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Abstract: A modification of the subhologram-based approach to the calculation of a computer
generated display hologram of a 3-D scene is presented. The hologram area is split into
subholograms. For each of them, a perspective image with depth coordinate is rendered and
converted to a point cloud. These points are processed in a novel way and the optical field in the
subhologram is calculated. The processing guarantees that the points used for the optical field
calculation are the same for all subholograms (i.e., coherent). The coherence provides sharp
hologram reconstruction. The parameters of the processing are designed to match the human
vision requirements.
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1. Introduction

There are many approaches to 3-D display construction [1]. One of them is based on holography
[2, 3]. Conventional optical holography can provide ultra-realistic images of existing objects [4].
Computer generated holography (CGH) can be used to calculate a synthetic hologram of a virtual
3-D scene. The calculated hologram, i.e. a diffractive pattern, is then displayed somehow. The
most common ways are 1. displaying using an optical system involving electronic microdisplays
(spatial light modulators, SLM), 2. “printing” using a lithography system and illuminating the
“print” in the same way as a conventional optical hologram. A reader not familiar with CGH
should learn the basics from, e.g., [5] or other introductory text before reading the rest of the
paper. Please note that technologies that “print” holograms using light interference, such as
Geola / Zebra Imaging system or dot-matrix machines [4, 6] are not discussed here.
The calculation methods that target SLMs usually exploit SLM limitations – small space-

bandwidth product (a few megapixels) and a small diffraction angle (a few degrees). This allows
optimizations such as using large look-up tables that lead to real-time hologram generation
necessary for video display (many holograms per second).

Calculation methods targeting “printed” holograms must be able to deal with large diffraction
angles and high space-bandwidth product. For example, a “printed” hologram 65 × 65 mm2 with
pixel pitch 1 µm leads to a diffraction angle around 15◦ for visible light and 4.2 Gpixels in total.
This paper targets primarily the latter case.

There are two important approaches that have been used for the production of large “printed”
holograms. They mainly differ in solving the hidden surface elimination. We can call them “the
polygonal approach” and “the subhologram approach”.
The first one – the polygonal approach – was proposed by Matsushima and Kondoh in [7].

The algorithm is being constantly refined, for more recent version see, e.g., [8]. Here, the scene
is composed of polygonal objects. First, the polygons are sorted by their distance from the
hologram plane. The first polygon (the farthest one) is treated as an optical field defined in a
plane. The optical field is propagated to the plane of the second polygon. The optical field there
is replaced by a texture of the second polygon at points where the polygon is located. The optical
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field is then propagated to the plane of the third polygon, and so on. Finally, the optical field is
propagated to the hologram plane.

The second one – the subhologram approach – is a general method that shares a lot of properties
with holographic stereograms, see, for example, [9–11]. Here, the hologram area is decomposed
to small areas – subholograms. A perspective image is calculated for each subhologram, the
camera is usually located at the subhologram center. In the case of stereograms, each pixel of
the perspective image is treated as light coming from a particular direction. Thus, the Fourier
transform can be used to calculate the optical field in the subhologram. Another approach gets
spatial coordinates of the point that is visible through a pixel of the perspective image and treats
that point as a point light source. The optical field in the subhologram is then just a sum of
optical fields from all visible point light sources, see, e.g., [12].

It is a well-known fact that the subhologram approach does not work well when the objects are
located far away from the hologram plane – such objects get blurred. Wakunami and Yamaguchi
designed a simple method to overcome that [13,14]. The stereogram is calculated in a plane close
to the objects (the authors call it “the ray-sampling plane”) and the light field is then propagated
to the hologram plane. The method was recently much improved by Igarashi et al. [15, 16].

Although the aforementioned methods proved their qualities, they also have several drawbacks.
The polygonal approach calculates the whole hologram area at once. Thus, large holograms

require a vast amount of shared computer memory. It follows it is difficult to split the calculation
between several computers or independent computational nodes. The polygonal approach is also
very different from computer graphics, i.e., everything that has been done in computer graphics
so far must be re-invented for CGH calculation – illumination model implementation, reflections,
transparency, acceleration techniques, hardware support, etc.

The subhologram/“ray-sampling plane” approach also requires to keep the whole hologram in
a shared memory (despite the fact that the method was substantially improved in this context
in [16]). Contrary to the polygonal approach, the advantage of the subhologram approach is that
it utilizes computer graphics for most tasks (illumination, hidden surface removal, etc.) and uses
wave optics just in the last steps.

Both approaches also share a common drawback: the calculation precision is mostly driven by
the resolution of the final hologram, not by the resolution of human vision.
This paper introduces a modification of the subhologram approach. It states that the critical

problem of the method is the loss of coherence between subholograms. It describes a method
how to keep the coherence – see Fig. 5 later in the paper for a self-explanatory example. It also
describes a method that separates parameters of perspective images rendering (they are driven by
the resolution of human vision) from parameters of the hologram calculation (they are driven by
the wave properties of light).
The design objectives of the proposed methods were as follows. 1. Small memory footprint

– no requirement of keeping the whole hologram in the memory. 2. Easy parallelization and
distribution between many computers, minimum synchronization. 3. Easy scalability – the
method must be capable of hologram calculation of any reasonable size.
The method was implemented as a proof of concept, i.e., a fast calculation was not the main

goal. Please note that in the rest of the paper, the word “hologram” is not used in a conventional
way. In fact, the complex optical fields are being calculated rather than holograms. A hologram
should then encode the amplitude and phase of the optical field (the wavefront) somehow, for
example by taking the intensity of its interference with a reference wave [3]. This encoding
is omitted here; when talking about a hologram or a subhologram, we will talk about “a full
complex hologram”, i.e., about an unencoded optical field.
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2. The method

2.1. The algorithm overview

The algorithm is very similar to the calculation of a holographic stereogram, a few additional
steps introduce the features sketched in Section 1. The hologram area is split into subholograms.
For each subhologram, a perspective image of a 3-D scene with additional depth coordinate
is calculated. This image contains in fact locations of point light sources that are used for the
subhologram calculation.

However, the perspective image is not used directly to calculate the subhologram. The computer
graphics part and the wave calculation part are connected through a data structure called “a global
buffer”. The global buffer allows storing location, phase, and amplitude of point light sources
that are visible from the hologram plane. In the beginning, the global buffer is empty. In each
subhologram calculation, new point light sources can be added according to the corresponding
perspective image of the scene. Implementation details of the global buffer will be given in
Sec. 2.2.
The optical field in the subhologram is actually calculated from point light sources stored in

a simple data structure called “a local buffer”; a simple list or an array is sufficient. It stores
locations, amplitudes, and phases of point light sources. The complex amplitude U of light at a
point x is simply given by

U(x) =
N∑
i=1

Ai

|x − xi |
exp

[
j(2π |x − xi |/λ + φi

]
, (1)

where N is the count of point light sources in the local buffer, Ai , φi and xi are the amplitude, the
phase and the location of the i-th point light source, λ is the wavelength and j2 = −1.
The algorithm proceeds as follows:

1. Make an empty global buffer and an empty local buffer.

2. Determine subholograms count and their positions in the hologram.

3. For each subhologram:

(a) Clean the local buffer, mark all lights in the global buffer as “unused”.
(b) Set the perspective camera location, calculate the perspective image with depth

coordinates.
(c) For each non-empty pixel p of the perspective image:

i. Calculate location x′p of the point light source (from the pixel indices, the camera
coordinates, and the depth value).

ii. Try to add the light source at x′p to the global buffer:
• If the global buffer already contains a point light source located at xp close
to x′p , mark it as “used”. Rewrite its amplitude to a value corresponding to
the intensity of the pixel p.

• Otherwise, generate a random phase φp, determine the amplitude Ap and
add (x′p, Ap, φp) to the global buffer and mark it as “used”. Note that the
global buffer stores quantized locations, i.e., the location actually stored
differs slightly from x′p. Also note that while the location and the phase
are truly global and never change, the amplitude can be rewritten for each
subhologram. This allows mimicking directional radiance distribution.

(d) Scan the lights in the global buffer and remove the suspicions ones, e.g., the ones
that make “thick surfaces” (see Fig. 3(b) and Sec. 2.5 for details).
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(e) Copy all “used” lights from the global buffer to the local buffer.
(f) Calculate the subhologram using Eq. (1) and lights in the local buffer.

We will assume that the hologram is located in the plane z = hologramZ, the scene is located
in the half-space z < hologramZ and the observer in z > hologramZ. Note that both loops (items
3 and 3c) are the conventional ones, i.e., the body of the loop must by executed one by one (not
in parallel). The order of execution in not specified here; we will discuss it in Sec. 2.4.
It is worth emphasizing that the points present in the global buffer approximate the scene by

a point cloud. Their presence in the global buffer guarantees that the same location and phase
will be used for the whole hologram (thus, it provides coherence). The incremental building of
the point cloud guarantees that we work just with points that can affect the hologram. Finally,
well-chosen parameters of the global buffer and perspective images guarantee that the precision
of the point cloud matches human vision requirements; see Sec. 3 for details.

2.2. The global buffer

The data structure that implements the global buffer must be able to quickly find a point in the
vicinity of a searched one. It must be able to store the points with the precision necessary for
good human perception, but not necessarily higher.

In the proof-of-concept implementation, I have used “an extended perspective image” for the
global buffer, see Fig. 1(a). The global buffer is, in fact, a 2-D array, where each element stores a
list of points. We can imagine it as a screen (located in the plane z = gBufferZ) of a perspective
camera located somewhere in the plane z = gBufferEyeZ. Each element of the global buffer
then stores a list of points (point light sources) lying on the ray from “the global buffer camera”
through the center of that element. Note that an element of the global buffer contains just points
of the scene that can be seen from some point of the hologram.

Fig. 1. (a) Global buffer and the scene geometry. (b) Position of the global buffer camera for
gBufferEyeZ ≥ designEyeZ. (c) For gBufferEyeZ ≤ designEyeZ.

When searching a point in the global buffer, we can easily determine the element of the global
buffer that should contain it. In this element, we must then look for a point with a similar depth
coordinate. For simplicity, we can use just tolerance |zB − z0 | < ∆Z , where zB is the depth
coordinate of the point already present in the global buffer, z0 is the depth coordinate of the point
we are looking for, ∆Z is a constant set with respect to human vision, e.g. 0.1 mm.

If we cannot find a point in “the correct” element of the global buffer, we can try to scan the
elements in the close neighbourhood for reasons explained in Sec. 4.
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If the point we are looking for is not present in the global buffer, we can quantize its x, y
coordinates in such a way that “the global buffer camera”, the center of the global buffer element
and the quantized point are collinear. The quantized coordinates, the point phase, and amplitude
are stored in the list of an appropriate global buffer element. Note that coordinate quantization
is actually not necessary, but it leads to somewhat simpler implementation. Also, note that the
point amplitude is stored just temporarily, it can be replaced any time so that it represents point
intensity as seen from a different viewpoint (see the step 3(c)ii in the algorithm in Sec. 2.1).
Finally, each light stored in the global buffer also stores a boolean value that tells if that point
should be used for the calculation of a current subhologram.

We should naturally ask: how to set gBufferZ, gBufferEyeZ, the global buffer screen size and
its resolution? The answer will be given in Sec. 3.

2.3. Rendering of perspective images

In theory, a subhologram should be affected by all points of the scene that illuminate it. In
practice, we can restrict the points to the inside of a pyramid. Its apex angle 2α is usually given
by the pixel pitch ∆H of the hologram, as the maximum angle of light incidence w.r.t. normal
that can be sampled is given by α = asin(λ/2∆H ). Even in the case of sub-micron pixel pitch, it
is worth limiting the apex angle – the diffraction efficiency of a hologram is usually low for large
angles anyway.

The viewing angle of the perspective camera can be thus set to 2α. The camera is then placed
behind the subhologram in such a way the subhologram forms the projection screen of the camera,
see Fig. 2(a). Please note that in the case of holographic stereograms, the camera is usually
placed to the center of the subhologram. This means that such a camera cannot see points that
are very close to the hologram and the subhologram boundary, outside the camera viewing angle.
However, holographic stereograms assume that the scene is located far from the hologram plane,
which means that this glitch is not important there.

In the proof-of-concept implementation, I assumed the scene is located behind the hologram.
Extension to both sides of the hologram should not be difficult.
The only remaining question is how to set the pixel count of the perspective image. It is

answered in Sec. 3.

Fig. 2. (a) Rendering of the perspective image. (b) Simple order of subholograms calculation.
(c) Diamond-square order of subholograms calculation.
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2.4. Loop execution order

The current description of the algorithm does not meet the design objectives: the loop that
iterates over all subholograms (item 3 in Sec. 2.1) cannot be run in parallel. It is thus difficult to
distribute the calculation between independent computational nodes. The problem is that once
some points are added to the global buffer, all following subhologram calculations must take
them into account.

This is especially inconvenient if we traverse the subholograms in a simple order (see Fig. 2(b),
a hologram is split to 5 × 5 subholograms). When calculating the first subhologram, the global
buffer is filled with points that approximate the scene as seen from the subhologram 1. When
calculating subsequent subholograms, only points that were not visible from the previous ones
are added to the global buffer. As the subholograms are next to each other, only a few points are
usually added in each subhologram.
A better order of subholograms traversal should add the points to the global buffer as fast as

possible. We can use “the diamond-square algorithm” [17], see Fig. 2(c). Here, the first few
subholograms are located far from each other, thus the scene is rendered from very different
viewpoints first. It is very likely that the point approximation of the scene in the global buffer
becomes mostly complete after traversal of a few percent of the subholograms. Let us denote the
set these “important subholograms” as Simportant.

If we split the calculation between several computational nodes, we usually assign a few rows
of subholograms to each node. Let us denote the set of subholograms assigned to the node N
as SN (Fig. 2(c) decomposes the calculation to 3 nodes). The computational node N traverses
all subholograms of the hologram in the diamond-square order. If the subhologram belongs to
Simportant, the points of the scene are added to the global buffer. If the subhologram belongs to
SN , the optical field in the subhologram is calculated. All subholograms that do not belong to
Simportant or SN are skipped at all.
This way guarantees that all computational nodes work with the same global buffer. As the

number of subholograms in Simportant is much smaller than the number of all subholograms, the
number of subholograms that are traversed “unnecessarily” (outside SN ) is acceptably small.

The subholograms in Simportant are depicted by red squares in Fig. 2(c). It is an open question
how the structure and the size of Simportant affects the visual quality of the hologram. A reasonable
assumption is that if the distance between the closest “red squares” is about 2 mm, i.e., the
diameter of a human eye pupil, nothing visually important is missed. It is definitely possible to
construct an artificial scene that breaks this assumption; only testing of many practical scenes
will tell if the assumption is acceptable in practice.

2.5. Global buffer filtering

The locations of points we are working with stem from perspective images. Most rendering
algorithms introduce quantization to pixels, some of them also quantize the depth coordinate in
order to use the z-buffer algorithm. It follows that some errors appear further in the process.

The most simple case is shown in Fig. 3(a). A flat patch in z = z0 is rendered from viewpoints
renderEyeA and renderEyeB. Clearly, the rendered points are not the same, i.e., the coherence
between subholograms is lost. Note that pure holographic stereogram based algorithms such
as [10,11] cannot fix it by tweaking the Fourier transform of the rendered images – the images
simply do not display the same scene points. Also note that the problem does not appear when
the scene is given as a point cloud. On the other hand, point cloud representation of a 3-D scene
has its own problems and is not discussed here.

The proposed algorithm solves the problem by storing the rendered points into the global buffer
and removing those that are too close to the ones already stored. Despite the effort, problems can
appear for surfaces nearly parallel to the “rays” of the global buffer camera. The light blue lines
in Fig. 3(b) are contour lines (isolines) of a surface that is somewhere almost parallel to the plane
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Fig. 3. (a) Rendering of a flat patch for subholograms A and B. (b) Errors in the approximation
of the surface.

containing the fan of the purple global buffer rays. It follows that points that are going to be stored
to the global buffer strongly depend on the location of the perspective image camera. Points of
that surface, as seen from various viewpoints, can then make “a thick surface” – the surface is
represented by a thick point cloud rather than by a simple skin. Note that the points stored in
the global buffer in Fig. 3(b) are quantized, i.e., they are located on the purple lines. Avoiding
quantization does not solve the problem – it is necessary to guarantee that all subholograms work
with the same points. Thus, it is necessary to to detect such areas and clean them.

In the current implementation, a simple algorithm is used. If an element of a global buffer
contains just one point, it will be kept. If it contains points x0, x1, x2, . . . at z0 > z1 > z2 > · · · ,
the frontmost point (x0) will be kept. The point xi , i > 0, will be kept in case zi−1 − zi is large
enough, for example 0.2 mm. In the opposite case, i.e., zi is close to zi−1, it is checked whether
at least one surrounding global buffer element contains a point approximately at zi . Moreover,
for the global buffer elements to the left or below the current one, it is furthermore requested that
a point approximately at zi is not marked “to be deleted”. If there is such a neighbouring global
buffer element, the point xi is marked “to be deleted”. All points marked “to be deleted” are
deleted from the global buffer at the end of the filtering step.

The algorithm still results in some artifacts, see Fig. 8, and should be refined. Anyway, for the
proof-of-concept implementation it gives “good enough” results.

3. Parameters of the global buffer and the perspective images

As we are making a display hologram, the starting point in the derivation of optimal parameters
should be visual acuity of the human vision system. Let us assume that an average eye can see
details of size designEyeDetail from the unit distance. For 6/6 vision, it is about 0.3 mm from
1 m, i.e. the angular resolution is about 1 arc minute [3, Chapter 19].

Let us assume that the hologram is located in the plane z = hologramZ and the reference
observer watches it from the plane z = designEyeZ, see Fig. 1(a). Let us assume for simplicity
that the scene is bounded by the far plane z = sceneZMin and the near plane z = sceneZMax and
its lateral size is sceneSizeX × sceneSizeY. Moreover, we assume sceneZMin < sceneZMax ≤
hologramZ < designEyeZ.

Let us restrict the reasoning to the xz plane, the results for the yz plane are analogous. In the
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near and far planes, see Fig. 1(b), the eye of the reference observer sees details of size

designDeltaXNear = (designEyeZ − sceneZMax) × designEyeDetail, (2)
designDeltaXFar = (designEyeZ − sceneZMin) × designEyeDetail. (3)

3.1. Parameters of the global buffer

“The screen” of the global buffer is in the plane z = gBufferZ, the camera in the plane
z = gBufferEyeZ. Without loss of generality, let us assume gBufferZ = hologramZ. The
parameters we are looking for are thus gBufferEyeZ, the size of “the screen” and its resolution.
If we assume that the scene is bounded by a box, then “the screen” size is given by the

dimension sceneSizeX in the near plane, see Fig. 1(a).
The resolution of the global buffer must be at least as fine as the resolution of the reference

observer. In the case gBufferEyeZ ≥ designEyeZ, the number of samples (elements) of the global
buffer is given by the details visible in the near plane, i.e.

gBufferSamplesXPreV1 =
sceneSizeX

designDeltaXNear
, (4)

as the camera of the global buffer then sees details finer than designDeltaXFar in the far plane,
see Fig. 1(b). The number of samples (elements) is thus independent of gBufferEyeZ.
In the opposite case, i.e. gBufferEyeZ < designEyeZ, we should begin with details that the

reference observer sees in the far plane, see Fig. 1(c). Such details, as seen by the eye of the
global buffer, correspond to details

gBufferDeltaXNearV2 = designDeltaXFar ×
gBufferEyeZ − sceneZMax
gBufferEyeZ − sceneZMin

(5)

in the near plane. This leads to the number of samples of the global buffer

gBufferSamplesXPreV2 =
sceneSizeX

gBufferDeltaXNearV2
. (6)

It holds gBufferSamplesXPreV1 < gBufferSamplesXPreV2 for gBufferEyeZ < designEyeZ,
i.e. the latter case leads to higher number of the global buffer samples (elements). In particular,
the details in the near plane can get unnecessarily small for gBufferEyeZ � designEyeZ. This
leads to conclusion that just the case gBufferEyeZ ≥ designEyeZ is practical.
There are two important special cases. For gBufferEyeZ = ∞, the global buffer actually uses

the parallel projection instead of the perspective one. The global buffer then resolves smaller
details in the far plane than necessary. For gBufferEyeZ = designEyeZ, the global buffer resolves
exactly the same details as the reference observer throughout the scene. Let us pick the case
gBufferEyeZ = designEyeZ. Please note that in case of scene bounding volume other than a box,
the analysis might give different results.

Number of samples must be a natural number; we must round gBufferSamplesXPreV1 and add
1. In practice, slight errors can appear near the global buffer boundary. To minimize them, it is
worth enlarging “the screen” of the global buffer a bit, for example by one sample on each side.
The final number of samples is then

gBufferSamplesX = ceiling(gBufferSamplesXPreV1) + 3, (7)

where ceiling(x) is the nearest bigger or equal integer than x.
Thus, the global buffer resolves details on the near and the far planes:

globalDeltaXNear =
sceneSizeX

gBufferSamplesX − 3
, (8)

globalDeltaXFar = globalDeltaXNear ×
gBufferEyeZ − sceneZMin
gBufferEyeZ − sceneZMax

. (9)
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3.2. Parameters of perspective images

The size (the distance from the first sample to the last sample) of the subhologram is

partSizeX = ∆H × (partSamplesX − 1), (10)

where ∆H is the hologram pixel pitch and partSamplesX is the number of columns of the
subhologram, see Fig. 2(a).
The viewing angle of the perspective camera must cover the subhologram. Its z coordinate

must be then
renderEyeZ =

partSizeX
2 tan

(
maxDiffractionAngleX

) + hologramZ, (11)

where maxDiffractionAngleX is the maximum angle of incident light (w.r.t. hologram normal)
we are willing to capture. It must naturally hold

maxDiffractionAngleX ≤ asin
[
min

(
1,

λ

2∆H

)]
. (12)

As noted in Sec. 2.3, maxDiffractionAngleX is usually limited to a reasonably small value
for small hologram pixel pitch (e.g. 100 nm), for example to 30◦. It is worth emphasizing the
limitation is not mandatory; on the other hand, it would be impractical to use the plain perspective
projection for maxDiffractionAngleX close to 90◦. Other projections such as “the fisheye lens”
simulation could help to keep the number of image samples low.
Let us assume that gBufferEyeZ > renderEyeZ. The camera resolves the smallest details in

the near plane, the resolvable detail in the far plane is the biggest. Resolvable details in the far
plane thus determine the perspective image resolution.
The visible part of the far plane has size

renderSizeFarX = partSizeX ×
renderEyeZ − sceneZMin
renderEyeZ − hologramZ

(13)

It must be sampled in such a way that the sampling distance matches the resolution of the global
buffer in the far plane, i.e.,

renderSamplesX = ceiling
(
renderSizeFarX
globalDeltaXFar

)
+ 1 (14)

3.3. Examples of parameters values

Let us calculate parameters of the global buffer and the perspective images rendering for a
hologram of size 65 × 65 mm2 displaying a scene of size 60 × 60 × 100 mm3 located 100 mm
behind the hologram plane, hologram pixel pitch 1 µm (other parameters are given in Tab. 1).
Equations of Sec. 3.1 and 3.2 give

gBufferSamplesX = 575 renderSamplesX = 798 (15)

If we change the hologram pixel pitch to 0.25 µm and limit holoDiffractionAngleX to 30◦, we get

gBufferSamplesX = 575 renderSamplesX = 1716 (16)

That is, the number of samples is perfectly manageable compared to hologram pixel count.
Note that in the first case, the hologram itself is composed of 4.2 Gpixels, in the latter case
67.6 Gpixels.
Given the hologram size, the analysis shows that the number of samples of the global

buffer depends mostly on the near plane location sceneZMax, the number of samples of the
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Table 1. Parameters used for the examples in Sec. 3.3

sceneZMin −200 mm sceneZMax −100 mm
designEyeDetail 0.3 mm/m designEyeZ 250 mm

sceneSizeX 60 mm gBufferEyeZ 250 mm
holoSizeX 65 mm λ 532 nm

holoSamplingDistanceX 1 µm holoDiffractionAngleX 15◦
partSamplesX 0.25 mm/holoSamplingDistanceX

perspective image depends mostly on the far plane location sceneZMin and the diffraction angle
maxDiffractionAngleX. Graphs of these two values are shown in Fig. 4. They clearly show that
the memory requirements for the global buffer and the perspective images are reasonable for
practical purposes.

Fig. 4. Numbers of samples (elements) of the global buffer and the perspective images.

3.4. Analysis of the parameters

If we assume designEyeZ = gBufferEyeZ and approximate Eq. (7) by neglecting rounding and
the final addition of two samples, we get a simplified formula

gBufferSamplesX ≈
sceneSizeX

designEyeDetail × (gBufferEyeZ − sceneZMax)
. (17)

Thus, the number of samples of the global buffer is proportional to the lateral dimension of the
scene. It is inversely proportional to the distance of the near plane from the design eye location
and to the visual acuity.

If we assume small angle approximation (sin φ ≈ φ ≈ tan φ), neglect rounding operations and
without loss of generality set hologramZ = 0, we can simplify Eq. (14) to

renderSamplesX ≈
λ × sceneZMin − holoSamplingDistanceX2 × partSamplesX

holoSamplingDistanceX × designEyeDetail × (sceneZMin − designEyeZ)
.

(18)
Here we assume that the maximum diffraction angle is given by the wavelength λ and the
hologram pixel pitch holoSamplingDistanceX.

It can be shown that the parameter partSamplesX does not affect the result too much provided
that the subholograms are small and the hologram pixel pitch is small. If we omit this term from
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the numerator and approximate maxDiffractionAngleX ≈ λ/(2 holoSamplingDistanceX), we get

renderSamplesX ≈
2 maxDiffractionAngleX × sceneZMin

designEyeDetail × (sceneZMin − designEyeZ)
. (19)

Now it is easy to see that the number of samples of the perspective image is proportional to
the maximum diffraction angle and inversely proportional to the visual acuity. The graph of
renderSamplesX w.r.t. sceneZMin (i.e. the far plane location) is a hyperbola that approaches zero
for flat scenes. For deep scenes, is limits to

lim
sceneZMin→ −∞

renderSamplesX ≈ 2 maxDiffractionAngleX/designEyeDetail, (20)

which means that a finite number of samples is sufficient even for deep scenes.

4. Analysis of the global buffer precision

Let us assume that the scene contains a flat patch in the plane z = z0, sceneZMin ≤ z0 ≤
sceneZMax. During the calculation, it is approximated by a point cloud stored in the global
buffer. As the key to the success of the algorithm is the coherence between subholograms, there
is a fundamental question that affects the whole algorithm: If we approximate the patch by a point
cloud in the calculation of a subhologram A, do we get the same point cloud in the calculation of
the subhologram B?
During the calculation of the subhologram A, a point (xA, z0) is represented by a pixel of the

perspective image, see Fig. 3(a). If we know z0 and the perspective camera parameters, it is easy
to calculate xA from the pixel position.
During the calculation of the subhologram B, the point (xA, z0) is also represented by a pixel

of the perspective image. Due to quantization to the integer pixel positions, we estimate that the
point is located at (xB, z0), xA , xB.

If we store the points (xA, z0) and (xB, z0) to the global buffer, we need to determine the global
buffer elements (“pixels”) where to store them. For the indices gA, gB of the elements, it holds

gA − gB =
∆Sε1(gBufferZ − gBufferEyeZ)(z0 − renderEyeZ)
∆G(hologramZ − renderEyeZ)(z − gBufferEyeZ)

+ ε2 (21)

where ∆G and ∆S are the sampling distances of the “global buffer screen” and the “perspective
camera screen”. Quantization errors are taken into account as numbers ε1, ε2 ∈ [−1, 1]. In the
derivation of the equation, it was assumed that round(x) + round(y) = (x + εα) + (y + εβ) =
(x + y) + εγ, where εα, εβ ∈ [−0.5, 0.5], εγ ∈ [−1, 1].
The difference gA − gB is clearly the biggest for ε1 = ε2 = 1.
If we substitute the parameters of the global buffer and the image rendering derived in Sec. 3.1

and Sec. 3.2 to Eq. (21), and neglect the ceiling operation, we get a simple formula

gA − gB ≈
(designEyeZ − sceneZMin) (renderEyeZ − z0)

(renderEyeZ − sceneZMin) (designEyeZ − z0)
+ 1. (22)

The difference is the biggest for z0 = sceneZMin; the expression is then equal to 2.
Thus, if the point (xA, z0) is stored in the element gA of the global buffer and we need to look

for a point (xB, z0), we should search elements gB ± 2 of the global buffer.
The conclusion is: it is possible to detect identical points in the global buffer (i.e. to ensure

coherence) despite the fact that the input perspective images contain quantization errors. It is
worth noting that the analysis assumed a patch in the plane parallel to the hologram plane. The
result can be worse for non-parallel planes, but the practical experiments show that even then the
algorithm gives acceptable results.

                                                                                              Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 2011 



5. Implementation and results

The algorithm was implemented in ANSI C. OpenGL was used for the perspective image
rendering. Calculation of the optical field according to Eq. (1) was implemented as a custom
OpenGL pixel shader. All calculations used the wavelength λ = 532 nm.

The calculated hologramswere numerically reconstructed using algorithms described in [18,19]
that efficiently implement the diffraction calculation using the Rayleigh-Sommerfeld convolution.
In the case of the real image reconstruction, a direct propagation from the hologram plane to

the plane of observation was used. In case of virtual image reconstruction, a camera simulation
was utilized: the optical field was propagated from the hologram plane to the lens plane, a lens
function was applied (see, e.g., [2, Chapter 5]), and the modified optical field was propagated to
the sensor plane.
Fig. 5 shows results for the scene composed of a single point located at (0, 0,−5 mm). If the

global buffer is not used, the estimated location of the point differs in each subhologram by as
much as 3.2 µm. Such incoherence leads to discontinuities at the subhologram borders and
results in a damaged real image reconstructed from the hologram. Note that the damage is not too
big as the hologram is intentionally very small in order to show its structure. Larger hologram
leads to more blurry reconstruction.

Fig. 5. The complex hologram of a single point (real part) and its real image reconstruction.

In the second experiment, three USAF resolution targets of size 5×5 mm2 are located 100, 120
and 140 mm behind the hologram of size 7.7 × 4.6 mm2 (3840 × 2304 pixels, pixel pitch 2 µm,
subhologram size 256 × 256 pixels). The checkerboard in the background is located 200 mm
behind the hologram. The virtual camera is located 200 mm in front of the hologram and is
focused to the plane z = −120 mm, the real image was reconstructed in the plane z = −120 mm.
Fig. 6 clearly shows that the virtual image is much sharper when the global buffer is enabled.
Note that the results obtained with the global buffer sharply resolve the points of the USAF target.
Details visible in the image are proportional to the visual acuity used in the calculation, in this
case 0.3 mm/m. Higher visual acuity leads to a more detailed result, see Fig. 7.
In the third experiment, a hologram of a general 3-D scene was calculated. The object size

(lion head in “a cage”) was 15 mm, its center it was located 150 mm behind the hologram, the
background was located 165 mm behind the hologram. Hologram size was 20.5 × 20.5 mm2,
pixel pitch 1 µm. Two holograms were calculated: with subhologram size 256 × 256 pixels and
1024 × 1024 pixels. No significant difference was found, see Fig. 8 and Visualization 1 and
Visualization 2. Obviously, a hologram with bigger subholograms can be calculated faster as
fewer perspective images must be calculated and processed.
The result is not perfect: there are gaps on surfaces that are almost perpendicular to the

hologram plane, see Fig. 8. Examination of the global buffer content showed that these parts of
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Fig. 6. Reconstructions of holograms of resolution targets, designEyeDetail = 0.3 mm/m.

Fig. 7. Reconstructions of holograms of resolution targets, designEyeDetail = 0.1 mm/m.

the scene were not sampled well – the filtering operation removed some point that should be left.
It is a future work to improve the filtering.
Note that larger subholograms lead to coarser approximation of the exact hidden surface

removal. The subhologram size 0.256 mm was chosen because such subholograms are fine
enough for the design viewing distance 250 mm. Thus, the hidden surface elimination was done
dense enough. The result for the subhologram size 1.024 mm indicates that there is no need for
such density of the hidden surface elimination – the result is visually the same. Is is an open
question what is the maximum subhologram size that gives visually acceptable results.

As mentioned in Sec. 1, the goal of the implementation was to check the idea, not to get a fast
calculation. For example, calculation of the hologram of a lion head (20480 × 20480 pixels) was
split between three common PCs (Intel Xeon E5-2630 v2 2.6 GHz, 16 GB RAM, Windows 10
64bit, NVIDIA GeForce GTX 780 GPU). The calculation took 37 minutes, 94 % of the time was
spent on the optical field calculation, about 2 % was spent on the global buffer processing, the
image rendering took just 0.05 %, transfers between GPU and the main memory took the rest. In
the future, mainly the optical field calculation must be optimized.
Also note that the hologram parameters for the experiments were chosen to show features of
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Fig. 8. Virtual image reconstruction. Left: subhologram size 256 × 256 µm, see also
Visualization 1. Right: subhologram size 1024 × 1024 µm, see also Visualization 2. The
blurred border of the image is the out-of-focus border of the hologram. Note there is no
significant difference between the results.

the proposed algorithm. Thus, the distance between the scene and the hologram was chosen quite
large to show the sharpness of a deep scene. On the other hand, hologram sizes were chosen
rather small in order to keep calculation times of the hologram reconstructions manageable,
especially the calculation of Visualization 1 and Visualization 2.

6. Conclusion

A modification of the subhologram-based approach of computer generated display hologram
calculation was presented. The modification that guarantees the coherence between subholograms
takes a negligible amount of time and provides superior image sharpness. The future works
should connect it to a more efficient calculation of the optical field. The global buffer filtering
should be refined to avoid the artifacts mentioned in Sec. 5.
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