
Towards Network Simplification
for Low-Cost Devices by Removing

Synapses

Martin Buĺın(B), Luboš Šmı́dl, and Jan Švec

Department of Cybernetics, University of West Bohemia, Pilsen, Czech Republic
{bulinm,smidl}@kky.zcu.cz, jan.svec@speechtech.cz

Abstract. The deployment of robust neural network based models on
low-cost devices touches the problem with hardware constraints like lim-
ited memory footprint and computing power. This work presents a gen-
eral method for a rapid reduction of parameters (80–90%) in a trained
(DNN or LSTM) network by removing its redundant synapses, while the
classification accuracy is not significantly hurt. The massive reduction of
parameters leads to a notable decrease of the model’s size and the actual
prediction time of on-board classifiers. We show the pruning results on
a simple speech recognition task, however, the method is applicable to
any classification data.

Keywords: Pruning synapses · Network simplification
Minimal network structure · Low-cost devices · Speech recognition

1 Introduction

The recent trend of integrating smart electronic devices into a human every-day
life calls for new methods for making the software both capable of performing
high accuracies and meeting the hardware limitations. This so called “smartness”
is often supported by sophisticated machine learning models, being developed on
powerful computing machines and usually using a huge amount of data, which
makes them robust and recently even surpassing human skills in a variety of
cognitive tasks [1,2].

The next step for a practical use, however, is to take the trained models and
run them on low-cost devices, where the resources are constrained in terms of
computing power and memory size. Out of the wide range of applications we can
give an example of a keyword spotting microcontroller - an always-on chip inside
today’s smartphones [3], where a robust neural network based model works on
a hardware, which is limited in order to fit in a phone.

In [4], the authors made effort to meet the resource limitations by investigat-
ing and choosing from various network architectures (DNN, CNN, LSTM, ...)
and used the Google speech commands dataset [5] for comparison. They com-
pared the performance of different models in terms of memory footprint, number
of operations needed for prediction and test accuracy.
c© Springer Nature Switzerland AG 2018
A. Karpov et al. (Eds.): SPECOM 2018, LNAI 11096, pp. 58–67, 2018.
https://doi.org/10.1007/978-3-319-99579-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99579-3_7&domain=pdf

Towards Network Simplification for Low-Cost Devices 59

In this work, we take 6 of their network schemes (3 DNN and 3 LSTM) as
a baseline and make them learn the same data. Then we put our hypothesis
that the number of operations and the memory footprint can be rapidly reduced
by removing unimportant parameters (synapses) from fully-connected models,
while the classification accuracy of original predictors is not significantly hurt.
Hence, our contribution rests in presenting a general algorithm for finding and
pruning redundant synapses in both feed-forward and recurrent neural networks.

1.1 Related Work

The problem of network pruning was touched by several researchers in the early
90’s of the last century - a good survey of developed pruning methods is given
by Reed [6] and a comparison of pruning methods can be found in [7]. Clearly,
when trying to remove redundant parts of a neural network, the crucial question
is how to distinguish them from the important ones. To briefly enumerate only
the most relevant studies touching this problem:

1. Skeletonization [8] - a measure called “relevance” was introduced. It is com-
puted as the error when the synapse is removed minus the error when the
synapse is left in place.

2. Optimal Brain Damage [9] - Yann Lecun and his team presented a measure
called “saliency” estimated by the second derivative of the error with respect
to the weight.

3. Karnin’s measure [10] - the author used the change in weight during the
training process to compute a measure called “sensitivity” given as:

Sk =
N−1∑

n=0

[Δwk(n)]2
wk(tf)

η(wk(tf) − wk(0)
(1)

where n runs over training epochs, wk(tf) is the value of weight wk after training
and wk(0) is its initial value, η is a constant. Eq. 1 is shown here on purpose as
it is relevant to the investigated measure introduced in Sect. 2.1 of this work.

1.2 Contribution of This Work

The aim of this work is to contribute to the state-of-the-art network minimal-
ization research by introducing a method for a rapid reduction (80–90%) of the
number of parameters by removing unimportant synapses from the network. As
well as in case of the quantization flow in [4], the classification accuracy does
not drop significantly after the intervention.

The reduction of redundant parameters leads to the reduction of the model
size as well as the number of operations needed for prediction, which makes the
method a perfect tool for designing on-board prediction models.

Unlike the other studies mentioned in the previous section, we come with a
simple (in terms of computational demands and processing time) measure for
distinguishing important synapses from the redundant ones (Sect. 2.1) and we

60 M. Buĺın et al.

also introduce a general network pruning proceeder (Sect. 2.2). Although the
performance is shown on the Google speech commands dataset [5] only, the
approach is general and applicable on any classification problem.

2 Network Pruning

The rule of thumb in using artificial neural networks for classification nowadays
is taking a fully connected structure - each neuron is synaptically connected
to all units in the following layer in case of feedforward neural networks and
similarly all possible synapses are present in case of recurrent networks. This
leads to enormous numbers of parameters for networks with many neurons.

We agree that a fair amount of neurons is needed for a sufficient network
performance, however, we believe that the number of parameters can be rapidly
reduced by removing single synapses. Here we put the hypothesis that some of
the synapses in fully connected (feedforward as well as recurrent) networks do
not contribute to the classification at all and so their removal would not cause
a significant classification accuracy drop. This idea is graphically illustrated in
Fig. 1.

Fig. 1. Hypothesis: Removal of redundant synapses does not influence the performance.

2.1 Determining Synapse Significance

The crucial problem is to identify the redundant synapses in fully connected
networks and to distinguish them from the important ones. To face this challenge
we introduce a measure called WSF - Weight Significance Factor (Eq. 2).

WSF(wk) = |wk(tf) − wk(0)| (2)

where wk(0) is the initial value of weight wk and wk(tf) is its value after network
training. The idea is that the weight change over network training is related with
the classification importance of the corresponding synapse, so that weights of
redundant synapses do not significantly evolve during the training. Therefore,
synapses with low WSF are considered less important than those with high WSF
after training.

Towards Network Simplification for Low-Cost Devices 61

2.2 General Pruning Proceeder

The developed network pruning algorithm is an iterative process that is general
in terms of using any of the discussed measures of weight significance [8–10]. The
procedure is illustrated in Fig. 2.

First of all, a relevant (big enough in terms of number of layers/neurons)
network is chosen and trained to a maximal test accuracy for given data. Next,
the initial so-called percentile level (by default P=75) must be defined. Once the
original network is trained, we call it a processed network and iteratively repeat
the following steps:

1. Copy the processed network and so get the working copy
2. Take the working copy and remove P% of the synapses (the least important

ones based on the chosen measure) and so get the pruned working copy
3. Retrain the pruned working copy with training data up to the best possible

validation accuracy
4. Evaluate the pruned working copy on testing data and check if the required

classification accuracy is kept
– yes (accuracy kept) → take the pruned working copy as processed network

and go to step 1
– no (accuracy broken) → go to step 5

2. Check if the current percentile level P can be decreased (P>0)
– yes → decrease the percentile level and go to step 1
– no → pruning finished, take the processed network as a result

Fig. 2. Network pruning algorithm.

The retraining (step 3) can be skipped to speed up the process, however, in
general the network reduction is much more significant when the retraining step
is applied. The percentile level is usually being decreased in a predefined manner,
by default 75 → 50 → 30 → 20 → 10 → 5 → 1 → 0. Once the “percentile 0”

62 M. Buĺın et al.

is reached, only one synapse, the one with the lowest WSF, was removed in the
working copy. If even a single synapse removal breaks the accuracy, the percentile
level is not decreased anymore and the network is considered pruned. In [7] we
provide several experiments showing that the derived network has a minimal
possible structure for given data in terms of number of synapses.

2.3 Dimensionality Reduction in Feed-Forward Networks

Getting back to the main motivation of this work, the goal is to make a network
smaller in terms of a number of parameters, however, the number of operations
and the memory footprint during prediction are the overall qualities that make
the trained model useful for a target device.

The pruning algorithm described in previous sections is able to reduce the
number of parameters by driving unimportant weights to zero. However, even
though these parameters equal zero, they are still present and therefore the
original dimensions of weight matrices are kept. The next step then is to take
advantage of the pruning result by reducing these dimensions in order to decrease
the number of operations as well as the memory footprint.

The following approach is applied to weight matrices layer by layer:

1. Remove all zero rows1 corresponding to neurons with no inputs.
2. Remove the columns (see Footnote 1) in the weight matrix of the following

layer corresponding to outputs of the removed neurons in the currently pro-
cessed layer.

3. Remove all zero columns (see Footnote 1) corresponding to neurons with no
outputs.

4. Remove the rows (see Footnote 1) in the weight matrix of the previous layer
corresponding to inputs of the removed neurons in the currently processed
layer.

Fig. 3. Illustration of dead neurons in a pruned feedforward network.

Assuming the case in Fig. 3, corresponding dimensionality reduction of the
weight matrix (hidden layer) after the removal of dead neurons is shown below.

W 0
pruned =

⎡

⎢⎢⎣

w11 0
w21 w22

0 0
w41 w42

⎤

⎥⎥⎦ → W 0
reducted =

[
w11 0
w41 w42

]
(3)

1 Depending on the implementation rows/columns might correspond to layer
inputs/outputs or outputs/inputs.

Towards Network Simplification for Low-Cost Devices 63

3 Experiments and Results

In this work, we use the Google speech commands dataset [5] and 6 baseline
neural network architectures inspired by [4] to demonstrate the ability of the
pruning algorithm:

1. to find a rapidly simplified (in terms of number of parameters, number of
operations and size on drive) and comparably good classification models;

2. to deal with different network architectures (feedforward, recurrent).

3.1 Data for Demonstration

The dataset [5] consists of 65K samples - one second long audio clips recorded by
thousands of different people. There are 30 different words among the samples
(see Fig. 4) plus clips representing “silence” - combination of different kinds of
noise like doing the dishes, miaowing or an artificially made white noise. We
chose 10 keywords - “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”,
“stop” and “go” out of the dataset. These keywords alongside with “silence”
and “unknown” represent 12 classes for training our models. The “unknown”
group consists of the remaining 20 words from the dataset (the transparent ones
in Fig. 4) like in [4,11].

Fig. 4. Distribution of samples in the demonstration dataset.

The provided lists of validation and test samples ensure a controlled dataset
split in the ratio of 80:10:10, while words of the same person stays in one set. We
do not use any data augmentation. The feature vectors are formed differently
for DNN and LSTM models, however, in both cases we use 10 MFCC features
out of a window of length 40 ms with a 20 ms shift (settings adopted from [4]).

64 M. Buĺın et al.

3.2 Experimental Setup

The experimental setup follows the baseline in [4] and the purpose is to show
how the methods introduced in this work can contribute to the overall goal of
model minimalization. Out of the wide scale of models presented in [4], we chose
two architectures (DNN, Basic LSTM) and designed 3 versions of each differing
in number of neurons. The last column in Table 1 (ops) stands for the number
of operations needed for prediction of one sample (see [4]).

Table 1. Selected model architectures for experiments.

Model Hidden neurons # of params Size on drive Prediction time ops

dnn s FF(144)-FF(144)-FF(144) 113K 468 kB 332 ms 158.8K

dnn m FF(256)-FF(256)-FF(256) 258K 1.0MB 334 ms 397.1K

dnn l FF(436)-FF(436)-FF(436) 596K 2.4MB 336 ms 990.2K

lstm s LSTM(118) 62K 261 kB 554 ms 5.9M

lstm m LSTM(214) 195K 793 kB 558 ms 18.9M

lstm l LSTM(344) 493K 2.0MB 558 ms 47.9M

We used the Keras API [12] running on top of the TensorFlow [13] backend
for training all models. Layers are followed by tanh activation and we used
the RMSprop optimizer with a manually tuned learning rate individually for
every model. Then we used the standard categorical crossentropy as the loss
function and categorical accuracy is the observed metric. We fed the networks
with samples in batches of size 512 and give them 1000 epochs at maximum
for training (early stopping is performed when the validation loss is evidently
impaired).

3.3 Training Results

The pruning algorithm takes a trained network as the input. Therefore the first
step is to train all the models (from Table 1) up to their best possible performance
using the configuration described in the previous section (Table 2).

Table 2. Training results.

Model Train acc. Val. acc. Test acc. # of epochs Epoch time

dnn s 90.5% 82.6% 80.1% 543 1 s

dnn m 93.3% 82.9% 81.5% 432 1 s

dnn l 94.2% 83.1% 81.8% 586 1 s

lstm s 94.8% 89.9% 89.2% 150 13 s

lstm m 96.5% 90.5% 89.7% 108 14 s

lstm l 97.9% 91.7% 90.8% 105 15 s

Towards Network Simplification for Low-Cost Devices 65

Some of the training results are slightly worse compared to those published
in [4] as the training configuration is also a bit different, however, achieving the
best training results is not the goal of this work.

3.4 Pruning Results

The approach introduced in Sect. 2 was applied on the six models described
in Table 1. We set up 25 retraining epochs (step 3 of the algorithm, Sect. 2.2),
maximally 50 pruning iterations and the default sequence of percentile levels.

The pruning result is highly depended on the required classification accuracy
we intend to keep. It is a parameter we choose, but naturally it must be less or
equal the maximal possible accuracy of the original network.

Table 3. Pruning results. Number of parameters needed to reach required accuracy.

Model Original # parameters in pruned nets

Acc # param. Acc kept Acc −1% Acc −2% Acc −5% Acc −10%

dnn s 80.1% 113K 91K 58K 41K 14K 4K

dnn m 81.5% 258K 237K 154K 89K 23K 4K

dnn l 81.8% 596K 322K 134K 89K 31K 9K

lstm s 89.2% 62K 62K 20K 19K 15K 15K

lstm m 89.7% 195K 181K 40K 37K 26K 32K

lstm l 90.8% 493K 405K 118K 75K 72K 48K

In Table 3 and in Fig. 5, we can see results (the number of synapses) for
various settings of the required-accuracy parameter.

Fig. 5. Actual number of synapses needed to reach desired classification accuracy.

66 M. Buĺın et al.

For instance, the lstm l model (originally using 493K parameters with the
accuracy of 90.8%) was reduced to 405K parameters, while the accuracy was
not broken at all and, as another experiment, was reduced to 118K (24% of the
original number) parameters, while the accuracy decreased by 1% to 89.8% only.

Fig. 6. Proportional number of synapses (with respect to the original network) needed
to reach desired classification accuracy.

Figure 6 presents the same results as Fig. 5 did, however, here we have the pro-
portional scale in order to illustrate the immense model reduction more clearly.
One can see that the classification accuracy starts to decrease significantly, when
the number of synapses is reduced to 30–20% of the original number for LSTM
networks and to 10–5% for DNN models.

Figure 7 shows demonstrative DNN and LSTM models in terms of their size
when saved on drive and the number of parameters. The goal is to keep them
close to the origin in Fig. 7 and performing a high accuracy at the same time.

Fig. 7. Model size on drive vs. number of parameters for dnn large and lstm large.

Towards Network Simplification for Low-Cost Devices 67

4 Conclusion

The call for neural network based models runnable on low-cost devices for today’s
practical applications forces us to deal with constrained hardware parameters like
limited memory footprint and computing power.

In this work, we introduced a general network pruning algorithm, capable of
removing a notable amount of synapses from a trained network (generally 80–
90%) that are believed to be unimportant for classification and so the final test
accuracy is not significantly hurt. This immense reduction of model parameters
leads to a decrease of the model’s size and the prediction time.

The results of the pruning procedure are presented on the Google speech
commands dataset [5] and the baseline network architectures designed for prun-
ing are adopted from [4]. We showed the capability of the algorithm to deal with
feedforward (DNN) and recurrent (LSTM) structures.

The developed methods are implemented in Python and are compatible with
Keras [12], which makes it all together a powerful and fast tool for getting a
minimized network structure for any classification data.

Acknowledgments. This research was supported by the Ministry of Education,
Youth and Sports of the Czech Republic project No. LO1506.

References

1. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. arXiv
preprint arXiv:1707.01629 (2017)

2. Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., Stolcke, A.: The Microsoft
2017 conversational speech recognition system. CoRR,abs/1708.06073 (2017)

3. Chen, G., Parada, C., Sainath, T.N.: Query-by-example keyword spotting using
long short-term memory networks. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2015). ISBN 978-1-4673-6997-8

4. Zhang, Y., Suda, N., Lai, L., Chandra, V.: Hello edge: keyword spotting on micro-
controllers. arXiv arXiv:1711.07128v3 (2018)

5. Warden, P.: speech commands: a public dataset for single-word speech recognition
(2017). http://download.tensorflow.org/data/speech commands v0.01.tar.gz

6. Reed, R.: Pruning algorithms - a survey. IEEETrans. Neural Netw. 4, 740–747 (1993)
7. Buĺın, M.: Optimization of neural network. Master thesis. University of West

Bohemia. Univerzitńı 8, 30100 Pilsen, Czech Republic (2017)
8. Mozer, M., Smolensky, P.: Skeletonization: a technique for trimming the fat from

a network via relevance assessment. University of Colorado, Boulder, Department
of Computer Science (1989)

9. LeCun, Y., Denker J.S., Solla, S.: Optimal brain damage. In: Advances in Neural
Information Processing Systems, pp. 598–605 (1990)

10. Karnin, E.D.: A simple procedure for pruning back-propagation trained neural
networks. IEEE Trans. Neural Netw. 1, 239–242 (1990)

11. Kaggle Inc.: TensorFlow speech recognition challenge (2017). https://www.kaggle.
com/c/tensorflow-speech-recognition-challenge

12. Chollet, F., et al.: Keras (2015). https://keras.io
13. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-

tems (2015). tensorflow.org

http://arxiv.org/abs/1707.01629
http://arxiv.org/abs/1711.07128v3
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
https://keras.io

	Towards Network Simplification for Low-Cost Devices by Removing Synapses
	1 Introduction
	1.1 Related Work
	1.2 Contribution of This Work

	2 Network Pruning
	2.1 Determining Synapse Significance
	2.2 General Pruning Proceeder
	2.3 Dimensionality Reduction in Feed-Forward Networks

	3 Experiments and Results
	3.1 Data for Demonstration
	3.2 Experimental Setup
	3.3 Training Results
	3.4 Pruning Results

	4 Conclusion
	References

