0+ 0 p q1,n � 0+ 1 p q2,n � 0+ 2 p q3,n � 0+ 3 p q4,n � 0+ 4 p

Not Defined q1,n+1 � -1+ 1 p q2,n+1 � -1+ 2 p q3,n+1 � -1+ 3 p q4,n+1 � -1+ 4 p q5,n+1 � -1+ 5 p

Figure 4. Rewriting diagram - starting with q0,n−2, q1,n−2, q2,n−2
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5. Proofs of main results

Proof of Theorem 3.1. By Lemma 4.5 and substitution (4.14), we can write

sin(n)
2(m+1)(x) =

2n−2−1∑
k=0

ak,n · sin
qk,n
2(m+1)(x) · cos1−qk,n

2(m+1)(x) ,

where
qk,n = (2(m+ 1)− 1) · j(k) + (n− j(k)− 2) + 2(m+ 1)− 1 ,

and j(k) has the same meaning as in Lemma 4.5. Thus ak,n ∈ Z.
From Lemma 4.1, statement 4 and 5, we also know that sin(n)

2(m+1)(x) is even

function for n odd and sin(n)
2(m+1)(x) is odd function for n even. It follows that for

x ∈ (−π2(m+1)

2 , 0)

sin(n)
2(m+1)(x) =

{
− sin(n)

2(m+1)(−x) for n even ,

sin(n)
2(m+1)(−x) for n odd .

(5.1)

Now we assume p = 2(m+ 1), m ∈ N, and

qk,n = (2(m+ 1)− 1)j(k) + (n− j(k)− 2) + 2(m+ 1)− 1

= (2(m+ 1)− 1)(j(k) + 1) + j(k) + 2− n
= 2(m+ 1)(j(k) + 1)− n+ 1

which implies qk,n is odd for n even. Thus we obtain

− sin(n)
2(m+1)(−x) = −

2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(−x) · cos1−qk,n
2(m+1)(−x)

=
2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(x) · cos1−qk,n
2(m+1)(x) .

(5.2)

Analogously, qk,n is even for n odd and

sin(n)
2(m+1)(−x) =

2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(−x) · cos1−qk,n
2(m+1)(−x)

=
2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(x) · cos1−qk,n
2(m+1)(x) .

(5.3)

Hence from (5.2), (5.3), we obtain

sin(n)
2(m+1)(x) =

2n−2−1∑
k=0

ak,n sinqk,n2(m+1)(x) · cos1−qk,n
2(m+1)(x) (5.4)

for all x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ) \ {0}.
Now, we prove the continuity of sin(n)

2(m+1)(x) for all x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ) by
induction in n.
Step 1. For x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ) the function

v(x) = ϕ2(m+1)(cos2(m+1)(x)) > 0
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and so we can take the first equation in (2.3) into its derivative and obtain

u′′(x) = ϕ′p′(v(x))v′(x) , where p′ =
2m+ 1

2m
.

Since v′ is continuous and ϕp′ ∈ C1(0,+∞) (ϕp′(z) = zp−1 for z > 0), we obtain
continuity of sin(n)

2(m+1)(x) for n = 2.

Step 2. Let us assume that sin(n)
2(m+1)(x) is continuous on (−π2(m+1)

2 ,
π2(m+1)

2 ).

From Lemma 4.5 we know that sin(n+1)
2(m+1)(x) is continuous on (0, π2(m+1)

2 ). Now

we distinguish two cases: n + 1 is odd then sin(n+1)
2(m+1)(x) is even by Lemma 4.1,

statement 4, and n+1 is even then sin(n+1)
2(m+1)(x) is odd by Lemma 4.1, statement 5.

In both cases, sin(n+1)
2(m+1)(x) ∈ C(0, π2(m+1)

2 ) implies sin(n+1)
2(m+1)(x) ∈ C(−π2(m+1)

2 , 0).
It remains to prove the continuity at x = 0. From (5.4) we know that

lim
x→0−

sin(n+1)
2(m+1)(x) = lim

x→0+
sin(n+1)

2(m+1)(x) . (5.5)

At the end we compute the derivative of sin(n)
2(m+1)(0) from its definition:

sin(n+1)
2(m+1)(0) = lim

h→0

sin(n)
2(m+1)(h)− sin(n)

2(m+1)(0)

h
.

It is a limit of the type “0/0”. Since the limit limh→0 sin(n+1)
2(m+1)(h) exists, we obtain

sin(n+1)
2(m+1)(0) = limh→0 sin(n+1)

2(m+1)(h) by L’Hôspital’s rule. Note that by Lemma 4.6,
qk,n ≥ 0 for all n ∈ N, n ≥ 2, and all k ∈ {0} ∪ N, k ≤ 2n−2 − 1, these limits are
finite and we obtain continuity. This proves the continuity of sin(n+1)

2(m+1)(x) for all
x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ). �

Proof of Theorem 3.2. By Lemma 4.5 and substitution (4.14), we have

sin(n)
p (x) =

2n−2−1∑
k=0

ak,n · sinqk,np (x) · cos1−qk,n
p (x) on (0,

πp
2

) .

Moreover, by Lemma 4.1, statement 4 and 5, we obtain

sin(n)
p (x) =

{
− sin(n)

p (−x) for n even ,
sin(n)

p (−x) for n odd ,
(5.6)

for x ∈ (−πp/2, 0). Since sin(n)
p (x) is continuous for x ∈ (0, πp/2), it is also contin-

uous on x ∈ (−πp/2, 0) by (5.6). Thanks to (5.6) it is enough to study the behavior
of sinp(x) in the right neighborhood of 0. From Lemma 4.5, we have that

qk,n = j(k) · (p− 1) + (−1) · (n− 2− j) + p− 1 = p · (j(k) + 1) + 1− n . (5.7)

for all n ∈ N, n ≥ 2 and all k ∈ {0} ∪ N, k ≤ 2n−2 − 1. Since j(k) ∈ {0} ∪ N we
find that

qk,n ≥ p+ 1− n .
Then, for n < p + 1, we have qk,n > 0 for all k ∈ {0} ∪ N, k ≤ 2n−2 − 1. And so
using the theorem of the algebra of the limits from any classical analysis textbook,
we find that

lim
x→0+

sin(n)
p (x) = 0 .
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From (5.6),

lim
x→0−

sin(n)
p (x) =

{
− limx→0+ sin(n)

p (x) = 0 for n even ,
limx→0+ sin(n)

p (x) = 0 for n odd .

The continuity at x = 0 follows from L’Hôspital’s rule used recurrently from n = 2
to n = dpe.

By Lemma 4.5, sin(2m+2)
2(m+1)(x) satisfies

sin(dpe+1)
p (x) =

2dpe−1−1∑
k=0

Dk,dpe+1 sin′′p(x) on (0,
πp
2

) .

Since qk,n > 0 for all n < dpe and all k ∈ {0} ∪ N, k < 2dpe − 1, the function
DS ak,n · sinqk,np (x) · cos1−qk,n

p (x) does not vanish identically. Thus a0,dpe+1 6= 0.
Since a0,dpe+1 6= 0, we can apply (5.7) for j(0) = 0 which gives

q0,dpe+1 = p− dpe ≤ 0 .

From the fact that j(k) > j(0) for all k ∈ {0} ∪ N, k ≤ 2dpe−1 − 1 and from (5.7)
we know that

qk,dpe+1 > q0,dpe+1 .

Moreover from (5.7),

qk,dpe+1 = (j(k) + 1) · p+ 1− (dpe+ 1) = (j(k) + 1) · p− dpe > 0

for j(k) ≥ 1 and p > 1. Since, for all qk,n > 0,

lim
x→0

ak,n · sinqk,np (x) · cos1−qk,n
p (x) = 0 ,

we obtain
lim
x→0+

sin(dpe+1)
p (x) = lim

x→0+
a0,dpe+1 · sinp−dpep (x) · cos1−p+dpe

p (x)

+
2dpe−1−1∑
k=1

ak,dpe+1 · sin
qk,dpe+1
p (x) · cos1−qk,dpe+1

p (x)

= lim
x→0+

a0,dpe+1 · sinp−dpep (x) · cos1−p+dpe
p (x)

(5.8)

by the theorem of the algebra of the limits.
Now the proof falls into two cases, p = 2m+ 1 and p ∈ R \ N, p > 1.

Case 1. For p = 2m+ 1, we have by (5.8)

lim
x→0+

sin(2m+2)
2m+1 (x) = lim

x→0+
a0,2m+2 · cosp(x) = a0,2m+2 6= 0 .

Since 2m+2 is even, sin(2m+2)
2m+1 (x) is odd function by Lemma 4.1, statement 5. Thus

lim
x→0−

sin(2m+2)
2m+1 (x) = −a0,2m+2 .

Hence sin(2m+2)
2m+1 (x) is not continuous at x = 0.

Case 2. Since for p ∈ R \ N, p > 1, we have

lim
x→0+

sin(dpe+1)
p (x) = lim

x→0+
a0,dpe+1 · sinp−dpep (x) · cos1−p+dpe

p (x) = +∞

from (5.8). Hence sindpe+1
p (x) is discontinuous at x = 0. This concludes the proof.

�
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Proof of Theorem 3.3. It follows from [24, Thm. 1.1, consider p = q and σ = 0]
that there exists a unique analytic function F (z) near origin such that the unique
solution u(x) = sinp(x) of the initial value problem (2.1); i.e.,

−(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0

u(0) = 0, u′(0) = 1 ,

takes the form sinp(x) = u(x) = x ·F (|x|p). Note that for p = 2(m+ 1) and m ∈ N,

sinp(x) = x · F (|x|p) = x · F (xp) =
+∞∑
l=0

αl · xl·p+1, where F (z) =
+∞∑
l=0

αlz
l ,

which is also an analytic function in a neighborhood of x = 0. In the sequel of this
proof p = 2(m+ 1), m ∈ N. By the uniqueness of the Maclaurin series of analytic
function, we see that

+∞∑
l=0

αl · xl·p+1 =
+∞∑
l=0

sin(l·p+1)
p (0)

(l · p+ 1)!
· xl·p+1 ,

where the right-hand side also converges to sinp(x) on some neigbourhood of x = 0.
Note that sin(k)

p (0) = 0 for any k ∈ N such that

∀l ∈ {0} ∪ N : k 6= l · p+ 1

as it follows from Lemma 4.5 and Lemma 4.6.
Since the restriction of sinp(x) to [−πp2 ,

πp
2 ] is the inverse function of arcsinp(x),

by the identity (1.6); i.e.,

∀x ∈ [−1, 1] : sinp(arcsinp(x)) = x .

It is well known see, e.g., [13] that

arcsinp(x) =
∫ x

0

(1− sp)−
1
p ds

=
s · 2F1(1, 1

p ; 1 + 1
p ; sp)

p

=
+∞∑
n=0

Γ(n+ 1
p )

Γ( 1
p )(n · p+ 1)

· 1
n!
· xn·p+1

(5.9)

for x ∈ (0, 1). Observe that for our special case p = 2(m + 1) with m ∈ N, this
formula is valid on [−1, 1]. Note also that in our special case, (5.9) is in fact the
Maclaurin series for arcsinp(x) and, moreover, all coefficients are nonnegative (the
explicitly written coefficients are positive, the other ones are zero).

To apply the formula for composite formal power series, we need to consider
series for sinp(x) and arcsinp(x) including the zero terms. For this reason, we
define for all j ∈ N

α′j := sin(j)
p (0)/j! =

{
αi if j = ip+ 1 for some i ∈ {0} ∪ N ,
0 otherwise

(5.10)

and

β′j :=


Γ(n+ 1

p )

Γ( 1
p )(n·p+1)

· 1
n! if j = ip+ 1 for some i ∈ {0} ∪ N ,

0 otherwise .
(5.11)



EJDE-2014/CONF/21 p-TRIGONOMETRIC FUNCTIONS 121

Thus by well-known composite formal power series formula

sinp(arcsinp(x)) =
+∞∑
n=1

cnx
n , (5.12)

where
cn =

∑
k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

α′k · β′j1 · β
′
j2 · · · · · β

′
jk
. (5.13)

Since both functions sinp(x) and arcsinp(x) are analytic in some neighborhood of
x = 0, the series from (5.12) with coefficients given by (5.13) is convergent towards
the identity x 7→ x on some neighborhood of x = 0. From this fact, we infer that
c1 = 1 and cn = 0 for all n ∈ N, n ≥ 2. Thus for any x ∈ R

x =
+∞∑
n=1

xn
∑

k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

α′k · β′j1 · β
′
j2 · · · · · β

′
jk

(5.14)

and in particular

1 =
+∞∑
n=1

∑
k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

α′k · β′j1 · β
′
j2 · · · · · β

′
jk
. (5.15)

Now we show that also
+∞∑
n=1

∑
k ∈ N, j1, j2, . . . , jk ∈ N
j1 + j2 + · · ·+ jk = n

|α′k · β′j1 · β
′
j2 · · · · · β

′
jk
| (5.16)

is convergent. By Lemma 4.7 and (5.10) we see that α′j ≤ 0 for all j ∈ N, j ≥ 2
and α′1 = cosp(0) = 1. Moreover, from (5.11) it follows that β′j ≥ 0 for all j ∈ N.
Thus the product α′k · β′j1 · β

′
j2
· · · · · β′jk is positive if and only if k = 1. All

positive terms can be written as α′1 · β′n = β′n for n ∈ N (if k = 1 then j1 = n
is the only decomposition of n). Since the sum of all positive terms in (5.15) is∑+∞
n=1 β

′
n = arcsinp(1) = πp

2 < +∞, the sum of all negative terms must be finite
too and equals 1 − πp

2 . Thus (5.16) converges. This means that the series (5.15)
converges absolutely to 1 and any rearrangement of this series must converge. Also
any subseries of any rearrangement of this series must converge absolutely. Let
sM =

∑M
m=1 β

′
m. Then the series

∑+∞
k=1 α

′
k · (sM )k is a subseries of one of the

rearrangements of (5.15) and it is convergent. Observe that sM is nondecreasing
and converging to

∑+∞
m=1 β

′
m = πp/2 as M → +∞. Thus the Maclaurin series for

sinp(x) =
∑+∞
k=1 α

′
k · xk is convergent for any x ∈ (−πp/2, πp/2) to some analytic

function.
Now it remains to show that it converges towards sinp(x) on (−πp/2, πp/2). This

last step follows from the formal identity (5.14), which on the established range of
convergence holds also analytically and the fact that the function sinp(x) is the
only function that satisfies the identity (1.6). �
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Proof of Theorem 3.4. From [24, Thm. 1.1, consider p = q and σ = 0] it follows
that, for any p > 1, there exists a unique analytic function F (z) near origin such
that sinp(x) = x · F (|x|p); thus we have

sinp(x) = x · F (|x|p) =
+∞∑
l=0

αl · x · |x|l·p , where F (z) =
+∞∑
l=0

αl · zl .

Note that for p = 2m+ 1, m ∈ N, the series

+∞∑
l=0

αl · xl·p+1 (5.17)

defines an analytic function G(x) in a neighborhood of x = 0 and also that

sinp(x) =
+∞∑
l=0

αl · xl·p+1 = G(x) for x > 0 (5.18)

on a neighborhood of 0. Our aim is to show that the radius of convergence of (5.17)
is πp/2 for p = 2m+ 1, m ∈ N. By (5.18), the following derivatives are equal

sin(n)
p (x) = G(n)(x) =

+∞∑
l=dn−1

p e

αl ·
(l · p+ 1)!

(l · p+ 1− n)!
xl·p−n+1

for x > 0 on the neighborhood of 0 where the series converges. Now take a one-sided
limit from the right in the previous equation

lim
x→0+

sin(n)
p (x) = lim

x→0+

+∞∑
l=dn−1

p e

αl ·
(l · p+ 1)!

(l · p+ 1− n)!
xl·p−n+1.

For j := n−1
p ∈ {0} ∪ N, we obtain

lim
x→0+

+∞∑
l=j

αl ·
(l · p+ 1)!

(l · p+ 1− n)!
xl·p−n+1 = αj ·

(j · p+ 1)!
(j · p+ 1− n)!

.

Thus

lim
x→0+

sin(n)
p (x) = αj ·

(j · p+ 1)!
(j · p+ 1− n)!

for j ∈ {0} ∪ N. By Lemma 4.7, limx→0+ sin(n)
p (x) ≤ 0 for n ≥ 2, p ∈ N and p ≥ 3.

Thus αj ≤ 0 for j ∈ N, j > 1.
The rest of the proof of the theorem is identical to the proof of Theorem 3.3

and we find that the convergence radius of the series (5.17) is πp
2 for p = 2m + 1,

m ∈ N. The only difference against the proof of Theorem 3.3 is that the series
(5.17) converges towards sinp(x) only on (0, πp/2) for p = 2m + 1, m ∈ N. Note
that the series is still convergent on (−πp/2, 0) towards G(x) 6= sinp(x) for x < 0.
The changes in the proof are obvious and are left to the reader. �
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Figure 5. Graph of sin3(x) obtained by high-precision numeri-
cal integration of (1.3) (thin line) versus graph of partial sum of
the Maclaurin series for sin3(x) up to the power x100 (thick line).
Notice that the Maclaurin series does not converge to sin3(x) for
x < 0 and x > π3
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Figure 6. Graph of the function log10 | sin3(x) −
∑100
n=1 α

′
nx

n|
where

∑100
n=1 α

′
nx

n is the partial sum of the Maclaurin series of
sin3(x). The values of sin3(x) were obtained by high-precision nu-
merical integration of (1.3) using Mathematica command NDSolve
with option WorkingPrecision->50 which sets internal computa-
tions to be done up to 50-digit decadic precision. Notice that the
Maclaurin series does not converge to sin3(x) for x < 0 and x >
π3/2

6. Concluding remarks and open problems

As it was mentioned in the proofs of Theorems 3.3 and 3.4, it follows from [24,
Thm. 1.1, consider p = q and σ = 0] that, for any p > 1, there exists a unique
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Figure 7. Graph of sin4(x) obtained by high-precision numerical
integration of (1.3) (thin line) versus graph of partial sum of the
Maclaurin series for sin4(x) up to the power x100 (thick line)
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Figure 8. Graph of the function log10 | sin4(x) −
∑100
n=1 α

′
nx

n|
where

∑100
n=1 α

′
nx

n is the partial sum of the Maclaurin series of
sin4(x). The values of sin4(x) were obtained by high-precision nu-
merical integration of (1.3) using Mathematica command NDSolve
with option WorkingPrecision->50 which sets internal computa-
tions to be done up to 50-digit decadic precision. Notice that the
Maclaurin series does not converge to sin4(x) for |x| > π4/2

analytic function F (z) near origin such that

sinp(x) = x · F (|x|p) .
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Thus the function sinp(x) can be expanded into generalized Maclaurin series near
the origin:

sinp(x) = x · F (|x|p) =
+∞∑
l=0

αl · x · |x|l·p, where F (z) =
+∞∑
l=0

αl · zl .

Remark 6.1. (Convergence of generalized Maclaurin series) Let p = 2m + 1 for
m ∈ N. It follows from the symmetry of the function sin2m+1(x) with respect
to the origin and from the proof of Theorem 3.4 that the generalized Maclau-
rin series

∑+∞
l=0 αl · x · |x|l·(2m+1) converges towards the values of sin2m+1(x) on

(−π2m+1
2 , π2m+1

2 ).

Remark 6.2 (Complex argument for p even). Let p = 2(m + 1) for m ∈ N. It
follows from the proof of Theorem 3.3 that the Maclaurin series

∑+∞
l=0 αl·xl·2(m+1)+1

converges towards the values of sin2(m+1)(x) on (−π2(m+1)

2 ,
π2(m+1)

2 ) absolutely. This
enables us to extend the range of definition of the function sin2(m+1)(x) to the
complex open disc

Bm = {z ∈ C : |z| <
π2(m+1)

2
}

by setting sin2(m+1)(z) :=
∑+∞
l=0 αl · zl·2(m+1)+1. Since all the powers of z are of

positive-integer order l · 2(m+ 1) + 1, the function sin2(m+1)(z) is an analytic com-
plex function on Bm and thus is single-valued. Unfortunately, this easy approach
works only for p = 2(m+ 1) with m ∈ N; cf [15].

Our methods for proving convergence of the Maclaurin or generalized Maclaurin
series are based on the fact that p is an integer. Thus a natural question appears.

Open Problem 6.3 (Convergence for p > 1 not integer). Consider p > 1, p 6∈ N.
Prove (or find a counterexample) that the generalized Maclaurin series correspond-
ing to sinp(x) ’suggests the convergence’ on (−πp/2, πp/2) towards the values of
sinp(x).

For the sake of completeness, we remark that [15] claims the convergence of the
generalized Maclaurin series on (−πp/2, πp/2) for any p > 1, but there is no proof
nor any indication for the proof of this claim.

Moreover, we are not able to decide about the convergence at the endpoints.
This is another open question.

Open Problem 6.4 (Endpoints of the interval). Consider p > 1. Prove (or find a
counterexample) that the generalized Maclaurin series of sinp(x) converge at −πp2
and/or πp

2 .

Remark 6.5 (Function cosp for p even). Let p = 2(m + 1) for m ∈ N. Since
cosp(x) = sin′p(x) by definition, the Maclaurin series for cos2(m+1)(x) can be ob-
tained by taking into derivative the Maclaurin series for sin2(m+1)(x) term by
term. The Maclaurin series for cos2(m+1)(x) then converges towards the value
cos2(m+1)(x) for any x ∈ (−π2(m+1)

2 ,
π2(m+1)

2 ).

Remark 6.6 (Function cosp for p odd). Let p = 2m+1 for m ∈ N. In this case the
Maclaurin series for cos2m+1(x) can also be obtained by taking into derivative the
Maclaurin series for sin2m+1(x) term by term. This Maclaurin series then converges
for x ∈ (−π2m+1

2 , π2m+1
2 ). However, the Maclaurin series for cos2m+1(x) converges

towards the value cos2m+1(x) for x ∈ [0, π2m+1
2 ), but it does not converge towards

the value cos2m+1(x) for any x ∈ (−π2m+1
2 , 0).
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Abstract. We study extension of p-trigonometric functions sinp and cosp to complex
domain. For p = 4, 6, 8, . . ., the function sinp satisfies the initial value problem which is
equivalent to

(∗) −(u′)p−2u′′ − up−1 = 0, u(0) = 0, u′(0) = 1

in R. In our recent paper, Girg, Kotrla (2014), we showed that sinp(x) is a real analytic

function for p = 4, 6, 8, . . . on (−πp/2, πp/2), where πp/2 =
∫ 1
0
(1 − sp)−1/p. This allows

us to extend sinp to complex domain by its Maclaurin series convergent on the disc {z ∈
C : |z| < πp/2}. The question is whether this extensions sinp(z) satisfies (∗) in the sense
of differential equations in complex domain. This interesting question was posed by Došlý
and we show that the answer is affirmative. We also discuss the difficulties concerning the
extension of sinp to complex domain for p = 3, 5, 7, . . .Moreover, we show that the structure
of the complex valued initial value problem (∗) does not allow entire solutions for any p ∈ N,
p > 2. Finally, we provide some graphs of real and imaginary parts of sinp(z) and suggest
some new conjectures.
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1. Introduction

The initial value problem

(1.1) −(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0, u(0) = 0, u′(0) = 1

arises in connection with nonlinear boundary value problems for p > 1 (see e.g. [2],

[3], [7], [9]). The solution of (1.1) is known as sinp, see e.g. [2], and cosp
def
= sin′p.

Since the functions sinp and cosp satisfy the well-known p-trigonometric identity, see

e.g. [3],

(1.2) |sinp(x)|
p + |cosp(x)|

p = 1,

they are also known as the p-trigonometric and/or generalized trigonometric func-

tions. Note that (1.2) is in fact the so-called first integral of (1.1) (see e.g. [3]). It

follows from this identity (see e.g. [3]) that

∫ sinp(x)

0

(1− sp)−1/p ds = x

for 0 6 x 6 πp/2, where sinp(x) > 0 and cosp(x) > 0 and where

πp
def
= 2

∫ 1

0

(1 − sp)−1/p ds.

Thus it is natural to define

(1.3) arcsinp(x)
def
=

∫ x

0

(1− sp)−1/p ds for 0 6 x 6 1,

and extend it to [−1, 1] as an odd function. The function sinp is the inverse function

to arcsinp(x) on [−πp/2, πp/2]. Moreover, sinp(x) = sinp(πp − x) for x ∈ (πp/2, πp]

and sinp(x) = − sinp(−x) for x ∈ [−πp, 0]. Finally, sinp(x) = sinp(x + 2πp) for all

x ∈ R (see [3] for details).

Smoothness of sinp on (−πp/2, πp/2) for p > 1 was studied in [4]. The most

surprising result of [4] is that sinp is a real analytic function on (−πp/2, πp/2) for

p = 4, 6, 8, . . ., i.e., sinp(x) equals its Maclaurin on (−πp/2, πp/2) for p = 4, 6, 8, . . .

This approach naturally allows to extend sinp for p = 4, 6, 8, . . . to an open disk

{z ∈ C : |z| < πp/2}

in the complex domain using power series (cf. [7], where the convergence of the

series is conjectured without proof). When our recent result was presented at the
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conference “Nonlinear Analysis Plzeň 2013”, O.Došlý posed an interesting question

whether this extension satisfies (1.1) in the sense of differential equations in complex

domain. This paper addresses his question. For p = 4, 6, 8, . . ., the initial value

problem (1.1) in R is equivalent to

(1.4) −(u′)p−2u′′ − up−1 = 0, u(0) = 0, u′(0) = 1.

Note that for p > 1 real not being an even positive integer, we cannot get rid

of the absolute values in (1.1). Thus the equation (1.1) does not make sense for

general p > 1 in the complex domain. In this paper we consider the problem (1.4)

in complex domain for integer p > 2. The complex valued ordinary differential

equations are studied by means of power series (mostly Maclaurin series). Note that,

by [4], Theorem 3.2 on page 5, sin(n)p (0) exists for 1 < n 6 p, but sin(n)p (0) does not

exist when p > 3 is an odd integer and n > p. Thus, by the formal Maclaurin series of

sinp(x), we mean a series calculated from the limits of the derivatives lim
x→0+

sin(n)p (x),

which were shown to exist in [4] for any n ∈ N and p > 3 an odd integer.

In Section 2, we prove that, for p = 4, 6, 8, . . ., the function sinp can be extended

by its Maclaurin series to the disc {z ∈ C : |z| < πp/2} and that this series solves

the ordinary differential equation (1.4) in the sense of differential equations in the

complex domain. On the other hand, in Section 3 we show that the complex valued

formal Maclaurin seriesMsinp
(z) of the real function sinp(x) does not satisfy (1.4) in

the sense of differential equations in the complex domain for odd powers p = 3, 5, 7, . . .

In Section 4 we explain the relations between the real and imaginary components of

the complex valued function sinp(z) for p = 2, 6, 10, . . . and p = 4, 8, 12, . . ., and also

the complex valued formal Maclaurin series Msinp
(z) of the real function sinp(x) for

p = 3, 5, 7, . . . In Section 5 we show that the fact that the function sinp(z) cannot be

extended as an entire function follows from an interesting connection between the

p-trigonometric identity and some classical results from complex analysis. Finally,

in Section 6 we visualize some of our result.

In the whole paper, the independent variable z stands for a complex number and

the independent variable x stands for a real number. In the same spirit, sinp(z)

stands for a complex valued function and sinp(x) stands for a function of one real

variable.

2. Extension of sinp for p = 4, 6, 8, . . . to complex domain

We assume that p = 4, 6, 8, . . . throughout this section unless specified differently.

In [4], Theorem 3.3, we proved the following result.
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Proposition 2.1 ([4], Theorem 3.3, page 6). Let p = 4, 6, 8, . . . Then the Maclau-

rin series of sinp(x) converges on (−πp/2, πp/2).

Let Msinp
(x) denote the formal Maclaurin series of sinp(x), p = 3, 4, 5, 6, . . . (any

integer greater than 2). We also proved in the paper [4] that this Maclaurin series

has the particular structure

(2.1) Msinp
(x) =

∞
∑

k=0

αkx
kp+1,

where α0 > 0 and αk 6 0.

The following result answers the question by O.Došlý in the affirmative way.

Theorem 2.1. Let p = 4, 6, 8, . . ., then the unique solution of the initial value

problem (1.4) on |z| < πp/2 is the Maclaurin series (2.1).

In order to prove this result, we need to state several auxilliary results. First of all,

let us note that the equation (1.4) is of second order. In order to apply the known

theory, we rewrite (1.4) as an equivalent system. Using the substitution u′ = v, we

get the first order system

(2.2) u′ = v, v′ = −up−1/vp−2, u(0) = 0, v(0) = 1.

To study systems of equations like (2.2) in complex domain, we need to use complex

functions of several variables. We will often make use of the following result.

Proposition 2.2 ([6], Theorem 16, page 33). Let f and g be holomorphic func-

tions in an open set M ⊂ C
r, r ∈ N. Then the functions f + g, f − g and fg are

holomorphic in M . Moreover, if g(z) 6= 0 for all z ∈ M , then f/g is holomorphic

on M .

Let us consider the first order ODE system

(2.3) y′ = f(z,y), y(z0) = y0,

where y = (y1, y2, . . . , yn)
T ∈ C

n and f = (f1(z,y), f2(z,y), . . . , fn(z,y))
T ∈ C

n

and the function f : C
n+1 → C

n is an analytic complex function of n + 1 complex

variables. The folowing result concerning existence and uniqueness of the initial

values problem in the complex domain is crucial in our proofs.
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Proposition 2.3 ([5], Theorem 9.1, page 76). Let a function f : C
n+1 → C

n be

analytic and bounded in the region

R : |z − z0| < α, ‖w −w0‖ < β,

where α > 0, β > 0, and let

µ
def
= sup

(z,w)∈R

‖f(z,w)‖, γ
def
= min

(

α,
β

µ

)

.

Then there exists in the disk D0, |z−z0| < γ a unique analytic function w : C → C
n

which is the solution of (2.3).

Lemma 2.1. There is δ > 0 such that in U0
def
= {z ∈ C : |z| < δ} the initial value

problem (1.4) has the unique solution u(z) which is an analytic function in U0.

P r o o f. Consider (2.2) in complex domain. Let us denote

f1(z, ξ, η)
def
= η

and (recall p = 4, 6, 8, . . . by assumption of this section)

f2(z, ξ, η)
def
= −

ξ2m+1

η2m
, where z, ξ, η ∈ C and m ∈ N.

Naturally, the functions f = ξ and g = η are holomorphic in the entire complex

plane. Thus by Proposition 2.2, functions f1(z, ξ, η) and f2(z, ξ, η) are holomorphic

on some neighborhood of [0, 0, 1]. Let R denote the maximal closed subset of this

neigborhood. Then the functions f1 and f2 are holomorphic on the closed domain R

and so they are continuous on R. Hence they are bounded on R (see [6], page 37).

Therefore, the system (2.2) has a unique solution by Proposition 2.3. �

The previous lemma yields a local solution u(z) of (1.4) in a small neighborhood U0

of 0 in C. Since u(z) is analytic in U0, it can be written as a power series u(z) =
∞
∑

k=0

akz
k, where this power series converges towards u(z) for all z ∈ U0. Our next

aim is to show that the series corresponding to u(z) has the same coefficients as the

series corresponding to sinp(x), which is the unique solution to the real-valued initial

value problem (1.1). For this purpose, we will use the following result concerning

the sums of two powers series.
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Proposition 2.4 ([8], Theorem 16.6, page 352). If the sums of two power series

in the variable z − z0 coincide on a set of points E for which z0 is a limit point

and z0 /∈ E, then identical powers of z − z0 have identical coefficients, i.e., there is

a unique power series in the variable z − z0 with the given sum on the set E.

Now we are ready to prove the main result of this section.

P r o o f of Theorem 2.1. By Lemma 2.1, u(z) =
∞
∑

k=0

akz
k is the unique solution

of (1.4) at any point z ∈ U0. Observe that the solution u(z) =
∞
∑

k=0

akz
k solves also

the real-valued Cauchy problem (1.4) in the sense of real analysis. On the other

hand, sinp is the unique solution of the real-valued Cauchy problem (1.4). Since

the Maclaurin series (2.1) of sinp converges towards sinp in (−πp/2, πp/2) under

the assumption of this section, we find that (2.1) satisfies (1.4) in (−πp/2, πp/2).

Moreover, convergence of (2.1) on (−πp/2, πp/2) implies convergence of
∞
∑

k=0

αkz
kp+1

for all z ∈ C, |z| < πp/2. Therefore,

∞
∑

j=0

ajz
j =

∞
∑

k=0

αkz
kp+1 for all z ∈ U0 ∩ (−πp/2, πp/2).

Now we consider the set of points zn = δ/(n+ 1), n ∈ N. From the previous equation,

we have
∞
∑

j=0

ajz
j
n −

∞
∑

k=0

αkz
kp+1
n = 0 =

∞
∑

j=0

0 · zjn.

By Proposition 2.4, we find that these two series must coincide on U0. Hence the

Maclaurin series (2.1) satisfies (1.4) on U0. Let u be given by the series (2.1). Then

u′′, (u′)p−2, up−1 have the radius of convergence πp/2 for p > 2, p ∈ N. Since

any power series converges absolutely within the radius of its convergence, we see

from (1.4) that

−

[( ∞
∑

k=0

αkz
kp+1
n

)′]p−2( ∞
∑

k=0

αkz
kp+1
n

)′′

−

( ∞
∑

k=0

αkz
kp+1
n

)p−1

= 0 =

∞
∑

j=0

0 · zjn

for all zn = δ/(n+ 1), n ∈ N. Thus, by Proposition 2.4, u given by the series (2.1)

is the solution of (1.4) on the disc D = {z ∈ C : |z| < πp/2}. �
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3. Obstacles for extension of sinp for p = 3, 5, 7, . . .

to complex domain

Lindqvist [7] proposed an alternative definition of sinp as the solution of

(3.1)
d

dz
(w′)p−1 + wp−1 = 0, w(0) = 0, w′(0) = 1

in complex domain for p > 1 (considered only formally). In [7], Section 7, he conjec-

tures the possibility that solutions to (3.1) and the real Cauchy problem

(3.2) (|u′|p−2u′)′ + |u|p−2u, u(0) = 0, u′(0) = 1

could produce different solutions on R. We address this question in this section.

However, we have definitions of πp and sinp in this paper different from those in [7].

Turning to our definitions of πp and sinp, we get an equation corresponding to (3.1):

(3.3)
d

dz
(w′)p−1 + (p− 1)wp−1 = 0, w(0) = 0, w′(0) = 1

which is equivalent to (1.4), which is equivalent to (2.2). Since the (p−1)-st power is

a multivalued complex function, we will limit ourselves to p ∈ N, p > 1, in order to be

able to perform rigorous analysis. The question is whether (3.3) produces a solution

which is different from the solution (1.1) on R. In the previous section we proved

that for p = 4, 6, 8, . . . (and of course for p = 2) the solutions of (3.3) and (1.1) are

identical. Now we show that for p = 3, 5, 7, . . . the solutions are different for negative

arguments.

This proposition is crucial for the proof of the main result of this section.

Proposition 3.1 ([4], Theorem 3.4, page 6). Let p = 3, 5, 7, . . . Then the formal

Maclaurin series of sinp(x)—the solution of the Cauchy problem (1.1)—converges on

(−πp/2, πp/2). Moreover, the formal Maclaurin series of sinp(x) converges towards

sinp(x) on [0, πp/2), but does not converge towards sinp(x) on (−πp/2, 0).

Now we are ready to formulate the main result of this section.

Theorem 3.1. Let p = 3, 5, 7, . . . Then the unique solution u(z) of the complex

initial value problem (1.4) differs from the solution sinp(x) of the Cauchy prob-

lem (1.1) for z = x ∈ (−πp/2, 0).

P r o o f. Let us recall that (3.3) is equivalent to (2.2). There exists a unique

solution of (2.2) on some nonempty open disc in C containing 0 by Proposition 2.3.
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In the same way as in the proof of Theorem 2.1 (with obvious modifications), it

follows that Msinp
(z) solves (3.3) on the open disc |z| < πp/2 and it is the unique

solution on this disc. Since sinp(x) is the unique solution of (1.1), sinp(x) 6= Msinp
(x)

for x ∈ (−πp/2, 0) by Proposition 3.1, we see that (1.1) and (3.3) produce different

solutions on R. �

4. Relations between real and imaginary parts

Let us mention an interesting relationship between real and imaginary parts of

sinp(z) for p = 4, 8, 12, . . . One can see in Figure 1 that the graph of the imaginary

part of sin4(z) is the graph of the real part, rotated by −π/2.

Theorem 4.1. Let p = 4, 8, 12, . . . Then

ℜ[sinp(z)] = ℑ[sinp(iz)]

for all z ∈ C, |z| < πp/2.

P r o o f. Note that by (2.1)

sinp(z) =
∞
∑

k=0

αkz
kp+1 = z

∞
∑

k=0

αkz
kp

for z ∈ C, |z| < πp/2. We assume p = 4l where l = 1, 2, 3, . . . and thus

sinp(z) = z
∞
∑

k=0

αkz
4kl.

Substituting iz into this formula we find

sinp(iz) = iz
∞
∑

k=0

αk(iz)
4kl = i

∞
∑

k=0

αkz
4kl+1 = i sinp(z).

Now the result easily follows from comparison of the real and imaginary parts of

sinp(z) and i sinp(ż). This completes the proof. �

Theorem 4.2. Let p = 2, 6, 10, 14, . . . Then for all ϕ ∈ [0, 2π) there exists z ∈ C,

|z| < πp/2 such that

ℜ[sinp(z)] 6= ℑ[sinp(e
iϕz)].
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Figure 1. Continued on the next page.
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Figure 1. Contourlines of the real and imaginary parts of sinp(z) for p = 2, 4, 6 andMsinp(z)
for p = 3, 5, 6. Note that the imaginary part of sin4(z) is its real part rotated
by −π/2.
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P r o o f. It is known from [4] that the series Msinp
(z) has the form

Msinp
(z) =

∞
∑

k=0

αkz
kp+1.

First we show that α0 = 1 and α1 = −1/(p(p+ 1)) < 0 (cf e.g. [7]). In fact,

evaluating the integral in (1.3) we see that

arcsinp(x) =

∫ x

0

(1− sp)−1/p ds = 2F1

(1

p
,
1

p
, 1 +

1

p
, xp

)

x for 0 6 x 6 1,

where 2F1 is the Gauss hypergeometric function. Using the known series

2F1(a, b, c, z) =

∞
∑

k=0

(a)k(b)kz
k

(c)kk!
for |z| < 1,

where (a)k =
k
∏

j=0

(a+ k − 1) for any a ∈ R stands for the rising factorial, we find

arcsinp(w) = w

∞
∑

k=0

(1/p)2kw
kp

(1 + 1/p)kk!
for 0 < w < 1.

Hence

arcsinp(w) = w +
1

p(p+ 1)
wp+1 +O(w2p+1) for 0 < w < 1.

Denoting w = sinp(x), we find

x = w +
1

p(p+ 1)
wp+1 +O(w2p+1),

which yields

(4.1) w = x−
1

p(p+ 1)
wp+1 +O(w2p+1).

Substituting (4.1) into itself we obtain

w = x−
1

p(p+ 1)

(

x−
1

p(p+ 1)
+O(w2p+1)

)p+1

+O(w2p+1).

Hence

(4.2) sinp(x) = x−
1

p(p+ 1)
xp+1 +O(w2p+1),
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which gives the desired formulas for α1 = 1 and α2 = −1/p(p+ 1). With this at

hand, we can write

(4.3) Msinp
(z) = z −

1

p(p+ 1)
zp+1 +

∞
∑

m=2

αmzmp+1

= z −
zp+1

p(p+ 1)
− z2p+1

∞
∑

m=0

αm+2z
mp.

Let z = a, a ∈ R, 0 < a < πp/2 for simplicity. Then ϕ0 = π/2 is the unique angle

in [0, 2π) such that ℜ[z] = ℑ[eiϕ0z]. The assumption on p of this theorem is that

there exists l ∈ N ∪ {0} such that p = 4l + 2. Thus ℜ[zp+1] = ℜ[z4l+3] = ℜ[a4l+3].

On the other hand, ℑ[(eiϕ0z)p+1] = ℑ[(ia)4l+3] = −a4l+3 for ϕ0 = π/2. Inserting

z = a and z = ia into (4.3), taking the real and imaginary part, respectively, and

subtracting, we get

(4.4) ℜ[Msinp
(a)]−ℑ[Msinp

(ia)] =

= −
2ap+1

p(p+ 1)
+ a2p+1

(

ℜ

[ ∞
∑

m=0

αm+2a
mp

]

−ℑ

[

i2p+1
∞
∑

m=0

αm+2(ia)
mp

])

.

Since the series on the right-hand side are convergent on the disc {z ∈ C : |z| < πp/2},

A
def
= max

{z∈C : |z|6πp/4}

∣

∣

∣

∣

(

ℜ

[ ∞
∑

m=0

αm+2z
mp

]

−ℑ

[

i2p+1
∞
∑

m=0

αm+2(iz)
mp

])∣

∣

∣

∣

< ∞

exists and from (4.4) we find

∣

∣

∣

∣

ℜ[Msinp
(a)]−ℑ[Msinp

(ia)]

ap+1
−

2

p(p+ 1)

∣

∣

∣

∣

6 Aap.

Taking 0<a<min{πp/4, (Ap(p+ 1))
−1/p

}, we see that ℜ[Msinp
(a)]−ℑ[Msinp

(ia)] 6=0.

This concludes the proof. �
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5. Consequence of complex p-trigonometric identity

As was mentioned earlier, the maximal possible radius of convergence for the (for-

mal) Maclaurin series for functions sinp and cosp is πp/2. This fact was anticipated

in [7] and studied in detail in [4]. In this section we explain that there was no hope

for these series to have their radius of convergence infinite for p = 3, 4, 5, 6, . . . Con-

trary to what one would think, we will show that it is not the absolute value in (1.1)

that produces the main difficulty. It is a complex analogy of the p-trigonometric

identity that produces the impossibility of sinp to be an entire complex functions for

p = 3, 4, 5, 6, . . .

Let us reconsider (1.4), i.e.,

−(u′)p−2u′′ − up−1 = 0, u(0) = 0, u′(0) = 1,

now for any p = 3, 4, 5, 6, . . . in the complex domain. Let us assume that u is a so-

lution which is a holomorphic function on some neighborhood U0 of 0. Multiplying

the equation of (1.4) by u′ and integrating from 0 to z ∈ U0, we obtain

(u′(z))p − (u′(0))p + (u(z))p − (u(0))p = 0.

Now using the initial conditions of (1.4) we get

(5.1) (u′(z))p + (u(z))p = 1,

which is the first integral of (1.4), and we can think of it as a complex p-trigonometric

identity for holomorphic solutions of (1.4) for p = 3, 4, 5, 6, . . .

Now we state the very classical result from complex analysis.

Proposition 5.1 ([1], Theorem 12.20, page 433). Let f and g be entire functions

satisfying for some positive integer n the identity

fn + gn = 1.

(i) If n = 2, then there is an entire function h such that f = cos ◦h, g = sin ◦h.

(ii) If n > 2, then both f and g are constants.

It follows from this result that a holomorphic solution u of (1.4) cannot be an

entire function for any p = 3, 4, 5, 6, . . ., since the derivative of an entire function is

an entire function as well and u and u′ must satisfy (5.1). Thus by Proposition 5.1

u and u′ are constant, which contradicts u′(0) = 1.
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In particular, for p = 4, 6, 8, . . ., with u(z) = sinp(z) and u′(z) = cosp(z) this

becomes

cospp(z) + sinpp(z) = 1

and we see that sinp and cosp cannot be entire functions.

Note that there was an interesting internet discussion [10] that called our at-

tention towards this connection between complex analysis (including the classical

reference [1], Theorem 12.20) and p-trigonometric functions. It seems to us that this

connection has been overlooked by the “p-trigonometric community”.

6. Visualization of sinp(z) and their Maclaurin series

In this section we visualize graphs of the extensions of sinp(z) by its Maclaurin

series for p = 4, 6 and the formal Maclaurin series for p = 3, 5, 7 and compare

them with the classical result sinp(z) = sin2(z), see Figure 2. To the best of our

knowledge, these figures in complex domain are new and we believe that they will

help to stimulate discussion on this topic. We also formulate some conjectures in the

caption of Figure 3.
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Figure 2. Comparison of real parts of sinp(z) for p even (extended by the Maclaurin series)
and the real parts of the formal Maclaurin series Msinp(z) and the real function
sinp(x) for p odd.
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Figure 3. Numerical comparison of the real and imaginary parts of sinp(πp/2e
iπϕ) for

p = 2, 4, 6 (extended by Maclaurin series) and the real and imaginary parts of

Msinp(πp/2e
iπϕ) for p = 3, 5, 7. Note that these graphs are only an illustra-

tion, because we know nothing about the convergence of the series for z ∈ C,
|z| = πp/2. From these pictures we conjecture this convergence. It is interesting
to note in these pictures that for larger p, the graph of the real part is a small
perturbation of πp/2 cosϕ and the graph of the imaginary part is a small pertur-
bation of πp/2 sinϕ. We conjecture that this phenomena occur due to the fact
that the Maclaurin series is Msinp(z) = z − zp+1/(p(p+ 1)) + O(z2p+1) and for
large p the higher order terms are negligible. Moreover, limp→∞ πp/2 = 1. Thus
we conjecture that these graphs tend to graphs of sinϕ and cosϕ for p → ∞,
respectively.
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We study extension of 𝑝-trigonometric functions sin𝑝 and cos𝑝 and of 𝑝-hyperbolic functions sinh𝑝 and cosh𝑝 to complex domain.
Our aim is to answer the question under what conditions on 𝑝 these functions satisfy well-known relations for usual trigonometric
and hyperbolic functions, such as, for example, sin(𝑧) = −𝑖⋅sinh(𝑖⋅𝑧). In particular, we prove in the paper that for𝑝 = 6, 10, 14, . . . the
𝑝-trigonometric and 𝑝-hyperbolic functions satisfy very analogous relations as their classical counterparts. Our methods are based
on the theory of differential equations in the complex domain using the Maclaurin series for 𝑝-trigonometric and 𝑝-hyperbolic
functions.

1. Introduction

The 𝑝-trigonometric functions are generalizations of regular
trigonometric functions sine and cosine and arise from the
study of the eigenvalue problem for the one-dimensional 𝑝-
Laplacian.

In recent years, the 𝑝-trigonometric functions were
intensively studied from various points of views by many
researchers; see, for example, monograph [1] for systematic
survey and further references. The purpose of this paper is
twofold. We begin with a short survey of results from [2, 3].
Then, we extend the ideas from [3] to define corresponding
generalization of hyperbolic functions and study relations of
𝑝-trigonometric and 𝑝-hyperbolic functions on a disc in the
complex domain.

More precisely, our goal is to generalize the hyperbolic
functions such that the relations

sin 𝑧 = −𝑖 ⋅ sinh (𝑖 ⋅ 𝑧) ,
cos 𝑧 = cosh (𝑖 ⋅ 𝑧) ,

(1)

cos 𝑧 = sin󸀠𝑧,

cosh 𝑧 = sinh󸀠𝑧,
(2)

cos2𝑧 + sin2𝑧 = 1,

cosh2𝑧 − sinh2𝑧 = 1,
(3)

where 𝑧 ∈ C, have their counterparts for generalized 𝑝-
trigonometric and 𝑝-hyperbolic functions. It turns out that
this goal can be achieved only for even integer 𝑝 > 2.

The 𝑝-trigonometric functions in the real domain R

originate naturally from the study of the nonlinear eigenvalue
problem

− (
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠
)
󸀠

− 𝜆 |𝑢|
𝑝−2

𝑢 = 0 in (0, 𝜋𝑝) ,

𝑢 (0) = 𝑢 (𝜋𝑝) = 0,

(4)

where 𝑝 > 1, 𝜆 ∈ R is a parameter, and

𝜋𝑝 = 2∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠 = 2𝜋

𝑝 sin (𝜋/𝑝)
. (5)

It was shown in Elbert [4] that all eigenfunctions of (4) can be
expressed in terms of solutions of the initial-value problem

− (
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠
)
󸀠

− (𝑝 − 1) |𝑢|
𝑝−2

𝑢 = 0, 𝑥 ∈ R,

𝑢 (0) = 0,

𝑢
󸀠
(0) = 1.

(6)
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Indeed, (6) has the unique solution inR; see, for example,
[5, LemmaA.1], [6, Section 3], and [4]. Denoting the solution
of (6) by sin𝑝𝑥, the set of all eigenvalues 𝜆𝑘 ∈ R and
eigenfunctions 𝑢𝑘 ∈ 𝑊

1,𝑝

0
(0, 𝜋𝑝) of (4) can be written as

𝜆𝑘 = (𝑝 − 1) 𝑘
𝑝
,

𝑢𝑘 (𝑥) = sin𝑝 (𝑘 ⋅ 𝑥) ,

where 𝑘 ∈ N.

(7)

A piecewise construction of the solution of (6) was
provided in [4]. At first, one sets

arcsin𝑝𝑥
def
= ∫

𝑥

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠, 𝑥 ∈ [0, 1] . (8)

Then, the restriction of sin𝑝𝑥 on [0, 𝜋𝑝/2] is the inverse
function to arcsin𝑝𝑥. For 𝑥 ∈ (𝜋𝑝/2, 𝜋𝑝], sin𝑝𝑥 satisfies
sin𝑝𝑥 = sin𝑝(𝜋𝑝 − 𝑥), where clearly 𝜋𝑝 − 𝑥 ∈ [0, 𝜋𝑝/2), and
sin𝑝𝑥 = −sin𝑝(−𝑥) for 𝑥 ∈ [−𝜋𝑝, 0). Finally, sin𝑝𝑥 is a 2𝜋𝑝-
periodic function on R.

We also extend arcsin𝑝𝑥 from (8) to [−1, 1] as an odd
function. Then, it is the inverse function to the restriction of
sin𝑝𝑥 to [−𝜋𝑝/2, 𝜋𝑝/2], and we have

sin𝑝 (arcsin𝑝𝑥) = 𝑥, ∀𝑥 ∈ [−1, 1] . (9)

Finally, let us define cos𝑝𝑥
def
= sin󸀠

𝑝
𝑥 for all 𝑥 ∈ R.

Then, the functions sin𝑝𝑥 and cos𝑝𝑥 satisfy the so-called 𝑝-
trigonometric identity

󵄨󵄨󵄨󵄨󵄨
cos𝑝𝑥

󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨
sin𝑝𝑥

󵄨󵄨󵄨󵄨󵄨

𝑝

= 1 (10)

for all 𝑥 ∈ R; see, for example, [4–6].
Note that there is an alternative definition of “cos𝑝𝑥”

in [7] and/or [8] which leads to different “𝑝-trigonometric”
identity. Yet another alternative generalization of trigono-
metric and hyperbolic functions motivated by geometrical
point of view was introduced in [9]. Studies of relations
between their respective generalizations of 𝑝-trigonometric
and 𝑝-hyperbolic functions were suggested in [7] and in [9],
respectively.

Remark 1. In the paper, we use Gauss’ hypergeometric func-
tion
2
𝐹1(𝑎, 𝑏, 𝑐, 𝑧), where 𝑎, 𝑏, 𝑐 ∈ C are parameters and 𝑧 ∈ C

is variable (for definition see [10, 15.1.1. p. 556]), to express
integrals of the type

∫

𝑥

0

1

(1 ± 𝑠𝑝)
1/𝑝

d𝑠,

∫

𝑧

0

1

(1 ± 𝑠𝑝)
1/𝑝

d𝑠,
(11)

for 𝑝 > 1, 𝑥 ∈ R, and 𝑧 ∈ C (by 𝑧1/𝑝 we understand the
principal branch thereof). Indeed,

𝑧
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, ∓𝑧
𝑝
) = ∫

𝑧

0

1

(1 ± 𝑠𝑝)
1/𝑝

d𝑠 (12)

for |𝑧| < 1 (by comparing respective series expansions). By
the uniqueness of analytic extension, the equation is valid for
𝑧 ∈ C \ {𝑥 + 𝑖𝑦 : 𝑥 > 1 and 𝑦 = 0} (for analytic continuation
of 2𝐹1 see, e.g., [10, 15.3.1, p. 558] and [11, Theorem 2.2.1, p.
65]).

In the definition of 𝜋𝑝 (i.e., (5)) and in (8), we need to
evaluate integral

∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠. (13)

By [11, Theorem 2.2.2, p. 66], this is possible, sinceR[𝑐 − 𝑎 −
𝑏] = 1 + 1/𝑝 − 1/𝑝 − 1/𝑝 = 1 − 1/𝑝 > 0 for 𝑝 > 1.

Notation 1. This paper combines real variable and complex
variable approach to the 𝑝-trigonometric and 𝑝-hyperbolic
functions. Each of these approaches has its own natural way
of how to define the functions sin𝑝 and sinh𝑝. Thus, we need
to distinguish between real and complex definitions. By sin𝑝𝑥
and sinh𝑝𝑥, we mean functions defined by the real variable
approach and by sin𝑝𝑧 and sinh𝑝𝑧wemean functions defined
by the complex variable approach, throughout the paper.

2. Real Analyticity Results for sin𝑝𝑥 and cos𝑝𝑥

It is well known that the 𝑝-trigonometric functions are not
real analytic functions in general; see, for example, [12, 13].
Very detailed study of the degree of smoothness of the
restriction of sin𝑝𝑥 to (−𝜋𝑝/2, 𝜋𝑝/2) was performed in [2]
including the following two results. The first one concerns
“generic” 𝑝 > 1.

Proposition 2 (see [2], Theorem 3.2 on p. 105). Let 𝑝 ∈ R \

{2𝑚}, 𝑚 ∈ N, 𝑝 > 1. Then,

sin𝑝𝑥 ∈ 𝐶
⌈𝑝⌉
(−
𝜋𝑝

2
,
𝜋𝑝

2
) , (14)

but

sin𝑝𝑥 ∉ 𝐶
⌈𝑝⌉+1

(−
𝜋𝑝

2
,
𝜋𝑝

2
) . (15)

Here, ⌈𝑝⌉ def
= min{𝑘 ∈ N: 𝑘 ≥ 𝑝}.

The second result treats only the even integers 𝑝 > 2 and
differs significantly from the previous case in an unexpected
way.

Proposition 3 (see [2],Theorem 3.1 on p. 105). Let 𝑝 = 2(𝑚+
1), 𝑚 ∈ N. Then,

sin𝑝𝑥 ∈ 𝐶
∞
(−
𝜋𝑝

2
,
𝜋𝑝

2
) . (16)

Thus, the Maclaurin series of sin𝑝𝑥

𝑀𝑝 (𝑥)
def
=

∞

∑

𝑛=1

1

𝑛!
sin(𝑛)
𝑝
(0) ⋅ 𝑥

𝑛 (17)

is well defined for 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N. Moreover,
the following result establishes an explicit expression for the
radius of convergence of𝑀𝑝.
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Proposition 4 (see [2], Theorem 3.3 on p. 106). Let 𝑝 =

2(𝑚+1) for𝑚 ∈ N. Then, theMaclaurin series𝑀𝑝(𝑥) of sin𝑝𝑥
converges on (−𝜋𝑝/2, 𝜋𝑝/2).

Thus, for 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N, we can compute
approximate values of sin𝑝𝑥 using Maclaurin series. It turns
out that the most effective method of computing coefficients
in (17) is to use formal inversion of the Maclaurin series of

arcsin𝑝𝑥 = ∫
𝑥

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠

= 𝑥 ⋅
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, 𝑥
𝑝
)

=

∞

∑

𝑘=0

Γ (𝑘 + 1/𝑝)

(𝑘𝑝 + 1) 𝑘!Γ (1/𝑝)
𝑥
𝑘𝑝+1

,

(18)

where 𝑝 = 2(𝑚 + 1) for some 𝑚 ∈ N. The procedure
of inverting power series is well known; see, for example,
[14]. This task can be easily performed using computer
algebra systems. In Pseudocode 1, we provide an example of
computing the partial sum of 𝑀4 up to terms of order 32
in Mathematica� v. 9.0. In this way, we can easily get partial
sums of 𝑀𝑝 and get approximations of sin𝑝 for any 𝑝 =

2(𝑚+1), 𝑚 ∈ N, up to terms of orders of hundreds. Note that
this formal inverse can be applied also for𝑝 = 2𝑚+1, 𝑚 ∈ N.
Thequestion iswhat is themathematical sense of the resulting
formal series. Let

𝑇𝑝 (𝑥)
def
=

∞

∑

𝑛=1

𝑎𝑛 ⋅ 𝑥
𝑛 (19)

denote the series that is the formal inverse of (18) for 𝑝 =

2𝑚 + 1, 𝑚 ∈ N. For 𝑝 = 2𝑚 + 1, 𝑚 ∈ N, let us also define

𝑀𝑝 (𝑥)
def
=

∞

∑

𝑛=1

1

𝑛!
( lim
𝑥→0+

sin(𝑛)
𝑝
𝑥) ⋅ 𝑥

𝑛
, (20)

which is a formal Maclaurin series of some unknown func-
tion. It turns out that this unknow function is not sin𝑝𝑥 as
the following result holds.

Proposition 5 (see [2], Theorem 3.4 on p. 106). Let 𝑝 =

2𝑚+1,𝑚 ∈ N.Then, the formalMaclaurin series𝑀𝑝 converges
on (−𝜋𝑝/2, 𝜋𝑝/2). Moreover, the formal Maclaurin series 𝑀𝑝
converges towards sin𝑝𝑥 on [0, 𝜋𝑝/2) but does not converge
towards sin𝑝𝑥 on (−𝜋𝑝/2, 0).

In Appendix A, we prove that 𝑇𝑝 and𝑀𝑝 are identical.

Theorem 6. Let 𝑝 = 2𝑚 + 1,𝑚 ∈ N. Then,

𝑎𝑛 =
1

𝑛!
( lim
𝑥→0+

sin(𝑛)
𝑝
𝑥) , ∀𝑛 ∈ N, (21)

and 𝑇𝑝(𝑥) = 𝑀𝑝(𝑥) for all 𝑥 ∈ (−𝜋𝑝/2, 𝜋𝑝/2).

It turns out that the pattern of zero coefficients of𝑀𝑝 is
the same as in theMaclaurin series of arcsin𝑝𝑥; compare (18).

Theorem 7. Let 𝑝 > 2 be an integer. Then, 𝑎𝑖 = 0 for all 𝑖 ∈ N

such that 𝑖 − 1 is not divisible by 𝑝.

Theproof is technical and thus postponed to Appendix B.
It is based on the formal inversion of (18). Note that the
structure of powers in (18) does not allow any substitution
that will transform it into a power series of new variable
without zero coefficients. This makes the proof technically
complicated.

Using Theorem 7, we can omit zero entries and rewrite
the series𝑀𝑝:

𝑀𝑝 (𝑥) =

∞

∑

𝑙=0

𝛼𝑙 ⋅ 𝑥
𝑙𝑝+1

, (22)

where 𝛼𝑙 can be obtained by formal inversion of the Maclau-
rin series of arcsin𝑝𝑥 in (18). In particular,

𝛼0 = 1,

𝛼1 = −
1

𝑝 (𝑝 + 1)
,

𝛼2 = −
𝑝
2
− 2𝑝 − 1

2𝑝2 (𝑝 + 1) (2𝑝 + 1)
, . . . .

(23)

3. Extension of sin𝑝𝑧 and cos𝑝𝑧 to the Complex
Domain for Integer 𝑝 > 1

The conclusion of this theorem follows from the discussion
in [2].

Theorem 8. Let 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N. Then, the Maclaurin
series of sin𝑝𝑥 converges on the open disc

𝐵𝑝
def
= {𝑧 ∈ C : |𝑧| <

𝜋𝑝

2
} . (24)

Proof. In fact, the Maclaurin series ∑∞
𝑙=0
𝛼𝑙 ⋅ 𝑥
𝑙⋅𝑝+1 converges

towards the values of sin𝑝𝑥 on (−𝜋𝑝/2, 𝜋𝑝/2) absolutely for
𝑝 = 2(𝑚 + 1),𝑚 ∈ N.

For 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N, the expressions with powers
in the initial-value problem (6) can be written without the
absolute values. Thus, the resulting initial-value problem

(𝑢
󸀠
)
𝑝−2

𝑢
󸀠󸀠
+ 𝑢
𝑝−1

= 0,

𝑢 (0) = 0,

𝑢
󸀠
(0) = 1

(25)

makes sense also in the complex domain (the derivatives
are understood in the sense of the derivative with respect to
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In[1] := Series[s*Hypergeometric2F1[1/4, 1/4, 5/4, s∧4],

{s, 0, 32}]

(* computes the Maclaurin series of arcsin 4 *)

Out[1] = 𝑠 +
𝑠
5

20
+
5𝑠
9

288
+
15𝑠
13

1664
+
195𝑠
17

34816
+
221𝑠
21

57344
+
4641𝑠

25

1638400
+
16575𝑠

29

7602176
+ 𝑂(𝑠

33
)

In[2] := InverseSeries[%]
(* computes the inverse series *)

Out[2] = 𝑠 −
𝑠
5

20
−
7𝑠
9

1440
−
463𝑠
13

374400
−
211741𝑠

17

509184000
−
104361161𝑠

21

641571840000
−

8978996213𝑠
25

128314368000000
−

7995735867463𝑠
29

248783228928000000
+ 𝑂(𝑠

33
)

(*which is M 4 up to terms of order 32*)

Pseudocode 1:Mathematica v. 9.0 code.

complex variable). Let us observe that, using the substitution
𝑢
󸀠
= V, we get the following first-order system:

𝑢
󸀠
= V,

V󸀠 = −
𝑢
𝑝−1

V𝑝−2
,

𝑢 (0) = 0,

V (0) = 1.

(26)

By [15, Theorem 9.1, p. 76], there exists 𝛿𝑝 > 0 such that
problems (26) and hence (25) have the unique solution on
the open disc |𝑧| < 𝛿𝑝.

Nowwewill consider initial-value problems (25) and (26)
also for 𝑝 = 2𝑚 + 1,𝑚 ∈ N.

Theorem 9. Let 𝑝 = 2𝑚+1, 𝑚 ∈ N. The unique solution 𝑢(𝑧)
of (25) restricted to open disc 𝐵𝑝 is the Maclaurin series𝑀𝑝.

Proof. Let 𝑢(𝑧) = ∑∞
𝑘=1

𝑏𝑘𝑧
𝑘 be the unique solution of (25) in

any point of the open disc |𝑧| < 𝛿𝑝. Observe that the solution
𝑢(𝑧) = ∑

∞

𝑘=1
𝑏𝑘𝑧
𝑘 solves also the real-valued Cauchy problem

(6) for 𝑥 > 0 (where there is no need for | ⋅ |). On the other
hand, sin𝑝𝑥 is the unique solution of the real-valued Cauchy
problem (6). Since𝑀𝑝 given by (20) converges towards sin𝑝𝑥
in [0, 𝜋𝑝/2), we find that𝑀𝑝 satisfies (6) in [0, 𝜋𝑝/2). Thus,
𝑀𝑝(𝑥) = 𝑢(𝑥 + 𝑖 ⋅ 𝑦) for 𝑥 ∈ [0, 𝛿𝑝) and 𝑦 = 0. In particular,
taking a sequence of points 𝑧𝑛 = 𝛿𝑝/(𝑛 + 1) + 0 ⋅ 𝑖, 𝑛 ∈ N,
we have𝑀𝑝(𝑧𝑛) = 𝑢(𝑧𝑛); thus, we infer from Proposition A.2
that

𝑏𝑘 =
1

𝑘!
( lim
𝑥→0+

sin(𝑘)
𝑝
𝑥) . (27)

𝑀𝑝 has radius of convergence 𝜋𝑝/2 by Proposition 5, and so
does 𝑢(𝑧). Thus, 𝛿𝑝 = 𝜋𝑝/2.

Theorems 8 and 9 enable us to extend the range of
definition of the function sin𝑝𝑥 to the complex open disc 𝐵𝑝
by 𝑀𝑝 for 𝑝 = 2(𝑚 + 1) and for 𝑝 = 2𝑚 + 1, 𝑚 ∈ N,
respectively.Thus, we can consider 𝑝 = 𝑚+2 in the following
definition. Note that all the powers of 𝑧 are of positive-integer
order 𝑙 ⋅ 𝑝 + 1 and the function sin𝑝𝑧 is an analytic complex
function on 𝐵𝑝 and thus is single-valued.

Definition 10. Let 𝑝 = 𝑚 + 2, 𝑚 ∈ N, and 𝑧 ∈ 𝐵𝑝. Then,

sin𝑝𝑧
def
=

∞

∑

𝑙=0

𝛼𝑙 ⋅ 𝑧
𝑙⋅𝑝+1

,

cos𝑝𝑧
def
= sin󸀠
𝑝
𝑧 =

d
d𝑧

sin𝑝𝑧,

(28)

where the derivative d/d𝑧 is considered in the sense of
complex variables.

The following fundamental results were proved in [3]
(providing explicit value for 𝛿𝑝).

Proposition 11 (see [3], Theorem 2.1 on p. 226). Let 𝑝 =

2(𝑚 + 1), 𝑚 ∈ N; then, the unique solution of the initial-value
problem (25) on 𝐵𝑝 is the function sin𝑝𝑧.

Proposition 12 (see [3],Theorem 3.1 on p. 229). Let𝑝 = 2𝑚+
1,𝑚 ∈ N.Then, the unique solution 𝑢(𝑧) of the complex initial-
value problem (25) differs from the solution sin𝑝𝑥 of the Cauchy
problem (6) for 𝑧 = 𝑥 ∈ (−𝜋𝑝/2, 0).

In [3], it was shown that there is no hope for solutions of
(25) to be entire functions for 𝑝 = 𝑚 + 2, 𝑚 ∈ N. This result
follows from the complex analogy of the 𝑝-trigonometric
(10).

Lemma 13. Let 𝑝 = 𝑚 + 1,𝑚 ∈ N, and 𝑟 > 0 be such that the
solution 𝑢 of (25) is holomorphic on a disc 𝐷𝑟 = {𝑧 ∈ C : |𝑧| <

𝑟}. Then, 𝑢 satisfies the complex 𝑝-trigonometric identity

(𝑢
󸀠
(𝑧))
𝑝

+ (𝑢 (𝑧))
𝑝
= 1 (29)

on the disc 𝐷𝑟.

Proof. Multiplying (25) by 𝑢󸀠 and integrating from 0 to 𝑧 ∈
𝐷𝑟, we obtain

(𝑢
󸀠
(𝑧))
𝑝

− (𝑢
󸀠
(0))
𝑝

+ (𝑢 (𝑧))
𝑝
− (𝑢 (0))

𝑝
= 0. (30)

Now using the initial conditions of (25), we get (29), which is
the first integral of (25) and we can think of it as complex 𝑝-
trigonometric identity for holomorphic solutions of (25) for
𝑝 = 𝑚 + 1, 𝑚 ∈ N.
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Now we state the very classical result from complex
analysis.

Proposition 14 (see [16], Theorem 12.20 on p. 433). Let 𝑓
and 𝑔 be entire functions and for some positive integer 𝑛 satisfy
identity

𝑓
𝑛
+ 𝑔
𝑛
= 1. (31)

(i) If 𝑛 = 2, then there is an entire function ℎ such that
𝑓 = cos ∘ ℎ and 𝑔 = sin ∘ ℎ.

(ii) If 𝑛 > 2, then 𝑓 and 𝑔 are each constant.

The following interesting connection between complex
analysis (including the classical reference [16, Theorem
12.20]) and 𝑝-trigonometric functions was studied in [3]. We
should point out that it was an interesting internet discussion
[17] that called our attention towards this connection. It
seems to us that this connection was overlooked by the “𝑝-
trigonometric community.”Thus, we provide itsmore precise
proof here.

Theorem 15. The solution 𝑢 of complex initial-value problem
(25) cannot be entire function for any 𝑝 = 𝑚 + 2, 𝑚 ∈ N.

Proof. Assume by contradiction that the solution 𝑢 of (25)
is entire function. Then, we can choose 𝑟 > 0 arbitrarily
large in Lemma 13. Thus, 𝑢 and 𝑢󸀠 must satisfy (29) at any
point 𝑧 ∈ C. Note that 𝑢󸀠 is an entire function too. Thus,
by Proposition 14 𝑢 and 𝑢󸀠 are constant which contradicts
𝑢
󸀠
(0) = 1. This concludes the proof.

In particular, the solution of (25) is 𝑢(𝑧) = sin𝑝𝑧 with
𝑢
󸀠
(𝑧) = cos𝑝𝑧. Thus, (29) becomes

cos𝑝
𝑝
𝑧 + sin𝑝

𝑝
𝑧 = 1 (32)

and we see that sin𝑝 and cos𝑝 cannot be entire functions for
𝑝 = 𝑚 + 2,𝑚 ∈ N.

4. Generalized Hyperbolometric Function
argsinh

𝑝
𝑥 and Generalized Hyperbolic

Function sinh𝑝𝑥 in the Real Domain for
Real 𝑝 > 1

In analogy to𝑝 = 2, we define sinh𝑝𝑥 for𝑝 > 1 as the solution
to the initial-value problem:

− (
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠
)
󸀠

+ (𝑝 − 1) |𝑢|
𝑝−2

𝑢 = 0, 𝑥 ∈ R,

𝑢 (0) = 0,

𝑢
󸀠
(0) = 1.

(33)

The uniqueness of the solution of this problem can be proved
in the sameway as in the case of (6) using the first integral (see

[4]). Note that the first integral of the real-valued initial-value
problem (33) is the real 𝑝-hyperbolic identity

1 + |𝑢|
𝑝
=
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝

, (34)

for 𝑝 > 1; compare [4]. Thus, |𝑢󸀠| ≥ 1 on the domain of
definition of solution to (33). Since 𝑢󸀠(0) = 1 and 𝑢󸀠 must
be absolutely continuous, we find that 𝑢󸀠 > 0 on the domain
of definition of solution to (33) and the real 𝑝-hyperbolic
identity can be rewritten in equivalent form

𝑢
󸀠
= (1 + |𝑢|

𝑝
)
1/𝑝
, (35)

which is a separable first-order ODE in R. By the standard
integration procedure, we obtain inverse function of the
solution 𝑢 (cf. [4]).

Therefore, it is natural to define

argsinh
𝑝
𝑥

def
= ∫

𝑥

0

1

(1 + |𝑠|
𝑝
)
1/𝑝

d𝑠, 𝑥 ∈ R, (36)

for any 𝑝 > 1, in the real domain (cf., e.g., [18–21]). Note
that the integral on the right-hand side can be evaluated in
terms of the analytic extension of Gauss’s

2
𝐹1 hypergeometric

function to C \ {𝑠 + 𝑖𝑡 : 𝑠 > 1, 𝑡 = 0} (see, e.g., [10, § 15.3.1, p.
558] and [11,Theorem 2.2.1, p. 65]); thus, (taking into account
that integrand in (36) is even)

argsinh
𝑝
𝑥

=

{{

{{

{

𝑥 ⋅
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, −𝑥
𝑝
) , 𝑥 ∈ [0, +∞)

−argsinh
𝑝
(−𝑥) , 𝑥 ∈ (−∞, 0) .

(37)

Since argsinh
𝑝
: R → R is strictly increasing function

on R, its inverse exists and it is, in fact, sinh𝑝𝑥 by the same
reasoning as in [4] (cf., e.g., [20]).

5. Generalized Hyperbolic Functions
sinh𝑝𝑧 and cosh𝑝𝑧 in Complex Domain for
Integer 𝑝 > 1

In the previous section, we introduced real-valued general-
ization of sinh𝑥 called sinh𝑝𝑥. Our aim is to extend this
function to complex domain. It is important to observe that,
for 𝑝 = 2, the following relations between complex functions
sin 𝑧 and sinh 𝑧 are known:

sin 𝑧 sinh 𝑧
𝑢
󸀠󸀠
+ 𝑢 = 0 𝑢

󸀠󸀠
− 𝑢 = 0

𝑢 (0) = 0 𝑢 (0) = 0

𝑢
󸀠
(0) = 1 𝑢

󸀠
(0) = 1

sin 𝑧 = −𝑖 ⋅ sinh (𝑖 ⋅ 𝑧) ,

(38)

where 𝑧 ∈ C and the equations are understood in the sense
of ordinary differential equations in the complex domain.
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Since the function | ⋅ | : C→ [0, +∞) (complex modulus)
is not analytic at 0 ∈ C, we cannot work with (6) and (33), but
we need to consider (25) and

(𝑢
󸀠
)
𝑝−2

𝑢
󸀠󸀠
− 𝑢
𝑝−1

= 0,

𝑢 (0) = 0,

𝑢
󸀠
(0) = 1

(39)

in our discussion in the complex domain. Thus, the direct
analogy of the classical relations summarized in the table
above for 𝑝 ̸= 2 is stated in the following table:

sin𝑝𝑧 sinh𝑝𝑧
(𝑢
󸀠
)
𝑝−2

𝑢
󸀠󸀠
+ 𝑢
𝑝−1

= 0 (𝑢
󸀠
)
𝑝−2

𝑢
󸀠󸀠
− 𝑢
𝑝−1

= 0

𝑢 (0) = 0 𝑢 (0) = 0

𝑢
󸀠
(0) = 1 𝑢

󸀠
(0) = 1

sin𝑝𝑧
?
= −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) ,

(40)

where 𝑧 belongs to some complex disc centred at 0 ∈ C with
radius small enough such that both complex initial-value
problems are solvable. However, it turns out (see below) that
if we define sinh𝑝𝑧 as the solution (39), then the “𝑝-analogies”
of (2)-(3) are satisfied, but the “𝑝-analogy” of the identity (1),
that is,

sin𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) , (41)

is not satisfied in general. Our aim is to provide conditions
when (41) holds as well.

Let us formalize the above-stated ideas. Denote

𝐷𝑝
def
= {𝑧 ∈ C : |𝑧| < 𝛾𝑝} (42)

an open disc in C, where 𝛾𝑝 > 0 is given radius. At first we
prove unique solvability of (39) in𝐷𝑝.

Lemma 16. Let𝑝 = 𝑚+2, 𝑚 ∈ N.Then, there exists a complex
disc𝐷𝑝 such that the initial-value problem in complex domain
(39) has a unique solution on𝐷𝑝.

Proof. Using the substitution 𝑢󸀠 = V, we get the following
first-order system:

𝑢
󸀠
= V,

V󸀠 =
𝑢
𝑝−1

V𝑝−2
,

𝑢 (0) = 0,

V (0) = 1.

(43)

By [15, Theorem 9.1] on page 76, the statement of the lemma
follows.

Nowwe can define sinh𝑝 : 𝐷𝑝 → C for any integer 𝑝 > 2.

Definition 17. Let 𝑝 = 𝑚 + 2, 𝑚 ∈ N. The complex function
sinh𝑝𝑧 is defined on 𝐷𝑝 as the unique solution of the initial-

value problem (39) and cosh𝑝𝑧
def
= sinh󸀠

𝑝
𝑧 for all 𝑧 ∈ 𝐷𝑝.

Lemma 18. Let 𝑝 = 𝑚 + 1,𝑚 ∈ N, and 𝑟 > 0 be such that the
solution 𝑢 of (25) is holomorphic on a disc 𝐷𝑟 = {𝑧 ∈ C : |𝑧| <

𝑟}. Then, 𝑢 satisfies the complex “𝑝-hyperbolic” identity

(𝑢
󸀠
(𝑧))
𝑝

− (𝑢 (𝑧))
𝑝
= 1 (44)

on the disc 𝐷𝑟.

The proof of Lemma 18 is analogous to the proof of
Lemma 13 and thus it is omitted.

Remark 19. Les us note that the real-valued identity

(𝑢 (𝑥)
󸀠
)
𝑝

− (𝑢 (𝑥))
𝑝
= 1 (45)

for general 𝑝 > 0 already appeared in [22], where the
formal Maclaurin power series expansion of the solution to
this identity was treated. Interesting recurrence formula for
the coefficients of the Maclaurin power series can be found
there. It will be very interesting to use the following relations
between sin𝑝𝑧 and sinh𝑝𝑧 to find the analogous recurrence
formulas for sin𝑝𝑧.

Now we are ready to state main results of Section 5.

Theorem 20. Let 𝑝 = 4𝑙 + 2, 𝑙 ∈ N. Then,

sin𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) , (46)

cos𝑝𝑧 = cosh𝑝 (𝑖 ⋅ 𝑧) (47)

for all 𝑧 ∈ 𝐵𝑝. Moreover,

sinh𝑝𝑧 =
∞

∑

𝑘=0

(−1)
𝑘
⋅ 𝛼𝑘 ⋅ 𝑧

𝑘𝑝+1
. (48)

On the other hand, we have also the following surprising
result.

Theorem 21. Let 𝑝 = 4𝑙, 𝑙 ∈ N. Then,

sin𝑝𝑧 = −𝑖 ⋅ sin𝑝 (𝑖 ⋅ 𝑧) ,

cos𝑝𝑧 = cos𝑝 (𝑖 ⋅ 𝑧)
(49)

for all 𝑧 ∈ 𝐵𝑝.

The statement of the previous theorem is closely related
to similar result for 𝑝-hyperbolic functions.

Theorem 22. Let 𝑝 = 4𝑙, 𝑙 ∈ N. Then,

sinh𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) , (50)

cosh𝑝𝑧 = cosh𝑝 (𝑖 ⋅ 𝑧) (51)

for all 𝑧 ∈ 𝐷𝑝.
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Proof of Theorem 20. Let 𝑝 = 4𝑙 + 2, 𝑙 ∈ N, and 𝑢(𝑧) = sinh𝑝𝑧
be the unique solution of the initial-value problem (39) on
𝐷𝑝.

We show that𝑤(𝑧) = −𝑖 ⋅ 𝑢(𝑖 ⋅ 𝑧) satisfies (25) on𝐷𝑝 ∩𝐵𝑝.
Due to uniqueness of solution of (25), the identity (46) must
hold on𝐷𝑝 ∩ 𝐵𝑝.

Indeed, plugging into the left-hand side of (25), we get

(𝑤
󸀠
(𝑧))
𝑝−2

𝑤
󸀠󸀠
(𝑧) + 𝑤 (𝑧)

𝑝−1

= (
d
d𝑧
𝑤 (𝑧))

𝑝−2 d2

d𝑧2
𝑤 (𝑧) + 𝑤 (𝑧)

𝑝−1

= [
d
d𝑧
(−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))]

𝑝−2 d2

d𝑧2
(−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))

+ (−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))
𝑝−1

= 𝑖 ⋅ [
d

d (𝑖 ⋅ 𝑧)
𝑢 (𝑖 ⋅ 𝑧)]

𝑝−2 d2

d (𝑖 ⋅ 𝑧)2
𝑢 (𝑖 ⋅ 𝑧)

+ (−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))
𝑝−1

= 𝑖 ⋅ [
d
d𝑠
𝑢 (𝑠)]

𝑝−2 d2

d𝑠2
𝑢 (𝑠) − 𝑖 ⋅ (−𝑖)

𝑝−2
⋅ 𝑢 (𝑠)
𝑝−1

= 𝑖 ⋅ ([
d
d𝑠
𝑢 (𝑠)]

𝑝−2 d2

d𝑠2
𝑢 (𝑠) − (−𝑖)

𝑝−2
⋅ 𝑢 (𝑠)
𝑝−1
)

= 𝑖 ⋅ ([
d
d𝑠
𝑢 (𝑠)]

𝑝−2 d2

d𝑠2
𝑢 (𝑠) − 𝑢 (𝑠)

𝑝−1
) = 0.

(52)

Note that for 𝑝 = 4𝑙 + 2, 𝑙 ∈ N, (−𝑖)𝑝−2 = 1. The last equality
then follows from (39). The right-hand side of (25) is zero.
So we have verified that 𝑤(𝑧) = −𝑖 ⋅ sinh𝑝(𝑖 ⋅ 𝑧) satisfies the
differential equation in (39).The initial conditions of (25) are
also satisfied by 𝑤(𝑧) = −𝑖 ⋅ sinh𝑝(𝑖 ⋅ 𝑧), since 𝑢(𝑧) = sinh𝑝𝑧
satisfies the initial conditions of (39).

Now it remains to show that 𝐷𝑝 = 𝐵𝑝 and hence sin𝑝𝑧 =
−𝑖⋅sinh𝑝(𝑖⋅𝑧) on𝐵𝑝. To this end, let us write sinh𝑝𝑧 = ∑

∞

𝑛=1
𝑐𝑛 ⋅

𝑧
𝑛 for yet unknown 𝑐𝑛 ∈ C. Then,
∞

∑

𝑛=1

𝑎𝑛 ⋅ 𝑧
𝑛
= sin𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) =

∞

∑

𝑛=1

𝑐𝑛 ⋅ 𝑖
𝑛−1

⋅ 𝑧
𝑛 (53)

on𝐷𝑝 ∩ 𝐵𝑝. From here,

𝑐𝑛 =
𝑎𝑛

𝑖𝑛−1
= 𝑖
3𝑛+1

⋅ 𝑎𝑛. (54)

Since |𝑖3𝑛+1| = 1,𝐷𝑝 = 𝐵𝑝.
Now taking into account that 𝑎𝑛 = 0 for 𝑛−1 not divisible

by 𝑝, we immediately get 𝑐𝑛 = 0 for 𝑛 − 1 not divisible by 𝑝.
Now using our notation 𝛼𝑘 = 𝑎𝑘𝑝+1, 𝑘 ∈ N, we find that

𝑐𝑘𝑝+1 = (𝑖)
3(𝑘𝑝+1)+1

𝛼𝑘 = (−1)
𝑘
𝛼𝑘 (55)

which establishes (48).
Equation (47) follows directly from cosh𝑝𝑧 = sinh󸀠

𝑝
𝑧 and

(46).

Proof of Theorem 21. Let 𝑝 = 4𝑙, 𝑙 ∈ N, and 𝑢(𝑧) = sin𝑝𝑧.
Now, plugging𝑤(𝑧) = −𝑖⋅𝑢(𝑖⋅𝑧) into the left-hand side of (25),
we proceed in the sameway as in the proof ofTheorem20.The
most important difference is that for 𝑝 = 4𝑙, 𝑙 ∈ N, (−𝑖)𝑝−2 =
−1. Then, all following steps are analogous to those in proof
of Theorem 20 with several obvious changes.

Proof of Theorem 22. The proof is almost identical to the
proof of Theorem 20 with obvious changes (cf. the proof of
Theorem 21).

6. Real Restrictions of the Complex Valued
Solutions of (25) and (39) and Their
Maximal Domains of Extension as Real
Initial-Value Problems

Let us denote the restriction of the complex valued solution
of (25) and (39) to the real axis by ŝ𝑝(𝑥) and by ŝh𝑝(𝑥),
respectively. Since the equation in (25) and (39) contains
only integer powers of the solution and its derivatives, all
coefficients in the equation are real, and the initial conditions
in (25) and (39) are real, the value of sin𝑝𝑧 and sinh𝑝𝑧 must
be a real number for 𝑧 = 𝑥 + 𝑖𝑦 with −𝜋𝑝/2 < 𝑥 < 𝜋𝑝/2

and −𝛾𝑝 < 𝑥 < 𝛾𝑝 and 𝑦 = 0, respectively. Hence, ŝ𝑝(𝑥) and
ŝh𝑝(𝑥) attain only real values.

We start with the slightly more complicated case, which
is ŝh𝑝(𝑥). Moreover, since the solution of (39) is an analytic
function, it has the series representation

sinh𝑝𝑧 =
∞

∑

𝑘=1

𝑐𝑘𝑧
𝑘
, 𝑧 ∈ 𝐷𝑝, (56)

where 𝑐𝑘 ∈ R, 𝑘 ∈ N (note that sinh𝑝𝑧must be a real number
for any 𝑧 = 𝑥 + 𝑖𝑦 with −𝛾𝑝 < 𝑥 < 𝛾𝑝 and 𝑦 = 0).

Now we show that ŝh𝑝(𝑥) solves (33) (in the sense of
differential equations in real domain) for 𝑝 = 2(𝑚 + 1), 𝑚 ∈

N, and does not solve (33) (in the sense of differential
equations in real domain) for 𝑝 = 2𝑚 + 1, 𝑚 ∈ N, and
𝑥 < 0. For this purpose, we use an interesting consequence
of omitting of the modulus function.

Theorem 23. Let 𝑝 = 2𝑚+1, 𝑚 ∈ N, and 𝑥 ∈ (−𝜋𝑝/2, 𝜋𝑝/2).
Then,

ŝh𝑝 (𝑥) =
{{{

{{{

{

sinh𝑝𝑥, 𝑥 ∈ [0,
𝜋𝑝

2
) ,

sin𝑝𝑥 𝑥 ∈ (−
𝜋𝑝

2
, 0) .

(57)

Proof. For 𝑥 ∈ [0, 𝛾𝑝), the statement of Theorem follows
directly from the definition of real function sinh𝑝𝑥 and the
facts that sinh𝑝𝑥 ≥ 0 and sinh󸀠

𝑝
𝑥 ≥ 0 on [0, 𝛾𝑝).
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By the definition, the function sin𝑝𝑥 is the unique
solution of (6); that is,

− (
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝−2

𝑢
󸀠
)
󸀠

− (𝑝 − 1) |𝑢|
𝑝−2

𝑢 = 0,

𝑢 (0) = 0,

𝑢
󸀠
(0) = 1.

(58)

Assume that 𝑥 ∈ (−𝜋𝑝/2, 0). Then, sin𝑝𝑥 < 0 and sin󸀠
𝑝
𝑥 > 0.

Hence, we can rewrite (6) as

(𝑢
󸀠
)
𝑝−2

𝑢
󸀠󸀠
− 𝑢
𝑝−1

= 0,

𝑢 (0) = 0,

𝑢
󸀠
(0) = 1,

(59)

which is formally (39) but here considered in real domain.
By Lemma 16, (39) has the unique solution on 𝐷𝑝. Its

restriction to (−𝛾𝑝, 0)∩(−𝜋𝑝/2, 0) clearly satisfies (59). Hence,

sin𝑝𝑥 =
∞

∑

𝑘=1

𝑐𝑘𝑥
𝑘
= ŝh𝑝 (𝑥) ,

𝑥 ∈ (−𝛾𝑝, 0) ∩ (−
𝜋𝑝

2
, 0) .

(60)

Moreover, sin𝑝𝑥 = ∑
∞

𝑘=0
𝛼𝑘 ⋅ 𝑥 ⋅ |𝑥|

𝑘𝑝, which is generalized
Maclaurin series of sin𝑝𝑥 (see [2, Remark 6.6, p. 125])
convergent on (−𝜋𝑝/2, 𝜋𝑝/2). For (−𝜋𝑝/2, 0), we obtain

∞

∑

𝑘=0

𝛼𝑘 ⋅ 𝑥 ⋅ |𝑥|
𝑘𝑝
=

∞

∑

𝑘=0

𝛼𝑘 ⋅ (−1)
𝑘𝑝
⋅ 𝑥
𝑘𝑝+1

=: 𝐺 (𝑥) . (61)

Hence, theMaclaurin series𝐺(𝑥) converges on (−𝜋𝑝/2, 𝜋𝑝/2)
(but not towards sin𝑝𝑥 for 𝑥 > 0). From (60) we get

∞

∑

𝑘=1

𝑐𝑘𝑥
𝑘
= 𝐺 (𝑥) on (−𝛾𝑝, 0) (62)

and using Proposition A.2 we obtain 𝛾𝑝 = 𝜋𝑝/2.

Corollary 24. Let 𝑝 = 2𝑚 + 1,𝑚 ∈ N. Then, ŝh𝑝(𝑥) does not
solve (33) for 𝑥 ∈ (−𝜋𝑝/2, 0).

Proof. Since sin𝑝𝑥 ̸= sinh𝑝𝑥 for 𝑥 ̸= 0, the statement
of Corollary follows directly from Theorem 23 and the
uniqueness of solution of (33).

Theorem 25. Let 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N. Then, ŝh𝑝(𝑥) solves
(33) for 𝑥 ∈ (−𝛾𝑝, 𝛾𝑝). In particular, 𝛾𝑝 = 𝜋𝑝/2 for 𝑝 = 4𝑚+ 2,
𝑚 ∈ N.

Proof. Since 𝑝 is even, we can drop the absolute values in (33)
obtaining (59), which is formally (39) but here considered in
real domain. Since sinh𝑝(𝑧) solves (39) on 𝐷𝑝, its restriction
ŝh𝑝(𝑥) to (−𝛾𝑝, 𝛾𝑝)must solve (59) on (−𝛾𝑝, 𝛾𝑝).

For 𝑝 = 4𝑚 + 2, 𝑚 ∈ N, we get 𝛾𝑝 = 𝜋𝑝/2 by (46) in
Theorem 20.

Theorem 26. Let 𝑝 = 2𝑚+1, 𝑚 ∈ N, and 𝑥 ∈ (−𝜋𝑝/2, 𝜋𝑝/2).
Then,

ŝ𝑝 (𝑥) =
{{

{{

{

sin𝑝𝑥, 𝑥 ∈ [0,
𝜋𝑝

2
) ,

sinh𝑝𝑥, 𝑥 ∈ (−
𝜋𝑝

2
, 0) .

(63)

Proof. The proof follows the same steps as the proof of
Theorem 23 with obvious modifications.

Now we will consider (25) and (39) as real-valued prob-
lems and find their maximal domains of extension. Let

↔s
𝑝(𝑥)

and
↔

sh𝑝(𝑥) denote solutions with maximal domains of (25)

and (39), respectively. We also define
↔c
𝑝(𝑥)

def
= (d/d𝑥)

↔s
𝑝(𝑥)

and
↔

ch𝑝(𝑥)
def
= (d/d𝑥)

↔

sh𝑝(𝑥).

Theorem 27. Let 𝑝 = 2𝑚 + 1,𝑚 ∈ N. Then,

↔s
𝑝𝑥 =

{{

{{

{

sinh𝑝𝑥, 𝑥 ∈ (−∞, 0) ,

sin𝑝𝑥, 𝑥 ∈ [0,
𝜋𝑝

2
) ,

↔

sh𝑝𝑥 =
{

{

{

sin𝑝𝑥, 𝑥 ∈ (−
𝜋𝑝

2
, 0) ,

sinh𝑝𝑥, 𝑥 ∈ [0, +∞) .

(64)

Theorem 28. Let 𝑝 = 2(𝑚 + 1),𝑚 ∈ N. Then,

↔s
𝑝𝑥 = sin𝑝𝑥, 𝑥 ∈ R,

↔

sh𝑝𝑥 = sinh𝑝𝑥, 𝑥 ∈ R.

(65)

Proof of Theorems 27 and 28. The solutions with maximal
domain of extension are known for (6) and (33). The proof
uses uniqueness of the solutions of real initial-value problems
(6) and (33) and initial-value problems (25) and (39) con-
sidered in real domain and the fact that (6) and (33) can be
rewritten as (25) and (39) depending on 𝑢(𝑥) ≶ 0, 𝑢󸀠(𝑥) ≶ 0,
and the parity of the positive integer𝑝.Themain ideas of how
to combine these ingredients are contained in the proof of
Theorem 23.

It easily follows from Theorems 27 and 28 that
↔c
𝑝(𝑥) is

defined on (−∞, 𝜋𝑝/2) for 𝑝 = 2𝑚 + 1 and on R for 𝑝 =

2(𝑚+1), 𝑚 ∈ N. Similarly,
↔

ch𝑝(𝑥) is defined on (−𝜋𝑝/2, +∞)

for 𝑝 = 2𝑚 + 1 and on R for 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N.
Moreover, functions

↔s
𝑝(𝑥) and

↔c
𝑝(𝑥) satisfy the complex 𝑝-

trigonometric identity (29); that is,

(
↔s
𝑝 (𝑥))

𝑝

+ (
↔c
𝑝 (𝑥))

𝑝

= 1. (66)
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In[1] := pip[p ] =

Integrate[1/(1 - s∧p)∧(1/p), {s, 0, 1},

Assumptions -> p > 1]

(* assigns definition to function pip which returns pi p/2 *)

Out[1] =
𝜋csc(𝜋/𝑝)

𝑝

In[2] := s3[x ] = (u[x]/.

NDSolve[

{u'[x] == (v[x])∧(1/2), v'[x] == - 2 u[x]∧2,

u[0] == 0, v[0] == 1},

{u, v}, {x, -5, pip[3]}][[1]])

(* assigns definition to auxiliar function s3 *)

In[3] := sh3[x ] = (u[x]/.

NDSolve[

{u'[x] == (v[x])∧(1/2), v'[x] == 2 u[x]∧2,

u[0] == 0, v[0] == 1},

{u, v}, {x, -pip[3], 5}][[1]])

(* assigns definition to auxiliar function sh3 *)

In[4] := sin3[x ] = (u[x]/.

NDSolve[{u'[x] == (Abs[v[x]])∧(1/2) Sign[v[x]],

v'[x] == -2 Abs[u[x]]*u[x],

u[0] == 0, v[0] == 1},

{u,v}, {x, -4 pip[3], 4 pip[3]}][[1]])

(* assigns definition to auxiliar function sin3 *)

Pseudocode 2: Mathematica, v. 9.0 code. Code for pip[p ] computes 𝜋𝑝/2 for given argument 𝑝. Code for s3[x ] computes
↔

𝑠
3(𝑥) for

𝑥 ∈ (−5, 𝜋3/2) ⊊ (−∞, 𝜋3/2), code for sh3[x ] computes
↔

sh3(𝑥) for 𝑥 ∈ (𝜋3/2, 5) ⊊ (𝜋3/2, +∞), and code for sin3[x ] computes real-valued
function sin3(𝑥) for 𝑥 ∈ (−2𝜋3, 2𝜋3) ⊊ R.

Analogously, functions
↔

sh𝑝(𝑥) and
↔

ch𝑝(𝑥) satisfy the complex
𝑝-hyperbolic identity (44); that is,

(
↔

ch𝑝 (𝑥))
𝑝

− (
↔

sh𝑝 (𝑥))
𝑝

= 1. (67)

7. Visualizations

In this section, we provide visualizations of theoretical results
from previous sections. To generate graphical output, we
need to approximate special functions from previous sections
numerically. Note that the standard numerical methods
(available in Mathematica or Matlab�) can handle only
initial-value problems on real intervals. Thus, in our numeri-
cal calculations we need to consider initial-value problems in
real domain. This is not a problem for (6) and (33). For (25)
and (39), we calculate either the partial sum of the Maclaurin
series of solutions or we calculate functions

↔s
𝑝(𝑥) and

↔

sh𝑝(𝑥) which come from real initial-value problems. In our
graphical outputs, the solutions of real initial-value problems
are numerically approximated by the NDSolve command of
Mathematica, version 9.0. For the convenience of the reader,
we provide some source code. In Pseudocode 2, we list source

code for approximation of functions
↔s
3(𝑥),
↔

sh3(𝑥), and sin3𝑥.
Figure 1 compares graphs of sin3𝑥 and

↔s
3(𝑥) for 𝑥 ∈

(−𝜋3/2, 𝜋3/2). Figure 2 compares graphs of
↔s
3(𝑥) and

𝑀̂3;28(𝑥) for 𝑥 ∈ (−𝜋3/2, 𝜋3/2). Here, 𝑀̂3;28(𝑥) is partial sum
of𝑀3(𝑥) up to the order 28, which is

𝑀̂3;28 (𝑥) = 𝑥 −
𝑥
4

12
−
𝑥
7

252
−
83 𝑥
10

90 720
−
1 817 𝑥

13

7 076 160

−
199 691 𝑥

16

2 377 589 760
−
12 324 719 𝑥

19

406 567 848 960

−
22 008 573 061 𝑥

22

1 878 343 462 195 200

−
107 355 387 043 𝑥

25

22 540 121 546 342 400

−
89 152 153 354 993 𝑥

28

44 304 862 911 490 621 440
.

(68)

Since the difference |
↔s
3(𝑥) − 𝑀̂3;28(𝑥)| varies in order of

several magnitudes throughout the radius of convergence
𝜋3/2, we use logarithmic scale on the vertical axis.

We can also compute the functions
↔s
𝑝(𝑥) and

↔

sh𝑝(𝑥) by
inverting formulas (8) and (36) for arcsin𝑝𝑥 and argsinh𝑝𝑥,
respectively. It turns out that this approach provides more
precision than solving differential equation and enables

computing values of
↔c
𝑝(𝑥) and

↔

ch𝑝(𝑥) using identity (66)
and identity (67), respectively. We provide sample code for

computing
↔

sh3(𝑥) for 𝑥 ∈ (𝜋3/2, 5) ⊊ (𝜋3/2, +∞) in
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𝜋3/4 𝜋3/2−𝜋3/2 −𝜋3/4

−1.5

−1.0

−0.5

0.5

1.0

1.5

(a)

𝜋3/4 𝜋3/2−𝜋3/2 −𝜋3/4

0.1

0.2

−0.2

−0.1

(b)

Figure 1: (a) Real function sin3𝑥 (short-dashed line) versus
↔s
3(𝑥) (dashed line). (b) Plot of sin3𝑥 −

↔s
3(𝑥).

𝜋3/4 𝜋3/2−𝜋3/2 −𝜋3/4

0.5

1.0

−1.0

−0.5

(a)

0 𝜋3/4−𝜋3/4 𝜋3/2

10
−15

10
−10

10
−5

10
−1

(b)

Figure 2: (a)
↔s
3(𝑥) versus 𝑀̂3;28 (the partial sum of𝑀3(𝑥) up to the order 28, which is (68)). (b) The logarithmic plot of |

↔s
3(𝑥) − 𝑀3(𝑥)|.

Pseudocode 3. Analogously, we wrote a code for computing
↔

sh4(𝑥),
↔

sh30(𝑥),
↔

sh31(𝑥),
↔s
3(𝑥),
↔s
4(𝑥),
↔s
30(𝑥), and

↔s
31(𝑥).

In the same way, as we defined real function argsinh𝑝𝑥 by
(36), we can define complex valued function argsinh𝑝𝑧 by

argsinh
𝑝
𝑧

def
= ∫

𝑧

0

1

(1 + 𝑠𝑝)
1/𝑝

d𝑠

= 𝑧
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, − 𝑧
𝑝
) , 𝑧 ∈ D ⊊ C

(69)

for any 𝑝 = 𝑚 + 2. Note that the integrand has poles at 𝑧
satisfying 1 + 𝑧𝑝 = 0. Thus, the function argsinh𝑝𝑧 is not an
entire function. In particular, for 𝑝 = 2𝑚 + 1, there is a pole
at 𝑧 = −1. In Figure 3, we compare graphs of argsinh𝑝𝑥 for
𝑝 = 2, 3, 31 and 𝑥 ∈ (−3, 3) ⊊ R, with the restriction of the
complex valued function argsinh𝑝𝑧 for 𝑝 = 2, 3, 31, where
𝑧 = 𝑥 + 𝑖𝑦, where 𝑦 = 0, 𝑥 ∈ (−3, 3) for 𝑝 = 2 and 𝑥 ∈ (−1, 3)
for𝑝 = 3, 31, andwith argsinh𝑝𝑥 = argsinh𝑝𝑧 for𝑝 = 2, 4, 30,
𝑥 ∈ (−3, 3), 𝑦 = 0, and 𝑧 = 𝑥 + 𝑖𝑦.

In Figures 4, 5, and 6, we compare graphs of real-valued
functions: sinh𝑥, sinh4𝑥, sinh30𝑥, cosh𝑥, cosh4𝑥, cosh30𝑥
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(c)

Figure 3: (a) argsinh𝑝𝑥(= 𝑥 2𝐹1(1/𝑝, 1/𝑝, 1 + 1/𝑝, −|𝑥|
𝑝
)) for 𝑝 = 2, 3, 31, and 𝑥 ∈ (−3, 3). (b) argsinh𝑝𝑧(= 𝑧 2𝐹1(1/𝑝, 1/𝑝, 1 + 1/𝑝, −𝑧

𝑝
)) for

𝑝 = 2, 3, 31. Here, 𝑧 = 𝑥 + 𝑖𝑦, where 𝑦 = 0, 𝑥 ∈ (−3, 3) for 𝑝 = 2, and 𝑥 ∈ (−1, 3) for 𝑝 = 3, 31. (c) argsinh𝑝𝑥 = argsinh𝑝𝑧 for 𝑝 = 2, 4, 30,
𝑥 ∈ (−3, 3), 𝑦 = 0, and 𝑧 = 𝑥 + 𝑖𝑦.

In[2] := auxAgSh3[s ?NumberQ] :=

s Hypergeometric2F1[1/3, 1/3, 1 + 1/3, -s∧3]

(* assigns definition to auxiliar function auxAgSh3 *)

In[3] := sh3inv[x ?NumericQ] :=

(s/. FindRoot[auxAgSh3[s] - x, {s, 0, -1, 20}])

(* assigns definition to function sh3inv *)

In[4] := Plot[

sh3inv[x], {x, -pip[3], 2},

PlotStyle -> Thick, PlotRange -> {-2, 7}]

(* plots the graph *)

Pseudocode 3: Mathematica v. 9.0 code. Function sh3inv returns values of
↔

sh3(𝑥) for 𝑥 ∈ (𝜋3/2, 5) ⊊ (𝜋3/2, +∞) using inversion of the
formula (36) for argsinh3𝑥. This approach provides more precision than solving differential equation.
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(b)

Figure 4: (a) sinh𝑥 (short-dashed line), sinh4𝑥 (dashed line), and sinh30𝑥 (solid line). (b) cosh𝑥 (short-dashed line), cosh4𝑥 (dashed line),
and cosh30𝑥 (solid line).
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−2

−1

1

2

3

(a)

1 2−2 −1

−3
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−1

1

2

3

(b)

Figure 5: (a) sinh𝑥 (short-dashed line), sinh3𝑥 (dashed line), and sinh31𝑥 (solid line). (b) cosh𝑥 (short-dashed line), cosh3𝑥 (dashed line),
and cosh31𝑥 (solid line).

(see Figure 4), sinh𝑥, sinh3𝑥, sinh31𝑥, cosh𝑥, cosh3𝑥,

cosh31𝑥 (see Figure 5),
↔

sh3(𝑥),
↔

sh31(𝑥),
↔

ch3(𝑥), and
↔

ch31(𝑥)
(see Figure 6).

Figure 7 illustrates the relation between sin3𝑥, sinh3𝑥,
↔s
3(𝑥), and

↔

sh3(𝑥), which are due toTheorem 27.
It follows from identity (66) and identity (67) that

the pairs of functions (
↔s
𝑝(𝑥),
↔c
𝑝(𝑥)) and (

↔

sh𝑝(𝑥),
↔

ch𝑝(𝑥)),
respectively, are parametrizations of Lamé curves restricted
to the first and fourth quadrant, see [23, Book V, Chapter V,

pp. 384–407] and [24]. Since the Lamé curves are frequently
used in geometrical modeling, we provide graphical compar-
ison of the Lamé curves and phase portraits of initial-value
problems (25) and (39) in real domain on Figures 8 and 9,
respectively.

8. Conclusion

We have discussed real and complex approaches of how to
define generalized trigonometric and hyperbolic functions.
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Figure 6: (a) sinh𝑥 (short-dashed line),
↔

sh3(𝑥) (dashed line), and
↔

sh31(𝑥) (solid line). (b) cosh𝑥 (short-dashed line),
↔

ch3(𝑥) (dashed line),

and
↔

ch31(𝑥) (solid line). Note that
↔

sh𝑝(𝑥) and
↔

ch𝑝(𝑥) are defined on (−𝜋𝑝/2, +∞) for integer 𝑝 > 1 odd.
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Figure 7: (a) sin3𝑥, sinh3𝑥, and
↔s
3(𝑥). (b) sin3𝑥, sinh3𝑥, and

↔

sh3(𝑥).

The real approach is motivated by minimization of Rayleigh
quotient (see, e.g., [1, Equation (3.4), p. 51] and references
therein):

∫
𝜋𝑝

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝

d𝑥

∫
𝜋𝑝

0
|𝑢|
𝑝 d𝑥

(70)

in 𝑊
1,𝑝

0
(0, 𝜋𝑝). This leads to (4) with 𝜆 = 𝑝 − 1 and

to initial-value problem (6) in turn. Thus, from this point
of view, the solution of (6) and its derivative can be seen
as natural generalizations of the functions sine and cosine.
Unfortunately, presence of absolute value in (6) does not
allow for extension to complex domain for general 𝑝 > 1.
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Figure 8: Bold lines: dependence of 𝑢 =
↔s
𝑝(𝑥) on 𝑢

󸀠
=
↔c
𝑝(𝑥). Both bold and thin lines: dependence of restriction to real axes of derivative

of solution of (29) on the restriction to real axes of the solution itself (Lamé curves).
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Figure 9: Bold lines: dependence of 𝑢 =
↔

sh𝑝(𝑥) on 𝑢
󸀠
=
↔

ch𝑝(𝑥). Both bold and thin lines: dependence of restriction to real axes of derivative
of solution of (44) on the restriction to real axes of the solution itself (Lamé curves).
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Table 1: Summary of results according to discussed functions and their domain.

𝑝 ∈ Function Domain IVP Results

(1, +∞) sin𝑝𝑥 R (6) Propositions 2–5;
Theorems 6, 7, 8, 23, and 26–28

(1, +∞) sinh𝑝𝑥 R (33) Theorems 23 and 26–28

N\{1} sin𝑝𝑧 𝐵𝑝 (25) Propositions 11 and 12; Lemma 13;
Theorems 6, 7, 8, 9, 15, 20, and 21

N\{1} sinh𝑝𝑧 𝐷𝑝 (39) Lemmas 16 and 18;
Theorems 20 and 22

Table 2: Interrelations between 𝑝-trigonometric and 𝑝-hyperbolic
functions. Note that the relations must be symmetric.

sin𝑝𝑥 sinh𝑝𝑥 sin𝑝𝑧 sinh𝑝𝑧
sin𝑝𝑥 — (57), (63)–(64) — —
sinh𝑝𝑥 sym. — — —
sin𝑝𝑧 sym. sym. (49) (46)
sinh𝑝𝑧 sym. sym. sym. (50)

It was shown in [2] that functions sin𝑝𝑥 are real analytic
functions for any even integer 𝑝 > 2. Moreover, there is no
need to write absolute value in (6) for 𝑥 ∈ [−𝜋𝑝/2, 𝜋𝑝/2]

provided 𝑝 > 2 is an even integer.
It turns out that the relation between the real and complex

approach is not as smooth as in the classical case 𝑝 = 2. Thus,
we summarize our results in Tables 1 and 2.

We also discussed the Lamé curves, which are important
curves in geometrical modeling. We hope this will stimu-
late interest in 𝑝-trigonometric and 𝑝-hyperbolic functions
among the geometric-modeling community.

Appendix

A. Proof of Theorem 6

We will use the following result to proveTheorem 6.

Proposition A.1 (see [15], Theorem 2.4b on p. 97). Let the
formal power series 𝐹 def

= 𝑎1𝑥 + 𝑎2𝑥
2
+ ⋅ ⋅ ⋅ , 𝑎1 ̸= 0, have a

positive radius of convergence. The inversion 𝐹−1 of 𝐹 then also
has positive radius of convergence.

Let us note that the term reversion of series is used in [15]
instead of inversion of series (see [15], p. 46).

Proposition A.2 (see [25], Theorem 16.6 on p. 352). If the
sum of two power series in the variable 𝑧 − 𝑧0 coincides on a
set of points 𝐸 for which 𝑧0 is a limit point and 𝑧0 ∉ 𝐸, then
identical powers of 𝑧 − 𝑧0 have identical coefficients; that is,
there is a unique power series in the variable 𝑧 − 𝑧0 which has
given sum on the set 𝐸.

Proof of Theorem 6. Let us remember that 𝑇𝑝(𝑥) is given by
(19), which is the formal inverse of arcsin𝑝𝑥 and 𝑀𝑝(𝑥) is
given by formula (20). The idea is to prove that there exists
𝛿𝑝 > 0 small enough such that both series 𝑇𝑝(𝑥) and𝑀𝑝(𝑥)
have the sum equal to uniquely defined value sin𝑝𝑥 at any 𝑥 ∈
[0, 𝛿𝑝). Then, 𝑇𝑝(𝑥) = 𝑀𝑝(𝑥) on [0, 𝛿𝑝) and the assumptions
of Proposition A.2 are satisfied on 𝑧𝑛 = 𝛿𝑝/(𝑛 + 1). It follows
that𝑇𝑝(𝑥)has identical coefficients as𝑀𝑝(𝑥)has and so𝑇𝑝(𝑥)
also converges on (−𝜋𝑝/2, 𝜋𝑝/2).

By Propositions 4 and 5, 𝑀𝑝(𝑥) converges to sin𝑝𝑥 for
𝑝 > 2 even on (−𝜋𝑝/2, 𝜋𝑝/2) and for 𝑝 > 1 odd on [0, 𝜋𝑝/2),
respectively. It remains to show that there exists 𝜎𝑝 > 0 such
that

𝑇𝑝 (𝑥) = sin𝑝𝑥 (A.1)

on [0, 𝜎𝑝). Since 𝑇𝑝(𝑥) is defined as formal inverse of
arcsin𝑝𝑥, (A.1) holds on domain of convergence of 𝑇𝑝(𝑥).
Since for 𝑥 ∈ [0, 1]

arcsin𝑝𝑥 = 𝑥 ⋅ 2𝐹1 (
1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, 𝑥
𝑝
)

=

∞

∑

𝑘=0

Γ (𝑘 + 1/𝑝)

(𝑘 ⋅ 𝑝 + 1) ⋅ 𝑘! ⋅ Γ (1/𝑝)
𝑥
𝑘𝑝+1

,

(A.2)

where right-hand side series has radius of convergence equal
to 1, hence the existence of 𝜎𝑝 ≤ 𝜋𝑝/2 is provided by
Proposition A.1 and 𝛿𝑝 = 𝜎𝑝.

B. Proof of Theorem 7

By Theorem 6,𝑀𝑝 = 𝑇𝑝. Hence, we can prove the statement
of Theorem 7 for 𝑇𝑝 instead of𝑀𝑝.

Assume by contradiction that there exists 𝑎𝑛 ̸= 0 for some
𝑛 such that 𝑛 − 1 is not divisible by 𝑝. For this purpose, let
us denote by 𝑏𝑗 the 𝑗th coefficient of the Maclaurin series of
arcsin𝑝 corresponding to 𝑗th power. From (18), we get

𝑏𝑗 =

{{

{{

{

Γ (𝑙 + 1/𝑝)

(𝑙𝑝 + 1) ⋅ 𝑙! ⋅ Γ (1/𝑝)
if 𝑗 = 𝑙 ⋅ 𝑝 + 1 for some 𝑙 ∈ N ∪ {0} ,

0 otherwise.
(B.1)
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Since 𝑇𝑝 is the formal inverse series of

arcsin𝑝𝑥 =
∞

∑

𝑗=1

𝑏𝑗 ⋅ 𝑥
𝑗
, (B.2)

the coefficients 𝑎𝑛 can be computed from the formula

𝑎𝑛 =
1

𝑛 ⋅ 𝑏𝑛
1

∑
𝑚1 ,𝑚2,...,𝑚𝑛−1

(−1)
𝑚1+𝑚2+⋅⋅⋅+𝑚𝑛−1 ⋅

𝑛 (𝑛 + 1) ⋅ . . . ⋅ (𝑛 − 1 + 𝑚1 + 𝑚2 + 𝑚3 + ⋅ ⋅ ⋅ + 𝑚𝑖 + ⋅ ⋅ ⋅ + 𝑚𝑛−1)

𝑚1!𝑚2!𝑚3! . . .
⋅ (
𝑏2

𝑏1
)

𝑚1

⋅ (
𝑏3

𝑏1
)

𝑚2

(
𝑏4

𝑏1
)

𝑚3

⋅ ⋅ ⋅ (
𝑏𝑖+1

𝑏1
)

𝑚𝑖

⋅ ⋅ ⋅ (
𝑏𝑛

𝑏1
)

𝑚𝑛−1

,

(B.3)

where the summation is taken over all 𝑚1, 𝑚2, 𝑚3, . . . ∈ N ∪

{0} such that

𝑚1 + 2𝑚2 + 3𝑚3 + ⋅ ⋅ ⋅ + 𝑖𝑚𝑖 ⋅ ⋅ ⋅ (𝑛 − 1)𝑚𝑛−1 = 𝑛 − 1, (B.4)

and if 𝑚𝑖 = 0, then the corresponding term (𝑏𝑖+1/𝑏1)
𝑚𝑖 is

dropped from the product on the last line of (B.3).
Let us note that this procedure is fully described in [14],

p. 411–413 and it requires that 𝑏1 ̸= 0. Note that

𝑏1 =
Γ (1/𝑝)

1 ⋅ 1! ⋅ Γ (1/𝑝)
= 1 (B.5)

by (B.1).
Now, let us fix𝑚1, 𝑚2, 𝑚3, . . . , 𝑚𝑛−1 satisfying (B.4). If 𝑏𝑖 =

0 and𝑚𝑖 ̸= 0 for at least one 𝑖 = 1, 2, 3, . . . , 𝑛−1, the summand
of sum (B.3) corresponding to𝑚1, 𝑚2, 𝑚3, . . . equals 0. Taking
into account (B.1), 𝑏𝑖 = 0whenever 𝑖 ̸= 𝑙𝑝+1 for any 𝑙 ∈ N∪{0}.
This leads us to conclusion that nonzero terms in (B.3) can be
formed only from 𝑚𝑖’s where 𝑖 is divisible by 𝑝. Thus, (B.4)
implies that the following equation must be satisfied:

𝑝 ⋅ 𝑚𝑝 + 2𝑝 ⋅ 𝑚2𝑝 + 3𝑝 ⋅ 𝑚3𝑝 + ⋅ ⋅ ⋅ + 𝑙 ⋅ 𝑝 ⋅ 𝑚𝑙⋅𝑝 + ⋅ ⋅ ⋅

+ 𝑘 ⋅ 𝑝 ⋅ 𝑚𝑘⋅𝑝 = 𝑛 − 1,

(B.6)

where

𝑘 = ⌊
𝑛 − 1

𝑝
⌋ . (B.7)

But here the left-hand side is a multiple of 𝑝 while the right-
hand side 𝑛 − 1 is not divisible by 𝑝 by our assumption. This
is a contradiction.
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deformation along p of a Leray-Schauder degree result and
existence for (|𝑢󸀠|𝑝−2𝜇󸀠) + 𝑓(𝑡, 𝜇) = 0, 𝜇(0) = 𝜇(𝑇) = 0, 𝑝 > 1,”
Journal of Differential Equations, vol. 80, no. 1, pp. 1–13, 1989.

[7] P. Lindqvist, “Some remarkable sine and cosine functions,”
Ricerche di Matematica, vol. 44, no. 2, pp. 269–290, 1995.

[8] P. Lindqvist and J. Peetre, “Two remarkable identities, called
twos, for inverses to some Abelian integrals,” The American
Mathematical Monthly, vol. 108, no. 5, pp. 403–410, 2001.

[9] W. E. Wood, “Squigonometry,” Mathematics Magazine, vol. 84,
no. 4, pp. 257–265, 2011.

[10] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, andMathematical Tables, vol.



18 Abstract and Applied Analysis

55 of National Bureau of Standards Applied Mathemat-ics, For
Sale by the Superintendent of Documents, U.S. Government
Printing Office, Washington, DC, USA, 1964.

[11] G. E. Andrews, R. Askey, and R. Roy, Special Functions, vol. 71
of Encyclopedia of Mathematics and Its Applications, Cambridge
University Press, Cambridge, UK, 1999.

[12] J. Benedikt, P. Girg, and P. Takáč, “On the Fredholm alternative
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MACLAURIN SERIES FOR sinp WITH p AN INTEGER
GREATER THAN 2

LUKÁŠ KOTRLA

Abstract. We find an explicit formula for the coefficients of the generalized

Maclaurin series for sinp provided p > 2 is an integer. Our method is based

on an expression of the n-th derivative of sinp in the form

2n−2−1X
k=0

ak,n sinp−1
p (x) cos2−p

p (x) , x ∈ (0,
πp

2
),

where cosp stands for the first derivative of sinp. The formula allows us to
compute the nonzero coefficients

αn =
limx→0+ sin

(np+1)
p (x)

(np+ 1)!
.

1. Introduction

Let us consider initial value problem

−(|u′|p−2u′)′ − (p− 1)|u|p−2u = 0 ,

u(0) = 0 , u′(0) = 1 ,
(1.1)

where p > 1 is a given parameter and u : R→ R is a function such that u ∈ C1(R)
and |u′|p−2u′ ∈ C1(R). It is known that the solution of (1.1) exists and is unique
(see Elbert [9]). Since the pioneering work of del Pino, Elgueta and Manásevich [8],
this solution is usually denoted by sinp. Note that it generalizes the sine function
which is the unique solution of (1.1) for p = 2. Moreover, the function sinp also
satisfies the generalized trigonometric identity

| sinp(x)|p + | cosp(x)|p = 1 , x ∈ R , (1.2)

where cosp(x) := d
dx sinp(x), which resembles the classical trigonometric identity

for p = 2. We also define

πp := 2
∫ 1

0

1
(1− sp)1/p

ds =
2π

p sin(π/p)
.

Let us note that the function sinp is odd, 2πp-periodic, and sinp(x) = sinp(πp−x)
(see, e.g., [9]). These properties are frequently used when the function sinp is
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evaluated numerically. In fact, any evaluation of sinp at an arbitrary point x ∈ R
can be reduced to an evaluation of sinp at a point in the interval [0, πp/2].

It turns out that the system of functions {sinp(kπp x)}+∞k=1 has applications in
approximation theory, see Binding et al. [4] for pioneering work in this direction.
Indeed, there exists p0 > 1 such that, for p > p0, {sinp(kπp x)}+∞k=1 forms a Riesz
basis of L2(0, 1) and a Schauder basis of Lr(0, 1) for any 1 < r < +∞. The
approach from [4] was corrected and improved by Bushell and Edmunds [7] where
the value p0 was established as the solution of the transcendental equation

2π
p0 sin(π/p0)

=
2π2

π2 − 8
.

Boulton and Lord [5] use the basis {sinp(kπp x)}+∞k=1 in their numerical implementa-
tion of the Galerking method for finding an approximate solution to the boundary-
initial value problem

∂u

∂t
(x, t)− ∂

∂x

(∣∣∂u
∂x

(x, t)
∣∣p−2 ∂u

∂x
(x, t)

)
= g(x)

u(x, 0) = 0 , x ∈ (0, 1) ,

u(0, t) = u(1, t) = 0 t > 0 ,

(1.3)

where g ∈ L2(0, 1). It appears that this choice of basis leads to very accurate results
using only few terms of this basis. However, a main drawback of the Galerkin
method in [5] is the evaluation of the values of the function sinp on [0, πp/2]. In [5],
the inverse function of sinp,

arcsinp(x) :=
∫ x

0

1
(1− sp)1/p

ds , x ∈ [0, 1] , (1.4)

is used for that purpose. The function sinp on [0, πp/2] is then evaluated using
numerical inverse of the function arcsinp, which is a very time consuming process.
Since the problem (1.3) and its generalizations appear in various applications, see
e.g. Smreker [23] (bulding of wells), Leibenson [15] (extraction of oil and natural
gas), Wilkins [24] (bulding of rock-fill dams), Aronsson et al. [1], Evans et al. [10]
(sandpile growth), Kuijper [13] (image analysis), and Bermejo et al. [3] (climatol-
ogy), it is important to find a more efficient numerical implementations of sinp. Last
but not least, the generalized Prüfer transform using sinp and its derivative appears
to be a very efficient theoretical tool in studying various initial and/or boundary
value problems for quasilinears equation of the type (or some of its generalization)

−(|u′|p−2u′)′ − q(x)|u|p−2u = f(x)

(under various conditions on q and f) see, e.g., [9], Reichel and Walter [21], and/or
Benedikt and Girg [2]. In Brown and Reichel [6], a numerical method based on
the Prüfer transform was proposed. Again the main drawback the method was the
lack of an efficient numerical implementation of sinp. To address the issue in this
paper we obtain explicit formulas for coefficients of the Maclaurin series of sinp.
This is very difficult task in general and we are not able to deal with this problem
for all p > 1. As a starting point for further research in this direction, we provide
such formulas for any integer p bigger than 2. Let us note that even this partial
result can already be used in practical applications, since (1.3) with p → +∞ is
considered as a model for sandpile growth (see [1] and [10] for more details).
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More precisely, our goal is to find Maclaurin series for sinp provided p is even
and generalized Maclaurin series for sinp provided p is odd. Generalized Maclaurin
series is defined as

+∞∑
n=0

αnx|x|rn, r ≥ 1 .

Peetre [20] conjectured that the radius of convergence of generalized Maclaurin
series for sinp is πp/2 for any p > 1. Local convergence of generalized Maclaurin
series was studied in Paredes and Uchiyama [19]. Peetre’s conjecture [20] was
proved in Girg and Kotrla [11] for when p > 2 is an integer. It remains to find the
coefficients of the (generalized) Maclaurin series. One can employ (1.4) and follow
the ideas presented in Lang and Edmunds [14]. Since

arcsinp(x) =
∫ x

0

1
(1− sp)1/p

ds = x 2F1(
1
p
,

1
p
, 1 +

1
p

;xp), x ∈ [0, 1) ,

where 2F1(a, b, c; z) is Gauss’s hypergeometric function,

arcsinp(x) =
+∞∑
k=0

Γ(k + 1
p )

(kp+ 1)Γ( 1
p )
xkp+1

k!
, (1.5)

where Γ stands for the gamma function. We can obtain desired coefficients using
the well-known procedure for inverting power series (see, e.g., Morse and Fesh-
bach [18, p. 411 - 413]). Our aim is to derive the coefficients independently of the
inverse function. It was shown in Girg and Kotrla [12] that the nonzero coefficients
correspond only to the monomials xkp+1, k ∈ N. Then

sinp(x) =
+∞∑
n=0

sin(np+1)
p (0)

(np+ 1)!
xnp+1 x ∈ (−πp

2
,
πp

2
) ,

for p even. In addition, it was proved in [12] that the series
+∞∑
n=0

limx→0+ sin(np+1)
p (x)

(np+ 1)!
xnp+1

coincides on [0, πp/2) with the series obtained by formal inversion of (1.5) provided
p odd. Hence, by the oddness of sinp,

sinp(x) =
+∞∑
n=0

limx→0+ sin(np+1)
p (x)

(np+ 1)!
x|x|np , x ∈ (−πp

2
,
πp

2
).

It remains then to find an explicit formula for

αn :=
1

(np+ 1)!
lim

x→0+
sin(np+1)

p (x), p ∈ N, p > 2 .

Notation: In the presented paper, the symbol
∏

represents the product of a
(possibly finite) sequence of terms as usual. In addition, we define

j2∏
i=j1

bi = 1

for any sequence bi provided j1 = j2 + 1.
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Theorem 1.1. Let p > 2 be an integer and

sinp(x) =
+∞∑
n=0

αnx|x|np , x ∈ (−πp

2
,
πp

2
). (1.6)

Then α0 = 1, α1 = − 1
p(p+1) , and for n ≥ 2,

αn =
(−1)n

(np+ 1)!

p∑
i1=1

i1 6=p−1

2p∑
i2=i1+1
i2 6=2p−1

. . .

(n−1)p∑
in−1=in−2+1

in−1 6=(n−1)p−1

[ i1−1∏
m1=1

(p− 1− (m1 − 1))
](

1− (p− 1− (i1 − 1))
)

×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(1− (2(p− 1)− (i2 − 2))) . . .

×
[ in−1−1∏

mn−1=in−2+1

((n− 1)(p− 1)− (mn−1 − (n− 1)))
](

1− ((n− 1)

× (p− 1)− (in−1 − (n− 1)))
)
[n(p− 1)− (in−1 − n+ 1)]!

(1.7)

The proof of Theorem 1.1 is based on a method of rewriting higher derivatives
of sinp introduced in [11]. The method is described again in Section 2 for the
convenience of the reader. Theorem 1.1 is proved in Section 3.

Let us note that the above-mentioned definitions of sinp and cosp are not the
only ones found in the literature (see, e.g., Lindqvist [16]).

2. Higher order derivatives

Let us state some basic notation from formal languages.

Definition 2.1. (Salomaa and Soittola [22], I.2, p. 4, and/or Manna [17], p.
2–3, p. 47, and p. 78) An alphabet (denoted by V ) is a finite nonempty set of
letters. A word (denoted by w) over an alphabet V is a finite string of zero or more
letters from the alphabet V . The word consisting of zero letters is called the empty
word. The set of all words over an alphabet V is denoted by V ∗ and the set of all
nonempty words over an alphabet V is denoted by V +. For strings w1 and w2 over
V , their juxtaposition w1w2 is called catenation of w1 and w2, in operator notation
cat : V ∗ × V ∗ → V ∗ and cat(w1, w2) = w1w2. We also define the length of the
word w, in operator notation len : V ∗ → N ∪ {0}, which for a given word w yields
the number of letters in w when each letter is counted as many times as it occurs
in w. We also use reverse function rev : V ∗ → V ∗ which reverses the order of the
letters in any word w (see [17, p. 47, p. 78]).

We consider the alphabet V = {0, 1} and the set of all nonempty words V +.
Thus words in V + are, e.g.,

“0”, “1”, “01”, “10”, “11” · · · .
For instance, cat(“1110”, “011”) = “1110011”, and

rev(“010011000”) = “000110010” , len(“010011000”) = 9 .
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Table 1. Differentiability of sinp(x)

p, k x in (0, πp/2) (−πp/2, πp/2) R
p = 2 C∞ C∞ C∞

p = 2k, k ∈ N \ {1} C∞ C∞ C1

p = 2k + 1, k ∈ N C∞ Cp C1

p ∈ R \ N, p > 2 C∞ Cdpe C1

p ∈ (1, 2) C∞ C2 C2

Let m ∈ N, k ∈ N ∪ {0}, 0 ≤ k ≤ 2m−2 − 1 and (k)2,n−2 be the string of bits of
length m− 2 which represents binary expansion of k (it means, e.g., for k = 3 and
m = 5, (3)2,5−2 = “011”).

The differentiability of sinp(x) at x = 0 was studied in [11] leading to the results
in Table 1.

In particular, sinp(·) ∈ C∞(0, πp/2). Let

T := {a sinq
p(·) cos1−q

p (·) : a, q ∈ R} ,
and Ds : T → T and Dc : T → T be defined as follows:

Ds a sinq
p(·) cos1−q

p (·) =

{
aq sinq−1

p (·) cos1−(q−1)
p (·) , q 6= 0 ,

0 , q = 0 ,
(2.1)

and

Dc a sinq
p(·) cos1−q

p (·) =

{
−a(1− q) sinq+p−1

p (·) cos1−(q+p−1)
p (·) , q 6= 1 ,

0 , q = 1 .
(2.2)

Finally, we define Dk,m in two steps.
Step 1 We create an ordered (m−2)-tuple dk,m−2 ∈ {Ds,Dc}m−2 (cartesian prod-

uct of sets {Ds,Dc} of length m − 2) from rev((k)2,m−2) such that for
1 ≤ i ≤ m − 2, dk,m−2 contains Ds on the i-th position if rev((k)2,n−2)
contains “0” on the i-th position, and dk,m contains Dc on the i-th position
if rev((k)2,m−2) contains “1” on the i-th position (it means, e.g., for k = 3,
and m = 5, we obtain d3,5−2 = (Dc,Dc,Ds)).

Step 2 We define Dk,m as the composition of operators Ds,Dc in the order they
appear in the ordered m − 2-tuple dk,m−2 (it means, e.g., for k = 3, and
m = 5, we obtain D3,5 = (Dc ◦Dc ◦Ds)).

Let us point out that it is possible to recover the index k from the positions of Dc

in Dk,m. We will denote by j(k) ≥ 0 the number of Dc in Dk,m and, if j(k) 6= 0,
we denote by i1, i2, . . . , ij(k) its positions counted from back (i.e., in the order of
application of Ds and/or Dc). Then

k = 2m−2−(i1−1) + 2m−2−(i2−1) + . . .+ 2m−2−(ij(k)−1) . (2.3)

If j(k) = 0, k = 0.
Definition 2.1 and the definition of Dk,m are taken from [11] in almost unchanged

form for the convenience of the reader who is not familiar with our previous work.
However, the rewriting diagrams in [11], where the construction of Dk,m is visual-
ized, are not included here.
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It follows from the first derivative of the p-trigonometric identity (1.2) that

sin(2)
p (x) = − sinp−1

p (x) cos2−p
p (x) , x ∈ (0,

πp

2
) . (2.4)

Note that sinp(x) > 0 and cosp(x) > 0 for x ∈ (0, πp/2). Hence, we can use Dk,n

to express

sin(m)
p (x) =

2m−2−1∑
k=0

Dk,m sin(2)
p (x)

=
2m−2−1∑

k=0

Dk,m(−1) sinp−1
p (x) cos2−p

p (x) , x ∈ (0,
πp

2
) ,

(2.5)

for m > 2 be a positive integer. Let us explain the procedure for m = 3 at first. In
that case

d
dx

(−1) sinp−1
p (x) cos2−p

p (x)

= (−1)(p− 1) sinp−2
p (x) cos3−p

p (x)

+ (−1)(2− p) sinp−1
p (x) cos1−p

p (x) sin(2)
p (x)

= (−1)(p− 1) sinp−2
p (x) cos3−p

p (x)

+ (−1)(1− (p− 1)) sinp−1+p−1
p (x) cos1−(p−1+p−1)

p (x)

= DS sin(2)
p (x) + Dc sin(2)

p (x)

for any x ∈ (0, πp/2) by the definition of DS and Dc. The proof of (2.5), which
proceeds by induction, can be found in [11, Lemma 4.5, p. 110].

There are two special cases in composing the symbolic operators for p ∈ N, p > 2,
which can be used for reducing of terms in (2.5).
Case 1 Assume that there exists k ∈ N ∪ {0}, k ≤ 2m−2 − 1 such that

Dk,m sin(2)
p (·) = a sinp(·) cos0p(·) . (2.6)

The further application of Dc is meaningless since it produce 0 by (2.2).
The situation (2.6) occurs, e.g., after p− 2 applications of DS on sin(2)

p (·).
Case 2 If there exists k ∈ N, k ≤ 2m−2 − 1, such that

Dk,m sin(2)
p (·) = a sin0

p(·) cos1p(·) , (2.7)

then the application of Ds produces 0, see (2.1). The situation (2.7) occurs,
e.g., after p−1 applications of DS on sin(2)

p (·). This is the essential argument
in the proof that the exponent q is always nonnegative, see [11, Lemma 4.6,
p.113] for more details.

3. Proof of main result

Proof of Theorem 1.1. It follows from [12, Theorem 6, p. 3] that

αn =
1

(np+ 1)!
lim

x→0+
sin(np+1)

p (x) (3.1)

for p odd, and it is obvious that (3.1) is valid for p even, since sinp(·) belongs to
C∞(−πp/2, πp/2) in this case. We obtain α0 = limx→0+ cosp(x) = 1 for p ∈ N,
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p > 2. Let n ∈ N and x ∈ (0, πp/2). By [11, Lemma 4.5, p. 110]

sin(np+1)
p (x) =

2np−1−1∑
k=0

−Dk,np+1 sinp−1
p (x) cos2−p

p (x)

=
2np−1−1∑

k=0

ak,np+1 sinqk,np+1
p (x) cos1−qk,np+1

p (x) ,

where ak,np+1 ∈ R and qk,np+1 ∈ N ∪ {0}. It follows that

lim
x→0+

sin(np+1)
p (x) =

2np−1−1∑
k=0

ak,np+1 lim
x→0+

sinqk,np+1
p (x) cos1−qk,np+1

p (x)

=
2np−1−1∑

k=0
qk,np+1=0

ak,np+1 .

(3.2)

Our first aim is to describe k ∈ N ∪ {0}, 0 ≤ k ≤ 2np−1 − 1 such that qk,n = 0. We
use the alphabet V = {0, 1} introduced in Definition 2.1 for this purpose and we
employ the formula

qk,np+1 = j(k)(p− 1) + (np− 1− j(k))(−1) + p− 1 (3.3)

proved in [11, Lemma 4.5, p. 11)]. Let us recall that j(k) is the number of occur-
rences of Dc in Dk,np+1. It follows from the condition qk,n = 0 that j(k) = n − 1.
Then k = 0 for n = 1 which implies

lim
x→0+

sin(p+1)
p (x) = − lim

x→0+
D0,p+1 sinp−1

p (x) cos2−p
p (x)

= − lim
x→0+

(p− 1)! sin0
p(x) cos1p(x) = −(p− 1)!

(3.4)

by (2.1), the definition of Ds. Substituting (3.4) into (3.1) we obtain

α1 = − 1
p(p+ 1)

.

We will assume n ≥ 2 in the rest of the proof. Then

k = 2np−1−(i1−1) + 2np−1−(i2−1) + . . .+ 2np−1−(in−1−1)

by (2.3). Moreover,
∀s ∈ N, 1 ≤ s ≤ n− 1: is ≤ sp . (3.5)

Indeed, let there exist s0 ∈ N, 1 ≤ s0 ≤ n− 1 : is0 > s0p and let

k1 :=

{
0 for s0 = 1 ,
2np−1−(i1−1) + 2np−1−(i2−1) + . . .+ 2np−1−(is0−1−1) for s0 ≥ 2 .

The binary expansion (k1)2,is0−1 of k1 defines Dk1,is0+1 by the composition of the
symbolic operators Ds and/or Dc taking the first is0−1 operators from Dk,np+1 (in
the order of its application). The exponent qk1,is0+1 in Dk1,is0+1 sin(2)

p (·) satisfies

qk1,is0+1 = (s0 − 1)(p− 1) + (is0 − 1− s0 + 1)(−1) + p− 1 = s0p− is0 < 0
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by (3.3) and the assumption is0 > s0p. Since qk,np+1 ≥ 0 for any n ∈ N ∪ {0}
and all 0 ≤ k ≤ 2np−1 − 1 provided p > 1 be an integer, we get the contradiction.
Hence,

αn =
1

(np+ 1)!

p∑
i1=1

2p∑
i2=i1+1

. . .

(n−1)p∑
in−1=in−2+1

ak0,np+1 , (3.6)

where k0 = 2np−1−(i1−1) + 2np−1−(i2−1) + . . .+ 2np−1−(in−1−1).
It remains to express ak0,np+1 as the polynomial in p. We will apply Ds and/or

Dc on sin(2)
p (·) recursively. Let us denote by ai the coefficient and qi the exponent

obtained by i steps of recursion. The base cases are a0 = −1 and q0 = p − 1 by
(2.4) and inductive clauses are given by (2.1) and (2.2), i.e.,

ai+1 =

{
qi · ai if Ds is applied ,
−(1− qi)ai if Dc is applied ,

(3.7)

and

qi+1 =

{
qi − 1 if Ds is applied ,
qi + p− 1 if Dc is applied .

(3.8)

It follows from the definition of Dk0,np+1 that the operator Ds is applied in the first
i1 − 1 steps of recursion. It means that

ai1−1 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2)) and qi1−1 = p− 1− (i1 − 1) .

by (2.1). Applying the operator Dc on the next position we have

ai1 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2))(−1)(1− (p− 1− (i1 − 1))),

qi1 = 2(p− 1)− (i1 − 1) .

Applying i2 − 1− i1 times the operator Ds and we obtain

ai2−1 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2))(−1)(1− (p− 1− (i1 − 1)))

× (2(p− 1)− (i1 − 1)) · · · (2(p− 1)− (i2 − 3))

and
qi2−1 = 2(p− 1)− (i2 − 2)

(provided i2 > i1 + 1). The application of Dc leads to

ai2 = −(p− 1)(p− 2) · · · (p− 1− (i1 − 2))(−1)(1− (p− 1− (i1 − 1)))

× (2(p− 1)− (i1 − 1)) · · · (2(p− 1)− (i2 − 3))(−1)(1− (2(p− 1)− (i2 − 2)))

and
qi2 = 3(p− 1)− (i2 − 2) .

It follows by the recursive application of Ds and/or Dc that

ain−1 = (−1)
[ i1−1∏

m1=1

(p− 1− (m1 − 1))
]
(−1)

(
1− (p− 1− (i1 − 1))

)
×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(−1)(1− (2(p− 1)− (i2 − 2))) · · ·

×
[ in−1−1∏

mn−1=in−2+1

((n− 1)(p− 1)− (mn−1 − (n− 1)))
]
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× (−1)(1− ((n− 1)(p− 1)− (in−1 − (n− 1))))

and
qin−1 = n(p− 1)− (in−1 − n+ 1) ,

where in−1 is the last position of Dc. Since the remaining symbolic operators in
Dk0,np+1 are Ds and qk0,np+1 = 0 by (3.2), we finally get

ak0,np+1

= (−1)
[ i1−1∏

m1=1

(p− 1− (m1 − 1))
]
(−1)

(
1− (p− 1− (i1 − 1))

)
×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(−1)(1− (2(p− 1)− (i2 − 2))) · · ·

×
[ in−1−1∏

mn−1=in−2+1

((n− 1)(p− 1)− (mn−1 − (n− 1)))
]

× (−1)(1− ((n− 1)(p− 1)− (in−1 − (n− 1))))

×
[
n(p− 1)− (in−1 − n+ 1)

]
!

(3.9)

Substituting (3.9) into (3.6) we obtain desired formula (1.7). The positions is = sp−
1 are excluded in (1.7) since it produce zero due to the terms 1−(s(p−1)−(is−s))
in product (3.9) (see Case 1 in Section 2). �

4. Concluding remarks

Remark 4.1. The proof of Theorem 1.1 provides a procedure to generate any
coefficient αn, n ≥ 2 of Maclaurin series (1.6) for sinp, when p > 2 is an integer. It
is convenient to generate all vectors v ∈ {0, 1}np−1 with exactly n− 1 occurrences
of “1”s, which satisfy condition (3.5), i.e.,

∀s ∈ N, 1 ≤ s ≤ n− 1 : is ≤ sp .

Let us note that is is the position of “1” in v. Then the recursions (3.7) with
a0 = −1 and (3.8) with q0 = p − 1 can to applied by all possible vectors v to
obtain the coefficient av ∈ R. Let us remind that zero and one means that Ds and
Dc is applied, respectively, and the order of application Ds and/or Dc is reversed.
Finally, the resulting coefficient αn is given as sum of all av which is divided by
(np+ 1)!.

Remark 4.2. The coefficients αn, n ≥ 2, can be also computed recursively by the
formula

αn+1 = (−1)
[ (p− 1)!

((n+ 1)p+ 1)((n+ 1)p) · · · (np+ 2)

]
αn

+
(−1)n+1

((n+ 1)p+ 1)!

p∑
i1=1

i1 6=p−1

2p∑
i2=i1+1
i2 6=2p−1

· · ·

np−2∑
in−1=in−2+1

[ i1−1∏
m1=1

(p− 1− (m1 − 1))
](

1− (p− 1− (i1 − 1))
)
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×
[ i2−1∏

m2=i1+1

(2(p− 1)− (m2 − 2))
]
(1− (2(p− 1)− (i2 − 2))) · · ·

×
[ in−1∏

mn=in−1+1

(n(p− 1)− (mn − n))
]

× (1− (n(p− 1)− (in − n))))[n(p− 1)− (in − n)]!

with α1 = −1/(p(p+ 1)).

Acknowledgments. The author was supported by the project LO1506 of the
Czech Ministry of Education, Youth and Sport. I would like to thank to an anony-
mous referee for their valuable comments and to Petr Girg whose advice helped a
lot to improve the introduction of the paper.

References

[1] Aronsson, G.; Evans, L. C.; Wu, Y.; Fast/slow diffusion and growing sandpiles. J. Differential

Equations 131, 2 (1996), 304–335.

[2] Benedikt, J. R.; Girg, P.; Prüfer transformation for the p-Laplacian. In Proceedings of the
2007 Conference on Variational and Topological Methods: Theory, Applications, Numerical

Simulations, and Open Problems (2010), vol. 18 of Electron. J. Differ. Equ. Conf., Southwest

Texas State Univ., San Marcos, TX, pp. 1–13.
[3] Bermejo, R.; Carpio, J.; Diaz, J. I.; Tello, L.; Mathematical and numerical analysis of a

nonlinear diffusive climate energy balance model. Math. Comput. Modelling 49, 5-6 (2009),

1180–1210.
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