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1. Introduction 

The properties of thin films can be controlled by various number of parameters during the deposition, such as the 

power P of the magnetron discharge, the film thickness h, the substrate temperature Ts, the substrate bias Us, the 

substrate ion current density is, the flux of ions i incident on the substrate, the deposition rate aD of the film, 

magnetic field arrangement the substrate-to-target distance ds-t, the total pressure pT = pAr + pRG of sputtering gas 

mixture, the partial pressure of the argon pAr and the reactive gas pRG, etc.. There is a huge number of papers devoted 

to the investigation of the relationships between the deposition parameters of film and its functional properties, for 

instance, see Ref. [1 - 20]. 

The problem with this approach lies in the fact that the correct combination of preselected deposition parameters 

necessary to form films with wanted properties is unknown. Therefore different approaches should be used. The 

main parameter which really controls the film properties is the energy E and therefore, the correlations between 

the properties of the film and the energy are of key importance [21 - 25]. Different combinations of deposition 

parameters result in different energy E delivered to the growing film. It means that at first, correlations between the 

film properties and the energy E should be found and then, based on this knowledge the necessary deposition 

parameters which ensure the formation of the films with prescribed properties should be determined. 

This thesis investigates the effect of the energy E on the preferred crystallographic orientation (texture) of grains in 

sputtered films, their microstructure, physical and mechanical properties, stoichiometry and their resistance to 

cracking in detail. For this investigation, the sputter deposited Ti(Al,V)N and TiNx>1 thin films were selected.  

Great attention is devoted also to (i) the control of the structure, microstructure, resistance to cracking and the 

macrostress  of film by the energy E delivered to the film during its growth in the DC and pulsed magnetron 

discharges, (ii) the energy E delivered to the film held at different substrate biases Us, (iii) the energy E delivered to 

the film at different plasma potentials and (iv) the energy E delivered to the film by fast neutrals. 

1.1. Energy delivered to growing film 

The energy E delivered to the growing film has a crucial effect on its structure, microstructure, elemental and phase 

composition, and physical properties [21 - 25]. The energy E can be delivered by (i) the substrate heating Esh, (ii) the 

conversion of the kinetic energy of particles Ep, i.e. by the energy of bombarding ions (Ebi) and/or fast neutrals (Efn) 

incident on the surface of growing film, (iii) the heat evolved during the formation of the compound Ech (the energy 

released in exothermic chemical reactions), (iv) the heating from the sputtered magnetron target Emt which almost 

always is not perfectly cooled, and (v) the radiation from the plasma Erad. The total energy ET delivered to the growing 

film can be expressed by the following formula [26]. 

ET = Esh (Ts, td) + Ep (Us, is, aD, pT, td) + Ech (Ts, td) + Emt (Wd, td, ds-t) + Erad (td) (1.1)  

Where Ts is the substrate temperature, td is the time of the film deposition, Us is the substrate bias, is is the substrate 

ion current density, aD is the deposition rate of film, pT = pAr + pRG is the total pressure of the sputtering gas mixture, 

pAr and pRG are the partial pressures of argon and reactive gas (RG), respectively, Wd = (Ud × Id)/S is the magnetron 

target power density, Id, and Ud are the magnetron current and voltage, respectively, S is the whole area of 
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magnetron target and ds-t is the substrate-to-target distance. The energy delivered to the growing film by incident 

particles Ep is composed of two terms 

Ep= Ebi + Efn (1.2)  

From Fig. 1.1 follows that Efn can play a significant role in low pressure sputtering. The energy of fast neutrals Efn 

increases with decreasing pT due to prolongation of main-free path λ and therefore reduction of collision between 

atoms. For the atmosphere with N2 dominating applies [27]: 

λ ≈ 0.4
𝑝T

⁄  (1.3)  

However in the case of the conventional sputtering process the number of collision increase and Efn → 0, therefore 

Ebi plays the dominant role.  

 

Figure 1.1 Schematic illustration of two dimensional (2D) Thornton’s SZM showing the evolution of the film microstructure as 

functions of conventional heating (Ts/Tm) and atomic scale heating (pAr, Efn) and controlled by the energy Ebi by bombarding ions 

at high pAr or only by the energy Efn of fast neutrals at low pressures  0.1 Pa.  
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This means that in a collision discharge the energy Ep can be expressed in the following form [27, 28]: 

Ep [J/cm3] = Ebi= Ei(νi/νca) (1.4)  

where Ei is the energy of the one ion, i and ca is the flux of ions and condensing atoms, respectively. 

In a collision plasma discharge the energy Ebi delivered per a volume unit of the deposited film can be expressed in 

the following form [27, 28]: 

Ebi  [J/cm3] ≈ 
(Up - Us)  ×  is

aD

⋅Ni,max 
(1.5)  

Where Up is plasma potential, aD is deposition rate, is is current density and Ni,max is a probability of an ion arriving at 

the substrate with the maximum energy. For a collision discharge, 𝑁i,max can be calculated as Ni,max=exp(-L
λ⁄ ). 

Where the sheath thickness L was determined by Cthe hild-Langmuir equation for a collisionless sheath [29]. 

For typical DC magnetron deposition parameters (Ud ≈ 500 V, Id ≈ 0.5 A, pT ≈ 1 Pa) applies that the Ni,max  1, 

furthermore the │Us│ >> │Up│, therefore the eq. (1.5) can be additionally simplified to  

Ebi  [J/cm3] ≈ 
𝑈𝑠  ×  𝑖𝑠

aD

 
(1.6)  

Despite the fact that Eq. (1.6) is very simplified it is very useful. Usability of Eq. (1.6) is further enhanced due to easily 

measured values of Us, is and aD.  

Control of the energy Ep delivered into the film can be principally divided into two categories (i) control of the 

momentum of bombarding particles or (ii) control of the fluxes of bombarding particles. 

1.1.1. Effect of the momentum of bombarding particles 

There are many ways how to control the momentum of bombarding particles. In this section, three principles are 

outlined. Increasing the momentum of individual bombarding particles can be achieved by: (i) decreasing the total 

pressure, (ii) increasing negative substrate bias and (iii) increasing the plasma potential. The principle of increasing 

the particle momentum by decreasing the total pressure is based on the reduction of a number of collisions (see 

Eq. (1.3) and Figure 1). In the case of bombarding ions, the negative substrate bias can be used to control the Ebi, see 

Eq. (1.6). 

By increasing the momentum of individual bombarding particles, the properties of sputter deposited film, such as 

mechanical, size of grains and their crystallographic orientation, microstructure, macrostress can be controlled. 

Example of such control of the microstructure by Ep = f(pT) from Ref. [30] can be seen in Fig. 1.2 (a). In Fig. 1.2 (b) the 

control of macrostress and microstructure by Ebi = f(Us) can be seen (from Ref. [26, 31]). 
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Figure 1.2 (a) Structural zone model (SZM) of sputtered metallic films developed by J. A. Thornton. Adapted after Ref. [30] and (b) 

Macrostress  in sputtered  - Ti (N) and  - TiNx  1 films as a function of energy Ebi at pT = pAr + pN2 = 5 Pa and Ts = 350 C, i.e. at 

Ts/Tm = 0.32 and 0.19 for the  - Ti(N) film and the  - TiNx  1film , respectively. Adapted from Ref. [26, 31]. 

Additional control of the momentum of bombarding ions can be achieved by control of the plasma potential Up (see 

Eq. (1.5)) by using magnetron voltage oscillations, an example of such oscillations see Fig. 1.3. The positive magnetron 

voltage during the deposition results in the increment of the plasma potential, and therefore the momentum of 

bombarding ions is increased. It is important to emphasize that the magnetron voltage oscillations are not properties 

of the plasma itself but rather a consequence of a relationship between properties (induction, capacity, resistance) 

of the whole deposition system: (i) power sources, (ii) plasma sources and (iii) plasma. For more detail, investigation 

of the magnetron voltage oscillations see Ref. [32 - 37]. The number of high energetic ions (50 – 195 eV) created by 

magnetron voltage oscillation is not negligible. From Ref. [36] follows, that the flux of high energetic ions can be up 

to 1/3 of the total flux of bombarding ions, see Fig. 1.4. 

 

Figure 1.3  Example of voltage waveforms for synchronous pulsing of graphite and titanium targets at 1 μs/ 300 kHz. The positive 

overshoots for graphite and titanium are +340 and +320 V, respectively Adapted from Ref. [35]. 
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Figure 1.4 Flux of the Ar+ ions in three energy ranges as well as the sum at different p-DC frequencies (substrate grounded).  

Adapted from Ref. [36]. 

1.1.2. Effect of the fluxes of bombarding particles 

The fluxes of the bombarding particles i and ca (which are difficult to determine) can be represented by is and aD, 

which can be easily measured. From this follows that Ebi can be increased by increasing is at constant aD or by 

diseasing aD at a constant is. There are many attempts to densify the plasma and therefore increase the ratio is/aD by 

increasing is. In this section, three principles are outlined. Increasing the flux of bombarding particles can be achieved 

by (i) use of HiPiMS, (ii) addition of hot cathode, (iii) tuning the magnetic field. 

Using HiPiMS for plasma creation brings many benefits to the deposition process. One of this benefits is a creation 

of denser plasma. This can be seen in Fig. 1.5. Plasma discharge created by HiPiMS using Ida = 50 A at pAr = 1 Pa results 

in plasma electron density of ≈2 × 1018 m-3, which is ≈ 70 times denser than plasma created using Ida = 5 A [38]. For 

more information about the benefits of using HiPiMS see for example Ref. [38 - 42] 

 

Figure 1.5 Time evolution of the electron density ne, and ion density ni, at average pulse current Ida = 5 and 50 A.  

Adapted from Ref. [38]. 
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Another attempt to increase the plasma density lies in the use of hot cathode. By controlling the filament cathode 

current Ip the plasma potential and electron density at low pAr = 0.3 Pa can be tailored, see Fig. 1.6. From this figure 

follows that by increasing the filament cathode current Ip from 0 to 50 A the plasma density and plasma potential 

increases from 2.6 × 1016 to 4.5 × 1016 m-3 and 3.8 to 5.6 V respectively. For additional information about the use of 

hot cathode, see Ref. [43 - 45]. 

 

Figure 1.6 Plasma potential and density as a function of the filament cathode current Ip.  Adapted from Ref. [43]. 

Ion flux can be also modified by a magnetic field. Direct measurement of ion current density as a function of the coil 

current can be seen in Fig. 1.7. From this figure follows that by introducing the coil current Icoil = 35 A the ion current 

density is significantly increased up to is = 3.4 mA/cm2. For more information about how the magnetic field controls 

the properties of plasma discharge and therefore properties of sputter deposited films see Ref. [46 - 50]. 

 

Figure 1.7 Ion current density as a function of the coil current. Adapted from Ref. [46]. 

Very important is also the effect of deposition rate aD, particularly in a reactive magnetron sputtering when the 

deposition rate aD decreases with increasing partial pressure of reactive gas pRG at the same discharge current Id of 

the magnetron discharge, see Fig. 1.8. This figure shows the evolution of the deposition rate aD of magnetron 

sputtered Ti(Fe)Nx films and the energy delivered to them during their growth as a function of partial pressure of 

nitrogen pN2 at three values of the magnetron current Id. From this figure, it is clearly seen that in the formation of 

the  
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Figure 1.8 (a) Deposition rate aD of Ti(Fe)Nx films and (b) energy Ebi delivered to them during their growth by bombarding ions as 

a function of partial pressure of nitrogen pN2. The films were sputtered using a DC magnetron equipped with a TiFe (90/10 at.%) 

alloy target of 100 mm in diameter at (i) Id = 1 A, is = 0.5 mA/cm2, (ii) Id = 2 A, is = 1 mA/cm2, (iii) Id = 3 A, is = 1 mA/cm2, and Us = -

100 V, Ts = 300C, ds-t = 60 mm and pT = pAr + pN2 = 0.5 Pa. Adapted from Ref. [28]. 

stoichiometric and over-stoichiometric Ti(Fe)Nx  1 nitride films a greater energy Ebi is delivered in the films during its 

growth compared with that delivered to the sub-stoichiometric Ti(Fe)Nx  1 films; here x = N/(Ti + Fe). It is a very 

important fact because the magnitude of the energy Ebi decides also on the structure, microstructure of the growing 

film and the macrostress  generated in it during its growth. For more information see Ref [28] 
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2. Aims of the Ph.D. thesis 

The subject of the Ph.D. thesis is the preparation of metal nitride films with multifunctional properties and an 

enhanced resistance to cracking by magnetron sputtering and the investigation of the interrelationships between 

the deposition parameters, energy E delivered into the film and the film properties. 

The aims of the Ph.D. thesis are the following: 

1. To investigate the effect of energy E delivered into the growing Ti(Al,V)N nitride films on their properties, such 

as (i) texture, (ii) microstructure, (iii) mechanical properties, (iv) macrostress and (v) resistance to cracking. 

2. To investigate the effect of plasma and floating potential on energy E delivered into the growing film and on 

reproducibility of sputter deposited films. 

3. To create hard overstoichiometric TiNx>1 dinitride thin films using magnetron sputtering and to determine the 

discharge properties under which such films can be sputter deposited. 
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Abstract 

This letter reports on the effect of the energy Ebi, delivered to the sputtered Ti(Al,V)N film by bombarding ions, on 

its microstructure, macrostress , mechanical properties, and resistance to cracking. The films were deposited by 

reactive magnetron sputtering. Interrelationships between these parameters were investigated in detail. It was 

shown that (1) the increase of the energy Ebi makes it possible to convert (i) the film microstructure from columnar 

to dense, non-columnar, (ii) the macrostress  from tensile (  0) to compressive (  0), (iii) the brittle hard film 

with low ratio H/E*  0.1 and low elastic recovery We  60% to the flexible hard film with high ratio H/E*  0.1 and 

high elastic recovery We  60%, (2) the flexible hard Ti(Al,V)N films with high ratio H/E*  0.1, high elastic recovery 

We  60% and compressive macrostress can be formed not only in the Transition Zone (Zone T in which the films 

exhibit a dense, voids-free microstructure) of the Thornton’s structural zone model (SZM) but also in Zone 1 in which 

the films exhibit a columnar microstructure and (3) the line corresponding to the films with zero macrostress ( = 0) 

in the SZM lies in Zone 1 corresponding to the columnar microstructure; here H is the film hardness and E* = E(1 - 2) 

is the effective Young’s modulus, E is Young’s modulus and  is the Poisson’s ratio. 

3.1. Introduction 

Recently, the hard nanocomposite films with enhanced hardness and unique properties, for instance, the films with 

high-temperature stability and oxidation resistance considerably higher than 1000 C, high erosion resistance, high 

electrical conductivity, high optical transparency, etc. have been developed [1-35]. The detailed investigation of 

correlations between the physical and mechanical properties of these films have shown that it is also possible to 

create flexible films which are simultaneously hard and resistant to cracking [36-44]. Such films exhibit a high ratio 

of the hardness H and the effective Young’s modulus E* (H/E*  0.1), high elastic recovery We  60%, compressive 

macrostress (  0) and a dense voids-free microstructure; here E* = E/(1 - 2), E is Young’s modulus and  is the 

Poisson’s ratio [28, 45, 46]. These properties of flexible hard films can be achieved by optimization of the deposition 

parameters used in sputtering. In this article, it is demonstrated that these parameters are well controlled by the 

energy Ebi delivered to the growing film by bombarding ions. It is shown that the Ti(Al,V)N films exhibit (i) a columnar 

microstructure and low resistance to cracking when sputtered at low energy Ebi and (ii) a dense, voids-free 

microstructure and an enhanced resistance to cracking when sputtered at high energy Ebi. In the simplest case of a 

collision-less, fully ionized plasma the energy Ebi can be expressed in the following form [28, 45-47] 

Ebi [J/cm3] = (Us – Up) × is/aD  Us × is/aD (3.1) 

Eq. (3.1) clearly shows two important facts. The energy Ebi delivered to the growing film by bombarding ions (1) can 

be easily calculated from measured deposition parameters (Us, is) and the film deposition rate aD = h/td calculated 

from the measured film thickness h and the deposition time td and (2) strongly depends not only on Us and is but also 

on aD. The second fact is of extraordinary importance in (i) the reactive sputtering of compounds and (ii) the high-

rate sputtering of films because the energy Ebi delivered to the growing film deceases with increasing aD. 

The main aim of this letter is to report on results of the detailed investigation of the correlations between the 

microstructure, structure, macrostress  and resistance against cracking of the Ti(Al,V)N film sputtered as a function 

of the energy Ebi delivered to it by bombarding ions during its growth.  



21 

3.2. Experiment 

The Ti(Al,V)Nx films were sputter deposited in a mixture of Ar + N2 sputtering gases using a DC dual magnetron with 

closed magnetic field equipped with a TiAlV (6 at.% Al, 4 at.% V) alloy target of diameter  = 50 mm. Magnetrons 

were tilted to the normal of the substrate surface at the angle of 20°. The films were sputtered on Si(111) and Mo 

substrates at the discharge current Id = 0.5 A, target power density Wt = Id Ud /S ≈10 W/cm2, substrate temperature 

Ts = 500C, substrate bias Us ranging from 0 to -100 V, substrate-to-target distance ds-t = 60 mm, partial pressure of 

nitrogen pN2 = 0.8 Pa and total pressure of sputtering gas pT = pAr + pN2 = 1 Pa; here Ud is discharge voltage and S is 

the area of the target. The Ti(Al,V)Nx films sputtered under these conditions are crystalline and almost stoichiometric 

(x = N/(Ti + Al + V)  1, see Fig. 3.1.  

The film thickness h and the macrostress σ were measured by a DEKTAK 8 Stylus Profiler, Veeco. The film structure 

was characterized by an XRD spectrometer PANalytical X’Pert PRO in the Bragg-Brentano configuration using CuKα 

radiation (λ = 0.154187 nm). The mechanical properties were determined from load vs. displacement curves 

measured by a Fisherscope H 100VP with a Vickers diamond indenter at load L = 20 mN at d/h < 0.1; here d is the 

diamond impression in the film at L = 20 mN. The resistance of the Ti(Al,V)N film to cracking was assessed by the 

indentation test in which the diamond indenter was impressed in the film at high load L = 1N; for more details see 

the paper [46]. 

3.3. Results and discussion 

The interrelationships between the mechanical properties (H, E*, We, H/E*) of the Ti(Al,V)N film, its macrostress , 

microstructure, resistance to cracking and the energy Ebi delivered to the growing film by bombarding ions were 

investigated in detail. These interrelationships are schematically illustrated in Fig. 3.2.  

 

Figure 3.1 Evolution of XRD patterns of Ti(Al,V)N films with increasing energy Ebi delivered to them during their growth by 

bombarding ions. Deposition parameters: Id = 0.5 A, Ts = 500 C, Wt ≈ 10 W/cm2, pN2 = 0.8 Pa, pT = pAr + pN2 = 1 Pa and Us ranging 

from 0 to -100 V. Physical and mechanical properties of these films are given in Table 3.1. 
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Fig. 3.2 displays the evolution of the microstructure, mechanical properties and the TEM cross-sectional images of 

the Ti(Al,V)N film with increasing energy Ebi. Fig. 3.3 displays the evolution of the surface morphology of the Ti(Al,V)N 

films after the indentation at high load L = 1 N with increasing energy Ebi. Fig. 3.4 shows the transition of the films 

with a columnar microstructure to the films with a dense, voids-free microstructure with increasing energy Ebi. The 

physical and mechanical properties of these films are given in Table 3.1. 

Main conclusions which can be drawn from Figs. 3.2 and 3.3 and Table 3.1 are the following  

1. The density of the Ti(Al,V)N film microstructure and the macrostress  both increase with increasing energy 

Ebi. The microstructure gradually changes from columnar with voids (Fig. 3.2a) to a dense, voids-free 

microstructure without columns (Fig. 3.2d). The increase of the energy Ebi results in an increased mobility 

of the condensing atoms at the surface of the growing film, the microstructure densification and a transition 

from films with a columnar microstructure to films with a dense, voids-free microstructure. 

2. The Ti(Al,V)N films with a columnar microstructure can exhibit not only tensile macrostress (  0) but also 

compressive macrostress (  0). The compressive macrostress arises when the columns are in strong 

contact. 

3. The Ti(Al,V)N films with a columnar microstructure and a weak contact between columns (the low 

compressive macrostress   0), however, exhibit low resistance to cracking, see the cracks on the photo 

in Fig. 3.3b. Responsible for the cracking of this films are: (1) the columnar microstructure, (2) the low ratio 

H/E*  0.1, (3) the low compressive macrostress   0.5 GPa and (4) the low elastic recovery We  60%, see 

Table 3.1. 

4. The Ti(Al,V)N films with a dense microstructure (the very densely packed columns (Fig. 3.2c) and the 

featureless microstructure without columns corresponding to zone T of Thornton’s Structural zone model 

(SZM) [48,49] (Fig. 3.2d)) exhibit enhanced resistance to cracking. These films are characterized by (1) a 

dense voids-free microstructure, (2) the high ratio H/E*  0.1, (3) the high compressive macrostress   0.5 

GPa and (4) the high elastic recovery We  70%. 

5. The highest energy of 4.9 MJ/cm3 cannot be considered as the optimal energy because the Ti(Al,V)N film 

sputtered at Ebi = 4.9 MJ/cm3 already exhibits too high compressive macrostress  = -5.5 GPa, which may 

result in the film delamination from the substrate when the film is too thick. The films with high ratio 

H/E*  0.1, high elastic recovery We  60%, a dense, voids-free microstructure and a lower compressive 

macrostress ( = -2.5 GPa) are good flexible, hard films with enhanced resistance to cracking. 
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Figure 3.2 Schematic illustration of the interrelationships between the microstructure, mechanical properties, macrostress  of the 

Ti(Al,V)N film, its resistance to cracking and the energy Ebi delivered to the growing film by bombarding ions in the DC reactive 

magnetron sputtering. (a) The film No. 1, (b) the film No. 2, (c) the film No. 3 and (d) the film No. 4, see Table 3.1. 

 

Figure 3.3 The evolution of the microstructure, the surface morphology with the diamond indenter impression at load L = 1 N and 

the macrostress  of the Ti(Al,V)N film with increasing energy Ebi. (a) Ebi = 0 MJ/cm3,  = 0 GPa, (b) Ebi = 0.5 MJ/cm3,  = - 0.4 GPa, 

(c) Ebi = 1.8 MJ/cm3,  = - 2.5 GPa, (d) Ebi = 4.9 MJ/cm3,  = - 5.5 GPa. 
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Table 3.1 Physical and mechanical properties of Ti(Al,V)Nx films sputtered by the DC magnetron at Id = 0.5 A, Wt ≈ 10 W/cm2, Ts = 

500C, ds-t = 60 mm, pN2 = 0.8 Pa, pT = 1 Pa as a function of the substrate bias Us. 

Film E bi U s i s a D h H E * W e H /E * σ Microstructure

No. [MJ/cm3] [V] [mA/cm2] [nm/min] [nm] [GPa] [GPa] [%] [GPa]

1 0 0 0 12.8 1700 25.2 260 64 0.097 ≈ 0.0 Columnar with woids

2 0.5 -20 0.7 16.7 2000 24.7 268 62 0.092 -0.4 Columnar with woids

3 1.8 -50 0.9 16.2 2100 32.6 275 76 0.119 -2.5 Columnar, voids-free

4 4.9 -100 1.1 13.7 1400 30.1 240 79 0.125 -5.5 Dense, voids-free  

In Fig. 3.2 Ec denotes the critical energy Ebi at which the sputtered films exhibit zero macrostress ( = 0). The critical 

energy Ec depends on the elemental composition of the film and the ratio Ts/Tm; here Ts is the substrate temperature 

and Tm is the melting temperature of the film’s material [28, 45]. The films sputtered at low energies (Ebi  Ec) exhibit 

tensile stress (  0) and the films sputtered at high energies (Ebi  Ec) exhibit compressive stress (  0). Our 

experiments show that the line  = f (pAr) corresponding to the films with zero macrostress ( = 0) in the Thornton’s 

Structural Zone Model SZM [48, 49] lies in Zone 1, see the red curve in Fig. 3.4. 

 

Figure 3.4 Schematic illustration of two dimensional (2D) Thornton´s structural zone model (SZM) showing that the line 

corresponding to the films with zero macrostress ( = 0) lies in zone 1. Efn and Ebi denote the energy delivered to the growing film 

by fast neutral particles, i.e. by bombarding and condensing fast atoms, and bombarding ions, respectively. 

It means that the films with a columnar structure can exhibit also compressive stress (  0). In the case when the 

value of the compressive macrostress (  0) is low the film with a columnar microstructure easily cracks. This fact 

was confirmed also in the paper of Y.T.Pei et al [50] in which the cracking of the TiC/a-C:H films with a columnar 
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microstructure sputtered at a quite high negative substrate bias Us = -100 V is reported. In the case when the value 

of the compressive macrostress is sufficiently high the films with a columnar microstructure exhibit strongly 

enhanced resistance to cracking. The blue straight line in Fig. 3.4 shows the evolution of the film microstructure from 

columnar to dense, voids-free with increasing ion bombardment (Ebi) at constant values of Ar pressure pAr and Ts/Tm 

ratio. 

3.4. Conclusions 

In summary we can conclude that (1) The flexible hard Ti(Al,V)N films with enhanced resistance to cracking can be 

formed when the energy Ebi delivered to them during their growth is greater than the critical energy Ec, (2) The 

critical energy Ec depends on the elemental composition of the film and the ratio Ts/Tm, (3) The flexible hard Ti(Al,V)N 

films exhibit high ratio H/E*  0.1, high elastic recovery We 70%, compressive macrostress (  0) and dense, voids-

free microstructure, (4) The flexible hard films with columnar voids-free microstructure can be also formed when 

these films exhibit the compressive macrostress (  0), (5) The formation of flexible hard Ti(Al,V)N films can be 

efficiently controlled by the energy Ebi delivered to them during their growth by bombarding ions and (6) The line 

 = f (p) corresponding to the films with zero macrostress ( = 0) lies in Zone 1 of the Thornton’s SZM in which films 

with columnar microstructure are created. All these conclusions are of general validity and were confirmed already 

in nine different material coating systems [36-44]. Obtained results deepen the present state of the knowledge in 

the field and represent a huge application potential. 
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Abstract 

The article reports on the effect of the energy E delivered to the growing film by bombarding ions Ebi and/or fast 

neutrals Efn on its physical (structure, microstructure) and mechanical properties, and resistance to cracking. The 

effect of the energy E = Ebi + Efn on the film properties is demonstrated on the Ti(Al,V)Nx films deposited by reactive 

magnetron sputtering. The films were sputtered on Si(111) and Mo substrates in a mixture Ar+N2 gases by a dual 

magnetron with closed magnetic field and equipped with TiAlV (6 at.% Al, 4 at.% V) alloy targets. It was shown that 

(1) The energy E = Ebi + Efn is a key parameter controlling the physical and mechanical properties, and the resistance 

of cracking of sputtered Ti(Al,V)Nx films, (2) The structure of Ti(Al,V)Nx films varies from TiN(200) to TiN(220) with 

increasing energy E, (3) The Ti(Al,V)Nx films with high ratio H/E*  0.1, high elastic recovery We  60% and dense 

voids-free microstructure exhibit an enhanced resistance to cracking and can be produced only in the case when a 

sufficient energy E is delivered to the growing film either by bombarding ions Ebi or by bombarding fast neutrals Efn 

and (4) The energy Efn makes it possible to sputter crystalline films on dielectric substrates held on a floating potential 

Us = Ufl.  

4.1. Introduction 

It is well known that properties of thin films are determined by their elemental and phase composition (crystalline 

phase, an amorphous phase or a mixture of crystalline and amorphous phase), structure (size of grains and their 

crystallographic orientation), and microstructure (porous/columnar, dense/voids-free). Up to now, the properties of 

the thin film are controlled by different deposition parameters, such as the power P of the magnetron discharge, the 

film thickness h, the substrate temperature Ts, the substrate bias Us, the substrate ion current density is, the flux of 

ions i incident on the substrate, the deposition rate aD of film, the substrate-to-target distance ds-t, the total pressure 

pT = pAr + pRG of sputtering gas mixture, the partial pressure of the argon pAr and the reactive gas pRG, etc., used in its 

formation. There are a huge number of papers devoted to the investigation of the relationships between the 

deposition parameters of the film and its structure, microstructure, phase, and elemental composition, macrostress, 

physical and functional properties, for instance, see Ref. [1-23]. A set (combination) of many deposition parameters 

must be always selected in sputtering of the film. The problem in this approach is the fact that a correct combination 

of the deposition parameters necessary to form the film with prescribed properties is unknown. Different 

combinations of deposition parameters result in different energy E delivered to the growing film what is difficult to 

predict. It means that the main parameter which really controls the film properties is the energy E and thereby the 

correlations between the properties of the film and the energy E are of a key importance [24-39]. Therefore, an 

opposite approach in the development of new films should be used. At first, correlations between the film properties 

and the energy E should be found. Then, based on this knowledge the necessary deposition parameters which ensure 

the formation of the films with prescribed properties should be determined. 

In the simplest case of a collision-less, fully ionized plasma the energy Ebi can be expressed in the following form 

[29, 39]  

Ebi [J/cm3] = (Up – Us ) × is/aD                      at Up > Us (4.1) 

Here, Up is the plasma potential, Us is the substrate bias, is is the substrate ion current density and aD is the deposition 

rate of film. Under the assumption that Up  Us , which is well fulfilled in many experiments, Eq. (4.1) can be 

simplified in the following simple form  
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Ebi [J/cm3]   Us × is/aD (4.2) 

Eq. (4.2) clearly shows two important facts. The energy Ebi delivered to the growing film by bombarding ions (1) can 

be easily calculated from the measured deposition parameters (Us, is) and the film deposition rate aD = h/td calculated 

from the measured film thickness h and the deposition time td and (2) strongly depends not only on Us and is but also 

on aD. The second fact is of an extraordinary importance in (i) the reactive sputtering of compounds and (ii) the high-

rate sputtering of the film because the energy Ebi delivered to the growing film deceases with increasing aD.  

This article investigates the effect of the energy E delivered to the growing Ti(Al,V)Nx film on its preferred 

crystallographic orientation (texture) of grains, microstructure, physical and mechanical properties, and resistance 

to cracking in detail. A great attention is devoted also to (i) the control of the structure and microstructure of film by 

the energy E delivered to the film during its growth in the DC and pulsed magnetron discharges, (ii) the energy E 

delivered to the film held at different substrate biases Us and (iii) the energy E delivered to the film by fast neutrals. 

4.2. Experimental 

The Ti(Al,V)Nx thin films were sputter deposited in a mixture of Ar + N2 sputtering gases using a dual magnetron with 

closed magnetic field equipped with TiAlV (6 at.% Al, 4 at.% V) alloy targets of diameter  = 50 mm. The targets were 

attached to the cathode bodies of the dual magnetron using pure Ti fixing rings. The magnetrons were supplied by 

an Advanced Energy Pinnacle Plus+ 5/5kW power supply operated either in DC or pulse mode. The magnetrons were 

tilted to the vertical axis at the angle 20°; for more details see Ref. [40]. The Ti(Al,V)Nx films were deposited on Si(111) 

and Mo substrates at low power density Wt = Id × Ud /S ≤ 20 W/cm2. The Si plates 20 × 20 × 0.52 mm3 were used for 

the X-ray diffraction and the Si strips 30 x 5 x 0.64 mm3 were used for the measurement of the film macrostress. The 

Mo substrates (80 × 15 × 0.20 mm3) were used for the assessment of the film resistance to cracking in bending. A 

pre-deposition etching of the substrates was performed in the pulsed discharge (burning between the substrate and 

the shutter) at the voltage Uet = 400 V, current Iet = 0.5 A, repetition frequency fet = 100 kHz, τ = 0.5, substrate 

temperature Ts = 500C and substrate-to-target distance ds-t = 60 mm in argon at pressure pAr = 1 Pa for 5 min; the 

index “et” denotes the ion etching. A pre-deposition cleaning of the magnetron targets was performed in DC mode 

of sputtering with a closed target at the magnetron voltage Ud = 400 V and current Id = 0.5 A, target power density 

Wd = 10 W/cm2 in argon at pressure pAr = 1 Pa for 3 min. The film thickness h was measured by a stylus profilometer 

DEKTAK 8. The macrostress σ was evaluated from the bending of Si plate using the Stoney’s formula [41]. The film 

structure was characterized using an XRD diffractometer PANalytical X Pert PRO in the Bragg-Brentano configuration 

with CuKα radiation. The elemental composition of the Ti(Al,V)Nx films on the Si substrate was analyzed in a scanning 

electron microscope (SU-70, Hitachi) operated at a primary electron energy of 15 keV using energy dispersive 

spectroscopy (EDS, UltraDry, Thermo Scientific) and wave dispersive spectroscopy (WDS, Magnaray, Thermo 

Scientific). Pure metal standards were used for the determination of Ti, Al and V concentrations. The nitrogen 

concentration was calculated from a difference between the results obtained by the WDS and the EDS measurements 

using a ZrN standard. This approach was chosen due to the strong overlapping of titanium and nitrogen X-Ray peaks. 

Mechanical properties of sputtered films were determined from load vs. displacement curves measured by a 

microhardness tester Fisherscope H100 with Vickers diamond indenter at a load 20 mN. The resistance of the 

Ti(Al,V)Nx films to cracking was determined using the indentation test at high loads L ranging from 0.25 to 1 N 

determining the critical load Lcr when cracks in the film occur and by the bending test. The Mo strip coated with the 

sputtered film was bent around a fixed cylinder of different radius r. By decreasing the radius r a strain induced in 

the film was increased. The critical strain cr at which cracks in the film occur was measured. The critical strain cr was 

calculated from the following formula [39] 
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cr  hMo/2r (4.3) 

Here, hMo is the thickness of Mo strip. 

4.3. Results and discussion 

In this article presents the results of a detailed investigation of the effect of the energy E = Ebi + Efn on the preferred 

crystallographic orientation, mechanical properties and resistance to cracking of sputtered films. The energy Ebi 

delivered into a growing film by bombarding ions in the simplest form of fully ionized collisionless plasma can be 

calculated from Eq. (4.2). All necessary quantities - the substrate bias Us, the substrate ion current density is and the 

film deposition rate aD - can be measured and the energy Ebi delivered to the sputtered films can be easily 

determined. However, the same value of the energy Ebi can be obtained either at high values of Us and low values of 

is or at low values of Us and high values of is and in both cases at the same value of aD. Therefore, different 

combinations of Us, is and aD result in different growth and properties of the sputtered films. The energy Efn delivered 

to the film by fast neutrals can be tuned by the total sputtering gas pressure pT. The energy Efn increases with 

decreasing pT due to prolongation of the main-free path  and reduction of Efn in collisions. Therefore, a lower energy 

Efn is delivered into the growing film at a higher pressure pT compared with that delivered at a lower pressure pT. 

4.3.1 Energy delivered by bombarding ions 

4.3.1.1 Energy Ebi controlled by the substrate bias Us 

The evolution of the structure and mechanical properties of the Ti(Al,V)Nx film sputtered in DC magnetron discharge 

with increasing energy Ebi, delivered to growing film by bombarding ions, and controlled by the substrate bias Us are 

displayed in Figs. 4.1 and 4.2. From Fig. 4.1 it is seen that the preferred crystallographic orientation of the Ti(Al,V)Nx 

films strongly depends on the value of the energy Ebi. The Ti(Al,V)Nx films with the dominant TiN(200) reflection are 

sputtered at low values of energy Ebi  1.1 MJ/cm3. The intensity of the TiN(200) reflection decreases with increasing 

Ebi. The dominant TiN(220) reflection occurs at Ebi = 1.6 MJ/cm3 and coexists with the TiN(200) reflection. The 

TiN(200) reflection is almost fully converted to TiN(111) and TiN(220) reflections approximately at Ebi = 2.4 MJ/cm3. 

The Ti(Al,V)Nx films sputtered at higher energies Ebi  2.4 MJ/cm3 are composed of TiN(220) and TiN(111) grains. 

The stoichiometry x = N/(Ti+Al+V) of the Ti(Al,V)Nx film increases with increasing energy Ebi from x = 1.04 at Ebi = 0.1 

MJ/cm3 to x = 1.17 at Ebi = 4.8 MJ/cm3, see Fig. 4.1 and Table 4.1, where also its main physical and mechanical 

properties are given. From Table 1 it is seen that while the substrate ion current density is increases, the deposition 

rate aD of the film decreases with increasing negative substrate bias Us. It is the reason why the energy Ebi increases 

with increasing negative substrate bias Us. The hardness H increases with increasing Ebi from 22 GPa at Ebi = 0.1 

MJ/cm3 to 32 GPa at Ebi = 1.9 MJ/cm3 and then slightly decreases to 30 GPa at Ebi = 4.8 MJ/cm3. The effective Young’s 

modulus E* also increases with increasing Ebi from 262 GPa at Ebi = 0.1 MJ/cm3 to 275 GPa at Ebi = 1.9 MJ/cm3 but 

then, compared with the hardness H, more strongly decreases to 240 GPa at Ebi = 4.8 MJ/cm3. The Ti(Al,V)Nx films 

sputtered at Ebi  1.7 MJ/cm3 exhibit a high ratio H/E*  0.1 and a high elastic recovery We  70% and thereby also 

an enhanced resistance to cracking; for more details see Refs. [42 - 50]. 
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Figure 4.1 XRD patterns from Ti(Al,V)Nx films DC sputtered on Si(111) substrate at Id = 0.5 A, Wt ≈ 10 W/cm2, Ts = 500 C, 
ds - t = 60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa as a function Ebi as a function of negative substrate bias Us. 

The evolution of the mechanical properties of the Ti(Al,V)Nx film sputtered in DC magnetron discharge with increasing 

energy Ebi is displayed in Fig. 4.2 and Table 4.1, and the following issues can be drawn: 

 The energy Ebi delivered to the growing film increases with increasing negative substrate bias Us at constant 

values of (i) the low discharge current Id = 0.5 A and (ii) the high partial pressure of nitrogen pN2 = 0.8 Pa.  

 The Ti(Al,V)Nx films sputtered at low energies Ebi  1.7 MJ/cm3 exhibit low ratio H/E*  0.1, low elastic 

recovery We  60% and a strong TiN(200) texture. These films sputtered at low substrate biases Us  50 V 

are brittle and easily crack.  

 The Ti(Al,V)Nx films sputtered at high substrate biases Us  50 V and therefore high energies 

Ebi  1.7 MJ/cm3 exhibit high ratio H/E*  0.1, high elastic recovery We  60% and no TiN(200) texture. These 

films exhibit an enhanced resistance to cracking. 

 The Ti(Al,V)Nx films sputtered at the highest energies Ebi ≥ 3.7 MJ/cm3 exhibit the highest resistance to 

cracking.  

 The absence or small amount of the TiN(200) grains in Ti(Al,V)Nx film can be used as an indicator that the 

Ti(Al,V)Nx film with enhanced mechanical properties is formed. 

 The compressive macrostress (  0) generated in sputtered Ti(Al,V)Nx films strongly increases with 

increasing substrate bias Us up to -5.5 GPa at Us = -100 V. 
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The high compressive macrostress  in the sputtered Ti(Al,V)Nx film strongly decreases its adhesion to the substrate 

and very often the film delaminates from it. Therefore, it is needed to deliver in the growing film the energy Ebi 

necessary to form flexible hard films with enhanced resistance to cracking at lower negative substrate biases Us. 

 

Figure 4.2 The evolution of (a) hardness H, effective Young’s modulus E* and TiN texture and (b) elastic recovery We, H/E* ratio, 

critical strain cr to failure and TiN texture of the sputtered Ti(Al,V)Nx films as a function of the energy Ebi as a function of negative 

substrate bias Us. 

Table 4.1 Physical and mechanical properties of Ti(Al,V)Nx films sputtered by DC dual magnetron at Id = 0.5 A, 

Wt = Ud × Id/S = 10 W/cm2, Ts = 500C, ds-t = 60 mm and pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa on Si (111) controlled by the substrate bias 
Us; here x = N/(Ti + Al +V) is the film stoichiometry and S is the area of the sputtered target. 

bending indent.

U s i s E bi x h a D H E
* W e H /E

* σ ɛ cr L cr

[V] [mA/cm2] [MJ/cm3] [nm] [nm/min] [GPa] [GPa] [%] [GPa] [%] [N]

-11 0.24 0.1 1.04 2200 18.3 22 262 58 0.08 -0.4 1.0 0.25

-20 0.74 0.5 1.04 2000 16.7 25 268 62 0.09 -0.4 1.0 0.25

-30 0.93 1.1 0.99 1900 14.6 27 275 66 0.10 -1.0 1.3 0.25

-40 0.96 1.6 1.03 2000 14.3 26 269 67 0.10 -2.4 1.3 0.25

-50 0.91 1.9 1.07 1900 14.6 32 275 76 0.12 -3.1 2.0 > 1

-60 0.96 2.4 1.05 2000 14.3 30 273 73 0.11 -1.5 2.0 > 1

-70 1.01 3.2 1.11 1600 13.3 32 259 79 0.12 -2.9 2.0 > 1

-80 1.04 3.7 1.15 1600 13.3 30 249 78 0.12 -1.9 > 2.0 > 1

-90 1.07 4.2 1.10 1500 13.6 31 243 81 0.13 -4.0 > 2.0 > 1

-100 1.10 4.8 1.17 1400 13.7 30 240 78 0.12 -5.5 > 2.0 > 1

Cracks in 
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4.3.1.2 Energy Ebi controlled by the substrate ion current density is 

In this section properties of the Ti(Al,V)Nx films sputtered at a low substrate bias Us = -40 V in a DC and pulsed 

magnetron discharges are reported. The evolution of the structure and mechanical properties of the Ti(Al,V)Nx film 

with increasing energy Ebi, delivered to the growing film by bombarding ions and controlled by the substrate ion 

current density is are displayed in Figs. 4.3 and 4.4, respectively. The substrate ion current density is extracted to the 

substrate from the DC magnetron discharge was increased by increasing the discharge current Id, i.e. by 

intensification of the magnetron discharge, what results in the creation of a dense plasma. Higher values of the 

substrate ion current Is at Us = -40 V can be extracted from a dense plasma only. However, the increase of the current 

Id also results in the increase of the film deposition rate aD and thereby also in the simultaneous decrease of the 

energy Ebi delivered to the film during its growth by bombarding ions, see Table 4.2. 

 

Figure 4.3 XRD patterns from Ti(Al,V)Nx films on the Si(111) substrate sputtered at Ts = 500 C, ds-t =60 mm, pT = 1 Pa, pN2 = 0.8 Pa 
using (i) DC deposition at Wt ≤ 16.5 W/cm2,  Us =-40V, (ii) pulse deposition at fr = 100 kHz, τ = 0.5, Wt = 16.3 W/cm2, Us = -20V as a 
function Ebi controlled by substrate ion current density. 

In order to increase the ion current density is the DC magnetron discharge was replaced by the pulsed bipolar dual 

magnetron discharge. A higher value of the ion current density is was extracted from denser plasma at low substrate 

biases Us  20 V. At low substrate biases Us  20 V the plasma potential Up increased to + 23 V due to the positive 

value of the magnetron voltage during the pulse-off time. The positive plasma potential of + 23 V and the negative 

substrate bias of – 20 V results in the sheath potential Ush = │43 V│, from which the energy Ebi is calculated from 
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Eq. (4.1). From denser plasma higher ion currents Is to the substrate were extracted and higher ion current density 

is ≥ 1.7 mA/cm2 were achieved. Therefore, the Ti(Al,V)Nx films deposited in the pulsed discharge generated by the 

pulsed bipolar dual magnetron exhibit high ratio H/E* ≥ 0.12, high elastic recovery We ≥ 73% and are characterized 

by a strong TiN(220) texture, see Fig. 4.3. These films are slightly over-stoichiometric and its stoichiometry 

x = N/(Ti+Al+V) ranges from 1.00 to 1.09, see Table 4.2. The evolution of the mechanical properties of these films 

with increasing energy Ebi is displayed in Fig. 4.4. 

From Figs. 4.3 and 4.4 and Table 4.2 the following issues can be drawn: 

 The energy Ebi delivered to the growing film prepared in the DC magnetron discharge decreases with 

increasing discharge current Id due to increasing of the film deposition rate aD and decreasing the energy Ebi. 

All films are formed at low energy Ebi  1.7 MJ/cm3. They are polycrystalline, almost stoichiometric 

(x = N/(Ti+Al+V)  1) and exhibit strong TiN(200) texture and columnar microstructure which is responsible 

for a low resistance to cracking despite quite a high ratio H/E*  0.1 and high elastic recovery We  60%. 

 All Ti(Al,V)Nx films prepared in the pulsed bipolar dual magnetron discharge are deposited at high ion current 

density is ≥ 1.7 mA/cm2. They are also polycrystalline and almost stoichiometric (x = N/(Ti+Al+V)  1) but 

exhibit no TiN(200) texture, high ratio H/E* ≥ 0.12, high elastic recovery We  60%, and no TiN(200) 

reflection. These films exhibit an enhanced resistance to cracking in the indentation test (Lcr ≥ 1 N) but a 

lower resistance to cracking in the bending test. 

 This experiment also confirms the conclusion already given in the section 4.3.1.1 that the polycrystalline 

Ti(Al,V)Nx films with the TiN(200) are brittle, i.e. they exhibit a low resistance to cracking, on the contrary, 

the films with TiN(220) texture are strong and tough and exhibit the enhanced resistance to cracking. 

 The thick (1000 to 2000 nm) Ti(Al,V)Nx films sputtered at low negative substrate biases Us  50 V and 

energies Ebi ranging from 1.6 to 2.2 MJ/cm3 exhibit low compressive macrostresses (   2 GPa). 

 

Figure 4.4 H/E* ratio, elastic recovery We, and critical strain cr in Ti(Al,V)Nx films reactively sputtered on Si(111) and Mo substrate  
in (i) the DC discharge at Wt ranging from 11.4 to 16.5 W/cm2, Us = -40V, and (ii) the pulsed bipolar dual magnetron discharge at 

Wt = 16.3 W/cm2, Us = -15 and -20 V, fr = 100 kHz, and Ts =500 C, ds-t =60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa as a function Ebi as 

a function substrate ion current density is. 
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Table 4.2 Physical and mechanical properties of Ti(Al,V)Nx films sputtered on the Si(111) and Mo substrates at dS - T = 60 mm,  

Ts =500 C, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa by (i) DC dual magnetron discharge at Us = -40 V, Up ≈ + 3 V, (ii) pulsed bipolar dual 
magnetron discharge at fr = 100 kHz, τ = 0.5, Ida = 1.6V, Up ≈ + 23 V. The substrate ion current density is was controlled by the 
discharge current Id.  

DC dual magnetron deposition bending indenataion

I d W t i s E bi x h a D H E * W e H /E * σ cr L cr

[A] [W/cm2] [mA/cm2] [MJ/cm3] [nm] [nm/min] [GPa] [GPa] [%] [GPa] [%] [N]

0.55 11.4 1.07 1.6 1.03 1900 15.8 29.0 272 71 0.11 -1.8 2.0 0.25

0.60 12.6 1.15 1.6 1.09 2000 17.5 28.1 274 70 0.10 -1.4 2.0 0.25

0.65 13.8 1.24 1.6 1.02 2100 19.1 26.7 272 67 0.10 -1.3 2.0 0.25

0.70 15.2 1.31 1.5 1.05 2200 21.6 26.9 278 67 0.10 -1.4 2.0 0.25

0.75 16.5 1.40 1.4 1.05 2200 23.4 29.9 283 71 0.11 -1.8 2.0 0.25

U s W t i s E bi x h a D H E * W e H /E * σ cr L cr

[V] [W/cm2] [mA/cm2] [MJ/cm3] [nm] [nm/min] [GPa] [GPa] [%] [GPa] [%] [N]

-15 16.3 1.7 2.0 1.09 1.0 20.0 24.0 190 74 0.13 -1.7 2.0 1

-20 16.3 1.8 2.2 1.03 1.3 21.7 24.3 194 73 0.13 -1.4 2.0 > 1

-20 16.3 1.8 2.2 1.00 2.5 21.7 28.5 235 74 0.12 -1.4 2.0 > 1

Pulsed dual bipolar magnetron deposition

Cracks in

 

4.3.2 Energy Efn delivered by fast neutrals and controlled by the total sputtering 

gas pressure pT 

The energy E delivered to the growing film can be delivered not only by bombarding ions (Ebi) but also by bombarding 

fast neutrals (Efn) at low sputtering gas pressures pT = pAr + pN2  1 Pa. This fact is demonstrated by sputtering of the 

Ti(Al,V)Nx films held at the floating potential (Us = Ufl) as a function of the total sputtering gas pressure pT. The 

Ti(Al,V)Nx films were sputtered by pulsed dual magnetron operated in a bipolar mode at the repetition frequency of 

pulses fr = 200 kHz, τ = 0.5, Idp = 1.2 A, Uda  220 V, Us = Ufl, Ts= 500C, ds-t =60 mm, pN2/pT = 0.8. As the substrates are 

held at the floating potential Us = Ufl both the substrate ion current density is and the energy Ebi are very low, almost 

zero. It means that in this case the energy E is delivered to the growing film is delivered mainly by fast neutrals (Efn), 

i.e. E  Efn. The energy of fast neutrals Efn increases with decreasing pT due to the prolongation of the mean free 

path  between particles and therefore a reduction of collisions between atoms. It means that a lower energy Efn is 

delivered to the growing film at higher pressures pT compared with Efn delivered to it at lower pressures pT. The 

evolution of the structure of the Ti(Al,V)Nx films sputtered under these conditions is displayed in Fig. 4.5. These films 

are crystalline and slightly over-stoichiometric (x = N/(Ti + Al + V)  from 1.06 to 1.25. Physical and mechanical 

properties of sputtered Ti(Al,V)Nx films are summarized in Table 4.3. 
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Figure 4.5 Evolution of XRD patterns from Ti(Al,V)Nx film sputtered by pulsed bipolar dual magnetron on Si(111) substrate at 

fr = 200 kHz, Id = 1.2 A, Wt  13 W/cm2, Us = Ufl, Ts = 500 C, ds-t = 60 mm with decreasing total sputtering gas pressure pT. 

Table 4.3 Physical and mechanical properties of Ti(Al,V)Nx films sputtered by pulsed bipolar dual magnetron at fr = 200 kHz, 

Id = 1.2 A, Wt = 13 W/cm2, Us = Ufl, Ts = 500C, ds-t = 60 mm, pN2 = 0.8 Pa on Si(111) and Mo substrate controlled by the magnetron 
sputtering gas pressure pT = pAr + pN2; Wt = Ud × Id/S; S is the area of sputtered target and x = N/(Ti + Al +V) is the film stoichiometry. 

bending indentation

p T h x a D H E
* W e H /E

*  cr L cr

[Pa] [nm] [nm/min] [GPa] [GPa] [%] [GPa] [%] [N]

0.40 800 6.7 21.8 173 75 0.13 -2.0 > 2.0 0.5
*

0.45 1100 1.23 7.3 31.0 225 82 0.14 -2.2 2.0 0.5*

0.50 1300 1.24 8.3 25.5 209 76 0.12 -1.7 2.0 > 1

0.55 1400 1.25 8.7 25.4 214 75 0.12 -1.9 2.0 > 1

0.60 1800 1.17 12.0 27.6 238 75 0.12 -1.4 2.0 > 1

0.70 1600 1.11 11.4 24.9 245 70 0.10 -1.3 1.3 > 1

0.80 2000 1.06 15.3 18.1 179 63 0.10 -0.7 1.0 0.25

0.90 1800 1.10 15.0 23.2 237 68 0.10 -0.6 1.0 0.25

1.00 1900 1.10 15.8 23.8 240 68 0.10 -0.6 1.3 0.25

Cracks in 

* The indentation load Lcr is low due to delamination of the fi lm from the substrate not due to the fi lm cracking
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This experiment demonstrate the indirect but clear effect of the energy Efn on the physical and mechanical properties 

of Ti(Al,V)Nx films sputtered at low (0.4 Pa) and high (1 Pa) total sputtering gas pressure pT and partial pressure of 

nitrogen pN2 = 0.8 pT on substrate held at floating potential (Us = Ufl). From Fig. 4.5 and Table 4.3 the following issues 

can be drawn: 

 The structure of Ti(Al,V)Nx films varies from the dominant TiN(200) to the dominant TiN(220) texture with 

decreasing total sputtering gas pressure pT. It is indirect evidence that the energy Efn increases with 

decreasing pT as expected. 

 The ratio H/E*, elastic recovery We and compressive macrostress (  0) increase with decreasing pT. Also, 

these facts indicate that the energy Efn increases with decreasing pT.  

 The Ti(Al,V)Nx films are over-stoichiometric (x = [N/(Ti+Al+V)]  1) films and their stoichiometry x increases 

with decreasing pT probably due to the domination of nitrogen N absorption on the film surface over its 

resputtering from the film surface when the film deposition rate aD decreases with decreasing pT.  

 The microstructure of the Ti(Al,V)Nx films converts from columnar to dense, voids-free non-columnar 

microstructure with decreasing pT, see Fig. 4.6. 

 The resistance of Ti(Al,V)Nx films against cracking improves with decreasing pT, see Table 4.3. 

 All these findings show that the energy Efn can fully substitute the energy Ebi in the formation of flexible 

hard coatings. This fact opens a new way to form flexible hard nanocrystalline films on electrically insulating 

substrates. 

 

Figure 4.6 SEM images of the microstructure of Ti(Al,V)Nx film sputtered by pulsed bipolar dual magnetron on Si(111) substrate at 

fr = 200 kHz, Id = 1.2 A, Wt  13 W/cm2, Us = Ufl, Ts = 500 C, ds-t = 60 mm, pN2 = 0.8 Pa and (a) pT = 1 Pa and (b) pT = 0.4 Pa. 

In summary, it can be concluded that the microstructure of the films deposited on the substrate held at the floating 

potential Us = Ufl can be densified by the bombardment the fast neutrals when the film is sputtered at low values of 

the sputtering gas pressures pT  0.7 Pa. Moreover, it is possible to sputter defect-free electrically insulating films 

because there is no accumulation of a charge on the surface of the growing film. These are the main advantages of 

the sputtering of the films held at the floating potential Us = Ufl at low sputtering gas pressures (pT  0.7 Pa). 

4.3.3 Interrelationships between energies Ebi and Efn, preferred crystallographic 

orientation and resistance to cracking of Ti(Al,V)Nx films  

Main results of our investigation are summarized in Fig. 4.7. This figure clearly illustrates main interrelationships 

between the Ebi controlled by ion bombardment (Us, is) and the energy of fast neutrals Efn controlled by the total 

pressure of sputtering gas pT, the preferred orientation and the resistance to cracking of the Ti(Al,V)Nx film. The low 

and enhanced resistance to cracking is characterized by the diamond indenter load Lcr at which the tested film cracks, 

see Fig. 4.8. In Fig. 4.8 the morphology of two Ti(Al,V)N films after loading by the diamond indenter at the same high 
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load L = 1 N are compared: (a) the brittle hard Ti(Al,V)N film with low H/E* = 0.9, low We = 58% sputtered at low 

energy Ebi = 0.5 MJ/cm3 and (b) the flexible hard Ti(Al,V)N film with high H/E* = 0.12, high We =78% sputtered at high 

energy Ebi = 4.8 MJ/cm3. This figure clearly shows that while the brittle hard film sputtered at low energy cracks, the 

flexible hard film exhibit no cracks under the same load L = 1N.  

 

Figure 4.7 Schematic illustration of interrelationships between the energy Ebi and Efn, and the structure, microstructure and 

resistance to cracking of the Ti(Al,V)Nx film. 

Three main issues following from Fig. 4.7 are: 

 The Ti(Al,V)Nx films sputtered at low energies Ebi  1.7 MJ/cm3 or under low bombardment by fast neutrals 

Efn at high sputtering gas pressures pT  0.7 Pa containing TiN(200) grains exhibit columnar microstructure 

and low resistance to cracking. 

 The Ti(Al,V)Nx films sputtered at high energies Ebi  1.7 MJ/cm3 or under high bombardment by fast neutrals 

Efn at low sputtering gas pressures pT  0.7 Pa containing no or low amount of TiN(200) grains exhibit dense, 

voids-free non-columnar microstructure and enhanced resistance to cracking. 

 The energy Ebi delivered to the growing film can be fully substituted by the energy of fast neutrals Efn in the 

formation of the film with the same properties. 
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Figure 4.8. Comparison of the surface morphology of (a) brittle hard Ti(Al,V)Nx films sputtered at low energy Ebi = 0.5 MJ/cm3 

exhibit stoichiometry x = 1.04 and (b) flexible hard Ti(Al,V)Nx film sputtered at high energy Ebi = 4.8 MJ/cm3 exhibit stoichiometry 

x = 1.17. 

4.4. Conclusions 

The article reports on a detailed investigation of the interrelationships between the energy Ebi and Efn delivered to 

the Ti(Al,V)Nx film by bombarding ions and fast neutrals, respectively, and its structure, microstructure, mechanical 

properties, and resistance to cracking. Main issues of this study can be summarized as follows: 

 The texture of Ti(Al,V)Nx film varies from TiN(200) to TiN(220) with increasing energy Ebi or Efn. 

 The Ti(Al,V)Nx films sputtered at low energies Ebi  1.7 MJ/cm3 and high sputtering gas pressures pT  0.7 Pa 

are characterized by the TiN(200) reflection and low resistance to cracking. On the other hand, the Ti(Al,V)Nx 

films sputtered at high energies Ebi  1.7 MJ/cm3 and low pressures pT   0.7 Pa exhibit no TiN(200) reflection 

but an enhanced resistance to cracking. It indicates that the absence of the TiN (200) reflection in XRD 

pattern can be used as an indicator that the Ti(Al,V)Nx film with enhanced resistance to cracking is formed. 

 The Ti(Al,V)Nx film with high ratio H/E*  0.1, high elastic recovery We  60%, dense, voids-free non-columnar 

microstructure and compressive macrostress (  0) exhibit an enhanced resistance to cracking. 

 In sputtering of the Ti(Al,V)Nx  film with enhanced resistance to cracking the energy Ebi can be fully 

substituted by the energy Efn. This finding is of a general validity. Moreover, the use of the energy Efn in the 

deposition of films makes it possible to sputter nanocrystalline and crystalline films on electrically insulating 

substrates without their heating and arcing on their surfaces. 

 The energy E is a key parameter controlling the physical and mechanical properties of sputtered films 

including their resistance to cracking and enabling their production in a reproducible way. 
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Abstract 

This letter reports on great differences in values of the plasma Up and floating Ufl potentials in sputtering discharges 

generated by single and dual magnetrons. It is shown that (i) the differences of Up and Ufl result in strongly different 

properties of films sputtered by single and dual magnetrons at the same power delivered to the magnetron discharge, 

(ii) in the DC single and dual magnetron discharges the values of Up and Ufl strongly depend on the electric 

conductivity of the surface of the grounded deposition chamber, and (iii) the Pulsed dual magnetron with closed 

magnetic B field is only one sputtering system which enables to sputter the films with fully reproducible properties. 

5.1. Introduction 

It is well known that the energy Ebi delivered into the sputtered film by bombarding ions decides on its physical and 

mechanical properties such as its structure, microstructure, hardness H, effective Young’s modulus E*, elastic 

recovery We, ratio H/E*, macrostress , etc. In the simplest case of 100% ionized and collisionless discharge, the 

energy Ebi is determined by the following formula [1, 2] 

Ebi [J/cm3] = (Up – Us ) × is/aD                      at Up > Us (5.1) 

Here, Up is the plasma potential, Us is the substrate bias, is is the substrate ion current density and aD is the deposition 

rate of the film. Eq. (5.1) shows that the effect of Up on Ebi can be very small in the case when Up Us but, on 

the contrary, Up can strongly influence Ebi in the case when Up  Us. The plasma potential Up strongly depends on 

the deposition parameters used in the magnetron sputtering, the mode (type) of the magnetron operation (the direct 

current (DC), pulsed, high-power pulsed magnetron (HPPMS) sputtering) [3 - 9], the geometrical arrangement of the 

sputtering device [10], the target power density Wt = Ud × Id/S [11], the sputtering gas pressure p [6, 11], and the 

state of the surface of the deposition chamber (electrically conductive, semiconducting, electrically insulating); here 

Ud and Id is the voltage and current of the magnetron discharge, and S is the area of the sputtered target. These facts 

are the main reason why the properties of films sputtered under the same deposition conditions can strongly differ 

and in many cases cannot be formed in a reproducible way. No investigation of this problem was performed so far. 

Up to now, main attention was concentrated mainly on the measurement of the degree of ionization of sputtering 

gas, electron and ion energy distribution functions (EEDFs and IEDFs) [12] and species generated in the magnetron 

discharges in reactive sputtering and in the presence of different kinds of the inert and reactive sputtering gases and 

their mixtures. 

This article shows great differences in the values of the plasma potential Up and the floating potential Ufl in the 

magnetron discharge generated by (i) the DC single and DC dual magnetron and (ii) the Pulsed dual magnetron 

operating at the same deposition conditions. Besides, it is shown that the electric conductivity of the surface of walls 

of the deposition chamber strongly influences Up and Ufl in a reactive magnetron sputtering of films. The way how 

these changes of Up and Ufl can be fully eliminated is shown. 

5.2. Experimental details 

The plasma potential Up and the floating potential Ufl in the magnetron discharge was measured in a cylindrical 

deposition chamber (the diameter  = 600 mm, the height h = 600 mm) equipped successively with three sputtering 

systems: (1) DC single magnetron, (2) DC dual magnetron and (3) Pulsed dual magnetron, see Fig. 5.1. All magnetrons 
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were the same and were equipped with Ti (6Al 4V) alloy targets made of a VT6 titanium alloy containing 6 at.% Al 

and 4 at.% V. Both DC and Pulsed dual magnetron systems have a closed magnetic field B between magnetrons, see 

Figs. 1b and 1c. The sputtering discharges were generated at the same power PDC = P1 DC + P2 DC = P1 p + P2 p = 500 W 

and the same sputtering gas pressure p = pAr + pN2 = 0.2 + 0.8 = 1 Pa; here indexes 1DC and 2DC, and 1p and 2p denote 

the powers delivered to the magnetron 1 and 2 by two DC power supplies (Advanced Energy Pinnacle Plus+ 5/5 kW 

operated in a DC mode), and by a Pulsed the pulsed power supply (Advanced Energy Pinnacle Plus+ 5/5 kW operated 

in bipolar mode with asynchronous pulses), respectively, see Fig. 5.2, pAr and pN2 are partial pressures of argon and 

nitrogen, respectively. More details on the discharge of the dual magnetron with closed and open (mirror) magnetic 

field B are given in Ref. [13].  

 

Figure 5.1 Schematic illustration of the discharge generated by (a) DC single magnetron, (b) DC dual magnetron and (c) Pulsed dual 
magnetron and the electrical connection of power supplies. 

The voltage on the magnetron 1 and the magnetron 2 in the DC dual magnetron system and in the pulsed dual 

magnetron system is shown in Fig. 5.2. Fig. 5.2b shows that during the pulse-off time the magnetron voltage is slightly 

positive. It enables to remove the positive charge accumulated on the target when electrically insulating films are 

sputtered, to avoid arcing on the target surface and to form defect-free films [14]. The Ti(Al,V)N films were reactively 

sputtered on 15330 steel substrates placed at the substrate temperature Ts = 500C, the substrate-to-target distance 

ds-t = 60 mm and the total sputtering gas pressure pT = pAr + pN2 = 0.2 Pa + 0.8 Pa = 1 Pa; here pAr and pN2 is the partial 

pressure of argon and nitrogen, respectively. All measurements of the plasma potential Up and the floating potential 

Ufl were carried out in the discharge generated at an unheated substrate. The change of the electrical conductivity 

of the surface of the deposition chamber from electrically conductive to non-conductive (electrically insulating) was 

carried out by a pulsed reactive sputtering of TiO2 films from the Ti(Al,V) targets of the dual magnetron at the total 

pressure pT = pAr + pO2 = 0.5 + 0.5 = 1 Pa and the pulsed averaged power Pda = 1000 W. 
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Figure 5.2 Schematic illustration of the voltage on the magnetron 1 and the magnetron 2 at (a) the DC dual magnetron and (b) the 
Pulsed bipolar dual magnetron operated with asynchronous pulses. 

5.3. Results and discussion 

In this section two problems were investigated in detail: (1) Differences in the plasma potential Up and the floating 

potential Ufl in the DC and pulsed magnetron discharges and (2) The elimination of the effect of the electrical 

conductivity of the surface of the deposition chamber on properties of sputtered films and the finding of the 

magnetron sputtering system which enables to sputter films with fully reproducible properties. 

The plasma potential Up and the floating potential Ufl were determined from Volt-Ampere (V-A) characteristics 

measured at the substrate. Our experiments show that the V-A characteristics at the substrate measured in the 

discharge generated by the DC single magnetron (Fig. 5.1a) and by the DC dual magnetron (Fig. 5.1b) are identical. 

Therefore, the V-A characteristics measured at the substrate immersed in the DC dual magnetron discharge and in 

the Pulsed bipolar dual magnetron discharge are compared only, see Fig. 5.3. 

Fig. 5.3 shows strong differences in the values of Up and Us in the DC and Pulsed bipolar dual magnetron discharges 

generated at the same power P = 500 W. Main results of this experiment are the following: 

 The single magnetrons (Fig. 5.1a) and the dual magnetrons with the closed magnetic field (Fig. 5.1b) 

powered by the DC power have always the ground outside the magnetron discharge, i.e. outside the 

chamber walls. On the contrary, the pulsed dual magnetrons with closed magnetic field operated with 

asynchronous pulses (Fig. 5.1c) have the ground inside the magnetron discharge. 

 In discharges of the DC single and DC dual magnetrons, the floating potential Ufl is negative. Therefore, the 

films sputtered in discharges generated by the DC single and dual magnetrons can be bombarded by 

electrons also at negative substrate biases Us  Ufl. On the contrary, the films sputtered in discharges 

generated by the pulsed dual magnetrons with closed B field can be bombarded by ions also at positive 

substrate biases if Ufl  Us  0. It is the main reason why properties of the films sputtered under the same 

deposition conditions on the grounded substrate by the DC and Pulsed dual magnetrons strongly differ, see 

and Fig. 5.3 and Table 5.1. 
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Figure 5.3 V-A characteristics measured on the substrate immersed in the dual magnetron discharge powered by  
(a) DC power P1 DC = P2 DC = 250 W and (b) Pulsed power with asynchronous pulses with P1p = P2p = 500 W, repetition frequency  

fr = 1/T = 100 kHz and duty cycle /T = 0.5; here indexes 1 DC and 2 DC and 1p and 2p denote the powers delivered to the magnetron 
1 and 2 by the two DC power supplies and the Pulsed power supply, respectively. 

Fig. 5.4 displays XRD patterns from the Ti(Al,V)N films reactively sputtered on the grounded substrate (Us = 0 V) by 

the DC and Pulsed bipolar dual magnetron at the same deposition conditions: Wt DC = 12.8 W/cm2, Wtp = 25.6 W/cm2, 

Ts = 500C, ds-t = 60 mm and pT = pAr + pN2 = 0.2  + 0.8 = 1 Pa; here Wt DC and Wt p is the target power density of one 

magnetron in the DC dual magnetron and in the Pulsed bipolar dual magnetron, respectively. The structures of both 

films strongly differ. While the DC sputtered film is polycrystalline, the pulsed sputtered exhibit a strong TiN (111) 

structure. These strong changes of the film structure result also in strong differences of the mechanical properties of 

the films sputtered by the DC and Pulsed dual magnetron, respectively, see Table 5.1. The film deposited by DC dual 

magnetron sputtering exhibits lower values of the hardness H, the elastic recovery We and the low ratio H/E*  0.1 

compared with those of the film deposited by Pulsed dual magnetron sputtering. Moreover, the pulsed sputtered 

film exhibits an enhanced resistance to cracking due to the high ratio H/E* = 0.1 [2, 15]. This experiment clearly shows 

how important it is to know the floating Ufl and plasma Up potential on the substrate and inside magnetron discharge, 

respectively, during deposition of the film. 
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Figure 5.4 XRD patterns of the Ti(Al,V)N films sputtered on the grounded substrate (Us = 0 V) by DC and Pulsed  dual magnetron 

powered at the same deposition conditions: Wt DC  Wtp = 12.8 W/cm2, Ts = 500C, ds-t = 60 mm and pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa. 

Table 5.1 Deposition conditions, energy E delivered in growing Ti(Al,V)N films sputtered on the grounded substrate  (Us = 0) by DC 

and Pulsed bipolar dual magnetron at the same deposition conditions: Wt DC  Wtp = 12.8 W/cm2, Ts = 500C, ds-t = 60 mm and  
pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa, and mechanical properties of sputtered films. 

Sputtering U s I s i s E bi E el h a D H E *
W e H /E *



[V] [mA/cm2] [MJ/cm3] [MJ/cm3] [nm] [nm/min] [GPa] [GPa] [%] [GPa]

DC 0 electrons 10.60 -- 3.4 1700 18.9 16.1 195 58 0.08 0.3

Pulsed 0 ions 1.12 1 -- 1400 15.6 23.5 224 67 0.10 -1.2
 

5.3.1 Elimination of the effect of chamber walls on properties of sputtered films 

The place of the ground of the electrical connection of power supplies used for the generation of the magnetron 

discharge – outside discharge (the chamber walls) or inside discharge (the sputtered target of magnetron) – strongly 

influences V-A characteristics on the substrate, see Fig. 5.5. When the ground is outside discharge the V-A 

characteristics depend on the electrical conductivity of the chamber walls, see Fig. 5.5a. The negative floating 

potential Ufl on the substrate increases with decreasing electrical conductivity of the chamber walls. These changes 

of Ufl are caused by the walls contamination by (i) the oxygen and nitrogen during opening of the deposition chamber 

to the air for the de-loading of coated parts (samples) and its loading by non-coated ones and particularly (ii) the 

condensing of different reactive species created during the reactive magnetron sputtering of films. The 

contamination of the surface of the grounded deposition chamber is the main reason why the sputtering of the films 

with fully reproducible properties is a very serious problem. 

This problem can be fully avoided in the case when the ground is inside the magnetron discharge, see Fig. 5.5b. In 

this case, the V-A characteristics do not depend on the electric conductivity of the surface of the chamber walls. It 

means that the Pulsed sputtering by the dual magnetron with closed B field is the best sputtering system enabling 

deposition of films with fully reproducible properties. 
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Figure 5.5 V-A characteristics measured on the substrate immersed in the dual magnetron discharge powered by (a) DC power and 
(b) Pulsed power with asynchronous pulses in the deposition chamber whose walls are electrically conductive (triangles) and  
non-conductive (circles). 
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5.4. Conclusions 

Results of the reported investigation are very important for both the deepening of the present state of knowledge in 

the field of reactive magnetron sputtering of thin films and the design of new advanced sputtering systems which 

enable to sputter the films with fully reproducible properties. Main results can be summarized as follows:  

1. Properties of the films sputtered by the single and dual magnetrons at the same power P delivered to the 

magnetron discharge and other constant deposition conditions (Us, Ts, ds-t, p) differ due to different values 

of the plasma potential Up and the floating potential Ufl what results in a different energy 

Ebi = (Up – Us) × is/aD delivered to the growing film by bombarding ions 

2. The values of Up and Us strongly depend on the electrical connection of the power supply the magnetron. 

For the single and DC dual magnetron, the ground is outside discharge. In contrast, for the Pulsed dual 

magnetron with a closed magnetic field, the ground is inside the discharge. 

3. The properties of the films sputtered on the grounded substrate by the single and DC dual magnetrons at 

the same power P and other constant deposition conditions strongly differ from those sputtered by the 

pulsed dual magnetrons with the closed magnetic field. It is due to the fact that while in the single and DC 

dual magnetron discharge electrons flow on the grounded substrate, in the pulsed dual magnetron with the 

closed magnetic field on the contrary ions flow on the grounded substrate. It results in a great difference in 

the energy E delivered to the growing film. 

4. In discharges of the single magnetrons and the DC dual magnetrons powered by two grounded power 

supplies the values of Up and Us depend on the state of the surface of the chamber walls (electrically 

conductive or non-conductive) and the formation of reactively sputtered films is very difficult. On the other 

hand, in pulsed discharges of the dual magnetrons with a closed magnetic field in which the ground is 

inserted inside the discharge the values of Up and Ufl do not depend on the state of deposition chamber 

walls. It means that the Pulsed dual magnetron ensures a long-term reactive sputtering of the films with 

fully reproducible properties without any effect of varying contamination of the deposition chamber walls. 

Acknowledgment 

This work was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports under the 

program NPU I. The authors thank to R. Čerstvý for the XRD patterns of the Ti(Al,V)N films. 

References 

[1] J. Musil, J. Šícha, D. Heřman and R. Čerstvý: Role of energy in low-temperature high-rate formation of hydrophilic 

TiO2 thin films using pulsed magnetron sputtering, J. Vac. Sci. Technol. A 25(4) (2007) 666-674/ 

[2] J. Musil: Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol. 

207 (2012), 50-65. 

[3] J. W. Bradley, H. Bäcker, P. J. Kelly and R. D. Arnell: Time-resolved Langmuir probe measurements at the substrate 

position in a pulsed mid-frequency DC magnetron plasma, Surf. Coat. Technol. 135 (2001) 221-228. 

[4] C. Muratore, J. J. Moore and J. A. Rees: Electrostatic quadrupole plasma mass spectrometer and Langmuir probe 

measurements of mid-frequency pulsed DC magnetron discharges, Surf. Coat. Technol. 163 (2003) 12-18 



52 

[5] H. Bäcker, P. S. Henderson, J. W. Bradley and P. J. Kelly: Time-resolved investigation of plasma parameters during 

deposition of Ti and TiO2 thin films, Surf. Coat. Technol. 174 (2003) 909-913. 

[6] J. Vlček, A. D. Pajdarová and J. Musil: Pulsed dc Magnetron Discharges and their Utilization on Plasma Surface 

Engieneering, Contrib. Plasma Phys. 44 (2004) 426-436. 

[7] F. Richter, Th. Welyel, Th. Dunger and H. Kupfer: Time-resolved characterization of pulsed magnetron discharges 

using Langmuir probes, Surf. Coat. Technol. 188 (2004) 384-391. 

[8] A. Mishra, P. J. Kelly and J. W. Bradley: The evolution of the plasma potential in a HiPIMS discharge and its 

relationship to deposition rate, Plasma Sources Sci. Technol. 19 (2010) 045014. 

[9] B. B. Sahu, J. G. Han, J. B. Kim, M. Kumar, S. Jin and M. Hori: Study of Plasma Properties for the Low-Temperature 

Deposition of Highly Conductive Aluminum Doped ZnO Film Using ICP Assisted DC Magnetron Sputtering, 

Plasma Process and Polymers 13 (2016) 134-146. 

[10] J. W. Bradley, H. Bäcker, P. J. Kelly and R. D. Arnell: Space and time resolved Langmuir probe measurements in a 

100 kHz pulsed rectangular magnetron system, Surf. Coat. Technol. 142 (2001) 337-341. 

[11] L. Sirghi, T. Aoki and Y. Hatanaka: Diagnostics of the radio frequency magnetron discharge plasma used for 

TiO2 thin sputtering deposition, Surf. Coat. Technol. 187 (2004) 358-363. 

[12] A. D. Pajdarová, J. Vlček, P. Kudláček and J. Lukáš: Electron energy distributions and plasma parameters in high-

power pulsed magnetron sputtering discharges, Plasma Sources Science and Technology, 18 (2009) 025008. 

[13] J. Musil and P. Baroch: Discharge in dual magnetron sputtering system, IEEE Trans. Plasma Sci., 2005, 33(2) (2005) 

338-339. 

[14] W. D. Sproul, D. J. Christie and D.C. Carter: Control of reactive sputtering processes, Thin Solid Films 491 (2005) 

1-17. 

[15] J. Musil: Flexible hard nanocomposite coatings, RSC Advances 5 (2015) 60482-60495. 

  

http://www.sciencedirect.com/science/article/pii/S0257897204000647
http://www.sciencedirect.com/science/article/pii/S0257897204000647
http://www.sciencedirect.com/science/article/pii/S0257897204000647


53 

 

Paper IV 

6. Effect of energy on macrostress in Ti(Al,V)N films prepared by 

magnetron sputtering 

M. Jaroš, J. Musil, R. Čerstvý, S. Haviar  

Vacuum 158 (2018) 52-59 

  



54 

Abstract 

The article reports on the effect of the energy E delivered into the growing film on its macrostress, microstructure, 

mechanical properties and resistance to cracking of Ti(Al,V)N films. The Ti(Al,V)N films were deposited on Si(111) and 

Mo substrates by magnetron sputtering in a mixture Ar+N2 gases using a dual magnetron with closed magnetic field 

and equipped with TiAlV (6 at.% Al, 4 at.% V) alloy targets. It is shown that the compressive macrostress  in sputtered 

films can be reduced either by the pulsed bipolar bias voltage Usp with alternating negative and positive pulses or the 

electron and ion bombardment during overshoots in the pulsed magnetron sputtering. All sputtered films with high 

ratio H/E*  0.1, compressive macrostress (  0), and non-columnar microstructure exhibit an enhanced resistance 

to cracking; here H is the hardness and E* is the effective Young’s modulus. The high compressive macrostress in the 

film is not the necessary condition for the formation of the films with an enhanced resistance to cracking. 

6.1. Introduction 

There is a huge number of papers devoted to the investigation of relationships between the deposition parameters 

of the film and its structure [1-12], microstructure [8-26], phase and elemental composition [2-5, 15-20], macrostress 

[4-9, 18-25], physical and functional properties [1-31]. Despite these facts, it is very difficult to sputter in different 

deposition chambers with different magnetrons, and different power supplies (DC, pulsed) the films with 

reproducible properties. It is due to the fact that different combinations of deposition parameters, different 

magnetrons (single, dual, etc.) and different arrangement of substrate holders (stationary, rotating) result in different 

energies E delivered into the growing film. It means that the main parameter controlling the properties of the film is 

the energy E [32-42]. Therefore, the knowledge of correlations between the energy E and the film properties is very 

important. 

In the deposition of films using an ion plating process, i.e. in the case when the substrate on which the film is 

deposited is held on a negative substrate bias Us, the most important is the energy Ebi delivered to the film during its 

growth by bombarded ions. In the simplest case of a collision-less, fully ionized plasma the energy Ebi can be 

expressed in the following form [42]  

Ebi [J/cm3] = Up - Us × is/aD (6.1) 

Here, Up is the plasma potential, Us is the substrate bias, is is the substrate ion current density and aD is the deposition 

rate of the film. Under the assumption that Up  Us , which is well fulfilled in many experiments, Eq. (6.1) can be 

simplified in the following simple form  

Ebi [J/cm3]  Us × is/aD (6.2) 

Eq. (6.2) shows that the energy Ebi delivered to the growing film by bombarding ions can be easily calculated from 

measured deposition parameters (Us, is) and the film deposition rate aD = h/td calculated from the measured film 

thickness h and the deposition time td.  

Recently, it was demonstrated that the Ti(Al,V)N films with enhanced resistance to cracking are created at high 

energies Ebi > 1.7 MJ/cm3 [43]. However, the intensive ion bombardment generates high compressive stresses 

(up to - 3 GPa to - 5 GPa) in sputtered films [44]. Such films easily delaminate from the substrate and crack. Therefore, 

it is necessary to decrease the compressive macrostress  but simultaneously to deliver to the film sufficiently high 
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energy Ebi necessary to sputter the film with dense, non-columnar microstructure exhibiting no delamination from 

the substrate and an enhanced resistance to cracking. 

The solution of this quite difficult task is the subject of this article. It is shown that the films with an enhanced 

resistance to cracking and a low compressive macrostress   1 GPa can be formed in the case when  generated 

in the sputtered film is relaxed by bombardment of electrons during its growth. Two methods are described in detail: 

(1) the DC sputtering with pulsed bipolar bias with alternating negative and positive pulses and (2) the pulsed 

sputtering with electron bombardment of the film during overshoots at the end of each pulse. Both methods 

efficiently reduce the compressive macrosrostress (  0) in sputtered films. It was demonstrated in sputtering of 

the Ti(Al,V)N nitride films. 

6.2. Experimental 

The Ti(Al,V)N nitride films were reactively sputter deposited on Si(111) and Mo substrates at substrate temperature 

Ts = 500C and substrate-to-target distance ds-t = 60 mm by a dual magnetron with closed magnetic field equipped 

with TiAlV (6 at.% Al, 4 at.% V) alloy targets of diameter  = 50 mm in a mixture of Ar + N2 sputtering gases. The 

magnetrons were tilted at angle 20 to the vertical axis [45] and supplied by an Advanced Energy Pinnacle Plus+ 

5/5kW power supply operated either in the DC or pulse mode. The Ti(Al,V)N films deposited by a dual magnetron 

powered by DC power were sputtered at Id = 1 A results in Wt= IdUd/S ≈ 16 W/cm2, and the substrate held either at 

constant negative bias Us or at pulsed bipolar positive/negative bias. The Ti(Al,V)N films deposited by a dual 

magnetron powered by pulsed power were sputtered at the repetition frequency of pulses fr ranging from 100 kHz 

to 350 kHz, τ/T = 0.5 and Id ranging from 1.6 to 2 A resulting in the target power density Wt = Idp Udp /S < 16 W/cm2 

and the substrate bias held at the floating potential Ufl or at the constant negative bias; here Idp  and Udp is the 

discharge current and voltage during pulse-on time, respectively, and S is the total area of the sputtered target. All 

Ti(Al,V)Nx films were sputtered in the nitrogen-rich atmosphere at pN2/pT = 0.8. The films sputtered under these 

conditions were almost stoichiometric (x = N/(Ti+Al+V)  1) and their stoichiometry x varied in a very narrow range 

from 0.98 to 1.09 only. The Si plates (20 x 20 x 0.64 mm3) were used for of X-ray diffraction patterns and the Si strips 

(30 x 5 x 0.64 mm3) were used for the measurement of the macrostress  in the sputtered films. The Mo substrates 

(80 x 15 x 0.20 mm3) coated by sputtered films were used for the assessment of the film resistance to cracking in 

bending. A pre-deposition etching of substrates was performed in the pulsed discharge (generated between the 

substrate and the shutter) at the voltage U = 400 V, current I = 0.5 A, repetition frequency fr = 100 kHz, τ/T = 0.5, 

substrate temperature Ts = 500C and shutter-to-target distance ds-t = 60 mm in argon at pressure pAr = 1 Pa for 5 min. 

A pre-deposition cleaning of the magnetron targets was performed in DC mode of sputtering at the magnetron 

voltage Ud = 400 V and current Id = 0.5 A, target power density Wt ≈ 10 W/cm2 in argon at pressure pAr = 1 Pa for 

3 min.  

The film thickness h was measured by a stylus profilometer DEKTAK 8. The macrostress σ was evaluated from the 

bending of Si plate using the Stoney’s formula [46]. The film structure was characterized by X-ray diffraction using an 

XRD diffractometer PANalytical X Pert PRO in the Bragg-Brentano configuration with CuKα radiation. The elemental 

composition of the Ti(Al,V)N films deposited on Si substrates was analyzed by a scanning electron microscope (SU-

70, Hitachi) operated at a primary electron energy of 15 keV using both the energy dispersive spectroscopy (EDS, 

UltraDry, Thermo Scientific) and the wave dispersive spectroscopy (WDS, Magnaray, Thermo Scientific). Pure metal 

standards for the determination of Ti, Al and V concentrations in the film were used. The nitrogen concentration was 

calculated as the difference to 100 wt. %. The Ti(Al,V)Nx≈1 films exhibit stochiometry x = N/(Ti+Al+V) ranging from 

0.98 to 1.09. Mechanical properties of sputtered films were determined from load vs. displacement curves measured 

by a microhardness tester Fisherscope H100 with Vickers diamond indenter at a load of 20 mN. The resistance of the 
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Ti(Al,V)N films to cracking was determined by (i) the indentation test at high loads Lcr (critical load when cracks occur) 

ranging from 0.25 to 1 N and (ii) the bending test; more details are given in [42, 47, 48]. The Mo strip coated with the 

sputtered film was bent around a fixed cylinder of different radius r. The strain induced in the film by bending was 

increased by decreasing of the radius r of fixed cylinder. The critical strain cr at which cracks in the film occur was 

measured. The critical strain cr was calculated from the following formula [42] 

cr  hMo/2r (6.3) 

Here, hMo is the thickness of the Mo strip.  

6.3. Results and discussion 

In this section, two ways of sputtering of the low-stress Ti(Al,V)N films with enhanced resistance to cracking are 

described in detail. Both methods of a reduction of the macrostress  in sputtered films are based on an electron 

heating of the film material during its growth controlled by the energy Ebi delivered into the growing film by 

bombarding ions. This section consists of three subsections: (1) The macrostress reduction controlled by pulsed 

bipolar substrate bias Usp, (2) The macrostress reduction controlled by overshoots in pulsed sputtering and (3) 

Correlations between the energy Ebi, the macrostress  in film, its microstructure, and resistance to cracking. 

6.3.1. Macrostress reduction by pulsed bipolar substrate bias Ups 

The principle of a reduction of the macrostress  in the sputtered film at a pulsed substrate bias Usp is based on 

alternating of the ion and the electron bombardment of the film during its growth, see Fig. 6.1. The alternating ion 

and electron bombardment of the growing film is realized by alternating negative and positive pulses. The 

microstructure of growing film is densified during the negative pulse of the substrate bias Usp by ion bombardment. 

Simultaneously, the compressive macrostress (  0) is generated in the film and its magnitude increases with 

increasing voltage of the negative pulse. On the other hand, the macrostress , generated in the film during the ion 

bombardment, is relaxed by the electron current which thermally anneals the growing film during the positive pulse 

of the pulsed substrate bias Usp. It means that the films sputtered at DC substrate bias Us DC will always exhibit a 

higher compressive macrostress (  0) compared with the films sputtered at a pulsed bipolar substrate bias Usp.  

The relaxing of the compressive macrostress (  0) in the sputtered film by the electron bombardment was 

confirmed by sputtering of the Ti(Al,V)N films under the same deposition conditions at DC and pulsed bipolar bias. 

Results of this experiment are summarized in Table 6.1. From Table 6.1 the following important issues can be drawn 

1. The film sputter deposited at DC negative bias Us, i.e. at the ion bombardment of the growing film only, 

exhibits the high compressive macrostress ( = - 4 GPa) compared with the film sputter deposited at the 

pulsed bias Usp with alternating negative and positive pulses ( = - 0.8 GPa). 

2. The energy Ebi delivered to the film growing at pulsed bipolar bias Usp is lower (1.6 MJ/cm3) than the 

energy delivered to the film growing at DC bias Us DC (3.7 MJ/cm3). This is a reason why the film sputter 

deposited at a pulsed bias Usp exhibits the X-ray amorphous structure and the film sputter deposited at 

DC bias Us DC is the crystalline with a dominant TiN (220) texture, see Fig. 6.2.  
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3. The electron bombardment of the growing film, however, results not only in the strong decrease of the 

compressive macrostress  but also in decrease of its hardness H, elastic recovery We, H/E* ratio and the 

low resistance to cracking, see Table 6.1.  

 

Figure 6.1 Comparison of DC and pulsed substrate bias used in deposition of Ti(Al,V)N films by DC dual magnetron discharge 
generated at Id = 1 A, Ts = 500°C, ds-t = 60 mm, pT = pAr + pN2 = 0.8 + 0.2 = 1 Pa. (a) Continuous ion bombardment and (b) alternating 
ion/electron bombardment of the growing Ti(Al,V)N film by ions and electrons produced by DC bias (Us = - 100 V) and pulsed bias 
(Usp = - 130/+70V, fr = 5 kHz), respectively. Here, Usp is the pulsed substrate bias Usp and isp is the pulsed substrate current density. 

Table 6.1 Physical and mechanical properties and compressive macrostress (σ < 0) in the Ti(Al,V)N films sputtered by DC dual 
magnetron operated at Id = 1 A, Ts = 500°C, ds-t = 60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa on the substrate held at (i) DC substrate 
bias voltage Us DC and (ii) pulsed substrate bias voltage Usp voltage with repetition frequency of pulses fr = 5 kHz. The bending test 
was performed on the films sputtered on the Mo strip and the indentation test on the films sputtered on the Si substrates 

bias f r U sp i s h a D τe/τ i E bip  H E * W e H /E * cr L cr structure texture

voltage [kHz] [V] [mA/cm
2
] [nm] [nm/min] [MJ/cm

3
] [GPa] [GPa] [GPa] [%] [%] [N]

DC 0 -40 1 2100 36 0 1.6 -1.7 28.4 282 70 0.10 --- 0.25 crystaline (200)+(220)

DC 0 -100 1.8 1100 37.5 0 3.7 -4.0 30.7 220 81 0.14 >2.0 > 1 crystaline (220)

pulsed 5 -100/70 0.9 1000 33 1.3 1.6 -0.8 19.1 175 68 0.11 1.3 0.75 XRA

E bip is the average energy of ions during the negative pulse of pulsed substrate bias U sp, and XRA is X-ray amorphous  

 

 



58 

 

Figure 6.2 Comparison of the structure of the Ti(Al,V)N film sputter deposited at (i) DC substrate bias Us DC = -100 V and a high 
energy Ebi = 3.7 MJ/cm3 and (ii) the pulsed substrate bias Usp and a low energy Ebip = 1.6 MJ/cm3. 

The electron bombardment of the growing film is the reason why the macrostress  generated in the film sputter 
deposited at the pulsed substrate bias Usp with alternating negative and positive pulses is considerably lower than 

that in the film sputter deposited at the DC negative substrate bias voltage Us. The length of the negative pulse i 

and the length of the positive pulse e can be different. It means that the efficiency of a relaxing of macrostress  in 

the film can be controlled by the ratio e/i. The possibility to control the macrostress  in sputtered films by the 

ratio e/i was also demonstrated in sputtering the Ti(Al,V)N films at pulsed bipolar substrate bias Usp. Results of this 
experiment are summarized in Table 6.2. 

Table 6.2 Physical and mechanical properties and compressive macrostress (σ < 0) in the Ti(Al,V)N films sputtered by DC dual 
magnetron operated at Id = 1 A, Ts = 500°C, ds-t = 60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa on the substrate held at pulsed bipolar 
substrate bias Usp with two repetition frequencies fr of alternating negative and positive pulses. The bending test was performed 
on the films sputtered on the Mo strip and the indentation test on the films sputtered on the Si substrates. 

f r U sp h i sp a D τe/τi E bip  H E * W e H /E * cr L cr texture

[kHz] [V] [nm] [mA/cm2] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [%] [N]

25 -130/+110 1500 1.3 45 3.2 2.3 -1.7 29.5 260 73 0.11 >2 >1 -220

25 -130/+110 2600 1.3 45 3.2 2.4 -1.9 28 270 70 0.1 >2 >1 -220

5 -130/+70 1300 1.3 33 1.3 3.1 -2.1 28.2 211 79 0.13 delam >1 -220

5 -130/+70 2100 1.3 31 1.3 3.3 -2.4 33.5 246 82 0.14 delam >1 -220

High electron bombardment

Low electron bombardment

E bip is the average energy of ions during the negative pulse of pulsed substrate bias U sp

"delam" denotes that the films delaminates from Mo strips during bending
 

The Table 6.2 shows the properties of the Ti(Al,V)N films sputtered at pulsed substrate bias Us with two repetition 
frequencies fr of alternating negative and positive pulses of different lengths and the same value of the negative 
substrate voltage Usp = -130 V and two values of the positive substrate voltage (fr = 5 kHz with Us = -130/+70 V, 

e/I =1.3 (low electron bombardment), and fr =  25 kHz with Us = -130/+130 V, e/i = 3.2 (high electron 

bombardment)); here e and i is the length of positive and negative pulse, respectively. This selection of parameters 
of the pulsed bipolar bias Usp makes it possible to investigate the effect of the electron bombardment on mechanical 

properties of the film, its macrostress  and resistance to cracking. From the Table 6.2 it is seen that (1) the Ti(Al,V)N 
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film sputtered under high electron bombardment (Usp+ = +110 V) and the ion energy Ebi = 2.4 MJ/cm3 exhibit high 

hardness H = 28 GPa, high ratio H/E* = 0.10, high elastic recovery We = 70%, low compressive macrostress 

 = - 1.9 GPa and enhanced resistance to cracking (cr  2 and Lcr  1 N) and (2) the Ti(Al,V)N film sputtered under 
lower electron bombardment (Usp+ = +70 V) and the higher ion energy Ebi = 3.1 MJ/cm3 exhibit higher values H, H/E*, 

We,  2 GPa and also an enhanced resistance to cracking in compression (Lcr  1 N) but this film already 

delaminates from Mo strip due too high compressive macrostress   2 GPa. This experiment clearly demonstrates 
that properties of the sputtered film can be well controlled by an optimized bombardment with ions and electrons 
during its growth. 

6.3.2. Macrostress reduction by overshoots in pulsed sputtering 

The control of the energy of bombarding ions Ebi by the pulsed sputtering of the film is based on the utilization of 

strong discharge oscillations connected with transient pulse phenomena after the pulse off. Experiments 

demonstrating this fact were performed in the pulsed dual magnetron (DM) discharge. The DM was supplied by the 

pulse asymmetric bipolar Advanced Energy Pinnacle Plus+ 5kW power supply unit (PSU) with the reverse positive 

pulse (10% of the negative voltage). Each magnetron is alternatively sputtered (pulse-on) or discharged (pulse-off) 

with the repetition frequency fr = 1/Tr. The schematic illustration of the PSU supplying the DM composed of two 

independent asymmetric bipolar units is shown in Fig. 6.3. The PSU symmetry point can be either floating (the DM is 

floating PSU – DMF) or connected to the grounded chamber (the DM is grounded PSU – DMG). In our experiment 

the PSU - DMG was used.  

 

Figure 6.3 Schematic illustration of the asymmetric bipolar Advanced Energy Pinnacle Plus+ 5 kW pulsed power supply (PSU). The 
abbreviations DMG and DMF denote that the PSU symmetry point is grounded (the position 1) and floating, i.e. disconnected from 
the grounded deposition chamber, (the position 2). 

The oscillations generated in the pulsed bipolar DM discharge are illustrated in Fig. 6.4. This figure shows the time 

evolution of the voltage Ud1 on the magnetron 1 (M1) and Ud2 on the magnetron 2 (M2) of the dual magnetron with 

a closed magnetic field B [45]. The pulsed bipolar DM discharge was generated at three repetition frequencies (a) 

100 kHz, (b) 200 kHz and (c) 350 kHz. The oscillations superposed on the DC substrate bias Usp are clearly seen. 
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Figure 6.4 Time waveforms of the voltage Ud1 and Ud2 on the magnetron 1 and the magnetron 2, respectively, of the dual 
magnetron (DMG) operated in pulsed bipolar mode at Id = Id1 + Id2 = 1.6 A, Ts = 500°C, ds-t = 60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa 
and three repetition frequencies (a) 100 kHz, (b) 200 kHz and (c) 350 kHz, and the DC substrate bias Us DC = -20V. 

The principle of the control of the macrostress  in the growing film during pulsed sputtering is based on the control 

of the ion bombardment of the film during its growth. Splashes of oscillations (called as the packets or the overshoots) 

superposed on the substrate potential Us play a key role in the control of the film macrostress , see Fig. 6.4. These 

splashes are generated after the switching off of pulses. Therefore, the magnitude of  in the sputtered film depends 

on the total number of splashes Nspls generated during the whole time of the film deposition. The number Nspls of 
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splashes increases with increasing repetition frequency fr of pulses. Fig. 6.4 shows that (1) the magnetron voltage Ud 

sinusoidally changes during the pulse-on time on, (2) the length of sinusoid decreases with increasing fr from Tr at 

fr = 100 kHz to Tr/4 at fr  350 kHz, and (3) the splashes of oscillations, strongly attenuating with increasing time, 

are created not only on the voltage waveform of the discharge voltage Ud(t) but also on the waveform of the DC 

negative substrate bias Us DC; the splashes of oscillations are denoted by dotted ellipses in Fig. 6.4b, (4) the duration 

of the splashes of oscillations is osc  1.3 s is practically constant and does not depend on the repetition frequency 

of pulses fr and (5) the number of splashes of oscillations Nspls increases with increasing fr. 

During oscillations of the substrate bias Usp, the growing film is exposed to a strong ion bombardment. It is due to a 

strong increase of Usp during negative half periods of oscillations. This strong ion bombardment results in an increase 

of macrostress  generated in the film. Therefore, a reduction of the macrostress  in the sputtered film can be 

achieved by a reduction of the number Nspls of splashes of the oscillations. It can be achieved by decreasing of the 

repetition frequency fr of sputtering pulses. This fact was confirmed experimentally by sputtering of the Ti(Al,V)N 

films on the Si(111) substrates held on the floating potential Us = Ufl under the same deposition conditions at two 

repetition frequencies of pulses fr = 200 kHz and 350 kHz. The film sputter deposited at fr = 200 kHz, i.e. under a lower 

ion bombardment, exhibits not only the low macrostress ( = - 0.6 GPa) as expected but also the columnar 

microstructure because the ion bombardment was already weak and insufficient to create the film with dense voids-

free microstructure, see Table 6.3 and Fig. 6.5. More information about overshoots and its effect on plasma and 

coating properties can be found in Refs. [49- 57]. 

 

Figure 6.5 Microstructure of the Ti(Al,V)N films with (a) low and (b) high compressive macrostress (σ < 0) sputtered on Si(111) 
substrates by pulsed DM at two repetition frequencies fr = 200 kHz and fr = 350 kHz, respectively, and Wd = 12 W/cm2, Us = Ufl, 
Ts = 500°C, ds-t = 60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa. 

Table 6.3 Physical and mechanical properties of the Ti(Al,V)N films sputtered by pulsed dual magnetron at Wd = 12 W/cm2, 
Ts = 500°C, ds-t = 60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa, floating potential Us = Ufl at two repetition frequencies fr = 200 kHz and 
350 kHz. 

f r h a D E bi  H E * W e H /E * cr  L cr micostructure

[kHz] [nm] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [%] [N]

200 1900 15.8 --- -0.6 23.8 240 68 0.1 1.3 0.25 columnar

350 1300 4.6 --- -2.4 21.4 173 76 0.12 >2 >1 dense
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This experiment shows that a pulsed magnetron sputtering is an efficient way which allows controlling the 

macrostress  of the film held even at a floating potential Us = Ufl a and its microstructure by selection of repetition 

frequency of pulses. This finding is of a great application potential, particularly for sputtering of dielectric films or 

deposition of films on dielectric substrates, for instance, on the glass, etc. Both, the films with a porous columnar 

microstructure or flexible hard protective films with dense, voids-free microstructure can be created on substrates 

held at a floating potential Us = Ufl. 

6.3.3. Control of macrostress in films sputtered at high repetition frequencies of 
pulses 

Fig. 6.6 shows V-A discharge characteristics of a pulsed magnetron discharge used for sputtering of the Ti(Al,V)N films 

at fr = 350 kHz and different values of the DC substrate bias Us DC ranging from negative (-60 V) to positive (+40 V) 

including grounded and floating substrates, i.e. Us DC = 0 and Us DC = Ufl  ranging from +15 to ~ +150 V. From Fig. 6.6a 

it is seen that the main source of the ion energy Ebi during the film deposition are positive half-periods of overshoot 

oscillations when the sheath voltage is positive, i.e. Ush  Udp – Us  0 and superposed on the negative DC substrate 

voltage Us DC  0. All films sputtered at Us DC  0 and fr = 350 kHz exhibit similar properties, see Table 6.4. On the other 

hand, the compressive macrostress (  0) generated in these films by bombarding ions is relaxed to low values 

σ ≈ - 0.3 GPa by bombarding electrons during negative half-periods of the oscillations when the substrate current 

density Is  0 and the sheat voltage is negative, i.e. Ush = Udp – Us  0. This decrease of compressive macrostress results 

in a decrease of the hardness to H ≈ 9 GPa. From Figs. 6.6b to 6.6c it is seen that also films sputtered at grounded, 

floating and positively biased substrates are bombarded by ions. This fact is demonstrated by the positive peaks of 

the sheat voltage corresponding to positive half-periods of overshoot oscillations. In the case of a floating substrate 

potential (Fig. 6.6c) the ion bombardment cannot be measured since fluxes of electrons and ions incident on the 

substrate are the same and the substrate current Is = 0 mA/cm2. On the contrary, at a positive substrate bias, the 

electron bombardment of sputtered film dominates over an ion bombardment, see Fig.6.6d.  
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Figure 6.6 Time evolution of voltage Ud1 and Ud2 on the magnetron M1 and M2 of dual magnetron, voltage Us on the substrate and 
current density on the substrate in pulsed dual magnetron discharge generated at Wd = 12 W/cm2, Ts = 500°C, ds-t =60 mm, 
pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa, fr = 350 kHz and the substrate biased at a) Us DC = -60 V, b) grounded Us = 0 V, c) floating 
Us = Ufl = 15 ~ 150 V and d) Us DC = +40 V. 

Physical and mechanical properties of Ti(Al,V)Nx films sputtered by pulsed dual magnetron at fr = 350 kHz at different 
values of negative DC substrate bias Us DC were investigated in detail, see Table 6.4. The energy Ebi increases and the 

film deposition rate aD decreases with increasing negative Us DC. On the other hand, values of H, E*, H/E* ratio, We 
and σ are low of about 10 GPa, 140 GPa, 0.07, 45 % and - 0.3 GPa, respectively. These films are brittle and easily 
crack. For more detail see Ref. [47]. 
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Table 6.4 Mechanical properties, compressive macrostress (σ < 0) and resistance to cracking of the Ti(Al,V)N films sputtered by 
pulsed DC dual magnetron, operated in bipolar mode at Id = 2 A, is ranging from 2.2 to 2.4 mA/cm2 Ts = 500°C, ds-t = 60 mm, 
pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa and fr = 350 kHz on Si(111) substrates, as a function of negative DC substrate bias Us DC. 

U s DC h a D E bi  H E * W e H /E * ecr L cr TiN

[V] [nm] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [%] [N] structure

-60 1100 18 7.5 -0.3 8.3 141 40 0.06 2 0.25 220

-80 1000 16.7 11.1 -0.2 10.4 139 49 0.07 2 0.25 220

-100 800 13.3 17.7 -0.4 9.4 143 44 0.07 2 0.25 220

-100 1000 11.1 21.2 -0.4 9.7 142 46 0.07 2 0.25 220
 

6.4. Conclusions 

The article reports on a detailed investigation of the effect of the energy Ebi delivered into the Ti(Al,V)N film by 

bombarding ions on its macrostress, microstructure, mechanical properties and resistance to cracking. Main 

conclusions of this study can be summarized as follows: 

1. The compressive macrostress  in sputter deposited Ti(Al,V)N films can be reduced by (i) the pulsed bipolar 

bias voltage Usp with alternating negative and positive pulses and/or (ii) the alternating ion and electron 

bombardment of the growing film during overshoots generated in a pulsed magnetron sputtering discharge. 

2. The Ti(Al,V)N films with enhanced resistance to cracking are formed only in the case when the energy E 

delivered during their growth is sufficiently high (Ebi > 1.7 MJ/cm3). These films exhibit (i) a dense,  

voids-free microstructure, (ii) a high ratio H/E* ≥ 0.1, (iii) a high elastic recovery We  60% and (iv) an 

enhanced resistance to cracking. 

3. A reduction of compressive macrostress (< 0) down to about  ≈ - 0.4 GPa results in a reduction of the film 

hardness and its resistance to cracking. 

4. Our investigations clearly demonstrate the compressive macrostress (  0) generated in the sputtered film 

can be effectively controlled by alternating ion and electron bombardment already during its growth. 
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Abstract 

The article reports on the influence of a compressive macrostress  in the Ti(Al,V)N film on its mechanical properties, 

structure, microstructure, and resistance to cracking. The macrostress  controlled by the energy Ebi delivered into 

the growing film by bombarding ions. The Ti(Al,V)N films were sputtered by a dual magnetron with the closed 

magnetic field. It is shown that (1) the compressive macrostress (  0) increases the hardness H of the film and the 

ratio H/E* , (2) the film exhibits a dense, voids-free, non-columnar microstructure in the case when the energy 

Ebi  3 MJ/cm3, (3) the enhanced resistance of the film is controlled by its mechanical properties, microstructure and 

macrostress ; here E* is  the effective Young’s modulus. 

7.1. Introduction 

A macrostress  generated in the film prepared by an ion plating sputtering strongly influences its hardness H and 

structure and thereby its physical and functional properties. The stabilization of β-Ta [1] or c-Zr3N4 phase in the film 

[2], the superconductivity of film [3], the Curie temperature of film [4], a change of the preferred orientation of film 

[5-7] and the lifetime of the cutting tools coated by protective hard coatings [8-10] can be given as examples. 

However, so far, there is little information about the influence of  on the hardness H of film and its resistance to 

cracking [11-13]. 

7.2. Experimental 

The Ti(Al,V)N thin films were sputter deposited using a dual magnetron with closed magnetic field equipped with 

TiAlV (6 at.% Al, 4 at.% V) alloy targets ( = 50 mm) in a mixture of 20% Ar+ 80% N2 sputtering gases at total pressure 

pT = pAr + pN2 ranging from 0.4 to 1.0 Pa. The magnetrons were powered by an Advanced Energy Pinnacle Plus+5/5 kW 

power supply operated either in DC or pulse mode at a low power density in the pulse of Wt DC = Wtp  25 W/cm2; 

here Wt DC and Wtp is the target power density in DC discharge and during the pulse-on in the pulsed discharge. For a 

more detailed description of deposition conditions see Ref. [14-18] The Ti(Al,V)N films were deposited onto Si(111) 

substrates.  

The film thickness was measured by a stylus profilometer DEKTAK 8. The macrostress σ was evaluated from the 

bending of Si plate using the Stoney's formula [19]. The elemental composition of the Ti(Al,V)N films on the Si 

substrate was analyzed in a scanning electron microscope (SU- 70, Hitachi) operated at a primary electron energy of 

15 keV using energy dispersive spectroscopy (EDS, UltraDry, Thermo Scientific) and wave dispersive spectroscopy 

(WDS, Magnaray, Thermo Scientific). Mechanical properties of sputtered films were determined from load vs. 

displacement curves measured by a microhardness tester Fisherscope H100with Vickers diamond indenter at a load 

of 20 mN. The resistance of the Ti(Al,V)N films to cracking was assessed by a critical load Lcr at which cracks in the 

film occurred. 

7.3. Results and discussion 

It is well known that the hardness H, structure, microstructure of the sputtered film and the macrostress   generated 

in it during its growth depend on many deposition parameters. It means that the interrelationship between the 

deposition parameters of the film and its properties is a multi-parameters function 
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Film properties = f (Ud, Id, Wt, Ts, Us, is, i, ca, ds-t, h, aD, p0, pAr, pRG, pT, etc.) (7.1) 

Here Ud is the voltage of magnetron discharge, Id is the current of magnetron discharge, Wt is the target power 

density, Ts is the substrate temperature, Us is the substrate bias, is is the substrate ion current density, i is the flux 

of bombarding ions, ca is the flux of condensing atoms, ds-t is the substrate-to-target distance, aD is the deposition 

rate of coating, p0 is the base pressure in the deposition chamber before inlet of sputtering gas, pAr is the partial 

pressure of argon, pRG is the partial pressure of a reactive gas, pT = pAr + pRG is the total pressure of sputtering gas.  

This fact practically excludes to find correct interrelations among H, , structure and microstructure of the sputtered 

film and its resistance to cracking because every deposition parameter has a different effect on these properties of 

the sputtered film. It is due to the fact that at each combination of deposition parameters you deliver a different 

energy E in the growing coating. In this case, it is excluded to sputter the film with fully reproducible properties. 

Therefore, the film properties must be expressed as a function of one parameter only, i.e. as a function of 

the energy E 

Film properties = f (E) (7.2) 

The energy E is a key parameter which controls the properties of the sputtered film and enables its formation with 

fully reproducible properties. It is a reason why the interrelations among H, , structure and microstructure of the 

sputtered film and its resistance to cracking are compared based on the energy E. In our experiments the energy 

delivered into sputtered Ti(Al,V)N by bombarding ions, i.e. E = Ebi. The energy Ebi is calculated from measured values 

of substrate bias Us, substrate ion current density is and the film deposition rate aD from the formula [20] 

Ebi = Us  is/aD (7.3) 

Interrelationships among the hardness H, H/E* ratio, microstructure, structure, and compressive macrostress  in 

the Ti(Al,V)N film and its resistance to cracking are displayed in Figs. 7.1 - 7.4. The evolution of the H and H/E* of the 

Ti(Al,V)N film with columnar microstructure and dense non-columnar microstructure as a function of compressive 

macrostress  is displayed in Fig. 7.1. Fig. 7.1a shows that the H and the H/E* ratio of the Ti(Al,V)N film with columnar 

microstructure increase from 22 to 31 GPa and 0.08 to 0.13, respectively, with increasing  from -0.4 to -3 GPa. The 

same behavior exhibit also the Ti(Al,V)N films with dense, non-columnar microstructure. H and H/E* ratio increase 

from 8 to 30 GPa and 0.06 to 0.14, respectively, with increasing  from -0.4 to -5.5 GPa but with a smaller increase 

of H/E*at  ranging from -2 to -5.5 GPa than that in films with smaller compressive macrostress   3 GPa.  

Main results displayed in Fig. 7.1 can be briefly summarized as follows 

1. The magnitude of the hardness H of the film with low compressive macrostress   3 GPa strongly depend 

on its microstructure. Films with columnar microstructure exhibit higher H compared with the films with 

non-columnar microstructure. This difference is due to different values of Ebi used in sputtering and relaxing 

of  by an electron heating of the growing film during overshoots in pulsed sputtering, see Table 7.1 and 

Ref. [17]. 

2. The hardness H of the film is a complex function of two competing parameters – the energy Ebi and 

enhancement or relaxing  - which strongly influence its growth process and thus its structure, 

microstructure, and mechanical properties, particularly its H/E* ratio and elastic recovery We, see Figs. 7.2 

and 7.3 and Table 7.1. This is a reason why, for instance, the films with approx. same H exhibit different 

microstructure (compare the films No. 1 and No. 3) or the films with a low compressive macrostress exhibit 

different H, H/E, We, structure and microstructure (compare the films No. 1 and No. 4).  
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Figure 7.1 The hardness H and H/E* ratio of the Ti(Al,V)N film with columnar and non-columnar microstructure as a function of 
compressive macrostress σ < 0. The open and full symbols denote films with low and enhanced resistance to cracking, respectively. 

The energy Ebi strongly influences also the preferred orientation of sputtered Ti(Al,V)N films, see Fig. 7.2. In this 

figure, the effect of Ebi on the structure of Ti(Al,V)N films deposited by DC and pulsed sputtering is illustrated. The 

films with numbers 1, 2, 3, 4 are given in Fig. 7.1 and their physical and mechanical properties in Table 7.1. 
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Figure 7.2 XRD patterns of the Ti(Al,V)N films with columnar microstructure (the films No.1 and 2) and with non-columnar 
microstructure (the films No.3 and 4). The films with numbers 1,2,3,4 are given in Fig.1 and their physical and mechanical properties 
in Table 1. 

The microstructure of the Ti(Al,V)N film depends on the energy Ebi delivered to the growing film by bombarding ions. 

The energy Ebi is calculated from measured values of substrate bias Us, substrate ion current density is and the film 

deposition rate aD from the formula Ebi = Us  is/aD; more details are given in Ref. [20]. The films sputtered at low 

energies Ebi  3 MJ/cm3 have a columnar microstructure, see Fig. 7.3a. On the contrary, the films sputtered at high 

energies Ebi  3 MJ/cm3 have a non-columnar microstructure, see Fig. 7.3b. It is worthwhile to note that also the 

films with dense, voids-free non-columnar can be soft if the compressive macrostress generated under high ion 

bombardment at a high Ebi is simultaneously relaxed by a sufficiently high electron heating using the pulsed 

sputtering with overshoots or the pulsed substrate bias Usp with alternating polarity of pulses [17], see the film No. 4 

in Table 7.1. 

The macrostress  and the microstructure of the sputtered film strongly influence also its resistance to cracking [19]. 

The effect of the microstructure of the Ti(Al,V)N film with a low compressive macrostress  = - 0.4 GPa on its 

resistance to cracking is illustrated in Fig. 7.4. The resistance of the film to cracking was assessed by the indentation 

test in which the diamond indenter was impressed into the film surface under a high load L at which the film cracks 

[20]. Longer cracks mean a weaker resistance to cracking. On the other hand, shorter cracks mean an enhanced 

resistance to cracking.  
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Figure 7.3 SEM images of a cross-section of the Ti(Al,V)N films with columnar microstructure (the films No. 1 and 2) and with non-
columnar microstructure (the films No. 3 and 4). The films with numbers 1,2,3,4 are given in Fig. 7.1 and their physical and 
mechanical properties in Table 7.1. 

Table 7.1 Physical and mechanical properties of four Ti(Al,V)N films denoted in Fig.1 as films No. 1, 2, 3, and 4. 

Film sputtering h U s i s a D E bi σ H E * H /E * W e L cr microstructure

No. process [nm] [V] [mA/cm2] [nm/min [MJ/cm3] [GPa] [GPa] [GPa] [%] [N]

1 DC 2000 -20 0.7 17 0.5 -0.4 24.7 268 0.07 62 0.25 comulnar - voids

2 pulsed/100 kHz 2500 -20 1.8 22 2.2 -1.4 28.5 235 0.12 73 > 1 comulnar - dense

3 DC 1200 -20 1.9 15 3 -1.9 23.5 187 0.13 80 >1 non-columnar

4 pulsed/350 kHz 1000 -100* 1.5 11 8.1 -0.4 9.7 142 0.07 46 0.25 non-columnar

* pulsed discharge with strong overshoots
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Figure 7.4 LOM image of surface morphology of Ti(Al,V)N films after the indentation test. Measured Ti(Al.V)N films exhibit 
compressive macrostress σ = - 0.4 GPa and (a) columnar microstructure (the film No. 1) or (b) non-columnar microstructure (the 
film No. 4), respectively. Indentation test was carried out for load (a) L = 0.25 N or (b) L = 0.75 N, respectively. 

The surface morphology of the Ti(Al,V)N film with columnar and non-columnar microstructure after indentation test 

at L = 0.25 N and L = 075 N is displayed in Fig. 7.4a and 7.4b, respectively. From this figure, it is seen that the film with 

columnar microstructure exhibits a low resistance to cracking. On the other hand, the film with non-columnar 

microstructure with shorter cracks even at a high load L exhibits an enhanced resistance to cracking. This experiment 

clearly shows that the film microstructure is a key parameter which decides on its resistance to cracking as shown in 

Ref. [14,15,20]. 

7.4. Conclusions 

Main results of this investigation can be briefly summarized as follows 

1. The hardness H of the film increases with increasing compressive macrostress . 

2. The hardness H of the film is a complex function of two competing parameters: the energy Ebi and 

macrostress. Both parameters Ebi and  influence the growth process of film and thereby also its structure, 

microstructure, and mechanical properties.  

3. The compressive residual macrostress  leads to an apparent increase in hardness H and fracture resistance 

of sputtered films. 

4. The macrostress  generated in the film during its growth can be simultaneously relaxed by the electron 

heating using either a pulsed sputtering with overshoots or a pulsed bias with pulses of alternating polarity. 

This way the different combination of mechanical properties of the film and its microstructure and 

macrostress  can be achieved. 

5. Hard films with high ratio H/E* > 0.1, high elastic recovery We > 60%, dense, voids-free microstructure and 

compressive macrostress  < 0 exhibit an enhanced resistance to cracking. 

6. The energy Ebi is a key parameter which makes it possible to create the films with prescribed properties in 

the fully reproducible way.  
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Abstract 

This letter reports on the formation of hard TiN2 dinitride films prepared by magnetron sputtering. TiN2 films were 

reactively sputtered in an Ar +N2 gas mixture using a pulsed dual magnetron with a closed magnetic field B. The 

principle of the formation of TiN2 film by magnetron sputtering is briefly described. The stoichiometry x = N/Ti of the 

TiNx film was controlled by deposition parameters, and its maximum value of x = 2.3 was achieved. For the first time, 

a possibility to form the TiN2 dinitride films by magnetron sputtering has been demonstrated. Mechanical properties 

of sputtered films were investigated in detail. 

Keywords: TiN2 dinitride film, Structure, Microstructure, Mechanical properties, Magnetron sputtering 

8.1. Introduction 

Recently, a great attention has been devoted to the formation of nitrogen-rich TMNx>1 transition metal nitrides with 

the stoichiometry x = N/TM ranging from 1 to 2 [1- 10] and also with x =4 [2]. Theoretical studies of these materials 

based on ab initio calculations show that these novel overstoichiometric nitrides should exhibit extraordinary 

properties such as superhardness, electrical conductivity, and optical transparency, which originate from metal-

nitrogen charge transfer, the nature of the N-N bonds, and a mixture of ionic and covalent N-N bonds [11-14]. It was 

reported that bulk titanium dinitrides were successfully synthesized under High Pressure and High Temperature of 

(HPHT synthesis), i.e. using an equilibrium process [1, 4, 14-17]. For instance, The TiN2 dinitride material with bulk 

modulus 360 - 385 GPa was synthesized from the titanium nitride flakes and N2 gas compressed to 73 GPa and heated 

to 2400 K in a laser-heated diamond anvil cell [4]. Recently, it was reported that titanium dinitrides were prepared 

also as TiNx=2 films at low pressures of about 0.3 Pa by the simultaneous action of a Ti evaporation by an arc 

evaporator and a strong ionization of N2 gas in a gas-plasma source with a hot filament in a hollow cathode [18]. 

This article reports on the formation of overstoichiometric TiNx>1 titanium nitride films by magnetron sputtering i.e., 

on the formation of films prepared by a nonequilibrium deposition process running at an atomic level. A principle of 

sputtering of TMNx>1 overstoichiometric nitride films are briefly described. Interrelationships between the 

stoichiometry x, mechanical and electrical properties of TiNx films are investigated in detail. 

8.2. Principle of sputtering of TMNx>1 nitride films 

The principle of formation of overstoichiometric TMNx>1 and TMNx=2 dinitride films by magnetron sputtering is based 

on two non-equilibrium processes simultaneously running at atomic level: (1) the heating of the sputtered material 

to high temperatures first at the substrate and later at the growing film in areas where sputtered atoms and 

bombarding ions arrive with no or low substrate heating and (2) the pressing of heated areas at high pressures pHA. 

This can be achieved by a high energy E delivered to the growing film by bombarding ions with energy Ebi controlled 

by the negative substrate bias Us and/or by considering fast neutral atoms sputtered from the target and arriving at 

the substrate with energy Efn of several electron-volts controlled by the sputtering gas presser p. Both energies Ebi 

and/or Efn are sufficient to heat areas of incident ions or atoms to very high temperatures T, easily exceeding 2500 K, 

and simultaneously to press these areas at a high-pressure pHA of about 300E1/2 GPa, where the energy E is in electro-

volt [10]. The main problem in the formation of overstoichiometric TMNx>1 and TMNx=2 dinitride films by magnetron 

sputtering is to increase the number nN of nitrogen atoms in the magnetron discharge to achieve a high ratio 

nN/nTM > 1 which enables the formation of films with the stoichiometry x > 1 and x =2, respectively; here nTM is the 

number of TM atoms in the sputtered film.  
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8.3. Experimental 

The TiNx>1 films were reactively sputtered by a pulsed hybrid dual magnetron (HDM) in a mixture N2 + Ar. The HDM 

consists of two different magnetrons M1 and M2 with a closed magnetic field B. The magnetron M1 is magnetron 

with a very low sputtering of its target and the magnetron M2 is a standard, well sputtering magnetron. The low 

sputtering of the magnetron M1 is achieved by extraction of the central magnet from the magnetron M1. By control 

of the powers PM1 and PM2 delivered into the magnetron M1 and the magnetron M2, respectively, it is possible to 

increase ion bombardment of growing film by increasing the ion flux is while keeping the film deposition rate aD 

constant, and in this way to sputter overstoichiometric TiNx films with the stoichiometry x = N/Ti > 1. The increase in 

is at constant aD is achieved by increasing the power PM1 delivered into the magnetron M1 and keeping the power 

PM2 delivered into the magnetron M2 constant. More details are given in Ref. [10]. 

The TiNx>1 films were reactively sputtered in an N2 +Ar mixture by pulsed HDM powered by a pulse power supply 

AE Pinnacle Plus + 5/5 kW (Advanced Energy, Inc.) and operated in a synchronous pulse mode at the repetition 

frequency fr = 1/T = 20 kHz and duty cycle τ/T = 0.99 onto Si (100) substrates in a deposition chamber evacuated to 

a base pressure p0 = 1 × 10-3 Pa. A small amount of Ar of about 20% was added to N2 gas to start the magnetron 

discharge at low values of sputtering gas. The elemental composition of the TiNx>1 films on the Si substrate was 

analyzed in a scanning electron microscope (SU-70, Hitachi) operated at a primary electron energy of 15 keV using 

energy dispersive spectroscopy (EDS, UltraDry, Thermo Scientific) and wave dispersive spectroscopy (WDS, 

Magnaray, Thermo Scientific). The pure metal standard was used for the determination of Ti concentration. The 

nitrogen concentration was calculated as the difference to 100% wt. using a combined WDS and EDS analysis, since 

there is an inevitable peak overlap of Ti and N x-Ray peaks. The data were measured in the depth of about 600 nm 

under the film surface with an accuracy of ±10%. 

8.4. Results and discussion 

As an example, properties of two sputtered overstoichiometric TiNx>1 films are reported in detail. Deposition 

parameters, elemental composition, mechanical properties, macrostress σ and electrical resistivity ρ of these TiNx>1 

films are summarized in Table 8.1. 

From Table 8.1 we can observe the following 

 The overstoichiometric TiNx=2.3 can be sputtered by pulsed HDM at a low total pressure pT = 0.17 Pa. This 

strongly overstoichiometric TiNx=2.3 film is created thanks to a high energy Ebi = 8.2 MJ/cm3 delivered to it 

by bombarding ions and developing a very high-pressure pHA= 1340 GPa in place of their incidence [10]. The 

energy was calculated from the formula Ebi = Us × is/aD; here, Us and Is are the substrate bias and substrate 

ion current density, respectively [20]. This experiment demonstrates that the formation of TiNx=2 dinitride 

films by magnetron sputtering is possible.  

 The decrease of the total gas pressure pT from 0.30 to 0.17 Pa and mainly the increase of the powers PM1 

and PM2in the magnetron M1 and M2, respectively, increasing an ionization of N2 gas results not only in an 

increase of the stoichiometry x = N/Ti of the TiNx film but also in a decrease of its hardness H, elastic recovery 

We and H/E* ratio. 

 The overstoichiometric TiNx=2.3 film exhibits high hardness H = 16 GPa, high elastic recovery We = 69 % and 

high ratio H/E* = 0.1. 

 Both overstoichiometric films, TiNx=1.4 and TiNx=2.3, are well conductive and exhibit a low electrical resistivity 

ρ ≈ 1.5 × 10-4 Ωcm. 
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Table 8.1 Deposition parameters, elemental composition, mechanical properties, macrostress σ and electrical resistivity ρ of two 
overstoichiometric TiNx>1 films sputtered by pulsed HDM at Ts = 450°C, Us = -20 V, is = 4.5 mA/cm2, aD = 6.6 nm/min, 
Ebi = 8.2 MJ/cm3, ds-t = 80 mm and pT = pN2 + pAr ≈ pN2 as a function of pT. 

Film p T P M1 P M2 h N Ti x H E *
W e H /E *

σ ρ

No. [Pa] [W] [W] [nm] [at. %] [at. %]  N/Ti [GPa] [GPa] [%] [GPa] [Ω cm]

1 0.30 460 300 1000 58.5 41.5 1.4 25.5 190 84 0.13 -1.6 1.3 x 10-4

2 0.17 528 380 1400 70 30 2.3 16 163 69 0.10 -1.7 1.6 x 10-4

 

The structure of these overstoichiometric TiNx1 films, characterized by XRD diffraction, is displayed in Fig. 8.1. From 

this figure, it is seen that both films, TiNx=1.4 and TiNx=2.3, sputtered at Ts = 450C and Us = -20V are polycrystalline and 

their crystallinity improves with decreasing sputtering gas pressure pT and increasing sputtering power. The decrease 

in sputtering gas pressure results in two effects: (1) the decrease in collisions between ions and neutral atoms in the 

substrate sheath with the sheath voltage Ush = Up - Us and thereby the increase in the energy Ei of incident ions and 

(2) the bombardment of the growing film by fast neutral atoms, which deliver further additional energy Efn to Ebi into 

the growing film; here, Up is the plasma potential. Both the increase in Ei and the energy Ebi contribute to the 

improvement of the film crystallinity. 

 

Figure 8.1 XRD patterns of the overstoichiometric TiNx>1 films with stoichiometry x = 1.4 and 2.3. 

The microstructure of the overstoichiometric TiNx1 films with x = 1.4 and 2.3 characterized by SEM is displayed in 

Fig. 8.2. The microstructure of the TiNx=1.4 is non-columnar. On the other hand, the microstructure of TiN2.3 film 

exhibits a dense, voids-free columnar microstructure. Despite this difference in microstructure both 

overstoichiometric TiNx1 films exhibit an enhanced resistance to cracking. It is due to their high ratio H/E*  0.1 and 

high elastic recovery We  60%; more details on an enhanced resistance to cracking of films with a dense, voids-free 

columnar microstructure is given in the reference [19]. 
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Figure 8.2 SEM images of a cross-section of overstoichiometric TiNx>1 films with moderately and strongly enhanced stoichiometry 
x = N/Ti: (a) the moderately overstoichiometric TiNx=1.4 film and (b) the strongly overstoichiometric TiNx=2.3 film. 

The stoichiometry x of the TiNx film strongly influences also its color, see Fig. 8.3. The stoichiometric TiNx=1 film is 

golden yellow. On the other hand, a strongly overstoichiometric TiNx=2.3 film is brown. 

 

Figure 8.3 Color of TiNx films with two different values of stoichiometry x. (a) The stoichiometric TiNx=1 film with golden like color 
and (b) the strongly overstoichiometric TiNx=2.3 film with brown color.  
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8.5. Conclusions 

Main results of a reported investigation of strongly overstoichiometric TiNx1 films can be briefly summarized as 

follows 

1. The strongly overstoichiometric TiNx1 films and TiN2 dinitride films can be created by a pulsed magnetron if 

sputtering of its Ti target is reduced and the nitrogen gas is strongly ionized. This sputter deposition process 

can be realized by a hybrid dual magnetron or in a sputtering system equipped with a standard magnetron 

and a low-pressure source of strongly ionized nitrogen gas, for instance, a low-pressure arc [18]. 

2. The TiNx=2.3 film with high values of the hardness H = 16 GPa, ratio H/E* = 0.1, We = 70%, dense, voids-free 

microstructure and low compressive macrostress  = -1.7 GPa were sputtered by the hybrid dual magnetron 

at extremely high energy Ebi= 8 MJ/cm3 delivered to growing film by bombarding ions.  

3. The high value of Ebi is a necessary condition for the creation of strongly overstoichiometric TiNx1 films 

because it develops a very high-pressure pHA  1340 GPa in place of incidence of arriving ions [10]. 

4. Overstoichiometric TiNx1 films are highly flexible films exhibit an enhanced resistance to cracking. 

5. The TiNx=2.3 film is brown compared with golden stoichiometric TiNx=1 film and is well electrically conductive 

( = 1.7 × 10-4 cm). 
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9. Main obtained results 

This Ph.D. thesis is dedicated to the preparation and characterization of the multifunctional metal nitride thin films. 

The obtained results can be briefly summarized as follows: 

 

1. The energy E, which is a result of the combination of many parameters used in the deposition of the film, is 

a key parameter determining its final physical and functional properties. The validity of this statement was 
demonstrated on the evolution of the texture, microstructure, mechanical properties, resistance to cracking 
and macrostress of the Ti(Al,V)N nitride films with increasing energy E delivered in them during their growth. 

It was found that: 

a) The energy E delivered in the growing film at high sputtering gas pressures (p  1 Pa) is dominated 

by bombarding ions (E  Ebi). On the other hand, the energy E supplied to the growing film at low 

sputtering gas pressures (p  1 Pa) can be delivered either by the bombarding ions and/or fast 

neutrals Efn (E  Ebi + Efn). 

b) The texture of the Ti(Al,V)N nitride films varies from the TiN(200) crystallographic orientation to 
the TiN(220) one with increasing energy E.  

c) The hardness H, effective Young’s modulus E*, elastic recovery We, H/E* ratio and compressive 

macrostress (  0) in the Ti(Al,V)N nitride films increase with increasing energy E. 

d) The columnar microstructure of the film varies from a columnar microstructure to a dense,  
voids-free microstructure with increasing energy E. 

e) The films with the columnar microstructure and highly packed columns exhibit the compressive 

macrostress (  0). It means that the line  = f(p) = 0 is not the borderline between the zone 1 and 
the zone T in the Thornton’s Structural Zone model (SZM) as it is reported so far but it lies inside 
the zone 1. 

f) The compressive macrostress (  0) in the film generated during its growth can be decreased 
during its growth by an electron bombardment realized either by the pulsed substrate bias Usp with 
alternating negative and positive pulses or by the pulsed sputtering of the film at high repetition 
frequencies of pulses fr. 

2. The values of the plasma Up and floating Ufl potential in magnetron discharges (i) strongly differ when a 

single magnetron or a dual magnetron is used, and (ii) strongly depends on the electrical connection of the 

power supply to the dual magnetron. Different values of the Up and Ufl result in a great difference in the 

energy E delivered into the growing film, and therefore in different properties of sputter deposited films. 

The pulsed dual magnetron operating in an asynchronous regime ensures full reproducibility of the plasma 

and floating potential in generated discharge. 

3. The strongly over-stoichiometric TiNx≈2 films can be deposited by magnetron sputtering if (i) intensive 

dissociation and ionization of nitrogen gas, and (ii) reduction of sputtered Ti target atom are achieved. The 

high value of the energy of bombarding ions Ebi > 8 MJ/cm3 is the necessary condition for the creation of 

strongly over-stoichiometric TiNx≈2 films. 
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Abstract 

The Ph.D. thesis is dedicated to reactive magnetron sputtering of flexible hard coatings, and it is divided into 9 main 

chapters. 

Chapter 1 is introduction focusing on the energy E delivered into the coating during the deposition, as the main 

parameter which controls the property of the deposited coating. The control of the energy E is outlined. 

Chapter 2 shows the main aims of the Ph.D. thesis. Chapters 3 – 8 shows the results of the thesis in the form of 

already published articles. 

Chapter 3 reports on the effect of the energy Ebi, delivered to the sputtered Ti(Al,V)N coating by bombarding ions, 

on its microstructure, macrostress, mechanical properties, and resistance to cracking. It was shown that (1) the 

increase of the energy Ebi makes it possible to convert (i) the film microstructure from columnar to dense, non-

columnar, (ii) the macrostress from tensile to compressive (iii) the brittle hard coatings to the flexible hard coatings. 

(2) The flexible hard Ti(Al,V)N coatings with high ratio H/E* > 0.1, high We > 60% and σ < 0 can be formed not only in 

the Transition Zone T but also in Zone 1 in which the films exhibit a columnar microstructure. (3) The line 

corresponding to the films with zero macrostress lies in Zone 1 corresponding to the columnar microstructure. 

Chapter 4 reports on the effect of the energy E = Ebi + Efn of bombarding ions Ebi and/or fast neutrals Efn on its 

physical and mechanical properties, and resistance to cracking. It was shown that (1) The energy E is a key parameter 

controlling the properties of sputtered Ti(Al,V)N coatings. (2) The structure of coatings varies from TiN(200) to 

TiN(220) with increasing energy E. (3) The coatings with H/E*  0.1, We  60% and dense microstructure exhibit an 

enhanced resistance to cracking and are produced when a sufficient energy E is delivered to the growing coating. (4) 

The energy Efn makes it possible to sputter crystalline coatings on dielectric substrates held on a floating potential.  

Chapter 5 reports on the plasma Up and floating Ufl potentials in magnetron discharges. It is shown that (1) the 

differences in Up and Ufl result in strongly different properties of the coatings sputtered by single and dual 

magnetrons at the same power delivered to the magnetron discharge. (2) In the DC single and dual magnetron 

discharges, the Up and Ufl depend on the electric conductivity of the surface of the grounded deposition chamber. (3) 

The pulsed dual magnetron sputtering system enables to sputter coatings with fully reproducible properties. 

Chapter 6 reports on the effect of the energy E delivered into the growing Ti(Al,V)N coatings on its macrostress, 

microstructure, mechanical properties and resistance to cracking. It is shown that (1) the compressive macrostress 

can be reduced either by the pulsed bipolar substrate voltage Usp or the electron and ion bombardment during 

overshoots in the pulsed magnetron sputtering. (2) For formation of flexible coatings, the high compressive 

macrostress is not needed when coatings exhibit high ratio and non-columnar microstructure. 

Chapter 7 reports on the influence of a compressive macrostress in the Ti(Al,V)N coatings on their mechanical 

properties, structure, microstructure, and resistance to cracking. The macrostress is controlled by the energy Ebi. It 

is shown that (1) the compressive macrostress increases the hardness H and the ratio H/E* of the coatings. (2) The 

coatings exhibit a dense non-columnar microstructure when the energy Ebi  3 MJ/cm3. (3) The enhanced resistance 

to cracking of the coatings is controlled by its mechanical properties, microstructure, and macrostress . 

Chapter 8 reports on the formation of TiN2 dinitride coatings. For the first time, a possibility to form the TiN2 dinitride 

coatings by magnetron sputtering has been demonstrated. The principle of the formation of TiN2 coatings is briefly 

described. Mechanical properties of sputtered coatings were investigated in detail. 

Chapter 9 contains the main obtained results of the Ph.D. thesis. 
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Resumé 

Disertační práce je zaměřena na reaktivní magnetronové naprašování tvrdých flexibilních povlaků a je rozdělena na 

9 hlavních kapitol. 

Kapitola 1 je úvod se zaměřením na energii E dodanou do povlaků během depozice jako hlavního parametru, který 

ovlivňuje vlastnosti deponovaných povlaků. Dále jsou zmíněny možnosti kontroly energie E. 

Kapitola 2 ukazuje hlavní cíle disertační práce. Kapitoly 3 – 8 ukazují výsledky práce ve formě již publikovaných článků. 

Kapitola 3 pojednává o vývoji mikrostruktury a vnitřního pnutí u tvrdých Ti(Al,V)N nitridových povlaků připravených 

magnetronovou depozicí v závislosti na energii iontového bombardu Ebi dodané během jejich růstu. Bylo zjištěno, že: 

(1) Navýšení energie Ebi dodané do povlaků umožní: (i) přeměnu sloupcovité mikrostruktury na zhuštěnou, (ii) změnu 

tahového pnutí na pnutí tlakové, (iii) přechodu od křehkých povlaků s nízkým poměrem H/E* < 0.1 a nízkou elastickou 

vratností We < 60 % k ohebným materiálům s vysokým poměrem H/E* > 0.1 a vysokou elastickou vratností We > 60 

%. (2) Tlakové vnitřní pnutí se u ohebných povlaků může vytvářet v Zóně T i v Zóně 1. (3) Linie korespondující 

s nulovým stresem ( = 0) leží v Zóně 1 (povlaky se sloupcovitou strukturou). 

Kapitola 4 pojednává o efektu energie bombardujících iontů (Ebi) a rychlých neutrálů (Efn) dodané do Ti(Al,V)N 

nitridových povlaků během depozice na jejich strukturu, mikrostrukturu, mechanické vlastnosti a odolnost proti 

vzniku trhlin. Bylo prokázáno, že: (1) energie E = Ebi + Efn dodaná do povlaků během jejich růstu je klíčový parametr 

rozhodující o vlastnostech povlaků. (2) Struktura povlaků se mění z TiN(200) na TiN(220) se zvětšující se energií E. 

(3) Povlaky vykazující H/E* > 0.1, We > 60 % a zhuštěnou strukturu také vykazují zvýšenou odolnost proti vzniku trhlin. 

(4) Pomocí energie rychlých neutrálů Efn je možné připravit flexibilní povlaky na nevodivém podkladu. 

Kapitola 5 pojednává o rozdílu mezi plazmovým Up a plovoucím Ufl potenciálem během magnetronového výboje. Je 

ukázáno, že: (1) rozdíly v Up a Ufl vyústí v rozdílné vlastnosti připravovaných povlaků v závislosti na tom, zda povlaky 

byly připravovány pomocí jednoduchého či duálního magnetronu, (2) v případě výboje vytvářeného stejnosměrným 

proudem je velikost Up a Ufl silně závislá na vodivosti uzemněné depoziční komory a (3) pulzní duální magnetronový 

systém umožňuje vytvářet povlaky s reprodukovatelnými vlastnostmi. 

Kapitola 6 pojednává o efektu energie E dodané do Ti(Al,V)N povlaků na jejich tlakové pnutí, mikrostrukturu, 

mechanické vlastnosti a odolnost proti vzniku trhlin. Je ukázáno, že: (1) tlakové pnutí může být redukováno pomocí 

pulzního bipolárního napětí Usp na substrátu, nebo pomocí pulzního kladného napětí na magnetronech.  

(2) Vykazují-li vrstvy vysoký poměr H/E* a zhuštěnou strukturu, pak vysoké tlakové pnutí není nutná podmínka pro 

vytváření povlaků se zvýšenou odolností proti vzniku trhlin. 

Kapitola 7 shrnuje vliv tlakového pnutí u Ti(Al,V)N nitridových povlaků na mechanické vlastnosti, mikrostrukturu a 

odolnost proti vzniku trhlin. Tlakové pnutí bylo kontrolováno energií Ebi dopadajících iontů do vrstev během jejich 

růstu. Je ukázáno, že: (1) tlakové pnutí zvyšuje tvrdost H a poměr H/E*. (2) Povlaky s hustou mikrostrukturou a se 

zvýšenou odolností proti vzniku trhlin jsou deponovány při Ebi > 3 MJ/cm3. (3) Odolnost proti vzniku trhlin Ti(Al,V)N 

povlaků je kontrolována jejich mechanickými vlastnostmi, mikrostrukturou a tlakovým pnutím. 

Kapitola 8 pojednává o formaci tvrdých TiN2 nitridových povlaků. Poprvé byla demonstrována možnost vytvoření 

TiN2 povlaků pomocí magnetronové depozice. Jsou popsány podmínky, za kterých dochází k formování povlaků TiN2. 

Mechanické vlastnosti deponovaných povlaků jsou detailně diskutovány. 

Kapitola 9 je věnována hlavním dosaženým výsledkům. 
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This letter reports on the effect of the energy Ebi, delivered to the sputtered Ti(Al,V)N film by

bombarding ions, on its microstructure, macrostress r, mechanical properties, and resistance to

cracking. The films were deposited by reactive magnetron sputtering. Interrelationships between

these parameters were investigated in detail. It was shown that (1) the increase of the energy Ebi

makes it possible to convert (1) the film microstructure from columnar to dense, noncolumnar, (2)

the macrostress r from tensile (r> 0) to compressive (r< 0), (3) the brittle hard film with low

ratio H/E*< 0.1 and low elastic recovery We< 60% to the flexible hard film with high ratio

H/E*� 0.1 and high elastic recovery We� 60%, (2) the flexible hard Ti(Al,V)N films with high

ratio H/E*� 0.1, high elastic recovery We� 60%, and compressive macrostress can be formed not

only in the transition zone (zone T in which the films exhibit a dense, voids-free microstructure) of

the Thornton’s structural zone model (SZM) but also in zone 1 in which the films exhibit a colum-

nar microstructure and (3) the line corresponding to the films with zero macrostress (r¼ 0) in the

SZM lies in zone 1 corresponding to the columnar microstructure; here, H is the film hardness and

E*¼E(1 � �2) is the effective Young’s modulus, E is the Young’s modulus, and � is the Poisson’s

ratio. VC 2016 American Vacuum Society. [http://dx.doi.org/10.1116/1.4967935]

I. INTRODUCTION

Recently, the hard nanocomposite films with enhanced

hardness and unique properties, for instance, the films with

high temperature stability and oxidation resistance consider-

ably higher than 1000 �C, high erosion resistance, high elec-

trical conductivity, high optical transparency, etc., have been

developed.1–35 The detailed investigation of correlations

between the physical and mechanical properties of these films

has shown that it is also possible to create the flexible films

which are simultaneously hard and resistant to cracking.36–44

Such films exhibit a high ratio of the hardness H and the

effective Young’s modulus E* (H/E*� 0.1), high elastic

recovery We� 60%, compressive macrostress (r< 0), and a

dense voids-free microstructure; here, E*¼E/(1 � �2), E is

the Young’s modulus and � is the Poisson’s ratio.28,45,46

These properties of flexible hard films can be achieved by

optimization of the deposition parameters used in sputtering.

In this article, it is demonstrated that these parameters are

well controlled by the energy Ebi delivered to the growing

film by bombarding ions. It is shown that the Ti(Al,V)N films

exhibit (1) a columnar microstructure and low resistance to

cracking when sputtered at low energy Ebi and (2) a dense,

voids-free microstructure and an enhanced resistance to

cracking when sputtered at high energy Ebi. In the simplest

case of a collisionless, fully ionized plasma, the energy Ebi

can be expressed in the following form:28,45–47

Ebi½J=cm3� ¼ ðUs– UpÞ is=aD � ðUsisÞ=aD: (1)

Equation (1) clearly shows two important facts. The

energy Ebi delivered to the growing film by bombarding ions

(1) can be easily calculated from measured deposition

parameters (Us, is) and the film deposition rate aD¼ h/td cal-

culated from the measured film thickness h and the deposi-

tion time td and (2) strongly depends not only on Us and is
but also on aD. The second fact is of extraordinary impor-

tance in (1) the reactive sputtering of compounds and (2) the

high-rate sputtering of films because the energy Ebi deliv-

ered to the growing film deceases with increasing aD.

The main aim of this letter is to report on results of the

detailed investigation of the correlations between the micro-

structure, structure, macrostress r, and resistance against crack-

ing of the Ti(Al,V)N film sputtered as a function of the energy

Ebi delivered to it by bombarding ions during its growth.

II. EXPERIMENT

The Ti(Al,V)Nx films were sputter deposited in a mixture of

ArþN2 sputtering gases using a DC dual magnetron with

closed magnetic field equipped with a TiAlV (6 at. % Al;

4 at. % V) alloy target of diameter 1¼ 50 mm. Magnetronsa)Electronic mail: musil@kfy.zcu.cz
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were tilted to the normal of the substrate surface at the angle of

20�. The films were sputtered on Si(111) and Mo substrates at

the discharge current Id¼ 0.5 A, target power density Wt¼ Id

Ud/S� 10 W/cm2, substrate temperature Ts¼ 500 �C, substrate

bias Us ranging from 0 to �100 V, substrate-to-target distance

ds-t¼ 60 mm, partial pressure of nitrogen pN2¼ 0.8 Pa, and

total pressure of sputtering gas pT¼ pArþ pN2¼ 1 Pa; here

Ud is discharge voltage and S is the area of the target.

The Ti(Al,V)Nx films sputtered under these conditions are

crystalline and almost stoichiometric x¼N/(TiþAlþV) � 1

(see Fig. 1).

The film thickness h and the macrostress r were measured

by a DEKTAK 8 Stylus Profiler, Veeco. The film structure

was characterized by an XRD spectrometer PANalytical

X’Pert PRO in the Bragg-Brentano configuration using

CuKa radiation (k¼ 0.154187 nm). The mechanical proper-

ties were determined from load versus displacement curves

measured by a Fisherscope H 100VP with a Vickers dia-

mond indenter at load L¼ 20 mN at d/h< 0.1; here, d is the

diamond impression in the film at L¼ 20 mN. The resistance

of the Ti(Al,V)N film to cracking was assessed by the inden-

tation test in which the diamond indenter was impressed in

the film at high load L¼ 1 N; for more details, see Ref. 46.

III. RESULTS AND DISCUSSION

The interrelationships between the mechanical properties

(H, E*, We, and H/E*) of the Ti(Al,V)N film, its macrostress

FIG. 1. (Color online) Evolution of XRD patterns of Ti(Al,V)N films

with increasing energy Ebi delivered to them during their growth by bom-

barding ions. Deposition parameters: Id¼ 0.5 A, Ts¼ 500 �C, Wt� 10 W/

cm2, pN2 ¼ 0.8 Pa, pT¼ pArþ pN2 ¼ 1 Pa, and Us ranging from 0 to �100 V.

Physical and mechanical properties of these films are given in Table I.

FIG. 2. (Color online) Schematic illustration of the interrelationships between the microstructure, mechanical properties, macrostress r of the Ti(Al,V)N film,

its resistance to cracking, and the energy Ebi delivered to the growing film by bombarding ions in the DC reactive magnetron sputtering. (a) The film no. 1, (b)

the film no. 2, (c) the film no. 3, and (d) the film no. 4 (see Table I).
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r, microstructure, resistance to cracking, and the energy Ebi

delivered to the growing film by bombarding ions were inves-

tigated in detail. These interrelationships are schematically

illustrated in Fig. 2. Figure 2 displays the evolution of the

microstructure, mechanical properties, and the TEM cross-

sectional images of the Ti(Al,V)N film with increasing

energy Ebi. Figure 3 displays the evolution of the surface

morphology of the Ti(Al,V)N films after the indentation at

high load L¼ 1 N with increasing energy Ebi. Figure 4 shows

the transition of the films with a columnar microstructure to

the films with a dense, voids-free microstructure with increas-

ing energy Ebi. The physical and mechanical properties of

these films are given in Table I.

Main conclusions which can be drawn from Figs. 2 and 3

and Table I are the following:

(1) The density of the Ti(Al,V)N film microstructure and the

macrostress r both increase with increasing energy Ebi.

The microstructure gradually changes from columnar

with voids [Fig. 2(a)] to a dense, voids-free microstruc-

ture without columns [Fig. 2(d)]. The increase of the

energy Ebi results in an increased mobility of the con-

densing atoms at the surface of the growing film, the

microstructure densification and a transition from films

with a columnar microstructure to films with a dense,

voids-free microstructure.

(2) The Ti(Al,V)N films with a columnar microstructure can

exhibit not only tensile macrostress (r> 0) but also com-

pressive macrostress (r< 0). The compressive macro-

stress arises when the columns are in a strong contact.

(3) The Ti(Al,V)N films with a columnar microstructure and

a weak contact between columns (the low compressive

macrostress jrj ! 0), however, exhibit low resistance to

cracking, see the cracks on the photo in Fig. 3(b).

Responsible for the cracking of this films are: (1) the

columnar microstructure, (2) the low ratio H/E*< 0.1,

(3) the low compressive macrostress jrj � 0.5 GPa and

(4) the low elastic recovery We � 60% (see Table I).

(4) The Ti(Al,V)N films with a dense microstructure {the

very densely packed columns [Fig. 2(c)] and the feature-

less microstructure without columns corresponding to

zone T of the Thornton’s structural zone model

FIG. 3. (Color online) Evolution of the microstructure, the surface morphology with the diamond indenter impression at load L¼ 1 N and the macrostress r of

the Ti(Al,V)N film with increasing energy Ebi. (a) Ebi¼ 0 MJ/cm3, r¼ 0 GPa, (b) Ebi¼ 0.5 MJ/cm3, r¼�0.4 GPa, (c) Ebi¼ 1.8 MJ/cm3, r¼�2.5 GPa, and

(d) Ebi¼ 4.9 MJ/cm3, r¼�5.5 GPa.

FIG. 4. (Color online) Schematic illustration of two dimensional (2D) Thornton’s SZM showing that the line corresponding to the films with zero macrostress

(r¼ 0) lies in zone 1. Efn and Ebi denote the energy delivered to the growing film by fast neutral particles, i.e., by bombarding and condensing fast atoms, and

bombarding ions, respectively.
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(SZM)48,49 [Fig. 2(d)]} exhibit enhanced resistance to

cracking. These films are characterized by (1) a dense

voids-free microstructure, (2) the high ratio H/E*> 0.1,

(3) the high compressive macrostress jrj � 0.5 GPa, and

(4) the high elastic recovery We� 70%.

(5) The highest energy of 4.9 MJ/cm3 cannot be considered as

the optimal energy because the Ti(Al,V)N film sputtered

at Ebi¼ 4.9 MJ/cm3 already exhibits too high compressive

macrostress r¼�5.5 GPa, which may result in the film

delamination from the substrate when the film is too thick.

The films with high ratio H/E*> 0.1, high elastic recovery

We> 60%, a dense, voids-free microstructure, and a

lower compressive macrostress (r¼�2.5 GPa) are good

flexible, hard films with enhanced resistance to cracking.

In Fig. 2, Ec denotes the critical energy Ebi at which the

sputtered films exhibit zero macrostress (r¼ 0). The critical

energy Ec depends on the elemental composition of the film

and the ratio Ts/Tm; here, Ts is the substrate temperature and

Tm is the melting temperature of the film’s material.28,45 The

films sputtered at low energies (Ebi<Ec) exhibit tensile

stress (r> 0) and the films sputtered at high energies

(Ebi>Ec) exhibit compressive stress (r< 0). Our experi-

ments show that the line r¼ f(pAr) corresponding to the

films with zero macrostress (r¼ 0) in the Thornton’s SZM

(Refs. 48 and 49) lies in zone 1, see the curve in Fig. 4. It

means that the films with a columnar structure can exhibit

also compressive stress (r< 0). In the case when the value

of the compressive macrostress (r< 0) is low, the film

with a columnar microstructure easily cracks. This fact was

confirmed also in the paper of Pei et al.50 in which the crack-

ing of the TiC/a-C:H films with a columnar microstructure

sputtered at a quite high negative substrate bias Us¼�100 V

is reported. In the case when the value of the compressive

macrostress is sufficiently high the films with a columnar

microstructure exhibit strongly enhanced resistance to crack-

ing. The blue straight line in Fig. 4 shows the evolution of

the film microstructure from columnar to dense, voids-free

with increasing ion bombardment (Ebi) at constant values of

Ar pressure pAr and Ts/Tm ratio.

IV. CONCLUSIONS

In summary we can conclude that (1) the flexible hard

Ti(Al,V)N films with enhanced resistance to cracking can be

formed when the energy Ebi delivered to them during their

growth is greater than the critical energy Ec; (2) the critical

energy Ec depends on the elemental composition of the film

and the ratio Ts/Tm; (3) the flexible hard Ti(Al,V)N

films exhibit high ratio H/E*� 0.1, high elastic recovery

We> 70%, compressive macrostress (r< 0), and dense,

voids-free microstructure; (4) the flexible hard films with

columnar voids-free microstructure can be also formed when

these films exhibit the compressive macrostress (r< 0); (5)

the formation of flexible hard Ti(Al,V)N films can be effi-

ciently controlled by the energy Ebi delivered to them during

their growth by bombarding ions; and (6) the line r¼ f(p)

corresponding to the films with zero macrostress (r¼ 0) lies

in zone 1 of the Thornton’s SZM in which films with colum-

nar microstructure are created. All these conclusions are of

general validity and were confirmed already in nine different

material coating systems.36–44 Obtained results deepen the

present state of the knowledge in the field and represent a

huge application potential.
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The article reports on the effect of the energy delivered into the growing film by bombarding ionsℰbi and/or fast
neutrals ℰfn on its structure, microstructure and mechanical properties, and resistance to cracking. The effect of
the total delivered energyℰ=ℰbi+ℰfn on thefilmproperties is demonstrated on the Ti(Al,V)Nxfilms deposited
by reactivemagnetron sputtering. The filmswere sputtered onto Si(111) andMo substrates in amixture Ar+N2

gases by a dualmagnetronwith closedmagnetic field and equippedwith TiAlV (6 at.% Al, 4 at.% V) alloy targets. It
was shown that (1) The energyℰ is a key parameter controlling the physical andmechanical properties, and the
resistance to cracking of sputtered Ti(Al,V)Nx films, (2) The structure of Ti(Al,V)Nx films varies from TiN(200) to
TiN(220) with increasing energy ℰ, (3) The Ti(Al,V)Nx films with high ratio H/E⁎ ≥0.1, high elastic recovery We

≥60% and dense voids-free microstructure exhibit an enhanced resistance to cracking and can be produced only
in the case when a sufficient energy ℰ is delivered into the growing film either by bombarding ions or by
bombarding fast neutrals and (4) The energyℰfnmakes it possible to sputter crystalline films onto dielectric sub-
strates held at a floating potential Us = Ufl.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that properties of thin films are determined by their
elemental and phase composition (crystalline phase, amorphous phase
or mixture of crystalline and amorphous phase), structure (size of
grains and their crystallographic orientation), and microstructure (po-
rous/columnar, dense/voids-free). Up to now, the properties of the
thin film have been controlled by different deposition parameters,
such as the power P of the magnetron discharge, the film thickness h,
the substrate temperature Ts, the substrate bias Us, the substrate ion
current density is, the flux of ions νi incident on the substrate, the
deposition rate aD of the film, the substrate-to-target distance ds-t, the
partial pressure of the argon pAr the reactive gas pRG and the total pres-
sure pT=pAr+pRG of sputtering gasmixture, etc., used in its formation.
There are a huge number of papers devoted to the investigation of the
relationships between the deposition parameters of the film and its
structure [1–12], microstructure [8–26], phase and elemental composi-
tion [2–5,15–20], macrostress [4–9,18–22], physical and functional
properties [1–28]. A set (combination) of many deposition parameters
must be always selected in sputtering of the film. The problem in this
approach is the fact that a correct combination of the deposition param-
eters necessary to form the filmwith prescribed properties is unknown.
Different combinations of deposition parameters result in different
energy ℰ delivered into the growing film, which is difficult to predict.
It means that themain parameter which really controls the film proper-
ties is the energyℰ and thereby the correlations between the properties
of the film and the energyℰ are of a key importance [29–39]. Therefore,
an opposite approach in the development of new films should be used.
At first, correlations between the film properties and the energy ℰ
should be found. Then, based on this knowledge the necessary deposi-
tion parameters which ensure the formation of the films with pre-
scribed properties should be determined.

In the simplest case of a collision-less, fully ionized plasma the ener-
gy ℰbi can be expressed in the following form [33,39].

Ebi J=cm3� � ¼ Up–Us
� �

is=aD at UpNUs ð1Þ

Here, Up is the plasma potential, Us is the substrate bias, is is the sub-
strate ion current density and aD is the deposition rate of film. Under the
assumption that |Up | ≪ |Us |, which is well fulfilled in many experi-
ments, Eq. (1) can be simplified into the following simple form.

Ebi J=cm3� �
≈ Usj jisð Þ=aD ð2Þ

Eq. (2) clearly shows two important facts. The energy ℰbi delivered
into the growing film by bombarding ions (1) can be easily calculated
from the measured deposition parameters (Us, is) and the film deposi-
tion rate aD = h/td calculated from the measured film thickness h and
the deposition time td and (2) strongly depends not only on Us and is
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Nomenclature

H hardness
E⁎ effective Young's modulus
We elastic recovery
fr repetition frequency
τ duty cycle
Ida discharge current averaged over the period
Id DC discharge current
Wt target power density
dS-T target-to-substrate distance
TS substrate temperature
Ud DC discharge voltage
Udp discharge voltage in the pulse
US substrate voltage
UP plasma potential
Ufl floating potential
iS substrate current density
pT total pressure
pN2 partial pressure of nitrogen
pAr partial pressure of argon
L indenter load
h film thickness
r radius of the fixed cylinder

191M. Jaroš et al. / Surface & Coatings Technology 332 (2017) 190–197
but also on aD. The second fact is of an extraordinary importance in (i)
the reactive sputtering of compounds and (ii) the high-rate sputtering
of films because the energyℰbi delivered into the growingfilm deceases
with increasing aD.

This article investigates the effect of the energyℰ=ℰbi +ℰfn deliv-
ered into the growing Ti(Al,V)Nx film on the preferred crystallographic
orientation (texture) of its grains,microstructure, physical andmechan-
ical properties, and resistance to cracking in detail. A great attention is
devoted also to (i) the control of the structure and microstructure of
the film by the energy ℰ delivered into the film during its growth in
the DC and pulsed magnetron discharges, (ii) the energy ℰ delivered
into the film held at different substrate biases Us and (iii) the energy
ℰ delivered into the film by fast neutrals.
2. Experimental

The Ti(Al,V)Nx thin films were sputter deposited in a mixture of Ar
+ N2 sputtering gases using a dual magnetron with closed magnetic
field equipped with TiAlV (6 at.% Al, 4 at.% V) alloy targets of diameter
∅ = 50 mm. The targets were attached to the cathode bodies of the
dual magnetron using pure Ti fixing rings. The magnetrons were
powered by an Advanced Energy Pinnacle Plus + 5/5 kWpower supply
operated either in DC or pulse mode. The magnetrons were tilted to the
vertical axis at the angle 20°; for more details see Ref. [40]. The
Ti(Al,V)Nx films were deposited onto Si(111) and Mo substrates at
low power density Wt = Id Ud / S ≤ 20 W/cm2. The Si plates 20 × 20 ×
0.52 mm3 were used for the X-ray diffraction and the Si strips 30 × 5
× 0.64 mm3 were used for the measurement of the film macrostress.
The Mo substrates (80 × 15 × 0.20 mm3) were used for the assessment
of thefilm resistance to cracking in bending. A pre-deposition etching of
the substrateswas performed in thepulsed discharge (burningbetween
the substrate and the shutter) at the voltage Uet = 400 V, current Iet =
0.5 A, repetition frequency fet = 100 kHz, τ = 0.5, substrate tempera-
ture Ts = 500 °C and substrate-to-target distance ds-t = 60 mm in
argon at pressure pAr = 1 Pa for 5 min; the index “et” denotes the ion
etching. A pre-deposition cleaning of the magnetron targets was per-
formed in DC mode of sputtering with a closed target at the magnetron
voltage Ud = 400 V and current Id = 0.5 A, target power density Wd =
10W/cm2 in argon at pressure pAr=1 Pa for 3min. The film thickness h
was measured by a stylus profilometer DEKTAK 8. The macrostress σ
was evaluated from the bending of Si plate using the Stoney's formula
[41]. The film structure was characterized using an XRD diffractomer
PANalytical X Pert PRO in the Bragg-Brentano configuration with
CuKα radiation. The elemental composition of the Ti(Al,V)Nx films on
the Si substrate was analyzed in a scanning electron microscope (SU-
70, Hitachi) operated at a primary electron energy of 15 keV using ener-
gy dispersive spectroscopy (EDS, UltraDry, Thermo Scientific) andwave
dispersive spectroscopy (WDS, Magnaray, Thermo Scientific). Pure
metal standardswere used for the determination of Ti, Al and V concen-
trations. The nitrogen concentration was calculated as the difference to
100% wt using a combined WDS (Ti, V) and EDS (Al) analysis, since
there is an inevitable peak overlap of Ti and N X-Ray peaks. Mechanical
properties of sputtered films were determined from load vs. displace-
ment curves measured by a microhardness tester Fisherscope H100
with Vickers diamond indenter at a load of 20 mN. The resistance of
the Ti(Al,V)Nx films to cracking was determined using the indentation
test at high loads L ranging from 0.25 to 1 N determining the critical
load Lcr when cracks in the film occur and by the bending test. The Mo
strip coated with the sputtered film was bent around a fixed cylinder
of different radius r. By decreasing of the radius r a strain induced in
the film was increased. The critical strain εcr at which cracks in the
film occur was measured. The critical strain εcr was calculated from
the following formula [39].

εcr ≈ hMo=2r ð3Þ

Here, hMo is the thickness of the Mo strip.

3. Results and discussion

From Eq. (2) follows that the same value of the energyℰbi can be ob-
tained either at high values of Us and low values of is or at low values of
Us and high values of is and in both cases at the same value of aD. Main
factor affecting the films deposition rate aD is the power delivered into
themagnetron discharge and the substrate-to-target distance. Different
combinations of Us and is are discussed in Sections 3.1.1 and 3.1.2. The
energy ℰfn delivered into the film by fast neutrals controlled by the
total sputtering gas pressure pT is discussed in Section 3.2. Themain re-
sults of this article are summarized in Section 3.3.

3.1. Energy delivered by bombarding ions

3.1.1. Energy ℰbi controlled by the substrate bias Us

The evolution of the structure and mechanical properties of the
Ti(Al,V)Nx film sputtered in DC magnetron discharge with increasing
energy ℰbi, delivered into the growing film by bombarding ions, and
controlled by the substrate bias Us are displayed in Figs. 1 and 2. From
Fig. 1 it is seen that the preferred crystallographic orientation of the
Ti(Al,V)Nx films strongly depends on the value of the energy ℰbi. The
Ti(Al,V)Nx films with the dominant TiN(200) reflection are sputtered
at low values of energy ℰbi ≤ 1.1 MJ/cm3. The intensity of the TiN(200)
reflection decreases with increasingℰbi. The dominant TiN(220) reflec-
tion occurs at ℰbi = 1.6 MJ/cm3 and coexists with the TiN(200) reflec-
tion. The TiN(200) reflection is almost fully converted to TiN(111) and
TiN(220) reflections approximately atℰbi = 2.4MJ/cm3. The Ti(Al,V)Nx

films sputtered at higher energies ℰbi ≥ 2.4 MJ/cm3 are composed of
TiN(220) and TiN(111) grains.

The stoichiometry x = N/(Ti + Al + V) of the Ti(Al,V)Nx films in-
creases with increasing energy ℰbi from x = 1.04 at ℰbi = 0.1 MJ/cm3

to x = 1.17 at ℰbi = 4.8 MJ/cm3, see Table 1, where also their main
physical and mechanical properties are given. From Table 1 it is seen
that while the substrate ion current density is increases, the deposition
rate aD of the film decreases with increasing negative substrate bias



Fig. 1. XRD patterns from Ti(Al,V)Nx films DC sputtered on Si(111) substrate at Id = 0.5 A,
Wt ≈ 10 W/cm2, Ts = 500 °C, ds-t = 60 mm, pT = pAr + pN2 = 0.2 + 0.8 = 1 Pa as a
function of ℰbi, which itself here is a function of negative substrate bias Us.

192 M. Jaroš et al. / Surface & Coatings Technology 332 (2017) 190–197
Us. It is the reason why the energy ℰbi increases with increasing nega-
tive substrate bias Us. The hardness H increases with increasing ℰbi

from 22 GPa at ℰbi = 0.1 MJ/cm3 to 32 GPa at ℰbi = 1.9 MJ/cm3 and
then slightly decreases to 30 GPa at ℰbi = 4.8 MJ/cm3. The effective
Young's modulus E⁎ also increases with increasing ℰbi from 262 GPa
atℰbi = 0.1 MJ/cm3 to 275 GPa atℰbi = 1.9 MJ/cm3 but then decreases
more strongly, compared with the hardness H, to 240 GPa at ℰbi =
4.8 MJ/cm3. The Ti(Al,V)Nx films sputtered at ℰbi ≥ 1.7 MJ/cm3 exhibit
Fig. 2. The evolution of (a) hardness H, effective Young’s modulus E* and TiN texture and (b) e
Ti(Al,V)Nx films as a function of the energy ℰbi as which itself here is a function of negative su
a high ratio H/E⁎ N0.1 and a high elastic recovery We N70% and thereby
also an enhanced resistance to cracking; formore details see Refs. [42–50].

The evolution of the mechanical properties of the Ti(Al,V)Nx films
sputtered in DC magnetron discharge with increasing energy ℰbi is
displayed in Fig. 2 and Table 1. From Fig. 2 and Table 1 the following
can be concluded:

1. The energy ℰbi delivered into the growing film increases with in-
creasing negative substrate bias Us at constant values of (i) the low
discharge current Id = 0.5 A and (ii) the high partial pressure of ni-
trogen pN2 = 0.8 Pa.

2. The Ti(Al,V)Nx films sputtered at low energies ℰbi ≤ 1.7 MJ/cm3 ex-
hibit ratio H/E⁎ ≤ 0.1, elastic recovery We ≤70% and a strong TiN
(200) texture. These films sputtered at low substrate biases |Us|
≤40 V are brittle and easily crack.

3. The Ti(Al,V)Nx films sputtered at high substrate biases |Us| ≥ 50 V
and therefore high energies ℰbi N1.7 MJ/cm3 exhibit high ratio H/E⁎
N 0.1, high elastic recovery We N70% and no TiN (200) texture.
These films exhibit an enhanced resistance to cracking.

4. The Ti(Al,V)Nx films sputtered at the highest energies ℰbi

≥ 3.7 MJ/cm3 exhibit the highest resistance to cracking.
5. The absence or small amount of the TiN(200) grains in a Ti(Al,V)Nx

film can be used as an indicator that the film has enhanced mechan-
ical properties.

6. The compressive macrostress (σ b 0) generated in sputtered
Ti(Al,V)Nx films strongly increases with increasing substrate bias Us

up to −5.5 GPa at Us = −100 V.

The high compressivemacrostress σ in the sputtered Ti(Al,V)Nx film
strongly decreases its adhesion to the substrate and very often the film
delaminates from it. Therefore, the energyℰbi necessary to form flexible
hard films with enhanced resistance to cracking needs to be delivered
into the growing film at lower negative substrate biases Us.

3.1.2. Energy ℰbi controlled by the substrate ion current density is
In this section properties of the Ti(Al,V)Nx films sputtered at a low

substrate bias Us = −40 V in a DC and pulsed magnetron discharges
are reported. The evolution of the structure and mechanical properties
of the Ti(Al,V)Nx film with increasing energy ℰbi, delivered into the
growing film by bombarding ions and controlled by the substrate ion
current density is are displayed in Figs. 3 and 4, respectively. The sub-
strate ion current density is extracted to the substrate from the DCmag-
netron discharge was increased by increasing the discharge current Id,
i.e. by intensification of the magnetron discharge, which results in the
lastic recovery We, H/E* ratio, critical strain ecr to failure and TiN texture of the sputtered
bstrate bias Us.



Table 1
Physical andmechanical properties of Ti(Al,V)Nx films sputtered by DC dual magnetron at Id = 0.5 A,Wt= (UdId/S)= 10W/cm2, Ts = 500°C, ds-t=60mm and pT= pAr + pN2= 0.2+
0.8 = 1 Pa on Si(111) controlled by the substrate bias Us; here x = N/(Ti + Al + V) is the film stoichiometry and S is the area of the sputtered target.

Us is ℰbi x h aD H E⁎ We H/E⁎ σ Cracks in

[V] [mA/cm2] [MJ/cm3] [nm] [nm/min] [GPa] [GPa] [%] [GPa] Bending
εcr [%]

Indentation
Lcr [N]

−11 0.24 0.1 1.04 2200 18.3 22 262 58 0.08 −0.4 1.0 0.25
−20 0.74 0.5 1.04 2000 16.7 25 268 62 0.09 −0.4 1.0 0.25
−30 0.93 1.1 0.99 1900 14.6 27 275 66 0.10 −1.0 1.3 0.25
−40 0.96 1.6 1.03 2000 14.3 26 269 67 0.10 −2.4 1.3 0.25
−50 0.91 1.9 1.07 1900 14.6 32 275 76 0.12 −3.1 2.0 N1
−60 0.96 2.4 1.05 2000 14.3 30 273 73 0.11 −1.5 2.0 N1
−70 1.01 3.2 1.11 1600 13.3 32 259 79 0.12 −2.9 2.0 N1
−80 1.04 3.7 1.15 1600 13.3 30 249 78 0.12 −1.9 N2.0 N1
−90 1.07 4.2 1.10 1500 13.6 31 243 81 0.13 −4.0 N2.0 N1
−100 1.10 4.8 1.17 1400 13.7 30 240 78 0.12 −5.5 N2.0 N1
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creation of a dense plasma. Higher values of the substrate ion current Is
at Us=−40V can be extracted froma dense plasma only. However, the
increase of the current Id also results in the increase of the film deposi-
tion rate aD and thereby also in the simultaneous decrease of the energy
ℰbi delivered to the film during its growth by bombarding ions, see
Table 2. In order to increase the ion current density is the DCmagnetron
dischargewas replaced by the pulsed bipolar dualmagnetron discharge.
Higher value of the ion current density is was extracted from denser
plasma at low substrate biases Us ≤|20 V|. At low substrate biases Us ≤
|20 V| the plasma potential Up increased to +23 V due to the positive
value of the magnetron voltage during the pulse-off time. The positive
plasma potential of +23 V and the negative substrate bias of−20 V re-
sults in the sheath potential Ush=│43 V│, fromwhich the energyℰbi is
Fig. 3. XRD patterns from Ti(Al,V)Nx films on the Si(111) substrate sputtered at Ts = 500
°C, ds-t=60mm, pT=1 Pa, pN2=0.8 Pa using (i) DCdeposition atWt ≤ 16.5W/cm2, Us=
-40V, (ii) pulse deposition at fr = 100 kHz, τ = 0.5, Wt = 16.3 W/cm2, Us = -20V as a
function ℰbi controlled by substrate ion current density.
calculated using Eq. (1). From denser plasma higher ion currents Is to
the substrate were extracted and higher ion current density is
≥ 1.7 mA/cm2 were achieved. Therefore, the Ti(Al,V)Nx films deposited
in the pulsed discharge generated by the pulsed bipolar dualmagnetron
exhibit high ratio H/E⁎ ≥ 0.12, high elastic recovery We ≥ 73% and are
characterized by a strong TiN(220) texture, see Fig. 3. These films are
slightly over-stoichiometric and their stoichiometry x = N/(Ti + Al + V)
ranges from 1.00 to 1.09, see Table 2. The evolution of mechanical prop-
erties of these films with increasing energy ℰbi is displayed in Fig. 4.

From Figs. 3 and 4 and Table 2 the following can be concluded:

1. The energy ℰbi delivered into the growing film prepared in the DC
magnetron discharge decreases with increasing discharge current Id
due to increasing of the film deposition rate aD. All films are formed
at low energyℰbi b1.7 MJ/cm3. They are polycrystalline, almost stoi-
chiometric (x = N/(Ti + Al + V) ≈ 1) and exhibit strong TiN(200)
texture and columnar microstructure which is responsible for a low
Fig. 4. H/E* ratio, elastic recovery We, and critical strain εcr in Ti(Al,V)Nx films reactively
sputtered onto Si(111) and Mo substrate in (i) the DC discharge at Wt ranging from 11.4
to 16.5 W/cm2, Us = -40V, and (ii) the pulsed bipolar dual magnetron discharge at Wt

= 16.3 W/cm2, Us = -15 and -20 V, fr = 100 kHz, and Ts = 500 °C, ds-t = 60 mm, pT =
pAr + pN2 = 0.2 + 0.8 = 1 Pa as a function of ℰbi as which itself here is a function of
substrate ion current density is.



Table 2
Physical and mechanical properties of Ti(Al,V)Nx films sputtered on the Si(111) andMo substrates at dS-T = 60mm, Ts = 500 °C, pT = pAr+ pN2= 0.2+ 0.8= 1 Pa by (i) DC dual mag-
netron discharge at Us = −40 V, Up ≈ + 3 V, (ii) pulsed bipolar dual magnetron discharge at fr = 100 kHz, τ = 0.5, Ida = 1.6 V, Up ≈ + 23 V. The substrate ion current density is was
controlled by the discharge current Id.

DC dual magnetron deposition Cracks in

Id Wt is ℰbi x h aD H E⁎ We H/E⁎ σ Bending
εcr

Indentation
Lcr

[A] [W/cm2] [mA/cm2] [MJ/cm3] [nm] [nm/min] [GPa] [GPa] [%] [GPa] [%] [N]

0.55 11.4 1.07 1.6 1.03 1900 15.8 29.0 272 71 0.11 −1.8 2.0 0.25
0.60 12.6 1.15 1.6 1.09 2000 17.5 28.1 274 70 0.10 −1.4 2.0 0.25
0.65 13.8 1.24 1.6 1.02 2100 19.1 26.7 272 67 0.10 −1.3 2.0 0.25
0.70 15.2 1.31 1.5 1.05 2200 21.6 26.9 278 67 0.10 −1.4 2.0 0.25
0.75 16.5 1.40 1.4 1.05 2200 23.4 29.9 283 71 0.11 −1.8 2.0 0.25

Pulsed dual bipolar magnetron deposition
Us Wt is ℰbi x h aD H E⁎ We H/E⁎ σ εcr Lcr
[V] [W/cm2] [mA/cm2] [MJ/cm3] [nm] [nm/min] [GPa] [GPa] [%] [GPa] [%] [N]
−15 16.3 1.7 2.0 1.09 1.0 20.0 24.0 190 74 0.13 −1.7 2.0 1
−20 16.3 1.8 2.2 1.03 1.3 21.7 24.3 194 73 0.13 −1.4 2.0 N1
−20 16.3 1.8 2.2 1.00 2.5 21.7 28.5 235 74 0.12 −1.4 2.0 N1

Fig. 5. Evolution of XRD patterns from Ti(Al,V)Nx film sputtered by pulsed bipolar dual
magnetron on Si(111) substrate at fr = 200 kHz, Idp = 1.2 A, Wt ≈ 13 W/cm2, Us = Ufl,
Ts = 500 °C, ds-t = 60 mm with decreasing total sputtering gas pressure pT.
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resistance to cracking despite quite high ratio H/E⁎ ≈ 0.1 and high
elastic recovery We N60%.

2. All Ti(Al,V)Nx films prepared in the pulsed bipolar dual magnetron
discharge are deposited at high ion current density is ≥ 1.7 mA/cm2.
They are also polycrystalline and almost stoichiometric (x = N/(Ti
+ Al + V) ≈ 1) but exhibit no TiN(200) texture, high ratio H/E⁎ ≥
0.12 and high elastic recovery We N 60%. These films exhibit an en-
hanced resistance to cracking in the indentation test (Lcr ≥ 1 N) but
a lower resistance to cracking in the bending test.

3. This experiment also confirms the conclusion already given in the
Section 3.1.1 that the polycrystalline Ti(Al,V)Nx films with the
TiN(200) texture are brittle, i.e. they exhibit a low resistance to
cracking. On the contrary the films with the TiN(220) texture are
strong and tough, and exhibit the an enhanced resistance to cracking,
see Table 2.

4. The thick (1000 to 2000 nm) Ti(Al,V)Nx films sputtered at low nega-
tive substrate biases |Us| ≤ 40 V and energies ℰbi ranging from 1.6 to
2.2 MJ/cm3 exhibit low compressive macrostresses (|σ | ≤ 2 GPa).

3.2. Energy ℰfn delivered by fast neutrals and controlled by the total
sputtering gas pressure pT

The energy ℰ can be delivered into the growing film not only by
bombarding ions (ℰbi) but also by bombarding fast neutrals (ℰfn) at
low sputtering gas pressures pT = pAr + pN2 b 1 Pa. This fact is demon-
strated by sputtering of the Ti(Al,V)Nx films held at the floating poten-
tial (Us = Ufl) as a function of the total sputtering gas pressure pT. The
Ti(Al,V)Nx films were sputtered by pulsed dual magnetron operated in
a bipolar mode at the repetition frequency of pulses fr = 200 kHz, τ =
0.5, Idp = 1.2 A, Uda ≈ 220 V, Us = Ufl, Ts = 500°C, ds-t = 60 mm, pN2/
pT = 0.8. As the substrates are held at the floating potential Us = Ufl

both the substrate ion current density is and the energy ℰbi are very
low, almost zero. It means that in this case the energy ℰ is delivered
into the growing film mainly by fast neutrals, i.e. ℰ ≈ ℰfn. The energy
of fast neutralsℰfn increases with decreasing pT due to the prolongation
of the mean free path λ and therefore a reduction of collisions between
atoms. It means that a lower energy ℰfn is delivered into the growing
film at higher pressures pT compared with ℰfn delivered into it at
lower pressures pT. The evolution of the structure of the Ti(Al,V)Nx

films sputtered under these conditions is displayed in Fig. 5. These
films are crystalline and slightly over-stoichiometric (x = N / (Ti + Al
+ V) ≈ from 1.06 to 1.25. Physical and mechanical properties of
sputtered Ti(Al,V)Nx films are summarized in Table 3.

This experiment demonstrates the indirect but clear effect of the en-
ergy ℰfn on the physical and mechanical properties of Ti(Al,V)Nx films
sputtered between low (0.4 Pa) and high (1 Pa) total sputtering gas
pressure pT and partial pressure of nitrogen pN2 = 0.8 pT on substrate
held at floating potential (Us = Ufl). From Fig. 5 and Table 3 the follow-
ing can be concluded:

1. The structure of Ti(Al,V)Nx films varies from the dominant TiN(200)
to the dominant TiN(220) texture with decreasing total sputtering
gas pressure pT. It is indirect evidence that the energy ℰfn increases
with decreasing pT as expected.

2. The ratio H/E⁎, elastic recoveryWe and compressivemacrostress (σ b

0) increase with decreasing pT. Also these facts indicate that the en-
ergy ℰfn increases with decreasing pT.

3. The Ti(Al,V)Nx films are over-stoichiometric (x = [N/(Ti + Al + V)]
≥ 1) films and their stoichiometry × increases with decreasing pT

probably due to the domination of nitrogen N absorption on the



Table 3
Physical andmechanical properties of Ti(Al,V)Nx films sputtered by pulsed bipolar dualmagnetron at fr=200 kHz, Idp=1.2 A,Wt=13W/cm2, Us=Ufl, Ts= 500 °C, ds-t=60mm, pN2=
0.8 Pa on Si(111) andMo substrate controlled by themagnetron sputtering gas pressure pT=pAr+pN2;Wt= (Ud Id/S), S is the area of sputtered target and x=N/(Ti+Al+V) is thefilm
stoichiometry.

pT h x aD H E* We H/E* σ Cracks in

[Pa] [nm] [nm/min] [GPa] [GPa] [%] [GPa] Bending
εcr [%]

Indentation at
Lcr [N]

0.40 800 6.7 21.8 173 75 0.13 −2.0 N 2.0 0.5⁎

0.45 1100 1.23 7.3 31.0 225 82 0.14 −2.2 2.0 0.5⁎

0.50 1300 1.24 8.3 25.5 209 76 0.12 −1.7 2.0 N1
0.55 1400 1.25 8.7 25.4 214 75 0.12 −1.9 2.0 N1
0.60 1800 1.17 12.0 27.6 238 75 0.12 −1.4 2.0 N1
0.70 1600 1.11 11.4 24.9 245 70 0.10 −1.3 1.3 N1
0.80 2000 1.06 15.3 18.1 179 63 0.10 −0.7 1.0 0.25
0.90 1800 1.10 15.0 23.2 237 68 0.10 −0.6 1.0 0.25
1.00 1900 1.10 15.8 23.8 240 68 0.10 −0.6 1.3 0.25

*The indentation load Lcr is low due to delamination of the film from the substrate not due to the film cracking.
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film surface over its resputtering from the film surface when the film
deposition rate aD decreases with decreasing pT.

4. Themicrostructure of the Ti(Al,V)Nxfilms converts fromcolumnar to
dense, voids-free non-columnar microstructure with decreasing pT,
see Fig. 6.

5. The resistance of Ti(Al,V)Nx films against cracking improves with de-
creasing pT, see Table 3.

All these findings show that the energy ℰfn can fully substitute the
energy ℰbi in the formation of flexible hard coatings. This fact opens a
newway to form flexible hard nanocrystallinefilms on electrically insu-
lating substrates.

In summary, it can be concluded that themicrostructure of the films
deposited onto the substrate held at the floating potential Us = Ufl can
be densified by the bombardment of the fast neutrals when the film is
sputtered at low values of the sputtering gas pressure pT b 0.7 Pa.More-
over, it is possible to sputter defect-free electrically insulating films be-
cause there is no accumulation of charge on the surface of the growing
film. These are the main advantages of the sputtering of the films held
at the floating potential Us = Ufl at low sputtering gas pressures (pT b
0.7 Pa).

3.3. Interrelationships between energies ℰbi and ℰfn, preferred crystallo-
graphic orientation and resistance to cracking of Ti(Al,V)Nx films

Main results of our investigation are summarized in Fig. 7. Thisfigure
clearly illustrates main interrelationships between theℰbi controlled by
ion bombardment (Us, is) and the energy of fast neutrals ℰfn controlled
by the total pressure of sputtering gas pT, the preferred orientation and
the resistance to cracking of the Ti(Al,V)Nx film. The low and enhanced
Fig. 6. SEM images of the microstructure of Ti(Al,V)Nx film sputtered by pulsed bipolar dua
Ts = 500 °C, ds-t = 60 mm, pN2 = 0.8 Pa and (a) pT = 1 Pa and (b) pT = 0.4 Pa.
resistance to cracking is characterized by the diamond indenter load Lcr
at which the tested film cracks, see Fig. 8. In Fig. 8 the morphology of
two Ti(Al,V)N films after loading by the diamond indenter at the same
high load L = 1 N are compared: (a) the brittle hard Ti(Al,V)N film
with low H/E⁎ = 0.9, low We = 58% sputtered at low energy ℰbi =
0.5 MJ/cm3 and (b) the flexible hard Ti(Al,V)N film with high H/E⁎ =
0.12, high We = 78% sputtered at high energy ℰbi = 4.8 MJ/cm3. This
figure clearly shows that while the brittle hard film sputtered at low en-
ergy cracks, the flexible hard film exhibit no cracks under the same load
L = 1 N.

Three main conclusions shown in Fig. 7 are:

1. The Ti(Al,V)Nx films sputtered at low energies ℰbi b 1.7 MJ/cm3 or
under low bombardment by fast neutrals ℰfn at high sputtering gas
pressures pT N 0.7 Pa containing TiN(200) grains exhibit columnar
microstructure and low resistance to cracking.

2. The Ti(Al,V)Nx films sputtered at high energies ℰbi ≥ 1.7 MJ/cm3 or
under high bombardment by fast neutrals ℰfn at low sputtering gas
pressures pT ≤ 0.7 Pa containing no or low amount of TiN(200) grains
exhibit dense, voids-free non-columnar microstructure and en-
hanced resistance to cracking.

3. The energyℰbi delivered to the growing film can be fully substituted
by the energy of fast neutrals ℰfn in formation of the film with the
same properties.

4. Conclusions

The article reports on a detailed investigation of the interrelation-
ships between the energy ℰbi and ℰfn delivered to the Ti(Al,V)Nx film
by bombarding ions and fast neutrals, respectively, and its structure,
l magnetron on Si(111) substrate at fr = 200 kHz, Id = 1.2 A, Wt ≈ 13W/cm2, Us = Ufl,



Fig. 7. Schematic illustration of interrelationships between the energy ℰbi and ℰfn, and the structure, microstructure and resistance to cracking of the Ti(Al,V)Nx film.

Fig. 8. Comparison of the surface morphology of (a) brittle hard Ti(Al,V)Nx films sputtered at low energy ℰbi = 0.5 MJ/cm3 exhibiting stoichiometry x = 1.04 and (b) flexible hard
Ti(Al,V)Nx film sputtered at high energy ℰbi = 4.8 MJ/cm3 exhibiting stoichiometry x = 1.17.
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microstructure, mechanical properties, and resistance to cracking. Main
conclusions of this study can be summarized as follows

1. The texture of the Ti(Al,V)Nx films varies from TiN(200) to TiN(220)
with increasing energy ℰbi or ℰfn.

2. The Ti(Al,V)Nx films sputtered at low energies ℰbi b 1.7 MJ/cm3 and
high sputtering gas pressures pT N 0.7 Pa are characterized by the
TiN(200) reflection and low resistance to cracking. On the other
hand, the Ti(Al,V)Nx films sputtered at high energies ℰbi

≥ 1.7 MJ/cm3 and low pressures pT b 0.7 Pa exhibit no TiN(200) re-
flection but an enhanced resistance to cracking. It indicates that the
absence of the TiN (200) reflection in the XRD pattern can be used
as an indicator that the Ti(Al,V)Nx film with enhanced resistance to
cracking is formed.

3. The Ti(Al,V)Nxfilmswithhigh ratioH/E⁎ ≥0.1, high elastic recoveryWe

≥ 60%, dense, voids-free non-columnar microstructure and compres-
sive macrostress (σ b 0) exhibit an enhanced resistance to cracking.

4. In sputtering of the Ti(Al,V)Nx films with enhanced resistance to
cracking the energy ℰbi can be fully substituted by the energy ℰfn.
This finding is of a general validity. Moreover, the use of the energy
ℰfn in deposition of filmsmakes it possible to sputter nanocrystalline
and crystalline films onto electrically insulating substrates without
their heating and arcing on their surfaces.

5. The energyℰ is a key parameter controlling physical andmechanical
properties of sputtered films including their resistance to cracking
and enabling their production in a reproducible way.
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This letter reports on great differences in values of the plasma Up and floating Ufl potentials in

sputtering discharges generated by single and dual magnetrons. It is shown that (i) the differences

in Up and Ufl result in strongly different properties of films sputtered by single and dual magnetrons

at the same power delivered to the magnetron discharge, (ii) in the direct current single and dual

magnetron discharges, the values of Up and Ufl strongly depend on the electric conductivity of the

surface of the grounded deposition chamber, and (iii) a pulsed dual magnetron with a closed

magnetic B field is the only one sputtering system, which enables us to sputter the films with fully

reproducible properties. VC 2017 American Vacuum Society. [http://dx.doi.org/10.1116/1.4992054]

I. INTRODUCTION

It is well known that the energy Ebi delivered into a sput-

tered film by bombarding ions decides on its physical and

mechanical properties such as its structure, microstructure,

hardness H, effective Young’s modulus E*, elastic recovery

We, ratio H/E*, and macrostress r. In the simplest case of

100% ionized and collisionless discharge, the energy Ebi is

determined by the following formula:1,2

EbiðMJ=cm3Þ ¼ ðUp– UsÞ is=aD: (1)

Here, Up is the plasma potential, Us is the substrate bias, is is

the substrate ion current density, and aD is the deposition

rate of the film. Equation (1) shows that the effect of Up on

Ebi can be very small in the case when jUpj � jUsj, but Up

can strongly influence Ebi in the case when jUpj � jUsj. The

plasma potential Up strongly depends on the deposition

parameters used in magnetron sputtering, the mode (type) of

the magnetron operation [the direct current (DC), pulsed,

high-power pulsed magnetron sputtering],3–9 the geometrical

arrangement of the sputtering device,10 the target power den-

sity Wt¼UdId/S,11 the sputtering gas pressure p,6,11 and the

state of the surface of the deposition chamber (electrically

conductive, semiconducting, and electrically insulating);

here, Ud and Id are the voltage and current of the magnetron

discharge and S is the area of the sputtered target. These

facts are the main reason why the properties of films sput-

tered under the same deposition conditions can strongly dif-

fer and in many cases cannot be formed in a reproducible

way. No investigation of this problem was performed so far.

Up to now, main attention was focused on the measurement

of the degree of ionization of sputtering gas, electron and ion

energy distribution functions12 and species generated in the

magnetron discharges in reactive sputtering and in the pres-

ence of different kinds of inert and reactive sputtering gases

and their mixtures.

This article shows great differences in the values of the

plasma potential Up and the floating potential Ufl in the mag-

netron discharge generated by (1) the DC single and DC

dual magnetron and (2) the pulsed dual magnetron operating

at the same deposition conditions. Besides, it is shown that

the electric conductivity of the surface of walls of the depo-

sition chamber strongly influences Up and Ufl in reactive

magnetron sputtering of films. The way how Up and Ufl

changes can be fully eliminated is shown.

II. EXPERIMENT

The plasma potential Up and the floating potential Ufl in the

magnetron discharge were measured in a cylindrical deposi-

tion chamber (diameter Ø¼ 600 mm and height h¼ 600 mm)

equipped successively with three sputtering systems: (1) DC

single magnetron, (2) DC dual magnetron, and (3) pulsed dual

magnetron, see Fig. 1. All magnetrons were the same and

were equipped with Ti (6Al 4V) alloy targets made of a VT6

titanium alloy containing 6 at. % Al and 4 at. % V. Both DC

and pulsed dual magnetron systems have a closed magnetic

field B between magnetrons, see Figs. 1(b) and 1(c). The sput-

tering discharges were generated at the same power PDC

¼ P1DCþ P2DC¼P1pþP2p¼ 500 W and the same sputtering

gas pressure p¼ pArþ pN2
¼ 0.2þ 0.8¼ 1 Pa; here, indexes

1DC and 2DC and 1p and 2p denote the powers delivered to

magnetrons 1 and 2 by two DC power supplies (Advanced

Energy Pinnacle Plusþ 5/5 kW operated in a DC mode) and

by a pulsed power supply (Advanced Energy Pinnacle Plusþ
5/5 kW operated in the bipolar mode with asynchronous

pulses), respectively, see Fig. 2; pAr and pN2
are partial pres-

sures of argon and nitrogen, respectively. More details on

the discharge of the dual magnetron with closed and open

(mirror) magnetic fields B are given in Ref. 13.

The voltage on magnetron 1 and magnetron 2 in the DC

dual magnetron system and in the pulsed dual magnetron sys-

tem is shown in Fig. 2. Figure 2(b) shows that during pulse-

off time, the magnetron voltage is slightly positive. It enables

us to remove the positive charge accumulated on the target

when electrically insulating films are sputtered, to avoid arc-

ing on the target surface, and to form defect free films.14 The

Ti(Al,V)N films were reactively sputtered on Si(100) sub-

strates placed at the substrate temperature of Ts¼ 500 �C, the

substrate-to-target distance of ds-t¼ 60 mm, and the total

sputtering gas pressure of pT¼ pArþ pN2
¼ 0.2 Paþ 0.8a)Electronic mail: musil@kfy.zcu.cz
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Pa¼ 1 Pa; here, pAr and pN2
are the partial pressure of argon

and nitrogen, respectively. All measurements of the plasma

potential Up and the floating potential Ufl were carried out in

the discharge generated at an unheated substrate. The change

in the electrical conductivity of the surface of the deposition

chamber from electrically conductive to nonconductive (elec-

trically insulating) was made by a pulsed reactive sputtering

of TiO2 films from the Ti(Al,V) targets of the dual magnetron

at the total pressure of pT¼ pArþ pO2
¼ 0.5þ 0.5¼ 1 Pa and

the pulsed averaged power of Pda¼ 1000 W.

III. RESULTS AND DISCUSSION

In this section, two problems were investigated in detail:

(1) Differences in the plasma potential Up and the floating

potential Ufl in the DC and pulsed magnetron discharges and

(2) The elimination of the effect of the electrical conductiv-

ity of the surface of the deposition chamber on the properties

of sputtered films and the finding of the magnetron sputter-

ing system which enables us to sputter films with fully repro-

ducible properties.

The plasma potential Up and the floating potential Ufl

were determined from Volt-Ampere (V-A) characteristics

measured at the substrate. Our experiments show that the V-

A characteristics at the substrate measured in the discharge

generated by the DC single magnetron [Fig. 1(a)] and by the

DC dual magnetron [Fig. 1(b)] are identical. Therefore, the

V-A characteristics measured at the substrate immersed in

the DC dual magnetron discharge and in the Pulsed bipolar

dual magnetron discharge are only compared, see Fig. 3.

Figure 3 shows strong differences in the values of Up and

Us in the DC and Pulsed bipolar dual magnetron discharges

generated at the same power P¼ 500 W. The main results of

this experiment are as follows:

(1) The single magnetrons [Fig. 1(a)] and the dual magnet-

rons with a closed magnetic field [Fig. 1(b)] powered by

the DC power always have the ground outside the mag-

netron discharge, i.e., outside the chamber walls. In con-

trast, the pulsed dual magnetrons with a closed magnetic

field operated with asynchronous pulses [Fig. 1(c)] have

the ground inside the magnetron discharge.

(2) In discharges of the DC single and DC dual magnetrons,

the floating potential Ufl is negative. Therefore, the films

sputtered in discharges generated by the DC single and

dual magnetrons are bombarded by electrons at negative

substrate biases jUsj< jUflj. In contrast, the films sput-

tered in discharges generated by the pulsed dual magnet-

rons with a closed B field are bombarded by ions at

positive substrate biases if Ufl�Us� 0. It is the main

reason why the properties of the films sputtered under

the same deposition conditions on the grounded substrate

by the DC and pulsed dual magnetrons strongly differ,

see Fig. 3 and Table I.

Figure 4 displays XRD patterns of the Ti(Al,V)N films reac-

tively sputtered on the grounded substrate (Us¼ 0) by the DC

and Pulsed bipolar dual magnetron at the same deposition con-

ditions: Wt DC¼ 12.8 W/cm2, Wtp¼ 25.6 W/cm2, Ts¼ 500 �C,

ds-t¼ 60 mm, and pT¼ pArþ pN2
¼ 0.2þ 0.8¼ 1 Pa; here,

FIG. 1. Schematic illustration of the discharge generated by (a) DC single magnetron, (b) DC dual magnetron, and (c) pulsed dual magnetron and the electrical

connection of power supplies.
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FIG. 2. (Color online) Schematic illustration of the voltage on magnetron 1 and magnetron 2 at (a) DC dual magnetron and (b) pulsed bipolar dual magnetron

operated with asynchronous pulses.

FIG. 3. (Color online) V-A characteristics measured on the substrate immersed in the dual magnetron discharge powered by (a) DC power P1DC¼P2DC¼ 250 W

and (b) Pulsed power with asynchronous pulses with P1p¼P2p¼ 500 W, repetition frequency fr¼ 1/T¼ 100 kHz, and duty cycle s/T¼ 0.5; here, indexes 1 DC

and 2 DC and 1p and 2p denote the powers delivered to magnetrons 1 and 2 by the two DC power supplies and the pulsed power supply, respectively.
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Wt DC and Wt p are the target power density of one magne-

tron in the DC dual magnetron and in the pulsed bipolar

dual magnetron, respectively. The structures of both films

strongly differ. While the DC sputtered film is polycrystal-

line, the pulsed sputtered film exhibits a strong TiN (111)

structure. These strong changes in the film structure also

result in strong differences in the mechanical properties of

the films sputtered by the DC and pulsed dual magnetron,

respectively, see Table I. The film deposited by DC dual

magnetron sputtering exhibits lower values of hardness H,

elastic recovery We, and low ratio H/E*� 0.1 compared to

the film deposited by pulsed dual magnetron sputtering.

Moreover, the pulsed sputtered film exhibits an enhanced

resistance to cracking due to the high ratio H/E*¼ 0.1.2,15

This experiment clearly shows how important it is to know

the floating Ufl and plasma Up on the substrate and inside

magnetron discharge, respectively, during deposition of the

film. Also, it is worthwhile to note that the deposition rate

aD of the Ti(Al,V)N film sputtered by DC and Pulsed bipo-

lar dual magnetron at the same deposition conditions, i.e.,

at Wt DC � Wtp¼ 12.8 W/cm2, Ts¼ 500 �C, ds-t¼ 60 mm,

and pT¼ pArþ pN2
¼ 0.2þ 0.8¼ 1 Pa, is approximately the

same.

A. Elimination of the effect of chamber walls on the
properties of sputtered films

The place of the ground of the electrical connection of

power supplies used for the generation of the magnetron

discharge—outside discharge (the chamber walls) or inside

discharge (the sputtered target of the magnetron)—strongly

influences V-A characteristics on the substrate, see Fig. 5.

When the ground is outside discharge, the V-A characteristics

depend on the electrical conductivity of the chamber walls,

see Fig. 5(a). The negative floating potential Ufl on the sub-

strate increases with the decreasing electrical conductivity of

the chamber walls. This change in Ufl is caused by the wall

contamination by (1) oxygen and nitrogen during opening

of the deposition chamber to air for the deloading of coated

parts (samples) and its loading by noncoated ones and par-

ticularly (2) condensing of different reactive species cre-

ated during the reactive magnetron sputtering of films. The

increase in negative floating potential Ufl is connected with

a secondary electron yield of the surface of chamber walls

increasing with the decrease in its electrical conductivity.

The contamination of the surface of the grounded deposi-

tion chamber is the main reason why the sputtering of the

films with fully reproducible properties is a very serious

problem.

This problem can be fully avoided in the case when the

ground is inside the magnetron discharge, see Fig. 5(b). In

this case, the V-A characteristics do not depend on the elec-

tric conductivity of the surface of chamber walls. This means

that the Pulsed sputtering by the dual magnetron with a

closed B field is the best sputtering system enabling deposi-

tion of films with fully reproducible properties.

IV. CONCLUSIONS

The results of the reported investigation are very impor-

tant for both the deepening of the present state of knowledge

in the field of reactive magnetron sputtering of thin films and

the design of new advanced sputtering systems which enable

us to sputter the films with fully reproducible properties.

Main results can be summarized as follows:

(1) The properties of the films sputtered by the single and

dual magnetrons at the same power P delivered to the

magnetron discharge and other constant deposition con-

ditions (Us, Ts, ds-t, and p) differ due to different values

of the plasma potential Up and the floating potential Ufl,

which results in a different energy Ebi¼ (Up�Us) is/aD

delivered to the growing film by bombarding ions.

(2) The values of Up and Us strongly depend on the electri-

cal connection of the power supply of the magnetron.

For the single and DC dual magnetron, the ground is out-

side discharge. In contrast, for the pulsed dual magnetron

with a closed magnetic field, the ground is inside the

discharge.

(3) The properties of the films sputtered on the grounded

substrate by the single and DC dual magnetrons at the

TABLE I. Properties of Ti(Al,V)N films sputtered on the grounded substrate (Us¼ 0) by DC and Pulsed bipolar dual magnetron at the same deposition condi-

tions: Wt DC ¼Wtp¼ 12.8 W/cm2, Ts¼ 500 �C, ds-t¼ 60 mm and pT¼ pArþpN2
¼ 0.2þ 0.8¼ 1 Pa at different energies Ebi and Eel.

Sputtering Us Is is Ebi Eel h aD H E* We H/E* r
(V) (mA/cm2) (MJ/cm3) (MJ/cm3) (nm) (nm/min) (GPa) (GPa) (%) (GPa)

DC 0 Electrons 10.60 — 3.4 1700 18.9 16.1 195 58 0.08 0.3

Pulsed 0 ions 1.12 1 — 1400 15.6 23.5 224 67 0.10 �1.2

FIG. 4. (Color online) XRD patterns of the Ti(Al,V)N films sputtered on the

grounded substrate (Us¼ 0) by DC and pulsed dual magnetrons powered at

the same deposition conditions: Wt DC � Wtp¼ 12.8 W/cm2, Ts¼ 500 �C,

ds-t¼ 60 mm, and pT¼ pArþ pN2
¼ 0.2þ 0.8¼ 1 Pa.

060605-4 J. Musil and M. Jaro�s: Plasma and floating potentials in magnetron discharges 060605-4

J. Vac. Sci. Technol. A, Vol. 35, No. 6, Nov/Dec 2017



same power P and other constant deposition conditions

strongly differ from those sputtered by the pulsed dual

magnetrons with a closed magnetic field. It is due to

the fact that while in the single and DC dual magnetron

discharge, electrons flow on the grounded substrate, in

the pulsed dual magnetron with a closed magnetic

field, ions flow on the grounded substrate. It results in a

great difference in the energy E delivered to the grow-

ing film.

(4) In discharges of the single magnetrons and the DC dual

magnetrons powered by two grounded power supplies,

the values of Up and Us depend on the state of the sur-

face of the chamber walls (electrically conductive or

nonconductive) and the formation of reactively sputtered

films is very difficult. On the other hand, in pulsed dis-

charges of the dual magnetrons with a closed magnetic

field in which the ground is inserted inside the discharge,

the values of Up and Ufl do not depend on the state of

deposition chamber walls. This means that the pulsed

dual magnetron ensures a long-term reactive sputtering

of the films with fully reproducible properties without

any effect of varying contamination of the deposition

chamber walls.
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A B S T R A C T

The article reports on the effect of the energy ℰ delivered into the growing film on its macrostress, micro-
structure, mechanical properties and resistance to cracking of Ti(Al,V)N films. The Ti(Al,V)N films were de-
posited on Si(111) and Mo substrates by magnetron sputtering in a mixture Ar + N2 gases using a dual mag-
netron with closed magnetic field and equipped with TiAlV (6 at.% Al, 4 at.% V) alloy targets. It is shown that the
compressive macrostress σ in sputtered films can be reduced either by the pulsed bipolar bias voltage Usp with
alternating negative and positive pulses or the electron and ion bombardment during overshoots in the pulsed
magnetron sputtering. All sputtered films with high ratio H/E∗ ≥ 0.1, compressive macrostress (σ < 0), and
non-columnar microstructure exhibit an enhanced resistance to cracking; here H is the hardness and E∗ is the
effective Young's modulus. The high compressive macrostress in the film is not the necessary condition for the
formation of the films with an enhanced resistance to cracking.

1. Introduction

There is a huge number of papers devoted to the investigation of
relationships between the deposition parameters of the film and its
structure [1–12], microstructure [8–26], phase and elemental compo-
sition [2–5,15–20], macrostress [4–9,18–25], physical and functional
properties [1–31]. Despite these facts, it is very difficult to sputter in
different deposition chambers with different magnetrons, and different
power supplies (DC, pulsed) the films with reproducible properties. It is
due to the fact that different combinations of deposition parameters,
different magnetrons (single, dual, etc.) and different arrangement of
substrate holders (stationary, rotating) result in different energies ℰ
delivered into the growing film. It means that the main parameter
controlling the properties of the film is the energy ℰ [32–42]. There-
fore, the knowledge of correlations between the energy ℰ and the film
properties is very important.

In deposition of films using an ion plating process, i.e. in the case
when the substrate on which the film is deposited is held on a negative
substrate bias Us, the most important is the energy ℰbi delivered to the
film during its growth by bombarded ions. In the simplest case of a
collision-less, fully ionized plasma the energy ℰbi can be expressed in
the following form [42].

ℰbi [J/cm3]=│Up – Us │×is/aD (1)

Here, Up is the plasma potential, Us is the substrate bias, is is the
substrate ion current density and aD is the deposition rate of the film.
Under the assumption that │Up │≪ │Us │, which is well fulfilled in
many experiments, Eq. (1) can be simplified in the following simple
form

ℰbi [J/cm3]≈ (│ Us │is)/aD (2)

Eq. (2) shows that the energy ℰbi delivered to the growing film by
bombarding ions can be easily calculated from measured deposition
parameters (Us, is) and the film deposition rate aD= h/td calculated
from the measured film thickness h and the deposition time td.

Recently, it was demonstrated that, the Ti(Al,V)N films with en-
hanced resistance to cracking are created at high energies
ℰbi > 1.7MJ/cm3 [43]. However, the intensive ion bombardment
generates high compressive stresses (up to -3 GPa to −5 GPa) in sput-
tered films [44]. Such films easily delaminate from the substrate and
crack. Therefore, it is necessary to decrease the compressive macros-
tress σ but simultaneously to deliver to the film sufficiently high energy
ℰbi necessary to sputter the film with dense, non-columnar micro-
structure exhibiting no delamination from substrate and an enhanced
resistance resistance to cracking.

The solution of this quite difficult task is the subject of this article. It
is shown that the films with an enhanced resistance to cracking and a
low compressive macrostress │σ│ ≤ 1 GPa can be formed in the case
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when σ generated in sputtered film is relaxed by bombardment of
electrons during its growth. Two methods are described in detail: (1)
the DC sputtering with pulsed bipolar bias with alternating negative
and positive pulses and (2) the pulsed sputtering with electron bom-
bardment of the film during overshoots at the end of each pulse. Both
methods efficiently reduce the compressive macrosrostress (σ < 0) in
sputtered films. It was demonstrated in sputtering of the Ti(Al,V)N ni-
tride films.

2. Experimental

The Ti(Al,V)N nitride films were reactively sputter deposited on Si
(111) and Mo substrates at substrate temperature Ts= 500 °C and
substrate-to-target distance ds-t = 60 mm by a dual magnetron with
closed magnetic field equipped with TiAlV (6 at.% Al, 4 at.% V) alloy
targets of diameter ∅ = 50 mm in a mixture of Ar + N2 sputtering
gases. The magnetrons were tilted at angle 20° to the vertical axis [45]
and supplied by an Advanced Energy Pinnacle Plus+ 5/5 kW power
supply operated either in the DC or pulse mode. The Ti(Al,V)N films
deposited by a dual magnetron powered by DC power were sputtered at
Id= 1 A results in Wt= IdUd/S≈ 16W/cm2, and the substrate held
either at constant negative bias Us or at pulsed bipolar positive/nega-
tive bias. The Ti(Al,V)N films deposited by a dual magnetron powered
by pulsed power were sputtered at the repetition frequency of pulses fr
ranging from 100 kHz to 350 kHz, τ/T= 0.5 and Id ranging from 1.6 to
2 A resulting in the target power density Wt= Idp Udp/S < 16W/cm2

and the substrate bias held at the floating potential Ufl or at the constant
negative bias; here Idp and Udp is the discharge current and voltage
during pulse-on time, respectively, and S is the total area of the sput-
tered target. All Ti(Al,V)Nx films were sputtered in the nitrogen-rich
atmosphere at pN2/pT = 0.8. The films sputtered under these conditions
were almost stoichiometric (x = N/(Ti + Al + V) ≈ 1) and their
stoichiometry x varied in a very narrow range from 0.98 to 1.09 only.
The Si plates (20 × 20 × 0.64 mm3) were used for of X-ray diffraction
patterns and the Si strips (30×5×0.64mm3) were used for the
measurement of the macrostress σ in the sputtered films. The Mo sub-
strates (80× 15×0.20mm3) coated by sputtered films were used for
the assessment of the film resistance to cracking in bending. A pre-

Fig. 1. Comparison of DC and pulsed substrate bias
used in deposition of Ti(Al,V)N films by DC dual
magnetron discharge generated at Id= 1 A,
Ts= 500 °C, ds-t = 60mm, pT=pAr + pN2 = 0.8
+ 0.2 = 1 Pa. (a) Continuous ion bombardment and
(b) alternating ion/electron bombardment of the
growing Ti(Al,V)N film by ions and electrons pro-
duced by DC bias (Us= - 100 V) and pulsed bias
(Usp = - 130/+70 V, fr= 5 kHz), respectively. Here,
Usp is the pulsed substrate bias Usp and isp is the
pulsed substrate current density.

Table 1
Physical and mechanical properties and compressive macrostress (σ < 0) in the Ti(Al,V)N films sputtered by DC dual magnetron operated at Id= 1 A, Ts= 500 °C,
ds-t = 60mm, pT=pAr + pN2 = 0.2 + 0.8 = 1 Pa on the substrate held at (i) DC substrate bias voltage Us DC and (ii) pulsed substrate bias voltage Usp with repetition
frequency of pulses fr = 5 kHz. The bending test was performed on the films sputtered on the Mo strip and the indentation test on the films sputtered on the Si
substrates.

bias fr Usp is h aD τe/τi ℰbip σ H E∗ We H/E∗ εcr Lcr structure texture

voltage [kHz] [V] [mA/cm2] [nm] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [%] [N]

DC 0 −40 1.0 2100 36.0 0 1.6 −1.7 28.4 282 70 0.10 – 0.25 crystaline (200)+(220)
DC 0 −100 1.8 1100 37.5 0 3.7 −4.0 30.7 220 81 0.14 > 2.0 > 1 crystaline (220)
pulsed 5 −100/+70 0.9 1000 33.0 1.3 1.6 −0.8 19.1 175 68 0.11 1.3 0.75 XRA

ℰbip is the average energy of ions during the negative pulse of pulsed substrate bias Usp, and XRA is X-ray amorphous.

Fig. 2. Comparison of the structure of the Ti(Al,V)N film sputter deposited at (i)
DC substrate bias Us DC=−100 V and a high energy ℰbi = 3.7MJ/cm3 and (ii)
the pulsed substrate bias Usp and a low energy ℰbip= 1.6MJ/cm3.
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deposition etching of substrates was performed in the pulsed discharge
(generated between the substrate and the shutter) at the voltage
U=400 V, current I= 0.5 A, repetition frequency fr= 100 kHz, τ/
T= 0.5, substrate temperature Ts= 500 °C and shutter-to-target dis-
tance ds-t = 60mm in argon at pressure pAr= 1 Pa for 5min. A pre-
deposition cleaning of the magnetron targets was performed in DC
mode of sputtering at the magnetron voltage Ud=400 V and current
Id= 0.5 A, target power density Wt≈ 10W/cm2 in argon at pressure
pAr= 1 Pa for 3min.

The film thickness h was measured by a stylus profilometer DEKTAK
8. The macrostress σ was evaluated from the bending of Si plate using
the Stoney's formula [46]. The film structure was characterized by X-
ray diffraction using an XRD diffractometer PANalytical X Pert PRO in
the Bragg-Brentano configuration with CuKα radiation. The elemental
composition of the Ti(Al,V)N films deposited on Si substrates was
analyzed by a scanning electron microscope (SU-70, Hitachi) operated
at a primary electron energy of 15 keV using both the energy dispersive
spectroscopy (EDS, UltraDry, Thermo Scientific) and the wave dis-
persive spectroscopy (WDS, Magnaray, Thermo Scientific). Pure metal
standards for the determination of Ti, Al and V concentrations in the
film were used. The nitrogen concentration was calculated as the dif-
ference to 100wt %. The Ti(Al,V)Nx≈1 films exhibit stochiometry
x = N/(Ti + Al + V) ranging from 0.98 to 1.09. Mechanical properties
of sputtered films were determined from load vs. displacement curves
measured by a microhardness tester Fisherscope H100 with Vickers
diamond indenter at a load of 20 mN. The resistance of the Ti(Al,V)N
films to cracking was determined by (i) the indentation test at high
loads Lcr (critical load when cracks occur) ranging from 0.25 to 1 N and
(ii) the bending test; more details are given in Refs. [42,47,48]. The Mo
strip coated with the sputtered film was bent around a fixed cylinder of

different radius r. The strain induced in the film by bending was in-
creased by decreasing of the radius r of fixed cylinder. The critical strain
εcr at which cracks in the film occur was measured. The critical strain εcr
was calculated from the following formula [42].

εcr≈ hMo/2r (3)

Here, hMo is the thickness of the Mo strip.

3. Results and discussion

In this section two ways of sputtering of the low-stress Ti(Al,V)N
films with enhanced resistance to cracking are described in detail. Both
methods of a reduction of the macrostress σ in sputtered films are based
on an electron heating of the film material during its growth controlled
by the energy ℰbi delivered into the growing film by bombarding ions.
This section consists of three subsections: (1) The macrostress reduction
controlled by pulsed bipolar substrate bias Usp, (2) The macrostress
reduction controlled by overshoots in pulsed sputtering and (3)
Correlations between the energy ℰbi, the macrostress σ in film, its mi-
crostructure and resistance to cracking.

3.1. Macrostress reduction by pulsed bipolar substrate bias Ups

The principle of a reduction of the macrostress σ in the sputtered
film at a pulsed substrate bias Usp is based on alternating of the ion and
the electron bombardment of film during its growth, see Fig. 1. The
alternating ion and electron bombardment of the growing film is rea-
lized by alternating negative and positive pulses. The microstructure of
growing film is densified during the negative pulse of the substrate bias
Usp by ion bombardment. Simultaneously, the compressive macrostress
(σ < 0) is generated in the film and its magnitude increases with in-
creasing voltage of the negative pulse. On the other hand, the mac-
rostress σ, generated in the film during the ion bombardment, is relaxed
by the electron current which thermally anneals the growing film
during the positive pulse of the pulsed substrate bias Usp. It means that
the films sputtered at DC substrate bias Us DC will always exhibit a
higher compressive macrostress (σ < 0) compared with the films
sputtered at a pulsed bipolar substrate bias Usp.

The relaxing of the compressive macrostress (σ < 0) in sputtered
film by the electron bombardment was confirmed by sputtering of the
Ti(Al,V)N films under the same deposition conditions at DC and pulsed
bipolar bias. Results of this experiment are summarized in Table 1.
From Table 1 the following important issues can be drawn.

1. The film sputter deposited at DC negative bias Us, i.e. at the ion
bombardment of the growing film only, exhibits the high compres-
sive macrostress (σ=- 4 GPa) compared with the film sputter de-
posited at the pulsed bias Usp with alternating negative and positive
pulses (σ= - 0.8 GPa).

Table 2
Physical and mechanical properties and compressive macrostress (σ < 0) in the Ti(Al,V)N films sputtered by DC dual magnetron operated at Id= 1 A, Ts= 500 °C,
ds-t = 60mm, pT= pAr + pN2 = 0.2 + 0.8 = 1 Pa on the substrate held at pulsed bipolar substrate bias Usp with two repetition frequencies fr of alternating negative
and positive pulses. The bending test was performed on the films sputtered on the Mo strip and the indentation test on the films sputtered on the Si substrates.

fr Usp h isp aD τe/τi ℰbip σ H E∗ We H/E∗ εcr Lcr texture

[kHz] [V] [nm] [mA/cm2] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [%] [N]

High electron bombardment
25 −130/+110 1500 1.3 45.0 3.2 2.3 −1.7 29.5 260 73 0.11 >2 >1 (220)
25 −130/+110 2600 1.3 45.0 3.2 2.4 −1.9 28 270 70 0.10 >2 >1 (220)
Low electron bombardment
5 −130/+70 1300 1.3 33.0 1.3 3.1 −2.1 28.2 211 79 0.13 delam >1 (220)
5 −130/+70 2100 1.3 31.0 1.3 3.3 −2.4 33.5 246 82 0.14 delam >1 (220)

ℰbip is the average energy of ions during the negative pulse of pulsed substrate bias Usp.
"delam" denotes that the films delaminates from Mo strips during bending.

Fig. 3. Schematic illustration of the asymmetric bipolar Advanced Energy
Pinnacle Plus+ 5 kW pulsed power supply (PSU). The abbreviations DMG and
DMF denote that the PSU symmetry point is grounded (the position 1) and
floating, i.e. disconnected from the grounded deposition chamber, (the position 2).
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2. The energy ℰbi delivered to the film growing at pulsed bipolar bias
Usp is lower (1.6 MJ/cm3) than the energy delivered to the film
growing at DC bias Us DC (3.7 MJ/cm3). This is a reason why the film
sputter deposited at a pulsed bias Usp exhibits the X-ray amorphous
structure and the film sputter deposited at DC bias Us DC is the
crystalline with a dominant TiN (220) texture, see Fig. 2.

3. The electron bombardment of the growing film, however, results not

only in the strong decrease of the compressive macrostress σ but also
in decrease of its hardness H, elastic recovery We, H/E∗ ratio and the
low resistance to cracking, see Table 1.

The electron bombardment of the growing film is the reason why
the macrostress σ generated in the film sputter deposited at the pulsed
substrate bias Usp with alternating negative and positive pulses is

Fig. 4. Time waveforms of the voltage Ud1 and Ud2 on the magnetron 1 and the magnetron 2, respectively, of the dual magnetron (DMG) operated in pulsed bipolar
mode at Id= Id1 + Id2= 1.6 A, Ts= 500 °C, ds-t = 60mm, pT=pAr + pN2 = 0.2 + 0.8 = 1 Pa and three repetition frequencies (a) 100 kHz, (b) 200 kHz and (c)
350 kHz, and the DC substrate bias Us DC=−20 V.

Table 3
Physical and mechanical properties of the Ti(Al,V)N films sputtered by pulsed dual magnetron at Wd= 12W/cm2, Ts= 500 °C, ds-t = 60mm,
pT= pAr + pN2 = 0.2 + 0.8 = 1 Pa, floating potential Us=Ufl at two repetition frequencies fr = 200 kHz and 350 kHz.

fr h aD Ebi σ H E∗ We H/E∗ εcr Lcr micostructure

[kHz] [nm] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [%] [N]

200 1900 15.8 – −0.6 23.8 240 68 0.10 1.3 0.25 columnar
350 1300 4.6 – −2.4 21.4 173 76 0.12 > 2 >1 dense
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considerably lower than that in the film sputter deposited at the DC
negative substrate bias voltage Us. The length of the negative pulse τi
and the length of positive pulse τe can be different. It means that the
efficiency of a relaxing of macrostress σ in the film can be controlled by
the ratio τe/τi. The possibility to control the macrostress σ in sputtered
films by the ratio τe/τi was also demonstrated in sputtering the Ti(Al,V)
N films at pulsed bipolar substrate bias Usp. Results of this experiment
are summarized in Table 2.

Table 2 shows the properties of the Ti(Al,V)N films sputtered at
pulsed substrate bias Us with two repetition frequencies fr of alternating
negative and positive pulses of different lengths and the same value of
the negative substrate voltage Usp=−130 V and two values of the
positive substrate voltage (fr= 5 kHz with Us = −130/+70 V, τe/
τi = 1.3 (low electron bombardment), and fr= 25 kHz with
Us = −130/+130 V, τe/τi = 3.2 (high electron bombardment)); here
τe and τi is the length of positive and negative pulse, respectively. This
selection of parameters of the pulsed bipolar bias Usp makes it possible
to investigate the effect of the electron bombardment on mechanical
properties of the film, its macrostress σ and resistance to cracking. From
Table 2 it is seen that (1) the Ti(Al,V)N film sputtered under high
electron bombardment (Usp+ = +110 V) and the ion energy
ℰbi= 2.4MJ/cm3 exhibit high hardness H=28 GPa, high ratio H/
E∗=0.10, high elastic recovery We=70%, low compressive macros-
tress σ=−1.9 GPa and enhanced resistance to cracking (εcr > 2 and
Lcr > 1N) and (2) the Ti(Al,V)N film sputtered under lower electron
bombardment (Usp+ = +70 V) and the higher ion energy
ℰbi= 3.1MJ/cm3 exhibit higher values H, H/E∗, We, │σ│>2GPa and
also an enhanced resistance to cracking in compression (Lcr > 1N) but
this film already delaminates from Mo strip due too high compressive
macrostress |σ| > 2 GPa. This experiment clearly demonstrates that
properties of the sputtered film can be well controlled by an optimized
bombardment with ions and electrons during its growth.

3.2. Macrostress reduction by overshoots in pulsed sputtering

The control of the energy of bombarding ions ℰbi by the pulsed
sputtering of the film is based on the utilization of strong discharge
oscillations connected with transient pulse phenomena after the pulse
off. Experiments demonstrating this fact were performed in the pulsed
dual magnetron (DM) discharge. The DM was supplied by the pulse
asymmetric bipolar Advanced Energy Pinnacle Plus+ 5 kW power
supply unit (PSU) with the reverse positive pulse (10% of the negative
voltage). Each magnetron is alternatively sputtered (pulse-on) or dis-
charged (pulse-off) with the repetition frequency fr= 1/Tr. The sche-
matic illustration of the PSU supplying the DM composed of two in-
dependent asymmetric bipolar units is shown in Fig. 3. The PSU
symmetry point can be either floating (the DM is floating PSU – DMF)

or connected to the grounded chamber (the DM is grounded PSU –
DMG). In our experiment the PSU - DMG was used.

The oscillations generated in the pulsed bipolar DM discharge are
illustrated in Fig. 4. This figure shows the time evolution of the voltage
Ud1 on the magnetron 1 (M1) and Ud2 on the magnetron 2 (M2) of the
dual magnetron with a closed magnetic field B [45]. The pulsed bipolar
DM discharge was generated at three repetition frequencies (a)
100 kHz, (b) 200 kHz and (c) 350 kHz. The oscillations superposed on
the DC substrate bias Usp are clearly seen.

The principle of the control of the macrostress σ in the growing film
during pulsed sputtering is based on the control of the ion bombard-
ment of the film during its growth. Splashes of oscillations (called as the
packets or the overshoots) superposed on the substrate potential Us play
a key role in the control of the film macrostress σ, see Fig. 4. These
splashes are generated after the switching off of pulses. Therefore, the
magnitude of σ in the sputtered film depends on the total number of
splashes Nspls generated during the whole time of the film deposition.
The number Nspls of splashes increases with increasing repetition fre-
quency fr of pulses. Fig. 4 shows that (1) the magnetron voltage Ud

sinusoidally changes during the pulse-on time τon, (2) the length of
sinusoid decreases with increasing fr from ∼T at fr= 100 kHz to∼ Tr/
4 at fr≈ 350 kHz, and (3) the splashes of oscillations, strongly attenu-
ating with increasing time, are created not only on the voltage wave-
form of the discharge voltage Ud(t) but also on the waveform of the DC
negative substrate bias Us DC; the splashes of oscillations are denoted by
dotted ellipses in Fig. 4b, (4) the duration of the splashes of oscillations
is τosc≈ 1.3 μs is practically constant and does not depend on the re-
petition frequency of pulses fr and (5) the number of splashes of oscil-
lations Nspls increases with increasing fr.

During oscillations of the substrate bias Usp the growing film is
exposed to a strong ion bombardment. It is due to a strong increase of
Usp during negative half periods of oscillations. This strong ion bom-
bardment results in increase of macrostress σ generated in the film.
Therefore, a reduction of the macrostress σ in the sputtered film can be
achieved by a reduction of the number Nspls of splashes of the oscilla-
tions. It can be achieved by decreasing of the repetition frequency fr of
sputtering pulses. This fact was confirmed experimentally by sputtering
of the Ti(Al,V)N films on the Si(111) substrates held on the floating
potential Us=Ufl under the same deposition conditions at two repeti-
tion frequencies of pulses fr= 200 kHz and 350 kHz. The film sputter
deposited at fr= 200 kHz, i.e. under a lower ion bombardment, exhibits
not only the low macrostress (σ= - 0.6 GPa) as expected but also the
columnar microstructure because the ion bombardment was already
weak and insufficient to create the film with dense voids-free micro-
structure, see Table 3 and Fig. 5. More information about overshoots
and its effect on plasma and coating properties can be found in Refs.
[49–57].

This experiment shows that a pulsed magnetron sputtering is an
efficient way which allow to control the macrostress σ of the film held
even at a floating potential Us=Ufl a and its microstructure by selec-
tion of repetition frequency of pulses. This finding is of a great appli-
cation potential, particularly for sputtering of dielectric films or de-
position of films on dielectric substrates, for instance, on glass, etc.
Both, the films with porous columnar microstructure or flexible hard
protective films with dense, voids-free microstructure can be created on
substrates held at a floating potential Us=Ufl.

3.3. Control of macostress in films sputtered at high repetition frequencies of
pulses

Fig. 6 shows V-A discharge characteristics of a pulsed magnetron
discharge used for sputtering of the Ti(Al,V)N films at fr= 350 kHz and
different values of the DC substrate bias Us DC ranging from negative
(−60 V) to positive (+40 V) including grounded and floating sub-
strates, i.e. Us DC= 0 and Us DC=Ufl ranging from +15 to ∼ +150 V.
From Fig. 6a it is seen that the main source of the ion energy ℰbi during

Fig. 5. Microstructure of the Ti(Al,V)N films with (a) low and (b) high com-
pressive macrostress (σ < 0) sputtered on Si(111) substrates by pulsed DM at
two repetition frequencies fr= 200 kHz and fr= 350 kHz, respectively, and
Wd=12W/cm2, Us=Ufl, Ts= 500 °C, ds-t = 60mm, pT=pAr + pN2
= 0.2 + 0.8 = 1 Pa.
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the film deposition are positive half-periods of overshoot oscillations
when the sheat voltage is positive, i.e. Ush≈Udp – Us > 0 and super-
posed on the negative DC substrate voltage Us DC < 0. All films sput-
tered at Us DC < 0 and fr= 350 kHz exhibit similar properties, see

Table 4. On the other hand, the compressive macrostress (σ < 0)
generated in these films by bombarding ions is relaxed to low values
σ≈−0.3 GPa by bombarding electrons during negative half-periods of
the oscillations when the substrate current density Is≈ 0 and the sheat

Fig. 6. Time evolution of voltage Ud1 and Ud2 on the magnetron M1 and M2 of dual magnetron, voltage Us on the substrate and current density on the substrate in
pulsed dual magnetron discharge generated at Wd=12W/cm2, Ts= 500 °C, ds-t = 60mm, pT= pAr + pN2 = 0.2 + 0.8 = 1 Pa, fr= 350 kHz and the substrate
biased at a) Us DC=−60 V, b) grounded Us= 0V, c) floating Us=Ufl=15–150 V and d) Us DC = +40 V.

Table 4
Mechanical properties, compressive macrostress (σ < 0) and resistance to cracking of the Ti(Al,V)N films sputtered by pulsed DC dual magnetron, operated in
bipolar mode at Id= 2 A, is ranging from 2.2 to 2.4 mA/cm2 Ts= 500 °C, ds-t = 60mm, pT=pAr + pN2 = 0.2 + 0.8 = 1 Pa and fr= 350 kHz on Si(111) substrates,
as a function of negative DC substrate bias Us DC.

Us DC h aD ℰbi σ H E∗ We H/E∗ εcr Lcr TiN

[V] [nm] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [%] [N] structure

−60 1100 18.0 7.5 −0.3 8.3 141 40 0.06 2 0.25 220
−80 1000 16.7 11.1 −0.2 10.4 139 49 0.07 2 0.25 220
−100 800 13.3 17.7 −0.4 9.4 143 44 0.07 2 0.25 220
−100 1000 11.1 21.2 −0.4 9.7 142 46 0.07 2 0.25 220
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voltage is negative, i.e. Ush=Udp – Us < 0. This decrease of com-
pressive macrostress results in a decrease of the hardness to H≈ 9 GPa.
From Fig. 6b and c it is seen that also films sputtered at grounded,
floating and positively biased substrates are bombarded by ions. This
fact is demonstrated by positive peaks of the sheat voltage corre-
sponding to positive half-periods of overshoot oscillations. In the case of
a floating substrate potential (Fig. 6c) the ion bombardment cannot be
measured since fluxes of electrons and ions incident on the substrate are
the same and the substrate current Is= 0mA/cm2. On the contrary, at a
positive substrate bias the electron bombardment of sputtered film
dominates over an ion bombardment, see Fig. 6d.

Physical and mechanical properties of Ti(Al,V)Nx films sputtered by
pulsed dual magnetron at fr= 350 kHz at different values of negative
DC substrate bias Us DC were investigated in detail, see Table 4. The
energy ℰbi increases and the film deposition rate aD decreases with
increasing negative Us DC. On the other hand, values of H, E∗, H/E∗

ratio, We and σ are low of about 10 GPa, 140 GPa, 0.07, 45% and
−0.3 GPa, respectively. These films are brittle and easily crack. For
more detail see Ref. [47].

4. Conclusions

The article reports on a detailed investigation of the effect of the
energy ℰbi delivered into the Ti(Al,V)N film by bombarding ions on its
macrostress, microstructure, mechanical properties and resistance to
cracking. Main conclusions of this study can be summarized as follows:

1. The compressive macrostress σ in sputter deposited Ti(Al,V)N films
can be reduced by (i) the pulsed bipolar bias voltage Usp with al-
ternating negative and positive pulses and/or (ii) the alternating ion
and electron bombardment of the growing film during overshoots
generated in a pulsed magnetron sputtering discharge.

2. The Ti(Al,V)N films with enhanced resistance to cracking are formed
only in the case when the energy ℰ delivered during their growth is
sufficiently high (ℰbi > 1.7MJ/cm3). These films exhibit (i) a
dense, voids-free microstructure, (ii) a high ratio H/E∗≥ 0.1, (iii) a
high elastic recovery We≥ 60% and (iv) an enhanced resistance to
cracking.

3. A reduction of compressive macrostress (σ < 0) down to about
σ≈ - 0.4 GPa results in a reduction of the film hardness and its re-
sistance to cracking.

4. Our investigations clearly demonstrate the compressive macrostress
(σ < 0) generated in the sputtered film can be effectively controlled
by alternating ion and electron bombardment already during its
growth.
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The article reports on the influence of a compressive macrostress r in the Ti(Al,V)N films on their
mechanical properties, structure, microstructure, and resistance to cracking. The macrostress r is con-
trolled by the energy Ebi delivered into the growing film by bombarding ions. The Ti(Al,V)N films were
sputtered by a dual magnetron with closed magnetic field. It is shown that (1) the compressive
macrostress (r < 0) increases the hardness H of the film and the ratio H/E⁄, (2) the films exhibits a dense,
voids-free, non-columnar microstructure in the case when the energy Ebi � 3 MJ/cm3, (3) the enhanced
resistance to cracking of the films is controlled by its mechanical properties, microstructure and
macrostress r; here E⁄ is the effective Young’s modulus.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

A macrostress r generated in the film prepared by an ion plat-
ing sputtering strongly influences its hardness H and structure and
thereby its physical and functional properties. The stabilization of
the b-Ta [1] or the c-Zr3N4 phase in the film [2], the superconduc-
tivity of film [3], the Curie temperature of film [4], a change of the
preferred orientation of film [5–7], and the lifetime of the cutting
tools coated by protective hard coatings [8–10] can be given as
examples. However, so far, there is little information about the
influence of r on the hardness H of film and its resistance to crack-
ing [11–13].

2. Experimental

The Ti(Al,V)N thin films were sputter deposited using a dual
magnetron with closed magnetic field equipped with TiAlV
(6 at.% Al, 4 at.% V) alloy targets (£ = 50 mm) in a mixture of
20% Ar + 80% N2 sputtering gases at the total pressure pT = pAr + pN2

ranging from 0.4 to 1.0 Pa. The magnetrons were powered by an
Advanced Energy Pinnacle Plus + 5/5 kW power supply operated
either in the DC or the pulse mode at a low power density in the
pulse of Wt DC = Wtp � 25 W/cm2; here Wt DC and Wtp is the target
power density in the DC discharge and during the pulse-on in the
pulsed discharge. For a more detailed description of deposition
conditions see Ref. [14–18]. The Ti(Al,V)N films were deposited
onto Si(1 1 1) substrates.

The film thickness was measured by a stylus profilometer DEK-
TAK 8. The macrostress r was evaluated from the bending of the Si
plate using the Stoney’s formula [19]. The elemental composition
of the Ti(Al,V)N films on the Si substrate was analyzed in a scan-
ning electron microscope (SU-70, Hitachi) operated at a primary
electron energy of 15 keV using energy dispersive spectroscopy
(EDS, UltraDry, Thermo Scientific) and wave dispersive spec-
troscopy (WDS, Magnaray, Thermo Scientific). Mechanical proper-
ties of sputtered films were determined from load vs. displacement
curves measured by a microhardness tester Fisherscope H100 with
Vickers diamond indenter at a load of 20 mN. The resistance of the
Ti(Al,V)N films to cracking was assessed by a critical load Lcr at
which cracks in the film occurred.
3. Results and discussion

It is well known that the hardness H, structure, microstructure
of the sputtered film and the macrostress r generated in it during
its growth depend on many deposition parameters. It means that
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https://doi.org/10.1016/j.matlet.2018.09.173
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Fig. 1. The hardness H and H/E* ratio of the Ti(Al,V)N film with columnar and non-columnar microstructure as a function of compressive macrostressr < 0. The open and full
symbols denote films with low and enhanced resistance to cracking, respectively.

Fig. 2. XRD patterns of the Ti(Al,V)N films with columnar microstructure (the films No. 1 and 2) and with non-columnar microstructure (the films No. 3 and 4). The films with
numbers 1, 2, 3, 4 are given in Fig. 1 and their physical and mechanical properties in Table 1.
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the interrelationship between the deposition parameters of the
film and its properties is a multi-parameters function

Filmproperties ¼ fðUd; Id; Wt; Ts; Us; is; mi; mca; ds - t; h; aD; p0; pAr; pRG; pT; etc:Þ
ð1Þ

Here Ud is the voltage of the magnetron discharge, Id is the cur-
rent of the magnetron discharge, Wt is the target power density, Ts
is the substrate temperature, Us is the substrate bias, is is the sub-
strate ion current density, mi is the flux of the bombarding ions, mca
is the flux of the condensing atoms, ds-t is the substrate-to-target
distance, aD is the deposition rate of the coating, p0 is the base pres-
sure in the deposition chamber before the admission of the sput-
tering gas, pAr is the partial pressure of argon, pRG is the partial
pressure of a reactive gas, pT = pAr + pRG is the total pressure of
the sputtering gas.

This fact significantly complicates the search correct interrela-
tions among H, r, structure and microstructure of the sputtered
film and its resistance to cracking because every deposition param-



Fig. 3. SEM images of cross-section of the Ti(Al,V)N films with columnar microstructure (the films No. 1 and 2) and with non-columnar microstructure (the films No. 3 and 4).
The films with numbers 1, 2, 3, 4 are given in Fig. 1 and their physical and mechanical properties in Table 1.

Fig. 4. LOM image of surface morphology of Ti(Al,V)N films after the indentation test. Measured Ti(Al,V)N films exhibit compressive macrostress r = �0.4 GPa and (a)
columnar microstructure (the film No. 1) or (b) non-columnar microstructure (the film No. 4), respectively. Indentation test was carried out for the load (a) L = 0.25 N or (b)
L = 0.75 N, respectively.

Table 1
Physical and mechanical properties of four Ti(Al,V)N films denoted in Fig. 1 as films No. 1, 2, 3, and 4. The data of the film No. 2 are from Ref. [17].

Film Sputtering h Us is aD Ebi r H E* H/E* We Lcr Microstructure
No. process [nm] [V] [mA/cm2] [nm/min] [MJ/cm3] [GPa] [GPa] [GPa] [%] [N]

1 DC 2000 �20 0.7 17 0.5 �0.4 24.7 268 0.07 62 0.25 comulnar – voids
2 pulsed/100 kHz 2500 �20 1.8 22 2.2 �1.4 28.5 235 0.12 73 >1 comulnar – dense
3 DC 1200 �20 1.9 15 3 �1.9 23.5 187 0.13 80 >1 non-columnar
4 pulsed/350 kHz 1000 �100* 1.5 11 8.1 �0.4 9.7 142 0.07 46 0.25 non-columnar

* Pulsed discharge with strong overshoots.
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eter has a different effect on these properties of the sputtered film.
It is due to the fact that at each combination of deposition param-
eters a different energy E is delivered into the growing coating. In
this case, it is impossible to sputter the film with fully reproducible
properties. Therefore, the film properties must be expressed as a
function of one parameter only, i.e. as a function of the energy E
Filmproperties ¼ fðEÞ ð2Þ

The energy E is the key parameter which controls properties of
the sputtered film and enables its formation with fully repro-
ducible properties. This is the reason why the interrelations among
H, r, structure and microstructure of the sputtered film and its
resistance to cracking are compared based on the energy E. In
our experiments the energy is delivered into the sputtered Ti(Al,
V)N films by bombarding ions, i.e. E = Ebi. The energy Ebi is calcu-
lated from the measured values of the substrate bias Us, substrate
ion current density is and the film deposition rate aD from the for-
mula [20]

Ebi ¼ Us � is=aD ð3Þ
Interrelationships among the hardness H, H/E* ratio, microstruc-

ture, structure, and compressivemacrostressr in the Ti(Al,V)N film
and its resistance to cracking are displayed in Figs. 1–4. The evolu-
tion of H and H/E* of the Ti(Al,V)N film with columnar microstruc-
ture and dense non-columnar microstructure as a function of
compressive macrostressr is displayed in Fig. 1. Fig. 1a shows that
the H and H/E* ratio of the Ti(Al,V)N filmwith columnarmicrostruc-
ture increase from 22 to 31 GPa and 0.08 to 0.13, respectively, with
increasing r from �0.4 to �3 GPa. The Ti(Al,V)N films with dense,
non-columnar microstructure also exhibit the same behavior. H
and H/E* ratio increase from 8 to 30 GPa and 0.06 to 0.14, respec-
tively, with increasing r from �0.4 to �5.5 GPa but with a smaller
increase of H/E*at r ranging from �2 to �5.5 GPa than that in films
with smaller compressive macrostress |r| < 2 GPa.

Main results displayed in Fig. 1 can be briefly summarized as
follows

1. The magnitude of the hardness H of the films with low com-
pressive macrostress |r| < 3 GPa strongly depend on their
microstructure. Films with columnar microstructure exhibit
higher H compared with the films with non-columnar
microstructure. This difference is due to different values of Ebi
used in sputtering and relaxing of r by an electron heating of
the growing film during overshoots in pulsed sputtering, see
Table 1 and Ref. [17].

2. The hardness H of the film is a complex function of two compet-
ing parameters – the energy Ebi and enhancement or relaxing r
– which strongly influence its growth process and thus its struc-
ture, microstructure, and mechanical properties, particularly its
H/E* ratio and elastic recovery We, see Figs. 2 and 3 and Table 1.
This is a reason why, for instance, the films with approx. same H
exhibit different microstructure (compare the films No. 1 and
No. 3) or the films with a low compressive macrostress exhibit
different H, H/E, We, structure and microstructure (compare the
films No. 1 and No. 4).

The energy Ebi strongly influences also the preferred orientation
of the sputtered Ti(Al,V)N films, see Fig. 2. In this figure, the effect
of Ebi on the structure of Ti(Al,V)N films deposited by DC and
pulsed sputtering is illustrated. The films with numbers 1, 2, 3, 4
are given in Fig. 1 and their physical and mechanical properties
in Table 1.

The microstructure of the Ti(Al,V)N film depends on the energy
Ebi delivered into the growing film by bombarding ions. The energy
Ebi is calculated from the measured values of the substrate bias Us,
the substrate ion current density is and the film deposition rate aD
from the formula Ebi = Us � is/aD; more details are given in Ref.
[20]. The films sputtered at low energies Ebi < 3 MJ/cm3 have a
columnar microstructure, see Fig. 3a. On the contrary, the films
sputtered at high energies Ebi � 3 MJ/cm3 have a non-columnar
microstructure, see Fig. 3b. It is worthwhile to note that also the
films with dense, voids-free non-columnar can be soft if the com-
pressive macrostress generated under high ion bombardment at a
high Ebi is simultaneously relaxed by a sufficiently high electron
heating using the pulsed sputtering with overshoots or the pulsed
substrate bias Usp with alternating polarity of pulses [17], see the
film No. 4 in Table 1.

The macrostress r and the microstructure of the sputtered film
strongly influence also its resistance to cracking [19]. The effect of
the microstructure of the Ti(Al,V)N film with a low compressive
macrostressr = �0.4 GPa on its resistance to cracking is illustrated
in Fig. 4. The resistance of the film to cracking was assessed by the
indentation test in which the diamond indenter was impressed
into the film surface under a high load L at which the film cracks
[20]. Longer cracks mean a weaker resistance to cracking. On the
other hand, shorter cracks mean an enhanced resistance to
cracking.

The surface morphology of the Ti(Al,V)N film with columnar
and non-columnar microstructure after indentation test at
L = 0.25 N and L = 0.75 N is displayed in Fig. 4a and b, respectively.
From this figure, it is seen that the film with columnar microstruc-
ture exhibits a low resistance to cracking. On the other hand, the
film with non-columnar microstructure with shorter cracks even
at a higher load L exhibits an enhanced resistance to cracking. This
experiment clearly shows that the film microstructure is a key
parameter which decides on its resistance to cracking as shown
in Ref. [14,15,20].
4. Conclusions

Main results of this investigation can be briefly summarized as
follows

1. The hardness H of the film increases with increasing compres-
sive macrostress r.

2. The hardness H of the film is a complex function of two compet-
ing parameters: the energy Ebi and macrostress. Both parame-
ters Ebi and r influence the growth process of the film and
thereby also its structure, microstructure, and mechanical
properties.

3. The compressive residual macrostress r leads to an apparent
increase in hardness H and fracture resistance of sputtered
films.

4. The macrostress r generated in the film during its growth can
be simultaneously relaxed by the electron heating using either
a pulsed sputtering with overshoots or a pulsed bias with pulses
of alternating polarity. This way a different combination of
mechanical properties of the film and its microstructure and
macrostress r can be achieved.

5. Hard films with high ratio H/E* > 0.1, high elastic recovery
We > 60%, dense, voids-free microstructure and compressive
macrostress r < 0 exhibit an enhanced resistance to cracking.

6. The energy Ebi is a key parameter which makes it possible to
create the films with prescribed properties in the fully repro-
ducible way.
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[13] H. Poláková, J. Musil, J. Vlček, J. Allaart, C. Mitterer, Structure-hardness
relations in sputtered Ti–Al–V–N films, Thin Solid Films 444 (2003) 189–198.

[14] J. Musil, Hard nanocomposite coatings: thermal stability, oxidation resistance
and toughness, Surf. Coat. Technol. 207 (2012) 50–65.

[15] J. Musil, Flexible hard nanocomposite coatings, RSC Adv. 5 (2015) 60482–
60495.
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This letter reports on the formation of hard TiN2 dinitride films prepared by magnetron sputtering.

TiN2 films were reactively sputtered in an Ar þ N2 gas mixture using a pulsed dual magnetron with

a closed magnetic field B. The principle of the formation of TiN2 films by magnetron sputtering is

briefly described. The stoichiometry x¼N/Ti of the TiNx films was controlled by deposition

parameters, and its maximum value of x¼ 2.3 was achieved. For the first time, a possibility to form

the TiN2 dinitride films by magnetron sputtering has been demonstrated. The mechanical properties

of sputtered films were investigated in detail. Published by the AVS.
https://doi.org/10.1116/1.5038555

I. INTRODUCTION

Recently, a great attention has been devoted to the forma-

tion of nitrogen-rich TMNx>1 transition metal nitrides with

the stoichiometry x¼N/TM ranging from 1 to 2 (Refs. 1 and

3–10) and also with x¼ 4.2 Theoretical studies of these

materials based on ab initio calculations show that these

novel overstoichiometric nitrides should exhibit extraordi-

nary properties such as superhardness, high electrical con-

ductivity, and optical transparency, which originate from

metal-nitrogen charge transfer, the nature of the N–N bonds,

and the mixture of ionic and covalent N–N bonds.11–14 It

was reported that bulk titanium dinitrides were successfully

synthesized under high pressure and high temperature

(HPHT synthesis), i.e., using an equilibrium process.1,4,14–17

For instance, the TiN2 ultraincompressible dinitride material

with bulk modulus 360–385 GPa was synthesized from the

titanium nitride flakes and N2 gas compressed to 73 GPa and

heated to 2400 K in a laser-heated diamond anvil cell.4

Recently, it was reported that titanium dinitrides were pre-

pared also in the form of TiNx¼2 films at low pressures of

about 0.3 Pa by simultaneous action of a Ti evaporation by

an arc evaporator and a strong ionization of N2 gas in a gas-

plasma source with a hot filament in a hollow cathode.18

This article reports on the formation of overstoichiometric

TiNx>1 titanium nitride films by magnetron sputtering, i.e.,

the formation of films prepared by a nonequilibrium deposi-
tion process running at an atomic level. The principle of

sputtering of TMNx>1 overstoichiometric nitride films is

briefly described. Interrelationships among the stoichiometry

x, the mechanical and electrical properties of TiNx films are

investigated in detail.

II. PRINCIPLE OF SPUTTERING OF TMNX>1

NITRIDE FILMS

The principle of formation of overstoichiometric

TMNx>1 and TMNx¼2 dinitride films by magnetron sputter-

ing is based on two nonequilibrium processes simultaneously

running at an atomic level: (1) the heating of the sputtered

material to high temperatures first at the substrate and later

at the growing film in areas where sputtered atoms and bom-

barding ions arrive with no or low substrate heating and (2)

the pressing of the heated areas at high pressures p. This can

be achieved by a high energy E delivered into the growing

film by bombarding ions with energy Ebi controlled by the

negative substrate bias Us and/or by condensing fast neutral

atoms sputtered from the target and arriving at the substrate

with energy Efn of several electron-volt controlled by the

sputtering gas pressure p. Both energies Ebi and/or Efn are

sufficient to heat areas of incident ions or atoms to very high

temperatures T, easily exceeding 2500 K, and simulta-

neously to press these areas at a high pressure p of about

300E1/2 GPa, where the energy E is in electron-volt.10 The

main problem in the formation of overstoichiometric

TMNx>1 and TMNx¼2 dinitride films by magnetron sputter-

ing is to increase the number nN of nitrogen atoms in the

magnetron discharge to achieve a high ratio nN/nTM> 1,

which enables the formation of films with the stoichiometry

x > 1 and x¼ 2, respectively; here, nTM is the number of

TM atoms in the sputtered film.

III. EXPERIMENT

The TiNx>1 films were reactively sputtered by a pulsed

hybrid dual magnetron (HDM) in an N2 þ Ar mixture. The

HDM consists of two different magnetrons M1 and M2 with

a closed magnetic field B. The magnetron M1 is a magnetron

with a very low sputtering of its target, and the magnetron

M2 is a standard, well sputtering magnetron. The low sput-

tering of the magnetron M1 was achieved by extraction of

the central magnet from the magnetron M1. By the control

of the powers PM1 and PM2 delivered into the magnetrons

M1 and M2, respectively, it is possible to increase the ion

bombardment of the growing film by increasing the ion flux

is while keeping the film deposition rate aD constant, and in

this way to sputter overstoichiometric TiNx films with the

stoichiometry x¼N/Ti > 1. The increase in is at constant aD

is achieved by increasing the power PM1 delivered into the

magnetron M1 and keeping the power PM2 delivered into the

magnetron M2 constant. More details are given in Ref. 10.a)Electronic mail: musil@kfy.zcu.cz
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IV. RESULTS AND DISCUSSION

As an example, properties of two sputtered overstoichio-

metric TiNx>1 films are reported in detail. The TiNx>1 films

were reactively sputtered in an N2 þ Ar mixture by pulsed

HDM powered by a pulsed power supply AE Pinnacle Plus

þ 5/5 kW (Advanced Energy, Inc.) and operated in a syn-

chronous pulse mode at the repetition frequency fr

¼ 1/T¼ 20 kHz and duty cycle s/T¼ 0.99 onto Si (100) sub-

strates in a deposition chamber evacuated to a base pressure

p0¼ 1 � 10�3 Pa. A small amount of Ar of about 20% was

added to the N2 gas to start the magnetron discharge at low

pressures of sputtering gas. The elemental composition of

the TiNx>1 films on the Si substrate was analyzed with a

scanning electron microscope (SU-70, Hitachi) operated at a

primary electron energy of 15 keV using an energy disper-

sive spectrometer (EDS, UltraDry, Thermo Scientific) and a

wave dispersive spectrometer (WDS, Magnaray, Thermo

Scientific). Pure metal standards were used for the determi-

nation of Ti concentration. The nitrogen concentration was

calculated as the difference to 100 wt. % using a combined

WDS and EDS analysis due to overlapping of Ti and N x-

ray peaks. The data were measured in the depth of about

600 nm under the film surface with an accuracy of 610%.

Deposition parameters, elemental composition, mechanical

properties, macrostress r, and electrical resistivity q of these

TiNx>1 films are summarized in Table I.

From Table I we can observe the following

(1) The overstoichiometric TiNx¼2.3 can be sputtered by

pulsed HDM at a low total pressure pT¼ 0.17 Pa. This

strongly overstoichiometric TiNx¼2.3 film is created

thanks to a high energy Ebi¼ 8.2 MJ/cm3 delivered into

it by bombarding ions and developing a very high pres-

sure p¼ 1340 GPa in place of their incidence.10

The energy Ebi was calculated from the formula Ebi

¼ (Us.is)/aD; here, Us and is are the substrate bias and the

substrate ion current density, respectively.20 This experi-

ment demonstrates that the formation of TiNx¼2 dintride

films by magnetron sputtering is possible.

(2) The decrease in the total gas pressure pT from 0.30 to

0.17 Pa and mainly the increase in the powers PM1 and

PM2 in the magnetron M1 and M2, respectively, increas-

ing the ionization of the N2 gas results not only in an

increase in the stoichiometry x¼N/Ti of the TiNx film

but also in a decrease in its hardness H, elastic recovery

We, and H/E* ratio.

(3) The overstoichiometric TiNx¼2.3 film still exhibits high

hardness H¼ 16 GPa, high elastic recovery We¼ 69%,

and high ratio H/E*¼ 0.1.

(4) Both overstoichiometric films, TiNx¼1.4 and TiNx¼2.3,

are well conductive and exhibit a low electrical resistiv-

ity q � 1.5 � 10�4 X cm.

The structure of these overstoichiometric TiNx>1 films,

characterized by XRD diffraction, is displayed in Fig. 1.

From this figure, it is seen that both films, TiNx¼1.4 and

TiNx¼2.3, sputtered at Ts¼ 450 �C and Us¼�20 V are poly-

crystalline, and their crystallinity improves with decreasing

sputtering gas pressure pT and increasing sputtering power.

The decrease in sputtering gas pressure results in two effects:

(1) the decrease in collisions between ions and neutral atoms

in the substrate sheath with the sheath voltage Ush¼Up �Us

and thereby the increase in the energy Ei of incident ions and

(2) the bombardment of the growing film by fast neutral

TABLE I. Deposition parameters, elemental composition, mechanical properties, macrostress r, and electrical resistivity q of two overstoichiometric TiNx>1

films sputtered by pulsed HDM at Ts ¼ 450 �C, Us ¼ �20 V, is ¼ 4.5 mA/cm2, aD ¼ 6.6 nm/min, Ebi ¼ 8.2 MJ/cm3, ds-t ¼ 80 mm, and pT ¼ pN2
þ pAr � pN2

as a function of pT. h is the film thickness.

Film No. pT (Pa) PM1 (W) PM2 (W) h (nm) N (at. %) Ti (at. %) x N/Ti H (GPa) E* (GPa) We (%) H/E* r (GPa) q (X cm)

1 0.30 460 300 1000 58.5 41.5 1.4 25.5 190 84 0.13 �1.6 1.3 � 10�4

2 0.17 528 380 1400 70 30 2.3 16 163 69 0.10 �1.7 1.6 � 10�4

FIG. 1. (Color online) XRD patterns of the overstoichiometric TiNx>1 films

with stoichiometry x¼ 1.4 and 2.3.

FIG. 2. (Color online) SEM images of cross-section of overstoichiometric

TiNx>1 films with moderately and strongly enhanced stoichiometry x¼N/

Ti: (a) the moderately overstoichiometric TiNx¼1.4 film and (b) the strongly

overstoichiometric TiNx¼2.3 film.
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atoms, which deliver further additional energy Efn to Ebi into

the growing film; here, Up is the plasma potential. Both the

increase in Ei and the energy Ebi contribute to the improve-

ment of the film crystallinity.

The microstructure of the overstoichiometric TiNx>1

films with x¼ 1.4 and 2.3 characterized by SEM is displayed

in Fig. 2. The microstructure of TiNx¼1.4 is noncolumnar.

On the other hand, the microstructure of the TiN2.3 film

exhibits a dense, void-free columnar microstructure. Despite

this difference in the microstructure, both overstoichiometric

TiNx>1 films exhibit an enhanced resistance to cracking. It is

due to their high ratio H/E* � 0.1 and high elastic recovery

We > 60%; more details on an enhanced resistance to crack-

ing of films with a dense, void-free columnar microstructure

are given in Ref. 19.

The stoichiometry x of the TiNx film strongly influences

also its color (see Fig. 3). The stoichiometric TiNx¼1 film is

golden yellow. On the other hand, a strongly overstoichio-

metric TiNx¼2.3 film is brown.

V. CONCLUSIONS

Main results of the reported investigation of strongly

overstoichiometric TiNx>1 films can be briefly summarized

as follows:

(1) The strongly overstoichiometric TiNx>1 films and TiN2

dinitride films can be created by a pulsed magnetron if

sputtering of its Ti target is reduced, and the nitrogen gas

is strongly ionized. This sputter deposition process can

be realized by a hybrid dual magnetron or in a sputtering

system equipped with a standard magnetron and a low-

pressure source of strongly ionized nitrogen gas, for

instance, a low-pressure arc.18

(2) The TiNx¼2.3 film with high values of the hardness

H¼ 16 GPa, ratio H/E*¼ 0.1, We¼ 70%, dense, void-

free microstructure, and low compressive macrostress

r¼�1.7 GPa was sputtered by the hybrid dual magne-

tron at extremely high energy Ebi¼ 8 MJ/cm3 delivered

into the growing film by bombarding ions.

(3) The high value of Ebi is a necessary condition for the

creation of strongly overstoichiometric TiNx>1 films

because it gives rise to a very high pressure p � 1340

GPa in the place of incidence of arriving ions.10

(4) Overstoichiometric TiNx>1 films are highly flexible films

and exhibit an enhanced resistance to cracking.

(5) The TiNx¼2.3 film is brown compared with golden stoi-

chiometric TiNx¼1 film and is well electrically conduc-

tive (q¼ 1.7 � 10�4 X cm).
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