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Abstract: We investigate the existence of nodal (sign-changing) solutions to the Dirichlet problem for a two-
parametric family of partially homogeneous (p, g)-Laplace equations —Apu — Aqu = alulP~2u + Blul?%u
where p # gq. By virtue of the Nehari manifolds, the linking theorem, and descending flow, we explicitly
characterize subsets of the (a, 8)-plane which correspond to the existence of nodal solutions. In each sub-
set the obtained solutions have prescribed signs of energy and, in some cases, exactly two nodal domains.
The nonexistence of nodal solutions is also studied. Additionally, we explore several relations between
eigenvalues and eigenfunctions of the p- and g-Laplacians in one dimension.
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1 Introduction

In this article, we study the existence and nonexistence of sign-changing solutions for the problem

(GEV; a, B)

—Apu—Aqu = alulP2u+Blul?%u inQ,
u=0 on o0Q,

where Q ¢ RV, N > 1, is a bounded domain with a sufficiently smooth boundary 0Q, and a, 8 € R are
parameters. The operator A,u := div(|Vu|"~2Vu) is the classical r-Laplacian, r = {g, p} > 1, and without loss
of generality we assume that g < p.

Boundary value problems with a combination of several differential operators of different nature (in
particular, as in (GEV; a, f)) arise mainly as mathematical models of physical processes and phenomena,
and have been extensively studied in the last two decades; see, e.g., [13, 15, 19, 30] and the references
below. Among the historically first examples one can mention the Cahn-Hilliard equation [12] describing
the process of separation of binary alloys, and the Zakharov equation [33, (1.8)] which describes the behav-
ior of plasma oscillations. Elliptic equations with the (2, 6)- and (2, p)-Laplacians were considered explicitly
in [7, 8] with the aim of obtaining soliton-type solutions (in particular, as a model for elementary particles).

The considered problem (GEV; a, ) attracts special attention due to its symmetric and partially homo-
geneous structure; cf. [4, 10, 20, 28, 31, 32, 34]. By developing the results of [20, 28, 31], the authors of the
present article obtained in [10] a reasonably complete description of the subsets of the (a, 8)-plane which
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102 —— V.Bobkov and M. Tanaka, On sign-changing solutions DE GRUYTER

correspond to the existence/nonexistence of positive solutions to problem (GEV; a, ). At the same time, to
the best of our knowledge, analogous results for sign-changing solutions have not been obtained circumstan-
tially so far, although a particular information on the existence can be extracted from [1, 24, 32]. The main
reason for this is a crucial dependence of the structure of the solution set to problem (GEV; a, 8) on param-
eters « and f. As a consequence, the existence can not be treated by a unique approach, and various tools
have to be used for different parts of the (a, §)-plane.

The aim of the present article is to allocate and characterize the sets of parameters a and f for which
problem (GEV; a, ) possesses or does not possess sign-changing solutions (see Figure 1). In this sense, this
work can be seen as the second part of the article [10].

1.1 Notations and preliminaries

Before formulating the main results, we introduce several notations. In what follows, L"(Q) with r € (1, +0c0)
and L*°(Q) stand for the Lebesgue spaces with the norms

1/r
lull == (j|u|rdx) and [Julleo := ess suplu(x),
2 xeQ

respectively, and Wé’r = Wcl,’r(Q) denotes the Sobolev space with the norm |Vul|,. For u € Wé’r we define

u* := max{+u, 0}. Note that u* ¢ Wé’r andu=u"-u".
By a (weak) solution of (GEV; a, ) we mean function u € Wé P which satisfies

JIVulp‘ZVqu dx + JIVqu‘ZVqu dx = a Jlulp‘zu(p dx +f Jlulq‘zwp dx (1.1)
Q Q Q Q
forall ¢ € Wé P If u is a solution of (GEV; a, f) and u* # 0 (a.e.in Q), then u is called nodal or sign-changing
solution. It is not hard to see that any solution of (GEV;a, B) is a critical point of the energy functional
Eop € Cl(Wé’p,lR) defined by
1 1
Eqp(u) := —Hq(u) + —Gp(u),
b q

where
Hy(u) := JIVqu dx -« jlulp dx and Gg(u):= JIVqu dx - B Jlulq dx.
Q Q Q Q
Notice that the supports of u* and u~ are disjoint for any u € Wé P This fact, together with evenness of the
functionals H, and G, easily implies that

Ho(u™) + Ho(u™) = Ho(u) and  Gg(u®) + Gg(u™) = Gp(u).

Remark 1.1. Any solution u € Wé’p of problem (GEV; a, B) belongs to Cé’y(ﬁ) for some y € (0, 1). In fact,
u € L*(Q) by the Moser iteration process; cf. [25, Appendix A]. Furthermore, the regularity up to the bound-
ary in [21, Theorem 1] and [22, p. 320] provides u € C(l)’y(ﬁ), y € (0, 1).

Next, we recall several facts related to the eigenvalue problem for the Dirichlet r-Laplacian, r > 1. We say that
Ais an eigenvalue of -A,, if the problem

“Au=Auu inQ,
(EV;r, A)

u=0 on 0Q

has a nontrivial (weak) solution. Analogously to the linear case, the set of all eigenvalues of (EV;r, A) will
be denoted as o(-A,). It is well known that the lowest positive eigenvalue A (r) can be obtained through the
nonlinear Rayleigh quotient as (cf. [2])

JoIvul" dx

Al(r) = lnf{m
Q

cueWy', us 0}. (1.2)
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The eigenvalue A, (r) is simple and isolated, and the corresponding eigenfunction ¢, € Wé P (defined up to
an arbitrary multiplier) is strictly positive (or strictly negative) in Q. Moreover, A (r) is the unique eigenvalue
with a corresponding sign-constant eigenfunction [2]. Note also that any eigenfunction ¢ of —A, belongs to
Cé’y(ﬁ) for some y € (0, 1).

The following lemma directly follows from the definition of A, (r) and its simplicity.

Lemma 1.2. Assume that u € Wé’p \ {0}. Then we have the following results:
() Leta < Ai(p). Then Ho(u) > 0, and Hy(u) = O if and only if &« = A1(p) and u = tg, for some t € R\ {0}.
(ii) Let B < A1(q). Then Gg(u) = 0, and Gg(u) = O if and only if B = A1(q) and u = tp, for some t € R\ {0}.

Although the structure of o(-A,) is not completely known except for the case r =2 or N =1 (see, e.g.,
[17, Theorem 3.1]), several unbounded sequences of eigenvalues can be introduced by virtue of minimax
variational principles. In what follows, by {Ax(r)}kenw We denote a sequence of eigenvalues for (EV;r, A)
introduced in [18]. It can be described variationally as

Ak(r) := inf Vh(2)I}, 1.
W)= inf = max |[Vh(z)l; (1.3)

where $¥-1 is the unit sphere in R¥ and
Fi(r) := {h € C(SK1, S(r)) : his odd}, (1.4)
S(r):={ue Wy : Jul, = 1}.

It is known [18] that A (r) — +oo as k — +oo. Moreover, A, (r) coincides with the second eigenvalue of —A,,
ie.,

Aa(r) = inf{A € o(-A;) : A > A1(n)},
and it can be alternatively characterized as in [16]:
—1 r
Aa(r) = irele Srer}(z)ifl(]IIVy(S)IIr, (1.5)
I :={y e C([0, 1], 5(r)) : y(0) = @y, y(1) = -y},

where the first eigenfunction ¢, is normalized such that ¢, € S(r). We denote any eigenfunction correspond-
ing to A,(r) as ¢3,,. Notice that A5(r) > A1(r). Furthermore, in the one-dimensional case the sequence (1.3)
describes the whole o(-A;) (cf. [17, Theorem 4.1], where this result is proved for the Krasnosel’skii-type
eigenvalues).

Finally, we introduce the notation for the eigenspace of -A, at A € R:

ES(r;A) :={v e Wé’r : vis a solution of (EV;r, A)}. (1.6)

It is clear that ES(r; A) # {0} if and only if A € o(-A;).

1.2 Main results

Let us state the main results of this article. We begin with the nonexistence of nodal solutions for (GEV; a, f).

Theorem 1.3. Assume that

(a, B) € (=00, A3(p)] x (-00, A1(q)] U (=00, A1(p)] x (—00, A2(q)].
Then (GEV; a, B) has no nodal solutions.
In the one-dimensional case Theorem 1.3 can be refined as follows.

Theorem 1.4. Let N = 1. If (a, B) € (—00, A2(p)] X (—00, A2(q)], then (GEV; a, B) has no nodal solutions.
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p
Q B (A3(p))
A3(q)
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A(p) A2 (p) A3(p) @

Figure 1: The case A»(q) < A3(q), A2(p) < A3(p), and (A2(p), A3(p)) N a(-Ap) = 0. Existence (light gray, solid lines),
nonexistence (dark gray, zigzag lines), unknown (white, dashed lines).

In the case of general dimensions an additional information on hypothetical nodal solutions to (GEV; &, )
for a € (A1(p), A2(p)] and B € (A1(q), A2(q)] is given in Lemma 2.5 below.

Now we formulate the existence result for nodal solutions with a positive energy. Let us define the fol-
lowing “lower” critical value depending on a € R:

JolVurl9dx | IVu|9 dx

[lutladx ™ [ lu-|9dx

Bo(a) := inf{min{ } TuUE€ 3L(a)}, (1.7)

where

+|p -1p
JoIVurPdx [ IVu~| dx}S }’ L.8)

JolutIP dx ’ Jolum P dx

and put B (a) = +co whenever the admissible set B . (a) is empty.

Be(a) = {u e WP :u* 20, max{

Theorem 1.5. Let a > A>(p). Then for all § < B (a) problem (GEV; a, ) has a nodal solution u with Eq g(u) > O
and precisely two nodal domains.

Several main properties of the function . (a) are collected in Lemma 2.11 below. Let us remark that the
parametrization by a in (1.7) is different from the parametrization by s of the form (a, B) = (A + s, A) which
was used in [10] in order to construct a critical curve for the existence of positive solutions. In the context of
the present article, the parametrization by a makes problem (GEV; a, f) easier to analyze. We also note that
(1.7) is conceptually similar to the characterization of the first nontrivial curve of the Fucik spectrum given
in [26]. In Section 2 below, we introduce and study several other critical points besides (1.7), which although
are not directly used in the proofs of the main results, increase the understanding of the construction of the
(a, B)-plane, and could be employed in further investigations.

Next, we state the existence of negative energy nodal solutions for (GEV; a, 8). Consider the “upper”
critical value
JoIVel? dx

Jolel dx

where a € R, and set B (a) = —co provided a ¢ 0(-Ap). Several lower and upper bounds for 7, (a) are given
in Lemmas 3.6 and 3.7 below. Define kg, := min{k € N : a < Aj41(p)} and notice that Ay,+1(q) > A2(q) for
alla € R.

B (@ i=sup] 1p eES(p @)\ (0], (1.9)

Theorem 1.6. Let « € R\ 0(-Ay). Then for all B > max{B; (a), Ak,+1(q)} problem (GEV;a, B) has a nodal
solution u satisfying Eq g(u) < O.
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Evidently, if 0(-Ap) is a discreet set (asitisfor p = 2or N = 1), then R \ 6(-Ap) = R. Moreover, A; (p) and A» (p)
belong to m forallp > 1and N > 1since A{(p) isisolated and there are no eigenvalues between A1 (p)
and A, (p) (see Section 1.1).

One of the main ingredients for the proof of Theorem 1.6 is the result on the existence of three nontrivial
solutions (positive, negative and sign-changing) to the problem with the (p, g)-Laplacian and a nonlinearity
in the general form given by Theorem 3.13 below. This result is of independent interest.

Theorem 1.6 can be refined as follows.

Theorem 1.7. Assume that

(a, B) € (00, A2(p)) x (A2(q), +00) \ {(A1(p), ||V<ppIIZ/II<ppIIZ)}.
Then (GEV; a, ) has a nodal solution u satisfying Eq g(u) < 0.

Remark 1.8. In the one-dimensional case we have ||<p;,IIZ/ leplld < A2(q) (see Lemma A.2 in Appendix A), and
hence the assertion of Theorem 1.7 holds for all (a, f8) € (-0, A2(p)) % (A2(q), +00).

Let us note that unlike the case of positive solutions, the structure of the set of nodal solutions for prob-
lem (GEV; a, B) is more complicated, and we are not aware of the maximality of the regions obtained in
Theorems 1.5 and 1.6.

The article is organized as follows: In Section 2, we apply the method of the Nehari manifold in order to
prove Theorem 1.5. In Section 3, by means of linking arguments and the descending flow method, we pro-
vide two general existence results which yield, in particular, Theorems 1.6 and 1.7. For the convenience
of the reader we collect the proofs of the main theorems in Section 4. In Appendix A, we prove several
additional facts on the relation between eigenvalues and eigenfunctions of the p- and g-Laplacians in the
one-dimensional case. Finally, in Appendix B, we give a sketch of the proof of Theorem 3.13.

2 Nodal solutions with positive energy

The classical Nehari manifold for problem (GEV; a, B) is defined by
Nepg:={ue Wé’p \ {0} : (E"X,ﬁ(u), u) = Ho(u) + Gg(u) = 0}.

It can be readily seen that Ny, contains all nontrivial solutions of (GEV; a, f8). On the other hand, if u € Wé P
is a sign-changing solution of (GEV; a, B), then

0 = (Eg g(w), u*) = (Ej p(u"), u*) = Ho(u") + Gp(u™),

0= —(E, g(u), u”) = (E g(u),u") = Ha(u") + Gp(u").
These equalities bring us to the definition of the so-called nodal Nehari set for (GEV; a, 8):

Mg :={u e Wé’p cut £0, Ho(u®) + Gp(u*) =0} = {u e Wé’p ut € Ny gl (2.1)

By construction, Mg, g contains all sign-changing solutions of (GEV; a, ), and hence My g € Ng,p.
Let us divide Mg g into the following three subsets:

M} g = {u € Map : Ho(u") < 0, Ho(u") < O},

MG g = {u € Map : Ho(u") > 0, Ha(u") > O},

Mg g = {u € Mayp : Ha(u") - Ho(u) < 0}

Evidently, Mg,g = M}X Y Mﬁ Y Mi 5 and all M; p are mutually disjoint. The main aim of this section is to

prove the existence of nodal solution’s for (GEV; a,’ B) through minimization of Eq g over M; 5 in an appropri-
ate subset of the (a, §)-plane.
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2.1 Preliminary analysis

In this subsection, we mainly study the properties of the sets M?} ap’ M2 wp and M3 af First of all, we give the
following auxiliary lemma, which is in fact analogous to [10, Proposition 6] and can be proved in the same
manner.

Lemma 2.1. Letu € Wé’p. IfHo(u) - Gg(u) < O, then there exists a unique critical point t(u) > 0 of Eq, g(tu) with
respect to t > 0 and t(u)u € Ng,g. In particular, if

Hy(u) < 0 < Gg(u),
then t(u) is the unique maximum point of Eq g(tu) with respect to t > 0 and Eq g(t(u)u) > 0.

We start our consideration of the sets Jv[; 8 with several simple facts.

Lemma 2.2. Let a, B € R. The following hold:

(i) IfB < Ai(q), then M} 5 = Ma,p and, consequently, M 2 B M3 ap =0
(ii) If a < A1(p), then M2 5 = Ma,p and, consequently, M B M3 ap =0

Proof. Let us first prove assertion (i). Assume that 8 < A;(g) and w € My, p. Then Lemma 1.2 implies that
Gg(w*) = 0 and in fact Gg(w*) > 0, since otherwise w* = ¢4, which is impossible in view of the strict pos-
itivity of ¢4 in Q. Thus, the Nehari constraints Hq(w*) + Gg(w*) = 0 yield H,(w*) < 0, whence w € M; 8
Assertion (ii) can be shown by the same arguments. O

Let us introduce the following sets:
B1(a) := {u € Wy : Ho(u*) < 0, Ho(u") < 0}, (2.2)
Ba(a) := {u € WoP : Hy(u*) > 0, Ho(u") > O}. (2.3)
Obviously, Mi 5 C B1(a) and Mﬁ s C B, (a). Moreover, we have the following result.

Lemma 2.3. Let a, § € R. The following hold:
(i) Ifa < Ay(p), then By (a) = 0 and, consequently, Ml ﬁ =0.
(i) If B < A2(q), then B, (@) = 0 and, consequently, M a,ﬁ = 0.

Proof. We give the proof of assertion (i). The second part can be proved analogously. Suppose, by contradic-
tion, that @ < A,(p) and there exists w € B1(a). These assumptions read as

" {fQIVwﬂp dx [ IVw™IP dx

[ wiP dx , [ w7 dx }< a < Ax(p). (2.4)

On the other hand, it is shown in [9, Proposition 4.2] that the second eigenvalue A,(r), r > 1, can be charac-
terized as follows:

JoIVurl dx [ IVu|" dx
Jolutlrdx ~ [ lu-|r dx

Ax(r) = inf{max{ } tuUE€ Wé’r, ut 0}- (2.5)

Comparing (2.4) and (2.5) (with r = p), we obtain a contradiction. O

Lemmas 2.2 and 2.3 readily entail the following information about the emptiness of M, g and, consequently,
the nonexistence of nodal solutions for (GEV; a, f).

Lemma 2.4. If a < A»(p) and B < A1(q), or a < A1(p) and B < A»(q), then My g = 0.

Lemma 2.5. Let a < A;(p) and B < A2(q). If u is a nodal solution of (GEV; a, ), then

a> Al(p)’ ﬁ > Al(‘]), ue Mi,ﬁ
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Let us now subsequently treat the emptiness and nonemptiness of M; 5 and Mﬁ 5 First we consider M; 5
Introduce the critical value

JoIVurladx [ IVu|? dx
Jolut1a dx ’ Jolum19 dx

Bi(a) := sup{min{ } tue€ Bl(a)}

for each a € R, where the admissible set B (a) is defined by (2.2), or, equivalently,

jQIVu+|P dx IQWu‘Ip dx} . }
f0|u+|P dx’ JQIM—IP dx

Bi(a) = {u € Wé’p cut 20, max{

We assume that 1 (a) = —co whenever B, () is empty. Consider also
JQ|V<p+|q dx IQIV(p‘Iq dx
Jolotladx ™ [ lo=19dx

where ES(p, A5(p)) is the eigenspace of the second eigenvalue A, (p) defined by (1.6).
The main properties of ;1 (a) are collected in the following lemma.

B; = sup{min{ [0 BS(, o))\ {0}}, (2.6)

Lemma 2.6. The following assertions hold:

(i) Bi(a) = -co forany a < A,(p), and B1(a) € [B7, +o0) for all & > A, (p).
(ii) Bi(a)is nondecreasing for a € (A;(p), +00).

(iii) B1(a) is left-continuous for a € (A2(p), +00).

(iv) B1(a) = +oo as a — +oo.

v) M}x’ﬂ # 0 ifand only if a > Ay (p) and B < B1().

Proof. (i) If a < A5(p), then By (a) = 0 in view of Lemma 2.3, and hence ;(a) = —co. On the other hand,
if @ > A,(p), then any second eigenfunction ¢, , satisfies H,x((pip) < 0 and, in consequence, it belongs to
B1(a). This implies that ES(p, A2(p)) \ {0} ¢ B1(a) and 1(a) = B7.
Consider the set
X(@) :={v e W : [vvIb < alvib). 2.7)

It is known that for any a € R there exists C(a) > 0 such that [|[Vv], < C(a)|vl4 for all v € X(a); see [31,
Lemma 9]. Therefore, since u* € X(a) for any u € B;(a), the Holder inequality yields the existence of a con-
stant C; > O such that

CilVutllg < IVutlp < C(a)|u*lly forallu € Bi(a),

which gives the boundedness of 81 (a) from above.

(ii) If A2(p) < a1 < a2, then By (a1) € Bi(az), which implies the desired monotonicity.

(iii) Let us fix an arbitrary ap > A;(p). Since assertion (ii) readily leads to limy—,q,—0 S1(a) < B1(a0),
it is enough to show that limgy—q,-0 f1(a) = B1(ao). By the definition of B1(ao), for any € > O there exists
U, € B1(ap) such that

(2.8)

JolVutl9dx |, 1Vug|9 dx}
[lufladx ™ [ lug|e dx
Recalling that H,, (uF) < 0, we can find 6§ = 6(¢) > O such that Hy(uf) < O forany a € (ap — 8, o). Therefore,
Ug € Bi(a), and for all a € (ag — §, ap] the definition of f1(a) leads to

) {IQIVu;flq dx | IVug|7dx

’ —

B1((Xo) —-&€< min{

} < B1(@). (2.9)

Combining (2.8) and (2.9), we obtain the inequality limy_,q,-0 S1(a) = B1(@0), since € > O is arbitrary.

(iv) Let L > A1(q) be an arbitrary positive constant. Recalling that for the variational eigenvalues Ax(q)
there holds Ax(q) — +oo as k — +oo, we can find ki, > 2 such that A4, (q) > L. Take an eigenfunction ¢ corre-
sponding to A, (q). Since ¢ € C(l)’y(ﬁ) and ¢ changes its sign in Q (see Section 1.1), there exists a;, satisfying

(lavorar fyoray
[oletPdx ™ [ lo-IP dx
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Therefore, ¢ € B1(ar), and from the definition of 51 (ar) and its monotonicity it follows that
JoIVetiedx [ IVe™|9 dx
Joletiadx " | lo-19dx

provided a > a;. Since L can be chosen arbitrary large, we conclude that lim,_, ., f1(a) = +co.
(v) If @ > A2 (p) and B < B1(a), then, by the definition of 8, (a), there exists u € B;(a) such that

B1(@) > fi(ay) > min b=tu@> 1

IQIVWI‘I dx IQIVu’Iq dx

Jolutladx [ |u~|9dx

B < min{ } < Bi(a). (2.10)
This means that H,(u*) < 0 and Gg(u*) > 0. Hence, by Lemma 2.1 we obtain #* > 0 such that t*u* € Ny,
whence ttu* -t u- € M}X’ﬁ.

Suppose now that there exists u € M}X 8 for some a, B € R. Lemma 2.3 implies that a« > A;(p). On the
other hand, u € Mcl( 5 C B1(a). Hence, from the Nehari constraints it follows that Gg(u*) > 0, and we arrive
to (2.10). O

Consider now the set Mé 5 The corresponding critical value, parametrized again by a € R, appears to be the
following:

IQIVu+|q dx IQIVu’Iq dx

IQIWI‘I dx’ IQIu*Iq dx

Ba(a) := inf{max{ } TuU€ Bz(a)},
where the admissible set B, (a) is defined by (2.3).
The main properties of ,(a) are similar to those for ;1 (a) and collected in the following lemma.

Lemma 2.7. The following assertions hold:

(i) Ba(a) € [A2(q), +00) for any a € R.

(ii) B2(a) is nondecreasing for a € R, and B> (a) = B2(A1(p)) = A2(q) for a < A1(p).
(iii) B2 () is right-continuous for a € R.

(iv) Mi,ﬁ #@ifandonlyifa € Rand B > B2 ().

Proof. (i) It is easy to see that for any a € R the admissible set B, (a) is nonempty. For example, any eigen-
function corresponding to A € o(-Ap) belongs to B;(a) provided A > max{a, A1(p)}. Hence, B,(a) < +c0. On
the other hand, the definition of 8, (a) and characterization (2.5) with r = g directly imply that 8, (a) > A2(q)
for any a € R since B, (a) c WyP c W2,

(ii) If a1 < a3, then B, (a;) < B, (ay), which leads to the desired monotonicity. Since any sign-changing
function w € Wé’p satisfies Hy, (p)(w*) > O (see Lemma 1.2), we get By (a) = Bo(A1(p)) = {u € Wé’p cut £ 0}
for all a < A1(p), and hence S, (a) = B2(A1(p)) for all a < A;1(p). In order to show that B,(A1(p)) = A2(q), let
us recall that any eigenfunction ¢, 4 corresponding to A,(q) belongs to C(l)’y(ﬁ) (see Section 1.1). Hence,
©2,4 € B2(A1(p)) and, consequently,

IQ'V‘PZ,qlq dx JQ'V‘/’E,qlq dx
Joles gladx " [ o3 19 dx

where the equality follows from (2.5) with r = g, and the last inequality is given by assertion (i).
Assertions (iii) and (iv) can be proved in much the same way as in Lemma 2.6. O

Aa(q) = max{ } > B2 (A1 (p)) = Aa(q),

For the further proof of the existence of nodal solutions to (GEV; a, ) in M; 5 let us study the properties of
the critical value (1.7) defined as

jQIVu"Iq dx IQIVu‘Iq dx

jQ|u+|q dx’ leu‘Iq dx

Br(a) ::inf{min{ } :ueBL(a)},

where the admissible set B ; (a) is given by (1.8), or, equivalently,
Beo(@) = {ue Wy : u* #0, Hy(u") <0, Hy(u") < 0}.
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We put B (a) = +co whenever B, (a) = 0. Arguing as in the proof of Lemma 2.3, it can be shown that
B (a) =0if and only if a < A5(p). Note that M;,ﬁ c Bi(a) c Bs(a).
First we give two auxiliary results.

Lemma 2.8. Let a > 0, B € R, and {un}nen be an arbitrary sequence in B ; (a) (or in Mi ﬁ). Denote by {vy}nen
a sequence normalized as follows:
u} u,

= t— - n_ neNlN. (2.11)
Vuplly,  IVunllp

Vn

Then the following assertions hold:

(i) vpeBe(a)(orvy € M;’ﬁ)forall neN.

(ii) v, converges, up to a subsequence, to some vq € Wé’p weakly in Wé’p and strongly in LP(Q).
(iii) vy # 0 and Ha(vy) < O, that is, v € B (a).

Proof. Obviously, v; = ui/|[Vuzlp, and hence assertion (i) follows from the p-homogeneity of H,. Asser-
tion (ii) is a consequence of the boundedness of {v,}nen in Wé’p . Since H,(vi) < 0 for all n € IN, we get
v ||§ > 1/a, whence va—' # 0 a.e. in Q, due to the strong convergence of v, in L?(Q). Moreover, using the
weak lower semicontinuity of the Wé’p -norm, we conclude that Ha(vg) < liminf,_, 00 He(vi) < 0. This is
assertion (iii). O

Proposition 2.9. For any a > A,(p) there exists a minimizer u, € B (a) of B ().

Proof. If a > A5(p), then B, (a) is nonempty, since Ha(go;—',p) < 0 for any second eigenfunction ¢, ) corre-
sponding to A,(p). Thus, there exists a minimizing sequence {up}nen € B () for B (a). Consider the cor-
responding normalized sequence {Vp}nen € B () given by (2.11). Lemma 2.8 implies that the limit point
Vo € Bz (a), and hence

< liminf min
n—+o0o

vviled vvil9d
ﬁL(a)smin{jgl voltdx Jy Vol X}

{ IQIVV;;I‘J dx IQIvalq dx
Jalvole dx ™ [oIvgle dx

, — =B (a),
Joviladx "~ [, lvyledx }

which means that v is a minimizer of S (a). O
Remark 2.10. The definition (1.7) of 8 () is equivalent to
fQIVu+|q dx

ﬁL (a) = 1nf{W

‘ue Bﬁ(a)}. (2.12)

This can be seen by testing 8 (a) either with the corresponding minimizer u, or with —u,.

Consider now the critical value

IQ V|9 dx
Joletla dx

The following lemma contains the main properties of S («).

B = in] 9 <ES(, o)\ (0}}. (2.13)

Lemma 2.11. The following assertions hold:

(D) Be(@) = +ooforany a < Ay(p), and B (a) € (A1(q), B3] for any a = Ay (p).
(ii) B (a) is nonincreasing for a € [A;(p), +00).

(iii) B (a) is right-continuous for a € [A3(p), +00).

(iv) Ka,p # 0ifand only if a > Ay (p) and B > B (@), where Ky g is defined by

Kaypi={ue W(l)’p sut #0, Ho(u") <0, He(u") <0, Gg(u*) <0} (2.14)
= Bg(a)niueWy? : Gpu') <0}

Proof. (i) As stated in the proof of Lemma 2.3, we easily see that B (a) = 0 for all « < A;(p), and hence
Br(@) = +co.Ifa = A;(p), thenES(p, A2(p)) \ {0} ¢ B, (a), and using (2.12), we obtain that B ; (a) < B7,. Since
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any sign-changing function w € Wé’p satisfies [|[Vw* ||g > A (q)||wi||Z (see Lemma 1.2), taking a minimizer u,
of B (@) (see Proposition 2.9), we conclude that

Be(@) = IVuild/lubld > 21(g) forall a > A2 (p).

Assertion (ii) can be proved as in Lemma 2.6.

(iil) Due to assertion (ii), it is sufficient to show that B (o) < limg—ay+0 B2 () for all ag > A,(p). Since
B (@) is monotone and bounded in a right neighborhood of ay, for any decreasing sequence {a,}nen such
that a, — ag + 0 as n — +oo there holds

Jim B (an) = alliﬁioﬁ‘(“)'

According to Proposition 2.9, for each n € N there exists a minimizer u, € B (ay) of - (a,), and we can
assume that |Vujz|, = 1. Thus, passing to an appropriate subsequence, u, converges to some ug € Wé’p
weakly in Wé’p and strongly in LP(Q). Moreover, uj # 0 in Q since Hg, (u}) < O implies that IIuﬁllg > 1/ap.
Furthermore, due to the weak lower semicontinuity of the Wé’p -norm, we have Hg,(uj) <0, and hence
ug € B (ag). Consequently, using (2.12), we conclude that

vut|? dx Vut|? dx
Jovcl limi Jolvus1? dx =liminfBc(ay) = lim Br(a).
a—ap+0

Bolag) s =———— <
JQ|“6|q dx n—-+00 Ig'u;”q dx n—+00

(iv) Assume thata > A;(p) and 8 > B (@). Letu € B (a) be aminimizer of B (a). Then H,(u*) < O and, in
view of (2.12), we may suppose that Gg, (@)(u*) = 0. Therefore, Gg(u*) < Gp, (y(u*) = 0 and hence u € K, p.

Suppose now that there exists u € K, p for some a, f € R. Since X, p ¢ B (a), assertion (i) implies that
a = A2(p). Moreover, since Gg(u*) < 0, the definition of B (a) leads to

3

vu*|1dx Vu~|1dx vut|?dx
ﬁ,g(tx)Smin{Igl | s JQ' | }S le | <
jQ|u+|q dx jQIu‘Iq dx f0|u+|q dx
which completes the proof. O

In the sequel, it will be convenient to use the notation

Yo i={(a,B) e R? : a > A2(p), B < Bo(a)}. (2.15)

Remark 2.12. Due to Lemmas 2.6 and 2.11, the definitions of 7 and B}, (see (2.6) and (2.13)) imply that
Br(a) < B, < Bi < Pa(a)foralla > Az(p), and hence M;yﬁ + 0 forany (a,B) € Z..

Remark 2.13. In the one-dimensional case we have

B =B € (A2(q), Au(9)). (2.16)

Indeed, if O = (0, T), then the second eigenfunction ¢, ), is given explicitly through the first eigenfunction ¢,
by ¢2,,(x) = ¢,(2x) for x € (0, T/2], and ¢, p(x) = —pp(2x - T) for x € (T/2, T) (see Appendix A). Hence,
Lemma A.2 in Appendix A implies that

ma
Ip3,)'la eyl

g3 g loplig

€ 2741(q), 272:(9) = (A2(q), A4(q)),

and, consequently, (2.16) holds.

2.2 Existence of positive energy nodal solutions

In this subsection, we prove the existence of nodal solutions in the set £ defined by (2.15). To this end, we
consider the minimization of the energy functional E, g over the set M; 5
First, we prepare the following auxiliary lemma.
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Lemma 2.14. Let {un}lnen be an arbitrary sequence in M; 5 and let {Vy}nen C M}X 8 be a corresponding nor-
malized sequence given by (2.11) in Lemma 2.8. If |Vu}|l, — +00 as n — +oo, and {E p(u;,)}nen is bounded
from above, then Gg(v{) < 0. Consequently, vo € Kq,p.

Proof. Assume that {Eq g(u};)}nen is bounded from above. Recalling that —Gg(uy;) = Ha(uy) < Oby u, € Mi 8
and noting that the equalities

Eapw) = =9 6a0u) = -2 2, (u) 2.17)
P q

hold for all u € Ng,g, we get the boundedness of Gg(uy;):

P9 Goup) = Eqpuf) < sup Eq p(u}) < +oo.
q leN

0<
Consequently, the weak lower semicontinuity and the assumption that ||Vu; ||, — +co asn — +oo imply

e p(u+)
Gp(v{) < liminf Gg(v};) = lim inf
n—+oo n—+o0 "Vun"p

Combining this inequality with the fact that vo € B (a) (see Lemma 2.8), we conclude that vy € Ky . O

From Remark 2.12 we know that Ml a.p # 0 for any (a, ) € £;. Hence, there exists a minimizing sequence
for E,,p over JVE1 . Moreover, this minimizing sequence, in fact, converges.

Theorem 2.15. Let (a, B) € . Then there exists a minimizer u € M ofEa B over Ma B

Proof. Assume {un}nen C Mtlx B to be a minimizing sequence for E, g over Ma B Equalities (2.17) imply that
Eq p(uy) > 0, and hence {Ea,8(Un)}nen and {Ea,p(u3)}Inen are bounded. Applying Lemma 2.14, we conclude
that if |Vu; ||, — +0o as n — +00, then the limit vy of a normalized sequence (2.11) belongs to the set K g
defined by (2.14). However Ka,p = 0forall(a, B) € X, due to Lemma 2.11 (iv). This is a contradiction. Thus,
{ui}nen is bounded in W P Since {~up}nen is also a mlnlmlzlng sequence for E, g over wmt wp We apply the
same arguments to derive that (-u,)* = u;, is bounded in W , which finally yields the boundedness of the
whole sequence {uy}nen-

Let us now show that [|[Vu;ll, and [|Vu;ll, do not converge to zero. Applying assertions (ii) and (iii) of
Lemma 2.8 to the corresponding normalized sequence {v,},en given by (2.11), we see that its limit point vq
belongs to B (a). Suppose, by contradiction, that |Vuy|, — 0 as n — +oo. Then, using the Nehari con-
straints, we get

0 < Gp(vy) = =IVuilh Ha(vi) > 0 asn — +oo

since H, is bounded on a bounded set and |[Vv; |, = 1. Consequently, Gg(v{) <liminf, .o Gg(vy) =0
and Hy(vy) < liminfy o Ha(Vi) <0, i.e., Vo € K4 g, and we obtain a contradiction as above. In the case
[Vu,l, — 0, we consider —uj, instead of uy, and again obtain a contradiction. As a result, there holds

+o_ s +1P - 4
6" = rllrelnlfIIIVunllp >0 and 6 := %E]IEIIVunIIp > 0. (2.18)

Now, choosing an appropriate subsequence, we get u,, — uo weakly in Wé’p and u, — ug strongly in L”(Q),
where ug € Wé’p . Inequalities (2.18) together with H,(u}) < O imply that IIuﬁllz > 6*/a for all n € N, and
hence ug # 0. At the same time, the weak lower semicontinuity yields

Ha(up) < l%lllJri(I)lofHa(u%) <O0. (2.19)
Let us show that
Ho(u) <0 < Gg(uf) and Hga(ug) <0 < Gplug). (2.20)

Indeed, since K4 is empty for (@, B) € X, we see that uf — uy ¢ Ko, and uy — ufy ¢ Kq g. This leads to
Gﬁ(ug) > 0 since Ha(ug) < 0 by (2.19). Finally, from the Nehari constraints and the weak lower semiconti-
nuity we derive that

Hg(ug) + Gp(ug) < lliqulJriglof(Ha(uﬁ) +Gp(up)) =0

This means that H,(ug) < —Gg(up) < 0, and hence (2.20) is shown.
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According to (2.20), Lemma 2.1 implies the existence of unique maximum points t§ > 0 of Eq g(tuy)
+

and t; > 0 of Eq g(tuy) with respect to t > 0, and tjuy € Ng,p. Accordingly, we conclude from (2.20) that
thug — toup € My 5. Therefore,

Jiv&fﬁ Eap < Eqp(tiul —tyug) < lri,riljng“’ﬁ(tgu; - touy)
= lri,riljgof(E”"ﬁ(tgu;) + Eq p(touy))

< lrillllj(I)lof(Ea,/g(u;) + Eq p(uy)) = IEIIBEEOfEa’ﬁ(”n) = Jbltllfﬁ Eqp.

The last inequality in this formula is due to the fact that max;.o Eq g(tuy) = Eq,p(uy); see Lemma 2.1. Conse-
quently, t5us ~ toug € My 4 is the minimizer of Eq g over My ;. O

Lemma 2.16. Let (a,B) € L. If u € M; 5 is a minimizer of Eq g over M}l 5 then u is a critical point of Eq g
1,p ’ ’
on Wy™.

Proof. The proof can be handled in much the same way as the proof of [9, Lemma 3.2], where a variant
of the deformation lemma was used in a framework of the problem with indefinite nonlinearities; see also
[6, Proposition 3.1]. O

2.3 Qualitative properties

In this subsection, we show that any minimizer u of E, g over M; s for (a, B) € £; has exactly two nodal
domains (that is, connected components of Q \ u1(0)).

Lemma 2.17. Let (a,8) € Z; and letu € M;,ﬁ be a minimizer of Eq, g over lex,ﬁ' Then u has exactly two nodal
domains.

Proof. Suppose, contrary to our claim, that there exists a minimizer u M; 8 of Eq p over M; 8 with (at least)
three nodal domains. We decompose u such that u = uy + u, + us, where u; # 0 fori = 1, 2, 3, and each u;
is of a constant sign on its support. Note that each u; € Ny g. Indeed, u; € Wé’p (cf. [16, Lemma 5.6]), and
since u is a solution of (GEV; @, ) by Lemma 2.16, we obtain

0= <E¢,x,/3(“)’ ui) = Ho(ui) + Gp(u;) fori=1,2,3. (2.21)
Assume, without loss of generality, that u* = u; + u; and u™ = —us. Since u € Mi p» We have
Ho(u") = Ho(u1) + Hy(u2) <0 and  Hg(u™) = Ho(-u3) = Hy(u3) < 0.

Moreover, we may assume that Hy(u3) < Hg(u1), whence Hy(u3) < 0. This assumption splits into the follow-
ing four cases:
() Ha(uz) < Ha(uy) < 0.
(ii) Hq(uz) < Ha(up) = 0.
(iii) Hq(uz) < 0 < Hy(uy) and Hy(uy) + Hy(us) = 0.
(iv) Hy(uz) < 0 < Hy(uq1) and Hy(uq) + Hy(uz) < 0.
Now we will subsequently show a contradiction for each case.
(i) It is easy to see that u; + us € M;’ﬁ. Since Hg(u2) < 0 leads to Eq,p(u2) > 0, we have a contradiction
by the following inequality:

Jz{nlf Eqp < Eqp(us +u3) < Eqp(ur +us) + Eq p(u2) = Eq,g(uy + Uz +u3) = J3/1['11f Eqp.
ap a.p

(ii) Since Hg(uq) = 0, we can derive from (2.21) that Gg(u1) = 0. Recalling that Hq(uz) < 0, we get
Uy — uy € Kq g, which contradicts assertion (iv) of Lemma 2.11.
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(iii) Recall Hy(u3) < 0 and set
Ho(uy)  Gpui)

CHo(uz)  Gpluz)

1<th =
Since uy, u3z € Ny g, we obtain
He(uy — tous) = Ha(u1) + thHa(us) = Gg(uy) + thGp(us) = 0.
On the other hand, since Gg(u3z) > 0, to > 1, and p > g, we have
0 = Gg(u) + t5Gp(uz) = Gp(ur) + t{Gp(uz) = Gpur — tous).

Consequently, Hq(uy - tous) = 0 and Gg(u; - tous) < 0. Considering a function w = u; — fous - up, we get
w* =uy - tous and w~ = u, which implies that w € X, g. This is again a contradiction to the emptiness
of K p.

(iv) Consider a function w = uy — u3 — u,. Then w* = u; — u3 and w™ = u,. By the assumptions, we have
Ha(w*) < 0. Therefore, w ¢ M;,B and

Eqp(W) = Eq (U1 —u3 —uz) = Eq g(u1) + Eq p(u3) + Eq g(uz) = Eq p(u) = mimnlf Eqp,
ap

thatis, wis also aminimizer of E, g over M; 8 and hence a weak solution of (GEV; a, ) in view of Lemma 2.16.
This implies that for any & € Wé’p there holds

lewIp‘ZV(ul —u3 —uy)V&dx + JIleq‘ZV(ul —u3 — uy)VE&dx
) 0
=a lelp‘z(ul —uz —up)édx+f lelq‘z(ul —u3 - up)é dx. (2.22)
Q Q

On the other hand, since u = u; + u; + us is also a weak solution of (GEV; a, ), we obtain

JIVqu‘2V(u1 + U3+ ux)VEdx + JIVqu‘ZV(ul + U3+ Up)VE dx
Q Q
=a Jlulp‘z(ul +us+uy)édx+p Jlulq‘z(ul +us +up)é dx (2.23)
Q Q
forall ¢ € Wé’p. Summarizing (2.22) and (2.23) and noting that |u| = |w| and |Vu| = [Vw/|, we get
JIVullp‘ZVulv.{ dx + JIVullq‘ZVulv.{ dx =a j|u1|1’—2u1<{dx +p Jlullq‘zulé'dx
Q Q Q Q

for each ¢ € Wé’p , since the supports of u; are mutually disjoint. This means that u; is a nonnegative solu-
tion of (GEV; a, B) in Q. However, the strong maximum principle implies that u; > 0 in Q; cf. [10, Remark 1,
p. 3284]. Hence, u, = 0 and u3 = 0, which is a contradiction. O

3 Nodal solutions with negative energy

In this section, we provide the main ingredients for the proofs of Theorems 1.6 and 1.7.

3.1 Auxiliary results

Consider the set
YA = {u e WP« [vulb = Alulb},

where A > 0. Hereinafter, by SX we denote the closed unit upper hemisphere in R¥+! with the boundary $¥-1.
We begin with the following linking lemma.
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Lemma 3.1. Let k € N. Then h(SX) n Y(Axs1(p)) # 0 for any h € C(S¥, p)provzded h|gr-1 is odd.

Proof. Fix any h € C(Sk, Wo’p ) such that h|g-: is odd. If ull, =0 for some u ¢ h(S%), then, obviously,
u € Y(Ags1(p)). Thus, we may assume that ||uf, > O for every u € h(S’j). Define the map

= { h)/Ih2)lp if z ¢ Sk,
h(z) :=
~h(-2)/Ih(-2)l, ifz e Sk.

It is not hard to see that h € Fks1(p), where Z,1(p) is the set given by (1.4) with r = p. By the def-
inition (1.3) of Aks1(p), there exists zo € S* such that |VA(zo)Il}) = As1(p). Since h(zo) € S(p), we have
IVA(zo)I5 = Aks1(D)IA(20)Ih. Moreover, since h is odd, we may suppose that zo € Sk. Consequently, we
obtain h(zg) € Y(Ax1(p)). O

Lemma 3.2. Let a, f € Rand let A > max{a, 0}. Then E, g is bounded from below on Y(A).

Proof. Assume that u € Y(A) with A > max{a, 0}. Using the Holder inequality, we obtain

-a Bt g A-a P B
Ivulh - Z1Q1 7 flulf = IVulh - ————~
A P g P P g (p))alp

pA
which implies the desired conclusion since g < p. O

A p-q
Eqp(u) > Q17 [ Vull3,

Lemma3 3. Assume a,fe lR and let {uy}nen be a sequence in W1 which satisfies |Vuylp, — +oo and
ﬁ(un)/||Vu,,||p — 0in (W, p)* as n — +oo. Then vy, := uy/||Vuyllp has a subsequence strongly convergent
inW, LP to some vo € ES(p; @) \ {0}, that is, a € a(-Ap).

Proof. Since [[Vvyllp, =1 for any n € N, passing to an appropriate subsequence, we may assume that v,
converges to some vy weakly in Wé’p and strongly in LP(Q). In particular, (H}(vo), va) — (H.(vo), vo) as
n — +o0o. Moreover,
! !
[(Eq p(Un), vn = Vo) 3 IE g, g ()l 12y IE G gl i) o

< IV(Vn = vo)llp < 2
-1 -1 p -1
IVunllp IVunllp IVl

as n — 400, by the assumption. Using these facts, we get

EL 5(un)
0(1) = (—F— — Hy(vo), va ~ o )
IVunl}

- j(|wn 297, — [VvolP"2Vv0)(VWy — Vvo) dx — j(|vn P2V, — VolP~2vo) (Vi — vo) dx
Q Q

B

1
IV |92V (Vv — Vo) dx — — | val92vp(va = vo) dx
||Vun||5 1

+ —
P—q
IVunly )

= j(Ian P2Vv,, — [VVolP2VVo) (Vv — Vo) dx + 0(1)
Q
-1 -1
> (IVvalh ™ = 1Vvols )UIVVally = [Vvollp) + 0(1),

where the last inequality is obtained by Holder’s inequality. Hence, |[Vvylp — [Vvollp = 1 as n — +00, and
the uniform convexity of W,? implies that v, converges to v, strongly in W,".
On the other hand, for any ¢ ¢ Wé’p the following equality holds:

(un)
< aﬁ p”l s(> JIan|P—2anV§dx—aJ|vn|p—2vn§dX
IVunllp J

+— J|an|q_2VVan dx - % lenlq‘zvnf dx.
IVunlly = 2 IVully = 2
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Therefore, passing to the limit as n — +0co, we derive

J|VV0 P=2Vvo V¢ dx - a leoll"zvo{ dx =0

) o)
forall & € W7, thatis, vo € ES(p; ) \ {0}. O
Lemma 3.4. If a ¢ 0(-Ay), then E, g satisfies the Palais—Smale condition.

Proof. Let {up}nen C Wé P he a Palais—Smale sequence for Eq p, thatis,
Eqp(un) — ¢ and [E; g(un)ll ey — O

asn — +oo, where c is a constant. Due to the (S, )-property for the operator —A, — A, (see Remark 3.5 below),
it is sufficient to show that {uy}nen is bounded in W(l)’p . If we suppose, by contradiction, that |Vuu[, — +oo
as n — +oo, then Lemma 3.3 implies that & € o(-Ap), which contradicts the assumption of the lemma. [

Remark 3.5. For the reader’s convenience we show that the operator -A, — A4 has the (S,)-property, namely,
1,p . . 1,p . .
any sequence {uy}nen € W™ converging to some uo weakly in W, and satisfying

lim sup(-Apun — Aqun, Un — Up) <0 (3.1)

n—+oo

converges strongly in Wé’p .Let u, — upin Wé’p as n — +oo, and let (3.1) hold. Then the Hélder inequality
yields

(=Apun — Dgqun, Uy — up) + o(1)
= (‘Apun - Aqun, Up — Ug) — (—Apuo - AquO» Up — Up)

= I(IVunlp‘2Vun — [VuolP2Vue)(Vuy, — Vuo) dx + J(IVunlq‘ZVun — |Vuol92Vug) (Vuy — Vug) dx
Q Q
> (IVunly ™ = 1Vuol5 ) UIVunlly - IVuollp) + (IVunld " = IVuold™ ) (IVunlly - IVuolg) = O,

which implies that [[Vunll, — Vuol, and [Vuglg — IVuolly as n — +co. Due to the uniform convexity
of W,"¥, we conclude that u, converges to uo strongly in W, .

Recall the definition (1.9):
JoIVepl? dx
Jolela ax

Lemma 3.6. If a € o(-Ay), then A1(q) < B} () < +0o0.

Bl (@) := sup{ : @ € ES(p; a) \ {O}}. (3.2)

Proof. Let a € o(-Ap). Recall that [31, Lemma 9] implies the existence of a constant C(a) > O such that
IVull, < C(a)llully for any u € X(a), where X(a) is defined by (2.7). Thus, applying the Holder inequality,
we get

_ q/p _
JIVulq dx < |Q|¥<j|w|ﬂ dx) < |Q|p7qC(a)qJ|u|q dx
Q Q Q

for any u € X(a). Therefore, B (@) < +oo since ES(p; a) c X(a). On the other hand, it is clear that ] (a) = A1(q)
provided ES(p; a) \ {0} # 0. O

In the one-dimensional case we can clarify the bounds for 7 (@) as follows.

Lemma 3.7. Let N = 1 and a = Ax(p), k € N. Then

k
k+1

14
Jeplg

(3.3)
loplig

l
< k(@) = hen (@) ).

)" = K@) < B (@) = k .

A (@)(
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Proof. LetQ = (0,T), T >0, and a = Ax(p) for some k € N. It is known that Ay (r) = (r - 1)("—’T")P foranyr > 1
and k € N (cf. Appendix A), and hence the first and third equalities in (3.3) are satisfied.

Note that the eigenspace ES(p;Ax(p)) is one-dimensional, as it follows from [17, Proposition 2.1].
Denoting the corresponding eigenfunction as ¢, we directly get B (Ax(p)) = ||(p;<||3/ II(kaIg. On the other
hand, ¢y has exactly k nodal domains of equivalent length (see Appendix A), and hence the standard scaling
yields g7 (Ax(p)) = kq||(p1{7 ||Z /Ny ||Z, where @, is the first eigenfunction of —A,. The inequalities in (3.3) follow
from Lemma A.2 below. O

The following lemma ensues readily from the definition (3.2).
Lemma 3.8. Let a € o(-Ap) and B > B (a). Then Gg(¢p) < O for all ¢ € ES(p; a) \ {O}.

Lemma 3.9. Leta € Rand k € N.If > Ax+1(q), then there exist an odd map hg € C(Sk, Wé’p) and to > 0 such
that

maXEalﬁ(toho(Z)) < 0.

zeSk

Proof. Let B > Ax+1(q) and choose € € R satisfying

Aks1(q) + 2¢

1
O<e< = and 12000

<B-e. (3.4)
By the definition of Ax+1(g), there exists a map h; € .%+1(q) such that

mg}IIVhl(Z)IIZ <Ais1(q) + & (3.5)
ze

Note that by taking ¢ > 0 small enough it is easy to get max,csx Eq,(th1(z)) < 0. However, h; € C(Sk, s(q)),
and we do not know a priori that h; € C(S, Wé ’P). Hence the arguments below are needed.
Since C3°(Q) is a dense subset of Wé’q and h; is odd, for any z € Sk we can find u, € C3°(Q) such that

Uz =tz [IVR@IG - IVulg] <&, Ihi(2) ~ uzllg <e. (3.6)

By the continuity of hy, for any z € Sk there exists 8(z) € (0, 1) such that
lhi(z) - hi()llg <& forally e Skwith |z - y| < 8(z). (3.7)
Considering min{6(z), 6(-z)} instead of §(z), we may assume that § is even. Note that (3.6) and (3.7) lead to
luz; - hi(y)llqg < 2¢ forally e Sk such that |z - y| < 6(z). (3.8)

Due to the compactness of S¥, we may choose a finite number of points z; € SX,i=1, 2, ..., m, such that

m
S < | J[B(z, 8(z1)) U B(~zi, 8(-z1))]
i=1
where B(z;, 6(z;)) ¢ R¥*! is a ball of radius 6(z;) centered at the point z;. Now, for eachi=1,2,...,m we
take a function p; € Co(R¥1) such that

suppp; = B(zi, 6(z;)) and p; > 0in B(z;, 6(z;)).

Note that B(zj, 6(z;)) N B(-zi, 8(-z;)) =0 for all i=1,2,...,m since 6(z;) = 6(-z;) < 1. Thus, p;i(-z) =0

whenever p;(z) > 0. Define
pi(z)

Y1 (pj(2) + pji(-2))
Since {B(z;, 6(z;)) U B(-z;, 6(—21-))};’:‘1 is an open covering of Sk, it is easy to see that p; € C(S*) for all
i=1,2,...,m Moreover,

pi(z) := for z e Sk.

m
0<pi<1, pi(-z)=0 providedpi(z) >0and Y (pj(2) +pj(-2)) = 1 (3.9)
j=1
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forallze Skandi=1,2,..., m. Thatis, {5;}I", forms a partition of unity of S. Set
m m
ho(2) = Y (Pi(2uz, + pi(-2u_z,) = Y uz,(pi(z) - pi(-z)) forz e S*.
i-1 i-1

Evidently, hg is odd, and the continuity of ; implies that ho € C(S¥, Wé Py,
Let us show that max,csr Eq p(tho(2)) < 0 for sufficiently small ¢ > O. First, for all z € Sk there holds

IVho(2)llg < Y IVUz llg(Pi(2) + pi(~2))

i=1

< Mis1(q) + 287 Y (pi(2) + pi(-2)) = (Aksa(g) + 26)™1, (3.10)

i=1

where we used that [|Vu,, IIg < Aks1(q) + 2¢, by virtue of (3.6) and (3.5). Moreover, ho(z) # O for all z € Sk,
Indeed, using the convexity of | - IIZ, the oddness of h1, (3.9) and (3.8), we derive

Ih1(2) = ho @)l = Y. (Pi(2) (1 () - uz) + pit-2)ha(2) ~ u-z)|
i=1

<

Mz

(pi(@)h1(2) = uz |8 + pi(~2)lluz — ha(-2)|18) < 294
1

since pi(-z) > O if and only if -z € B(z;, 6(z;)). Hence, [[ho(2)llg = [|h1(2)llq - 26 =1 -2€ > Oforevery z € Sk.
Now using (3.10) and (3.4), we get

||Vh0(Z)||g < Ake1(q) + 2¢ - Air1(q) + 2¢
Iho(2)IIZ lhoz)ld ~ (1-2¢)

<p-¢

for all z € Sk, Thus, for sufficiently small ¢ > 0 and any z € SX we obtain

p q
Eq p(tho(2)) = %(IIVho(Z)Ilz - allho(Z)Ilg) + %(IIVho(Z)llg - ﬁllho(Z)llg)
ti(1 - 2¢)le <0

q

since g < p. This is the desired conclusion. O

P » »
< —max([[Vho(2)llp — alho(2)lp) -
D zeSk

In the sequel, we will also need the following variant of the deformation lemma. We refer the reader to
[14, Theorem 3.2] for the proof.

Lemma 3.10. Let ¥ be a C'-functional on a Banach space W, let ¥ satisfy the Palais—-Smale condition at any
level c € [a, b] and let ¥ have no critical values in (a, b). Assume that either K, :={u € W : ¥'(u) =0, ¥(u) =a}
consists only of isolated points, or K, = 0. Define V¢ :={u € W : ¥(u) < c}. Then there exists n € C([0, 1] x W, W)
such that the following hold:

() ¥(n(s,u))is nonincreasing in s for every u € W.

(i) n(s,u) =uforanyu e ¥4, s € [0, 1].

(iii) n(0, u) = u and n(1, u) € ¥ for any ¥> \ K.

(iv) If ¥ is even, then (s, - ) is odd for all s € [0, 1].

That is, ¥ is a strong deformation retract of ¥? \ Kj,.

3.2 General existence result via minimax arguments

In this subsection, we prove a result on the existence of an abstract nontrivial solution to (GEV; a, 8). Let
us emphasize that this result does not guarantee that the obtained solution is sign-changing. (However, it is
shown in [10] that for sufficiently large a and 8 problem (GEV; a, ) has no sign-constant solutions).

Recall that we denote k, := min{k € N : a < A 1(p)}.
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Theorem 3.11. Assume that a € R\ 0(-Ap). Then for any B > max{B; (@), Ak,+1(q)} problem (GEV; a, B) has
a nontrivial solution u with Eq g(u) < 0, where B (a) is defined by (1.9).

Proof. Since a € R\ 0(-Ay), we need to investigate two cases:
() a¢o(-Ap).
(i) a € o(-Ap) and there exists a sequence {an}nen € R\ 0(-Ap) such that lim,_.e0 @y = a.

Case (i): Let B> Ak,+1(q) = max{p (a), Ax,+1(¢q)}. Then Lemma 3.9 guarantees the existence of an odd
ho € C(Sk, W}P) and of to > 0 such that

p = max Eq g(toho(z)) < 0.
zeSka

Moreover, by the definition of k, we have a < Ay .1(p), and hence Lemma 3.2 implies that E, g is bounded
from below on Y(A,+1(p)), that s,

80 := inf{Eq g(u) : u € Y(Ag11(p))} > —00. (3.11)

Since toho(-) is odd and E, g is even, Lemma 3.1 justifies that E4 g(toho(z0)) = 6o for some zo € S’f‘, and
hence §p < p. We are going to show that E, g has at least one critical value in [§o - 1, p]. Suppose, by
contradiction, that E, g has no critical values in [6o — 1, p]. Recall that E, g satisfies the Palais—Smale con-
dition by Lemma 3.4 because we are assuming that a ¢ o(-Ap). Then, due to Lemma 3.10, there exists
1 € C([0, 1] x Wy'P, Wy'P) such that (s, -) is odd for every s € [0, 1] and

Eqp(n(1, toho(2))) <60 -1 forallz e Ska., (3.12)

On the other hand, noting that n(1, toho( ))|Sk,, € C(S Wé’p) and n(1, toho(-))|sk-1 is odd, Lemma 3.1
guarantees the existence of a point z; € S+ such that

n(1, toho(z1)) € Y(Ak,+1(D)),
whence 6 < Eq4 g(1(1, toho(z1))) by the definition of 6o (see (3.11)). However, this contradicts (3.12).

Case (ii): Let 8> max{f] (@), Ak,+1(q)}. As in the former case, according to Lemma 3.9, there exist an odd
map ho € C(Ske, Wy?) and to > 0 such that

p := max E4 p(toho(2)) < 0. (3.13)
zeSka

Recalling that a < Ag,+1(p) and discarding, if necessary, a finite number of terms of the sequence {a,}nen, We
may suppose that an < A, +1(p) and

an—a
pn :=max Eq, g(toho(2)) < p + tﬁ' n =0l max|ho(2)[} < 0 (3.14)
zeSka p zeSka

for all n € N. Since a, ¢ 0(-Ap), we apply the proof of case (i) to each a, < Ak, +1(p) and B > Ax,+1(g), and
hence obtain a sequence of critical values ¢y, of Eq, g such that

8n—1<cnp<pn, where 6&y:=inf{Eq, g(u):u e Y(Ax+1(p))} > —o0. (3.15)

Let u, € Wé’p be a critical point of E,, g corresponding to the level cy, i.e., Eq, g(un) = cn. We proceed
to show that {u}nen is bounded in Wé’p . Suppose, by contradiction, that |[Vuyl, — +co as n — +oo. Set
Vn := Un/[[Vuyll, and note that
E — |E' E < lan—al o DIVunl2? (3.16)
Iz, gl = VB ptn) = B, gl < 3 SIVUnlly™ = o(DIVUnly :

as n — +oo. Thus, due to Lemma 3.3, we have that v,, converges strongly in wkp , up to a subsequence, to
some v € ES(p, a) \ {0}. Let us prove that Gg(vo) = 0. By (3.14), we have

1 1
(- p) Gp(vn) = W(Ean,p(un) “(E}, p(n), un)) =

Cn Pn
IVunl} IIVunIIZ

<0. (3.17)
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To obtain a converse estimate, we show that 6, is bounded from below. Since lim,_,.00 an = @ < A, +1(D),
we can choose ag such that a, < ag < Ak +1(p) for all sufficiently large n € N. Thus, Lemma 3.2 implies
that Eq, g is bounded from below on Y(Ak,+1(p)). Noting that E,, g(u) > Eq, g(u) for any u € Wé’p, we get
On > inf{Eq, g(u) : u € Y(Ag,+1(p))} > —oo for all n € N large enough, which is the desired boundedness.
Using this fact, the two equalities in (3.17), and (3.15), we derive that

1 6p-1

1
0> (—-—)Ggvy) =
(q p) p0vn) Va1

asn — +o0, which leads to Gg(vo) = 0, because v, — vq stronglyin Wé’p .Onthe other hand, since a € o(-Ap)
and g > By (a), we get
Gp(@) = IVold - Blplld #0 forall g € ES(p; @) \ {0}; (3.18)

see Lemma 3.8. Hence, we obtain a contradiction since Gg(vo) = 0 and v € ES(p, @) \ {0}. Thus, from (3.16)
it follows that {u,}nen is a bounded Palais-Smale sequence for E, g. Then the (S.)-property of the operator
—-Ap — A4 (see Remark 3.5) implies that u, converges strongly in WP, up to a subsequence, to some critical
point ug of Eq g. Furthermore, uq is nontrivial and its energy is negative since

Eq p(up) = limsup Eq, g(uy) = limsup ¢, < limsuppp, <p+0(1) <0
n—+o0o n—+oo n—+oo

by (3.13) and (3.14). O

Remark 3.12. Note that the proof of case (ii) gives more. Namely, if a € 0(-A,) and lim,—,+ ®n = a for some
sequence {anlnen € R\ 0(-Ap), and B > Ai +1(g) is such that (3.18) holds, then there exists a nontrivial
solution to (GEV; a, B).

3.3 General existence result via the descending flow

In the last part of this section, we use the descending flow method to provide an existence result for
(p, q)-Laplace equations with a nonlinearity in the general form.
Suppose that h: Q x R — R is a Carathéodory function satisfying h(x, 0) = O for a.e. x € Q and there
exists C > 0 such that
|h(x,s)| < C(1 +|s[P7!) foreverys e Randa.e.x € Q. (3.19)

Under (3.19), we define a C1-functional J on Wé’p by

u(x)
1 1
Ju) := = JIVulp dx + = JIVqu dx - I j h(x, s)ds dx. (3.20)
p Q 1 Q Q0
For simplicity, we denote the positive cone in Ccl) (Q) by
P:={u e CYQ): uk) >0forall x € Q}. (3.21)

The following result can be proved by the same arguments as [27, Theorem 11]. For the reader’s conve-
nience, we give a sketch of the proof in Appendix B.

Theorem 3.13. Assume that the following conditions hold:
(A1) There exists Ay > O such that

h(x, Wu + Ao(lul? + |ul?’) >0 foreveryu € Randa.e. x € Q.

(A2) There exists y € C([0, 1], C(l)(ﬁ)) such that y(0) € P, y(1) € —P and maxse[o,1) J(y(s)) < O.
If, moreover, ] is coercive on wh? , then | has at least three critical points w,y € int P, w, € —int P, and
w3 € C(l)(ﬁ) \ (P U -P) such that J(w;) < maxseo,1] J(y(s)) < 0 fori=1,2, 3. Here

intP:={ueP:ou(x)/ov<O0forallx € 0Q},

and v denotes the unit outer normal vector to 0Q).
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We say that v € Wé P is a (weak) super-solution of (GEV; a, 8) whenever for all nonnegative ¢ ¢ Wé P there
holds

jIVvlp‘ZVqu) dx + JIVVIQ‘ZVVV¢ dx > a lelp‘zwp dx + B lelq‘zwp dx.

Q Q Q Q
Applying Theorem 3.13 to a truncated functional corresponding to E, g, we show the following result on the
existence of nodal solutions to (GEV; a, B) with a negative energy.

Proposition 3.14. Leta € Rand B > A,(q). If there exists a super-solution of (GEV; a, ) which belongs to int P,
then (GEV; a, ) has a nodal solution u such that Eq g(u) < 0.

Proof. Let v € int P be a super-solution of (GEV; a, ) with a € R and 8 > A,(q). Note that —-v becomes a
negative sub-solution of (GEV; a, ). Using v, we truncate the right-hand side of (GEV; a, ) as follows:

av(x)P~L + Bv(x)11  ifs > v(x),
f(x,8) := { als|P~2s + B|s|9%s if —v(x) < s < v(x),

—av(x)P71 - Bv(x)97 ! if s < —v(x).

It is easy to see that f is the Carathéodory function and f(x, 0) = O for all x € Q. Moreover, f satisfies (3.19)
and, taking Ao = max{|a|, |B|}, it satisfies assumption (A1) of Theorem 3.13.
Define a corresponding truncated C'-functional I on Wé P by

u(x)
I(u) := 1 JIVuIP dx + 1 JIVqu dx — J J f(x, s)ds dx.
p Q a Q Q0

Note that the boundedness of v in Q implies the boundedness of f, and therefore I is coercive on W,”. To
apply Theorem 3.13 it remains to show that (A2) holds. To this end, let us construct an appropriate path yj.
Choose € > 0 satisfying A;(q) + 2€ < B. By the characterization (1.5) of 1(gq), there exists y € C([0, 1], S(q))
such that

y(0) = @q €intP, y(1)=-¢4 € ~intP, SIGI}%IIVV(S)IIZ <Aag) +e.

Using the density arguments (as in the proof of Lemma 3.9), we can obtain a path y € C([0, 1], C(l)(ﬁ) \ {0})
such that y(0) € P, y(1) € —-P, and
IVP)IE < Aa(q) +28)17(9)11
for every s € [0, 1]. Since v € int Pand y € C([0, 1], C})(ﬁ) \ {0}), we get for any t > O small enough, s € [0, 1]
and x € Q that
—v(x) < ty(s)(x) < v(x),

and hence
fx, ty(s)) = 2L aly(s)P2y(s) + t771 By (s)|9729(s).

Therefore,

p q
1(tj(s)) = %(MW(s)ufs —alp(s)IE) + %(nvy(smz ~BI7s)I9)

tP—4 A(q)+2e-

< t9( —— [ max |Vy(s)I5 + |a] max [[(s)I5 min 17s)19) < 0
(5L max V(I + lal max 1] + in 17(5)13)

s€[0,1]

for sufficiently small ¢ > O since
PR
q<p, Sg{gg}lly(S)llq >0, Ax(q)+2e<8.

Thus, for such a small t > O the path yo(s) := ty(s) satisfies assumption (A2) of Theorem 3.13.
As a result, according to Theorem 3.13, we obtain a sign-changing critical point u € Cé(ﬁ) \ (PU-P)
of I satisfying I(u) < maXe[o,1] I(yo(t)) < 0. By the standard argument, we can show that -v <u <vin Q.
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In fact, recalling that v is a super-solution of (GEV; «, 8) and taking (u - v)* € Wé’p as a test function for
I'(u) - E;,ﬁ(v), we obtain

0< j (\VulP=2Vu — |Vv[P~2Vv)(Vu - Vv) dx + J (IVul972Vu — |Vv|972Vv)(Vu - Vv) dx

u>v u>v

< If(x, w(u-v) dx - j(o(vp‘1 +BvI Y -v)tdx =0,
Q Q

which implies that (u — v)* = 0 and hence u < v in Q. Similarly, taking —(u — (-v))~ as a test function, we get
u > —v. Therefore, u is a nodal solution of (GEV; a, B) and Eq p(u) = I(u) < maxse(o,1) I(yo(s)) < O. O

4 Proofs of the main results

In this section, we collect the proofs of our main results stated in Section 1.2.

Proof of Theorem 1.3. Recall that any sign-changing solution of (GEV; &, 8) belongs to the nodal Nehari set
Mg, g defined by (2.1). At the same time, M4, is empty under the assumptions of the theorem, as is shown in
Lemma 2.4, which completes the proof. O

Proof of Theorem 1.5. The desired conclusion follows directly from the combination of Theorem 2.15 and
Lemmas 2.16 and 2.17. O

Proof of Theorem 1.6. Note that problem (GEV; a, B) possesses an abstract nontrivial solution u € Wcl) P with
Eq p(u) < 0 forany

a e R\ o(-Ap) and p>max{B; (@), Ax+1(@)} > A2(q)

by Theorem 3.11. If u is a nodal solution, then we are done. If u is a nontrivial nonnegative solution, then
u € int P (see, e.g., [10, Remark 1, p. 3284]), and hence Proposition 3.14 guarantees the existence of a nodal
solution v of (GEV; a, f8) such that E, g(v) < 0. O

Proof of Theorem 1.7. Ifa < A1(p) or 1(p) < a < A»(p), then for all § > A,(q) there exists a nodal solution, as
follows from Theorem 1.6. If a = A1 (p), then, as noted in Remark 3.12, Theorem 3.11 implies the existence
of an abstract nontrivial negative energy solution of (GEV; a, ) for any 8 > A,(g) such that Gg(¢,) # 0. Since
the first eigenfunction ¢, of —A, is unique, up to a multiplier, we derive the existence under the assump-
tion f # ||V<pp||g/ oy ||Z. If the obtained solution changes its sign, then we are done. Otherwise, we apply
Proposition 3.14 and obtain the existence of a nodal solution with a negative energy. O

Finally, we will prove the nonexistence result in the one-dimensional case.

Proof of Theorem 1.4. Let N =1and Q = (0, T), T > 0. We temporarily denote by Ax(r, S) the kth eigenvalue of
-A, on (0, S) subject to zero Dirichlet boundary conditions, r > 1, S > 0 (see Appendix A). Suppose, by con-
tradiction, that a < A>(p, T) and B < A2(g, T), but there exists a nodal solution u for (GEV; a, B). Evidently,
there is at least one nodal domain of u which length S is less than or equal to T/2. Using, if necessary, the
translation of the coordinate axis, we may assume that u is a constant-sign solution of (GEV; a, ) on inter-
val (0, S). Define v := uon (0,S)and v = 0 on [S, T/2]. Clearly, v € Wé’p(O, S)c Wé’p(O, T/2). Moreover, it is
not hard to see that

28\
LD =00, T/2) = (F) L S) < 1, S)
for any r > 1. Thus, (1.2) and the assumption S < T/2 lead to the inequalities

S !
Jo W' dt

[SIvip dt

JS v'|9 dt
and B<Ayg, T)<Ai(q,S) < o%—— (4.1)

I
= )
Jovia at

a<Ap, T)<Ai(p, S) <
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Taking now v as a test function for (1.1), we arrive at
S S S S
0< JIV'IP dt-a lelp dt=p lelq dt - le'lq dt<0,
0 0 0 0

and hence we have equalities in (4.1). On the other hand, the simplicity of A (r, S) implies that v is the first
eigenfunction corresponding to A1 (p, S) and 11(g, S), simultaneously. However, this is a contradiction, since
¢p and ¢ are linearly independent for N = 1 (see [20, Lemma 4.3] or Lemma A.1 below). O

A Appendix A

In this section, we show some relations between eigenvalues and eigenfunctions of the p- and g-Laplacians
in the one-dimensional case. Consider the eigenvalue problem

~(W'1"2u) = Ajul"u in (0, T),
u(0) =u(T) =0,
wherer > 1and T > 0. It is known (cf. [17, Theorem 3.1]) that g(-A,) is exhausted by eigenvalues

2n
rsin(n/r)’

km,
T

r
) , Wherem, =

() = (r = 1)(

(It is not hard to see that 7, is a decreasing function of r > 1.) The corresponding eigenfunctions are denoted

by sin,( k’}’t), where sin,(t) is the inverse function of jg (1-s""Y"ds, x € [0, 1], extended periodically and
anti-periodically from [0, 77,/2] to the whole R (see also [11]). By construction, sin,( k’}’t) has exactly k nodal

domains of the length T/k on (0, T). As usual, we denote the first eigenfunction sin,(”T't) as @r.

For the convenience of the reader we briefly prove that the first eigenfunctions ¢, and ¢ are linearly
independent; see also [20, Lemma 4.3] for a different proof.

LemmaA.1. Let N = 1 and q # p. Then ¢, and @4 are linearly independent.

Proof. Suppose, by contradiction, that ¢, (t) = () forall ¢ € [0, T]. In particular, we have

sinﬂ%) = sinq(ant)

forall t € [0, T/2]. By the definitions of sin,, and sing, we obtain

X X
1 J(l —sP)y P gs = 1 J(l —s9Yi4s forall x € [0, 1].
) )

Using a Taylor series, we get (1 — s?)~1/P = 1 + O(s?) and (1 — s7)"1/4 = 1 + O(s?) in a neighborhood of s = 0.
Thus,

JI(2 - L)+ o6 o] as—o

for sufficiently small x > 0, which implies that m, = 7, since p, g > 1. However, this contradicts the mono-
tonicity of 77, with respect to r > 1. O

Next, we prove the main result of the section.
LemmaA.2. Let N=1and1 < g < p < +co. Then

lopld

loplig

M(q) < < A2 (q).
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DE GRUYTER V. Bobkov and M. Tanaka, On sign-changing solutions = 123

Proof. The first inequality is trivial because the first eigenvalue A:(q) is simple and ¢, # @4 (see [20] or
Lemma A.1). Let us prove by direct calculations that

14
||<Pp||;1 <Ay(q) forg<p.
leplg

Note that
lpplig foTlsinL(%)lq dt fOTlcosp("”t)Iq dt jg”lcosp x9dx L;T”/z cosp x dx A1)
lpplig joTlsinp(”%*)w dt Tq fo Isin, (72 Y19 dt S Td Jg"lsinp xlgdx T4 jg"/z sing x dx

Using the formulas

/2 /2
q+1 p-1 J q 1 /1 q-1
sind x dx = B and cos, xdx=—B(—,1+
J P p ( p’ p ) ) v p (p )

from [11, Proposition 3.1], where B(x,y) := jol t*~1(1 — t)Y~1 dt is the beta function with real x,y > 0, it
becomes sufficient to prove that

B(1 1+ q—l) A(q) T4

TTg\4q
B, ) p z(q—l)(n—p). (A.2)

We will subsequently simplify (A.2), to obtain an easier sufficient condition. Note that, by definition,

1 1

1 q - 1 _ 1.9 g-1 ,_1 _ 1 _
B(E’“ > )—Jtv (1—t)Pdt<J dt = (p 1)_p
0 0
Note that
~_TOOT(y)
B(Xsy) - F(X+y) ’

where T'(y) is the gamma function; cf. [3, Theorem 1.1.4]. Hence, combining the Euler reflection formula
TY)IT(1-y)= Smny (see, e.g., [3, p. 9]) with the identity xI'(x) = I'(x + 1), we obtain

FOry) Tx+yIrd-y)  I'x)

B(x,y)-B y1-y) = = Ty)Ir(1-y) = - . A3
(X, y) - Blx+y. Y) IT'x+y) I'x+1) F'x+1) W -y) X sin ity (A.3)
Applying (A.3) to B(%l, ‘%1) withx = g/pandy = 1/p, we get
q+1 p-1 pm 1
B )
( p p ) gsin(3) B(q 1
Therefore, using the estimate
1 ( ( 11
B(g,—)zjt%‘l(l—t)%‘ldmj trl(1-tp 'dt=B B(=,>),
pp p'p
0 0
we arrive at
B(3,1+4 1) gsin(%) 1 1 2 11
< DL Ly 2L v
B(qp , p s pp pnp, ‘\p p

Thus, comparing the right-hand sides of (A.2) and (A.4), we get the following sufficient condition for the
assertion of the lemma:

q
7T
—B(1 1) ge-19-1 g (A.5)
p \p'p q n‘“
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To prove this inequality, we first obtain an appropriate upper bound for its left-hand side. From [3, p. 8] we
know that

2
VERIRE Y ) Pl AP SNELAES (a6)
PP P P 1V SRS TEaE
since for all n € IN there holds
1+—p 1+—p
<1.

L+ 5?2 1+ 2 +(5)?
Next, we will get a suitable lower bound for the rlght-hand side of (A.5). Since 7, is a decreasing function of
r > 1 (in fact dm,/dr < 0), we have rry/m, > 1 for g < p. Hence,
q n
,a-19-1 Mg gad-1 _2%n(g-1) 27 qla-1 2‘1

= P A7
q a0t q " ¢sin(d) g sm( @)~ (*7)

since sin x < x for all x > 0.
Let us consider three cases. Assume first that 1 < g < p < 2. By a direct analysis, the minimum value of
the right-hand side 27/q of (A.7) is greater than 16/9. Since the right-hand side

2p(p +2)
(p+1)?
of (A.6) is strictly increasing with respect to p > 1, it is easy to see that
2p(p+2) 16
————<— foralll < 2.
p+12 -9 =P
Combining these facts, we prove that (A.5) holds for1 < g < p < 2.

Secondly, assume that 2 < g < p. Noting that 29/q is, in fact, strictly increasing for g > 2, we obtain

29 2, 2p+2) _, pP+2p
q = rlh=2 (p+1)2 pZ+2p+1

forall ¢ > 2 and p > 1. Thus, (A.6) and (A.7) yield (A.5) for 2 < g < p.
Finally, we assume that 1 < g < 2 < p. Since 7, is decreasing, p > 2 implies that 71, < 71, and we refine
inequality (A.7) in the following way:

141 mg 29lg-1 2974 _2M7g-1 w247t g-1) Lz

q ngl‘nq‘l g qisin’(Z)~ qi g sin(Z) ¢4 sin(Z(q- 1) gl

It is not hard to check that

229-1 Sos 2p(p +2)
q4 (p+1)?

forall q € (1, 2),

which again implies (A.5).
Therefore, (A.5) holds forall 1 < g < p < +00, which completes the proof. O

If we swap p and q in Lemma A.2, then an opposite situation occurs.

LemmaA.3. Let N = 1. Then for any k € N there exist 1 < qo < po such that

P
||<Pq||§ > Ax(p) foralll < q < qoandp > po.
loqllp

Proof. The case k = 1 is obvious. Let k > 2. Similar to (A.1) and (A.2), it is sufficient to show that

B(:,1+22) P
E@q—fy>@—n@—d. (A.8)
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Note first that

1 1
B(l,1+p;1)=Jt%_1(1—t)% dt>J(1—t)% dt=B(1,1+p_1) q
q q ] ] q

and for g < p there holds

1

1
B(’E,EF el 1o idt< [a-p dt:B(l,q—_1)=L.
g q ] q

Therefore, (A.8) can be simplified as

( q-1 )1% N kq(p - 1)# sin(7)
p+q-1 p  sin(3)’

Note that sin(’a’) = sin(%(q -1)) < ’E’(q - 1). Hence, using the estimates
(p+q-1"Y? <2p'? and (p-1)'P <p'?,

we arrive at the following sufficient inequality:

p-1
2nk(q - 1) 7

LT 2mk(q - 1)%1
sm(—) > ’

2
= =p?p -
pP

At the same time, (q - 1)%1 <(q- 1)% for 1 < g <2< p, and, choosing p; > 2 large enough, we obtain
2 > p?/P for any p > p1. Therefore, to prove (A.8) it is sufficient to show that

k(g -1)2
w <Sin(E): E+O(E). (A'9)
p p’ p p
However, (A.9) is obviously satisfied forany g < 1 + ﬁ and sufficiently large p > p1. O

B Appendix B: Sketch of the proof of Theorem 3.13

Let us consider amap T : Wé’p — (Wé’p )* defined for A > 0 by

(Ty(u), v) = J(IVqu‘z + VU7 2)Vuvy dx + A J(|u|p-2 T Ul 2yuv dx
Q Q

for u,v e W(l,’p . The following properties of T) can be proved in much the same way as in the proof of
[27, Propositions 9, 10].

Lemma B.1. T, isinvertible and T;llz (W(l)’p)* — Wé’p is continuous. Moreover, if 1 < p < Nandr > N/p, then
there exists a constant Do > O such that for all u € L"(Q) we have

1T (Wlleo < Dollully .
Let us define ¥ (u) := [u[P~2u + |u|9>u and a map B, : Wcl)’p - Wé’p by
Bau) := Ty (h(-, u) + App(u))

foru e Wé’p and A > 0. According to Lemma B.1 and assumption (3.19), we see that B, is well-defined and
continuous. Moreover, critical points of the energy function J given by (3.20) correspond to fixed points of By,
see [27, Remark 12]. Throughout this section, K := {u € Wé’p : J'(u) = 0} is the set of critical points of J, and,
to shorten notation, we write ||u| instead of [|Vul|, for u € Wé P

By the standard calculations, we have the following facts (cf. [5, Lemmas 3.7 and 3.8] for details).
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Lemma B.2. Let A > 0. Then there exist constants d; = d;i(A) >0,i=1,2,...,6 such that forall u € Wé’p the
following assertions hold:

D J'(w),u-Brw) > dillu-Br)I*((lull + 1BA@)IP~2 + (lull + |Ba))92) for1 < g < p < 2.

(i) (J'(w), u-Bru)) = dy(llu - By(w)lP + llu - By(w)|9) for2 < q < p.

(i) (J'(w), u = Ba(w)) > dsllu = Ba)[>(lull + IBA))?2 + dsllu = BA)IIP for1 < g <2 < p.

(iv) III'(u)II(Wéyn)* < d4(lu-BrIP~! +lu-Byw)|9 ) for1 < g < p < 2.

W) III’(u)II(Wéxp)* < dsllu - BA@)lI((lull + [BA@)1)P~2 + (lull + |Ba@)|)?~2) for 2 < q < p.

(vi) III'(U)II(WSW)* < dglu - Byl (Jull + 1B )P~2 + dellu = Bx(w)[|9 ! for 1 < g < 2 < p.

Then similar arguments as in [27, Lemma 17] (see also [5, Lemma 4.1]) can be applied to prove the following
result on the existence of a locally Lipschitz continuous pseudo-gradient vector field in order to produce an
invariant descending flow with respect to the positive and negative cones +P defined by (3.21).

LemmaB.3. Let A > Ao, where Ay > O is given by assumption (A1) of Theorem 3.13. Then, there exists a locally
Lipschitz continuous operator Vy: C5(Q) \ K — C(Q) such that the following hold:
(i) Foranyu e CL(Q)\ K we have

/ d - -
J' (W), u-Vi(u) 2 71"11 = Ba@)I*{(llull + 1BAGOIDP 2 + (lull + 1BA@)DT 2} for1<gq<p<2,
J'w), u-Viw) = %(Ilu = BaII” + u = Baw)l|?) for2<q<p,

/ d L, d
J W), u-Vi(u) 2 fllu = Ba@)I*(lull + 1BA@))T % + fllu - Byl forli<g<2<p,

1
5l = BAl < llu = Va@)ll < 2fju - Ba@)l.

Here d1, d>, and ds are the positive constants from Lemma B.2.
(i) Vi(u) € +int P for every u € +P \ K, respectively.
(iii) Let p* := NN—i for N > p,and p* := p + 1 otherwise. Set r( := p* and define a sequence {rn}nen inductively
as follows:
Tne1 =D ra/p = (p*/p)" D"
Then for any n € N there exists a constant C;, > 0 such that
IVA@llr,,, < Crir 2 +1Q1 + lully,) forallu e Cé(ﬁ) \ K.
(iv) If N > p and r > max{N/p, 1/(p — 1)}, then there exists a constant D1 > O such that
IVAW)loo < D1(lullyp-1y + 2 +1Q1)  forallu € CA(Q) \ K.
(v) There exists a constant D, > 0 such that
IVAWlloo < D2(2 + lullw) forallu € C3(Q) \ K.
(vi) For every R > O there exist y € (0, 1) and M > O such that
IVA@lcirgy <M for all u € C5(Q) \ K with ulleo < R.
0
Now, we will give the proof of Theorem 3.13.

Proof of Theorem 3.13. Note first that the boundary of +P in C(l) (Q) does not intersect with K \ {0} since any
nonnegative (resp. nonpositive) and nontrivial solution of corresponding equation is strictly positive (resp.
negative) in Q and ou/ov < 0 (resp. > 0) on 0Q under assumption (A1) of the theorem, due to the strong
maximum principle and boundary point lemma (see [29, Theorem 5.3.1 and Theorem 5.5.1]).

Take A > Ap and let V; be a locally Lipschitz continuous operator given by Lemma B.3. Consider the
following initial value problem in C}(Q):

d
Lty = -n() + Vi),
dt
n(0) = u.
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Denote by n(t, u) € C}J(ﬁ) its unique solution on the right maximal interval [0, 7(u)). According to asser-
tion (ii) of Lemma B.3, n(t, u) is the invariant descending flow with respect to the positive cone P and the
negative cone —P, namely, n(t, u) € +int P for all O < t < 7(u) provided u € +P \ K (see [23, Lemma 3.2]).
Define the sets

Q::={ue C(l)(ﬁ) \ K : n(t, u) € +int P for some t € [0, T(u))} U (+int P).

It is known that Q.. are open subsets of Cé (Q) invariant for the descending flow 17, and 0Q. are closed subsets
of Cé(ﬁ) invariant for 1; see [23, Lemma 2.3].

Choose a constant ¢ satisfying maxse(o,1) J(y(s)) < ¢ < 0, where y is the continuous path given by assump-
tion (A2) of the theorem. Since y(0) € Q,, y(1) € Q_, and Q. are open in Cé(ﬁ), there exist 0 < s, <s_< 1
such that y(s;) € 0Q, and y(s_) € 0Q-. Put uy := y(0), us := y(1), and us := y(s;). Due to assertion (i) of
Lemma B.3, we know that

d
7/t w) = ={J'(nt, ui)), n(t, up) - Va(n(t, up))y <0, i=1,2,3,

which implies that
-00 < irg] <J(n(t,u;)) <c<0 foreveryt e [0, T(u;)).
Wy

Hence, the coercivity of J guarantees the existence of R > 0 such that for all ¢ € [0, 7(u;)) we have
In(t, u)ll <R and |Ba(n(t, up)ll < R. (B.1)

Therefore, if T(u;) < co fori =1, 2, 3, then for every O < t; < t; < T(u;) < co we have

ty

(e, ui) — nta, wp)l < jlln(s, ui) — Va(n(s, up)l ds

ty
ty

<2 [ Ints, w) - Batn(s, up)l ds < 4R(62 - 1)
ty

by assertion (i) of Lemma B.3 and (B.1). Thus, n(t, u;) converges to some w; in Wé’p as t — 1(u;) — 0 when-
ever T(u;) < oco. On account of Lemma B.3 and [27, Lemma 18 (ii)], it is not hard to prove that w; € K and
n(t, u;) converges to w; in C(l)(ﬁ) as t — 1(u;) — 0. Recalling now that Q. and 0Q. are invariant, we see that
Jwi) <J(uij) <c<0,i=1,2,3,and wy € intP, w, € —int P, w3 € 0Q,. Since 0Q, N (P \ {0}) = 0 (note that
+P\ {0} c Q.), our conclusion is proved provided 7(u;) < oo fori =1, 2, 3.

Assume that 7(u;) = co for some i € {1, 2, 3}. In this case, we can prove the existence of a sequence
{tatnen € R* such that

tqy — +co and J'(n(ty,u;)) - 0 in (Wcl)’p)* asn — +oo. (B.2)
Note that there exists a sequence {t,}nen € R* such that ¢t,, — +oo and dit](n(tn, u;)) — 0asn — +oo since

-00 < ir}fp] <J(n(t,u;))<c forallt>0
wy

and J(n(t, u;)) is nondecreasing in t. Let us show that this sequence satisfies (B.2). If 1 < ¢ < p < 2, then
Lemma B.2 (iv), Lemma B.3 (i), and (B.1) imply

dy lIn(t, ui) = Ba(n(t, u)l
2 (In(t, udll + IBA(n(t, u) > + (In(t, upll + 1Ba(n(E, up))>-4

di In(t, ui) = Ba(n(t, u)|®

2 (2R + (2R 1

> dy

" 2d27V(1 + (2R)P-9)2/@D{(2R)2P + (2R)?~4}

d
_E](rl(t’ ui)) >

=

W (e, w90

(WiPy:
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for all ¢ > 0. Hence,
I (n(tn, u)lypry. =0 asn — +co.

Thecases2 < g <pand1 < g <2 < pcan be handled in a similar way using the estimates of Lemma B.2 and
Lemma B.3 (i).

Combining now (B.2) with (B.1), we conclude that {n(ty, u;)}nen is @ bounded Palais—Smale sequence
toJ. At the same time, it is not hard to show that J satisfies the Palais—Smale condition because the coercivity
of J implies the boundedness of any Palais—Smale sequence (see Lemma 3.4). Thus, there exists w; € Wé PnK
such that lim,,_, ;o N(tn, ui) = w; in Wé P up to an appropriate subsequence. Furthermore, arguing as in the
proof of [27, Lemma 18 (iii)], using Lemma B.3 (iii)—(vi) and (B.1), we see that {5(t, u;) : t > 0} is bounded in
Cé’v(ﬁ) for some v € (0, 1). Thus, the compactness of Cé’v(ﬁ) — C(l)(ﬁ) and lim,_, o (tn, U;) = w; in Wcl,’p
imply thatlim,_+c0 7(tn, ui) = w; in C5(Q). Therefore, w; € int P, w; € —int Pandws € C5(Q)\ (PU~P). [
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