
Fast Indirect Lighting Approximations using the
Representative Candidate Line Space

Kevin Keul Tilman Koß Stefan Müller
Department of Computer Graphics,

Institute for Computational Visualistics,
University of Koblenz-Landau,

Koblenz, Germany
{keul | tkoss | stefanm}@uni-koblenz.de

ABSTRACT
We propose a novel approach for using directional Line Space information in calculation of indirect illumination.
Typically, the Line Space is build on top of regular recursive grids and contains visibility information which is used
to perform an efficient empty space skipping during traversal. In our method we extend the stored information by
precomputed representative candidates, which are based on the Line Space shafts and serve as an approximation
of the actual scene geometry. By using these candidates it is not necessary to compute any intersection tests and
therefore the traversal is accelerated. However, the candidate approximation leads to visible artifacts. We therefore
present a technique that significantly reduces these artifacts by extrapolation of the actual surface and demonstrate
that the artifacts are nearly not perceivable in the application of indirect illumination. Moreover we adapt the Line
Space to other data structures like bounding volume hierarchies (BVHs) which further increases the performance
in ray tracing. Compared to the pure data structures we achieve significantly better performance with nearly no
drawback in quality of indirect lighting.

Keywords
Visualization, Computer Graphics, Ray Tracing, Data Structures, Visibility Algorithms

1 INTRODUCTION

Calculation of global illumination and indirect lighting
is a non-trivial task which significantly improves real-
ism of generated images and renders the possibility for
photo realistic effects. The two main ways for computa-
tion of global illumination are depth-based rasterization
techniques and ray tracing. The former is typically used
in interactive and real-time rendering, due to the high
performance that is achieved. The basic idea is to de-
termine the visible scene primitives through projection
to the screen in object order. Adding complex render-
ing effects like global illumination without ray tracing
is a non-trivial task and suffers from different quality
problems [Rit12]. In ray tracing the visible surfaces are
calculated per screen pixel by computing intersections
between rays and the scene primitives. By using addi-
tional rays per pixel it is possible to calculate complex
rendering effects and indirect lighting. However, be-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Reference BVH + LS (9) BVH + LS (12)

Indirect
C

om
parison

R
esult

Figure 1: Example of our technique. The left column
shows correct results as reference, the other columns
show the utilization of precomputed scene primitives in
the Line Space using a low and a high depth parame-
ter. In the top row indirect illumination is presented.
The middle row shows a comparison to ground truth,
where the left image presents only direct illumination
and shadows. The last row consists of the final images.

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

11
https://doi.org/10.24132/JWSCG.2018.26.1.2

cause of the huge number of intersection calculations,
this process is quite slow and therefore a well defined
acceleration data structure is needed.

Most data structures used for this purpose work in
a spatial manner by grouping scene primitives within
bounding volumes and thereby limiting the needed in-
tersection tests to a minimum. During ray traversal the
bounding volumes are tested for intersection first and
only those scene primitives that are contained by in-
tersected bounding volumes are tested for intersection
with the ray. Most of the primitives are excluded within
a short time. On a basic level spatial data structures
are distinguished by the size and arrangement of these
volumes [Hav00]. A common similarity of most of the
used data structures is that axis aligned bounding boxes
are used as bounding volumes because of their simplic-
ity. Still, a lot of intersection tests need to be calculated.

A further approach is to precompute visibility in a data
structure and therefore eliminating the need of intersec-
tion tests. More recently this technique received re-
newed interest and was used to accelerate the traver-
sal of shadow rays and intersection finding. Recursive
grids were extended by directional information of the
Line Space, which uses ray clustering into predefined
shafts. Binary visibility information based on the shafts
was computed and during runtime applied to the con-
tained rays. This allowed a direct access of visibility
information instead of complex intersection tests.

While in previous work only binary visibility informa-
tion was used, we further extend the Line Space by
precomputing a representative candidate (i.e. a trian-
gle) for each non-empty shaft. This leads to signif-
icantly faster but approximated results, which can be
used for the acceleration of indirect lighting computa-
tions. While the results suffer from approximation arti-
facts, it was shown in [Yu09] that indirect illumination
does not require correct results and therefore the arti-
facts can be disregarded in this context, as shown in
Figure 1. Moreover we use a general Line Space de-
scription on basis of bounding boxes. With this our ap-
proach can be applied to almost every spatial data struc-
ture used as base structure. We demonstrate this appli-
cability with the NTree, a regular recursive grid struc-
ture, as used in previous work, and BVHs and therefore
show the general utility in terms of accelerating perfor-
mance. The main contributions of our paper are:

• An approach for precomputation of possible inter-
section candidates based on the simplification of
clustering rays into shafts in the Line Space with the
application of indirect lighting calculation without
the need of intersection tests.

• A generalization of the Line Space to bounding
boxes and therefore the adaption to almost all
commonly used spatial data structures.

• An evaluation in terms of performance, memory
consumption, initialization speed and quality of the
base data structure in combination with the Line
Space and the comparison to the pure data structure.

2 RELATED WORK
Rendering of indirect lighting and global illumination
is a well studied and complex topic. Therefore we refer
to [Wal03] [Pha16] and [Rit12] for a broad overview of
techniques and possibilities in ray tracing and rasteriza-
tion based techniques. We focus specifically on the ac-
celeration of approximated intersection point computa-
tion through the usage of sophisticated data structures.

Spatial data structures.
Nowadays most acceleration data structures for ray
tracing work with a hierarchical spatial subdivision
of the scene space [Hav00]. All geometrical objects
of the scene are arranged depending on their spa-
tial localization and clustered in separate bounding
volumes of the data structure. During rendering the
rays are traversed along those bounding volumes and
only the scene objects within passed volumes are
used for intersection tests. In this kind recursive grids
[Jev89] are the combination of a grid like subdivision
of volumes in a recursive hierarchical structure. It
was shown, that ray traversal greatly benefits from
those data structures. The bounding volume hierarchy
(BVH) works by recursively grouping of adjacent
scene primitives within axis aligned bounding boxes
[Ail13]. It is currently the most used data structure,
mainly because of the good performance even in
dynamic scenes, the small memory footprint and
fast build time in comparison to other data structures
[Vin16]. It is important for BVHs to construct a high
quality tree and many different initialization algorithms
were proposed for this purpose. The surface area
heuristic (SAH) used in combination with spatial splits
is an example for a good tree construction [Sti09].
Moreover there exist build algorithms that work on
already constructed BVHs, which are then optimized
to gain better quality [Kar13]. The bonsai algorithm
uses a two-level construction with optimization in so
called mini trees resulting in high performance and
good build times [Gan15]. By using agglomerative
clustering and multi-threaded CPU approximations a
good trade-off between quality and construction time
can be found [Gu13]. By optimizing spatial splitting
during construction this trade-off is further improved
[Wod17] [Mei17]. While all previously mentioned
approaches result in good tree quality, their construc-
tion takes quite a long time and dynamic scenes are
not covered. Using linear sorting through morton
codes leads to the linear BVH (LBVH) with fast build
times due to parallelization on the GPU, however with
inferior tree quality [Lau09]. An advancement to this is

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

12

the hierarchical LBVH (HLBVH), which is especially
used in full dynamic scenes because of the fast creation
[Pan10] [Gar11]. Further optimization of fast BVH
construction can be made by refitting of splitting planes
in dynamic scenes [Yin14]. Usually the traversal of
a BVH works in a stack-based manner [Ail12]. More
recently combinations of multiple data structures are
explored [Wan16].

Directional data structures.
Using directional information instead of or in addition
to spatial information provides the possibility for visi-
bility precomputation. Most attempts aim to generalize
rays on a higher level and then precompute informa-
tion on an intermediate representation. Examples for
this are the generalization of rays to cones [Ama84],
beams [Hec84] [Res05] [Lai09] or more generally to
higher dimensional generalizations [Arv87]. In the lat-
ter, rays are classified by their three dimensional origin
and their two dimensional direction and for each result-
ing five dimensional generalization a sorted list of in-
tersecting objects is stored. This was optimized by re-
ducing the generalization to four dimensions [Kwo98].
The four dimensional visibility field could be projected
onto a bounding sphere which was then used to speed
up ambient occlusion and stochastic ray tracing calcu-
lations [Mor07] [Gai10]. In a similar manner visibility
information can be projected on planes, leading to inter-
section fields which were used for fast computation of
global illumination [Ren05]. The concept of general-
izing rays to shafts was introduced, where each shaft
is the volume that is constructed by connecting two
patches and forming their convex hull [Hai94] [Dre97].
There, a candidate list per shaft is created and later on
used for all rays that pass a given shaft, which was ap-
plied to ray tracing and radiosity calculations. Recently,
this approach was combined with a spatial recursive
grid structure in terms of empty space skipping [Keu16]
and shadow calculation [Bil16] [Keu17]. In this con-
text, shafts have binary visibility information and are
created between all patches of the regular subdivided
boundary of each branching node in the tree hierarchy
resulting in the Line Space.

In our approach the Line Space can be adapted to all
spatial data structures that use bounding boxes of any
kind. In addition to the binary visibility information of
previous approaches, we store actual geometry infor-
mation in the Line Space.

3 LINE SPACE WITH REPRESENTA-
TIVE CANDIDATE DATA

The Line Space, as proposed by previous work
[Keu16], is a data structure providing directional
information for a given bounding box. The six faces
of the box are equally divided into N2 rectangular
patches. Pairs of those patches that are arranged on

different box faces are defined as shafts. The volume of
a shaft is the convex set of all line segments connecting
any point in the start patch with any point in the end
patch. The Line Space stores arbitrary data for each
shaft. A Line Space where a substitution of the start
and end patches leads to the same result as the original
one is called symmetric. There are 30N4 shafts in
a non-symmetric Line Space and 15N4 shafts in a
symmetric Line Space, therefore potentially resulting
in a big memory consumption, as shown by previous
work.

3.1 Representative Candidate per shaft
Until now, the Line Space was only used to store bi-
nary visibility information, i.e. whether a given shaft
contains any geometry at all. This approach was uti-
lized for empty space skipping [Keu16] and accelerated
shadow computation [Bil16] [Keu17]. We extend it by
storing a representative triangle for each shaft, which
serves as an approximation for the geometry inside of
the shaft. The stored information can be used during the
traversal step of ray tracing to get a possible intersection
between a given ray and the scene geometry. Instead of
testing all candidate triangles of the given bounding box
for intersections, only the previously stored representa-
tive triangle is considered. The intersection between the
ray and the bounding box geometry is approximated as
shown in algorithm 1.

Algorithm 1 The accelerated intersection algorithm be-
tween a ray and a Line Space bounding box.

(tstart , tend)← points where ray intersects box
i← CALCPATCH(tstart) . start patch
j← CALCPATCH(tend) . end patch
shaftID← CALCSHAFT(i, j)
triangle← GETCANDIDATETRIANGLE(shaftID)
if triangle exists then

return ray triangle intersection
return 0

The representative candidate Line Space is non-
symmetric. The candidate used as the shaft repre-
sentative is the triangle that optimally approximates
the object surface within the shaft. To find it we
search for an intersection between the geometry and
the ray defined by the centroids of the shaft’s start
and end patches. This is illustrated in Figure 2. If no
intersection is found, the shaft is marked as empty.
The percentage of empty Line Space shafts is typically
between 30%− 70% for manifold meshes and there-
fore a lot of memory can be saved with an appropriate
memory layout, which is explained later on.

The surface inside a shaft can be classified into three
categories:

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

13

Figure 2: The representative candidate triangle (shown
in red) is the triangle that is used to approximate the ge-
ometry in one shaft. This triangle is found by comput-
ing an intersection between the geometry and the cen-
troid ray of the shaft.

1. The surface is closed and covers the whole shaft
width.

2. The shaft lies at the boundary of a surface or con-
tains multiple disconnected surfaces.

3. The shaft is empty.

Since we only store the single triangle per shaft, it is
not inherently possible to distinguish the first two cases.
The candidate triangle does not necessarily cover the
whole shaft surface, as it is shown in Figure 2. To com-
pensate this, the triangle is treated as infinite plane de-
fined by its vertices. This approximation is used when
searching for an intersection between a ray and the ge-
ometry contained in the shaft. Per-vertex normals can
be interpolated by using the intersection parameters of
the constructed plane. If the intersection point is out-
side of the triangle, it is computed by the extrapolation,
therefore providing smooth normals for the whole shaft
width. This is a rather big approximation, especially for
highly curved surfaces, however it lowers discontinuity
artifacts. To reduce artifacts for shafts that are not fully
covered by a surface, edges can be found by calculat-
ing the angle between the extrapolated normal and the
mean normal of the triangle. If the angle is bigger than
a given threshold then the intersection is discarded.

The representative candidate Line Space stores a refer-
ence to a triangle for each shaft. In our case, this refer-
ence is a 32-bit index pointing to a buffer containing all
triangles of the scene geometry. Depending on the stor-
age layout of the scene geometry, more space efficient
data types are possible. Since the Line Space stores data
for every combination of start and end patch, it contains
M = 30N4 elements. While most of these shafts are
empty and do not point to a valid triangle, we are able
to only store the shaft information of filled shafts. This

Figure 3: The sparse memory layout of our structure.
Nodes have references to their bitsets (shown in green),
which signal whether associated shafts are filled or
empty. To access the triangle data, an additional off-
set per bitset is needed (shown in red).

is done by using a simple sparse scheme based on a bit-
set and offset buffer to skip empty shaft entries and only
store filled shafts consecutively in memory. In addition
we need to store one bit of information for each shaft,
signaling whether the shaft is empty or filled. These bits
are grouped in bitsets and are efficiently represented by
32-bit words. Moreover an offset for every bitset is
stored, which specifies where the corresponding filled
shaft entries withing the shaft buffer are located. This
is shown in Figure 3. The memory overhead of this
scheme therefore sums up to M

16 32-bit words. Finally,
the sparse storage is more memory efficient compared
to dense storage if less than 15

16 ≈ 93% of the shafts are
filled, which is always the case. The offset computation
is done by a parallel prefix sum, efficiently calculated
on the GPU. It should be noted that the bitsets are iden-
tical with the binary Line Space, and therefore they are
implicitly calculated. The data access with the sparse
memory layout has a constant time complexity and is
presented in algorithm 2. We use 32-bit words for all
bitset and offset operations due to the better interaction
with GPU computations. However, this can be general-
ized for arbitrary sizes like 64-bit words.

Algorithm 2 The algorithm presents the access of the
shaft data in the sparse memory scheme.

procedure GETSPARSEDATA(ShaftIndex n)
bitsetID← b n

32c
bitset← GETBITSET(bitsetID)
bit← n mod 32
if (bitset & (1� bit)) 6= 0 then

offset← GETOFFSET(bitsetID)
id← BITCOUNT(bitset� (31 - bit)) - 1)
return GETDATA(offset + id)

else
return 0

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

14

3.2 General Line Space for spatial datas-
tructures

Because of the construction on top of bounding boxes,
the Line Space can be adapted and integrated into each
spatial data structure that consists of bounding boxes in
any way. It provides directional information in addition
to the spatial subdivision and therefore is able to mini-
mize the traversal cost. Typical data structuces that can
be used for this are Octrees, BVHs, k-d trees, uniform
grids or recursive grids (such as the NTree in previous
work).
We generate a representative candidate Line Space for
selected tree nodes of the data structure to approximate
the scene geometry. While the produced errors are too
striking for direct illumination of primary rays, they
are less perceivable when used for indirect illumination,
which is in accordance to [Yu09], stating that accurate
calculations are not required for global and indirect il-
lumination. Therefore we use the representative can-
didate as approximation instead of the correct triangle
data to calculate the intersection points in indirect illu-
mination. In terms of the underlying base data structure
it is necessary to consider which nodes in the tree need
to store the Line Space information.
Adaptation to NTree
The data structure previously used for Line Space com-
putations is the NTree, which is a regular recursive grid
that repeatedly subdivides the scene and the already
produced subdivisions into N3 equally sized bounding
boxes. In our case, we constrain the size of theses boxes
to be cubes. This simplifies some computations when
building and traversing the NTree while not having any
detrimental effect for the data structure. The NTree pro-
vides increased traversal performance in comparison to
a regular Octree or single layer uniform grid. This is
because the tree width of an NTree with N > 2 can
be larger than for Octrees, effectively lowering the tree
depth. Since the bounding boxes of NTree nodes are
equally sized, the NTree is a natural fit for Line Space
computations, as shown in previous work. The Line
Space patch size for a specific tree depth is equal for all
nodes and correlates with the size of the node subdivi-
sions.
To use the NTree with the representative candidate Line
Space for indirect lighting approximations we first gen-
erate the NTree including the exact triangle data of the
scene. This NTree can be used for all exact computa-
tions like primary or shadow rays. Moreover we uti-
lize it for faster initialization of the representative can-
didates. We only compute the Line Space data on spe-
cific nodes in the NTree, which are determined by the
depth D or a triangle count lower than T (i.e. T = 8). In
our case the NTree and therefore also the representative
candidate Line Space have a parameter values N = 6
or N = 10 and D = 2 for Line Space utilization, which

is consistent with the results of previous work. The N
value describes the branching factor of the NTree as
well as the Line Space resolution. It was found to be
accurate enough for the approximation while also grant-
ing sufficient performance. The depth parameter D also
determines the performance, memory requirements and
the approximation accuracy of the Line Space. Higher
depth values lead to more Line Space nodes and there-
fore higher computation times and memory consump-
tion. However, lower depth values decrease the accu-
racy of scene approximations but significantly increase
the traversal performance. This is due to the fact that
the number of nodes greatly increases with the depth of
the underlying tree. The shown value of D = 2 for the
usage of Line Spaces within the NTree is sufficient for
quality, traversal speed and memory consumption.

When traversing indirect rays, these Line Space nodes
are treated as leaf nodes in the NTree and are therefore
able to terminate the traversal. Intersections with the
scene are calculated by the procedure explained in sub-
section 3.1. The general traversal algorithm of the data
structure does not need to be changed, only the handling
of leaf nodes needs to be replaced by the appropriate
Line Space calculations as shown in algorithm 1.

Adaptation to BVH
By using a BVH, the scene is recursively subdivided
by axis aligned bounding boxes that tightly enclose the
geometry. Besides the NTree, the BVH is also used as
a base data structure for the Line Space in our work.
The representative candidate in the Line Space nodes
are used in the same way as described with the NTree.
Due to the reason that every BVH node branches into
only 2 subnodes, the tree depth is normally much higher
than for the NTree. With this BVH nodes converge to
the actual scene geometry and they are not constrained
to be equal in size in every tree layer. Typically less
nodes are needed in the BVH for scenes with a high
amount of empty space. Again, the depth D and the
triangle count T are used to determine whether a node is
extended by a Line Space. Furthermore, it is possible to
consider the box size as criterion for this determination,
but this was not done in our work.

Nevertheless, the usage of a BVH with the representa-
tive candidate Line Space has two disadvantages. Since
the bounding boxes are not cubical, the shaft patch size
will slightly differ for each bounding box. The approx-
imation artifacts in that case are not distributed in any
predictive manner, and therefore have significant im-
pact, depending on the used parameter set. This is visi-
ble in the results using low parameter sets for the BVH
Line Space. Additionally, BVH nodes may overlap, es-
pecially in scenes where the triangle size is highly di-
verse. Therefore, multiple Line Space nodes and their
shafts may overlap and approximate the same scene ge-
ometry using different representative candidates. These

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

15

effects are mostly visible in architectural scenes, as
shown in the results. A spatial split BVH construction
might reduce these effects significantly, however this
was not used in our work.

4 RESULTS
For the evaluation we used two different base data
structures: the NTree, a regular recursive grid as it
was used in previous work on the binary Line Space
[Keu16] [Bil16], and a state of the art BVH algorithm
[Ail12], which is used as comparison in multiple re-
lated works. For the NTree we used a branching fac-
tor of 6 and 10 and a hierarchical depth of 3, as those
are the proposed parameters by [Keu16]. We did not
incorporate any further optimizations of the BVH tree
quality, as recently proposed [Gan15] [Yin14]. The
Line Space with precomputed representative shaft can-
didates is then used in a given hierarchical depth of the
base data structure. Within the NTree this depth is set to
the lowest branching nodes in the hierarchy, i.e. depth
2. The Line Space depth within the BVH is more ver-
satile and can be set arbitrarily to achieve a good trade-
off between performance and memory consumption as
well as initialization time. The chosen depths and their
impact are shown in the diagram and the visual results.

We measured the quality and the differences in per-
formance, initialization time and memory consump-
tion. For this purpose different widely used test scenes
with special characteristics are evaluated. In principle
they are dividable into two categories: scenes contain-
ing a single object (BUNNY, DRAGON and BUDDHA)
and architectural scenes (SIBENIK, SPONZA and CON-
FERENCE), which are more suitable for usage in video
games. Apart from this, the number of scene primitives
varies significantly in the used scenes and ranges from
~70k triangles up to ~1 million triangles. The test re-
sults were produced on a GeForce GTX 1080, however
the relative performance is the same on similar systems.
All data structures are implemented in the same envi-
ronment and supported by acceleration in agreement.
Hence, a fair comparison of the used structures is guar-
anteed. The resolution of the renderings was in all cases
720p. Primary and shadow rays were rendered with
fast rasterization accelerated by a binary Line Space
techniques as proposed by [Bil16] and [Keu17] and are
therefore out of our scope. Regarding this, our ap-
proach accelerates calculations of all indirect lighting
effects, resulting for example in ambient occlusion, dif-
fuse illumination and glossy reflections.

Table 1 shows the quantitative results using the two
main data structures with and without the acceleration
of the Line Space with the mentioned depth parame-
ter. We evaluated the build time, the memory con-
sumption and the performance in ray tracing for indi-
rect rays. Obviously, the computation time and memory

consumption of the Line Space need to be summed up
on the values of the base data structure. The illustrated
Line Space values in the table are already combined and
therefore show the total sum. Moreover the build times
and the memory consumption of the Line Space sig-
nificantly scale with the total number of computed Line
Spaces and not the number of scene triangles. For BVH
initialization we use a binned SAH construction, result-
ing in good quality but non-interactive build times. The
used build algorithm significantly affects the build time
of the BVH, but as our work focuses on the relative
comparison of the data structure with the usage of the
Line Space, this does not affect our results.

The runtime performance was measured in frames per
second only counting indirect illumination. Apart from
absolute values, the relative differences between pure
and Line Space supported data structures show the ben-
efit of our approach. The BVH performance is near
state-of-the-art in ray tracing performance. It is mainly
regulated by the quality of the underlying tree and can
be further optimized by recent techniques as proposed
by [Gan15] and [Yin14]. Using our technique gives a
significantly better performance, however with approx-
imated results. This is due to the simplification of shaft
data, where only a single candidate is stored and used
for all rays passing a given shaft. Moreover it is no-
ticeable that the usage of the Line Space accelerates the
data structure to an acceptable level, even in those cases
where the base data structure performs very poorly.

Figure 5 shows the qualitative differences of various
depths used in Line Space accelerated BVH in compar-
ison to ground truth data. It is observable that lower
parameter sets result in visible artifacts due to shaft
simplification. However, by using higher depths for
the Line Space within the BVH hierarchy the artifacts
become manageable. The artifacts are especially no-
ticeable in bigger scenes when the camera is positioned
close to an object. This is mostly observable in the ar-
chitectural scenes as shown in figure 6 on the last page.
There, also the NTree results with the Line Space are
shown. As with the BVH, the quality of the Line Space
accelerated NTree improves when the Line Space is
used in a deeper level of the tree hierarchy. Because
of its regular structure, the NTree Line Space is mostly
better suited for big architectural scenes and produces
less approximation artifacts for these cases in compari-
son to the BVH Line Space. However, as it was shown
by [Yu09], correctness in indirect illumination is not re-
quired and approximations are sufficient in most cases.
Following this the BVH Line Space has better perfor-
mance with mostly sufficient quality.

The main factor for quantitative and qualitative analy-
sis is the value of the used depth parameter where Line
Spaces are created and used. A deeper depth results in
more Line Spaces, therefore causing higher build time

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

16

BUNNY DRAGON BUDDHA SIBENIK SPONZA CONFERENCE

Figure 4: The evaluated test scenes. Renderings were done in 720p. Primary rays were calculated with rasteriza-
tion, shadow rays were rendered with a binary Line Space and indirect rays were produced with our technique.

Scene BVH NT (6, 3) NT (10, 3)
pure LS (9) LS (12) pure LS (2) pure LS (2)

Bunny init 0,3 2,2 10,4 3,7 9,6 17,2 44,3
69k tris size 5,5 38,7 227,2 1,5 17,6 23,9 149,7

perf 76,7 194,7 2,5x 131,0 1,7x 20,6 89,4 4,3x 36,7 63,0 1,7x
Dragon init 1,7 5,6 17,1 22,5 50,3 100,6 209,7
871k tris size 35,5 74,8 280,0 4,1 10,8 13,2 65,5

perf 45,9 169,4 3,7x 110,2 2,4x 1,4 107,9 77x 11,7 62,1 5,3x
Buddha init 2,0 6,2 17,6 27,6 61,6 123,2 254,2
1087k tris size 40,7 80,0 285,0 4,5 10,9 11,6 57,5

perf 62,4 195,4 3,1x 128,0 2,1x 1,1 121,4 108x 12,1 69,4 5,7x
Sibenik init 0,1 1,9 7,4 2,3 18,6 13,0 102,3
75k tris size 3,0 57,7 251,6 8,3 286,4 106,9 2114,3

perf 19,3 38,3 2x 28,4 1,5x 8,8 23,1 2,6x 8,6 12,8 1,5x
Sponza init 0,5 3,0 9,2 7,1 28,5 36,3 153,0
262k tris size 10,1 54,1 231,2 8,9 347,6 133,3 2680,4

perf 16,7 48,5 2,9x 33,2 2x 5,8 27,4 4,7x 10,1 16,2 1,6x
Conference init 0,7 3,2 9,6 7,3 27,0 36,8 115,2
331k tris size 13,4 61,3 213,2 6,3 170,9 86,3 1014,9

perf 16,0 44,6 2,8x 33,6 2,1x 1,4 26,3 19x 8,4 20,7 2,5x
Table 1: Test results of our evaluation. We measured the initialization time in seconds, the memory consumption in
MB and the ray tracing performance in FPS for BVH and NTree as base data structures without and with the usage
of the Line Space with varying depth parameter. Line Space values are already combined with the base structure.
BVH initialization was optimized in terms of ray tracing performance and not initialization speed. The relative
differences in comparison to the base data structure without Line Space acceleration are marked.

and memory consumption, as well as lower ray tracing
performance. This is due to the fact, that with a deeper
Line Space depth more nodes in the hierarchy need to
be traversed. However the quality gets better when
more Line Spaces are used. With this the Line Space
depth can be used as an arbitrary parameter for setting
a trade-off between quality and performance. This is
especially true, when the base data structure produces a
deep tree hierarchy, as it is done with BVHs. The NTree
naturally only has a shallow tree hierarchy, therefore is
not that suitable for a dynamic trade-off.

5 CONCLUSION AND FUTURE
WORK

We presented the non-binary Line Space with visibil-
ity precomputation of scene information, which stores a
single candidate as a representative per shaft. With this
work, we explored the general approach of precomput-
ing directional information per Line Space shaft in ap-

plication of indirect and global illumination. Through
the representative candidate precomputation, the need
for intersection tests during traversal could be elimi-
nated as far as possible. Although this technique results
in approximation artifacts if the depth parameter is not
high enough, we were able to show that these errors are
nearly non-perceivable in the context of indirect illumi-
nation. When compared to the base data structure, this
technique results in higher memory size and build time
but is in all cases able to significantly surpass the base
structure in terms of performance.

Moreover, we showed a generalization of the Line
Space to all spatial data structures based on bounding
boxes. We demonstrated this with an adaptation to a
state-of-the-art BVH, resulting in higher performance
in comparison to the NTree, the typically used base
data structure of previous work.

Future Work

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

17

Indirect only Reference Indirect only Reference Indirect only Reference
B

V
H

+
L

S
(6

)
B

V
H

+
L

S
(9

)
B

V
H

+
L

S
(1

2)
R

ef
er

en
ce

Figure 5: Some of the results of our evaluation. As illustrated, the buddha scene especially focuses on ambient
occlusion, the bunny scene on diffuse materials and the dragon scene on glossy reflections. Nevertheless, all
visual effects were indifferently produced with the same technique with the only difference in the object material.
Therefore the results are not optimized to show specific effects. The maximum Line Space depth d within the BVH
is shown in LS(d).

The precomputation of scene information is only a be-
ginning. By calculating and storing the lighting state
in a shaft it may be possible to use a great variety of
rendering techniques without further computation over-
head during traversal. Although this leads to a signif-
icantly increase in memory consumption, the gain in
tracing performance can be a big improvement in path
tracing scenarios. Using a dynamic combination with
the base data structure has the potential to accelerate
most ray tracing systems, using the base structure in
situations where correct information is needed and the
Line Space where fast approximated data is sufficient.

An approach to further tackle the difficulties of mem-
ory size and initialization speed is to use the Line Space
based on objects rather than the whole scene. With this
each geometrical object has its own single Line Space.
This grants the possibility for object instancing and a
significant reduction of memory needed. Furthermore,
Line Space information is more accurate, solving the
teapot in a stadium problem. Object Line Spaces can be
created beforehand and therefore significantly reducing

initialization time. By combining the instancing aspect
with local transformations creates the possibility to ren-
der dynamic scenes.

Another aspect that needs further investigation is the
selection of the used parameter set. Currently, a fixed
depth parameter is used for the whole Line Space
tree, resulting in unnecessary high subdivision rate in
sparsely filled areas. A dynamic subdivision scheme
based on the number of candidates and the size of the
current node would benefit the traversal and the Line
Space accuracy.

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

18

6 REFERENCES

[Ail12] Aila, T., Laine, S., and Karras, T. Understanding
the efficiency of ray traversal on gpus–kepler and fermi
addendum. NVIDIA Technical Report, 2012.

[Ail13] Aila, T., Karras, T., and Laine, S. On quality metrics
of bounding volume hierarchies. In Proc. 5th High-
Performance Graphics Conference. 2013.

[Ama84] Amanatides, J. Ray tracing with cones. In ACM
Siggraph Computer Graphics. 1984.

[Arv87] Arvo, J. and Kirk, D. Fast ray tracing by ray classifi-
cation. In ACM Siggraph Computer Graphics. 1987.

[Bil16] Billen, N. and Dutré. Visibility acceleration using
efficient ray classification. Department of Computer
Science, KU Leuven, 2016.

[Dre97] Drettakis, G. and Sillion, F. Interactive update of
global illumination using a line-space hierarchy. In
Proc. ACM SIGGRAPH. 1997.

[Gai10] Gaitatzes, A., Andreadis, A., Papaioannou, G., and
Chrysanthou, Y. Fast approximate visibility on the gpu
using precomputed 4d visibility fields. WSCG, 2010.

[Gan15] Ganestam, P., Barringer, R., Doggett, M., and
Akenine-Möller, T. Bonsai: rapid bounding volume
hierarchy generation using mini trees. Journal of Com-
puter Graphics Techniques Vol 4, 2015.

[Gar11] Garanzha, K., Pantaleoni, J., and McAllister, D. Sim-
pler and faster hlbvh with work queues. In Proc. ACM
Siggraph Symp. High Performance Graphics. 2011.

[Gu13] Gu, Y., He, Y., Fatahalian, K., and Blelloch, G. Ef-
ficient bvh construction via approximate agglomerative
clustering. In Proc. 5th High-Performance Graphics
Conference. 2013.

[Hai94] Haines, E. A. and Wallace, J. R. Shaft culling for ef-
ficient ray-cast radiosity. In Proc. Second Eurographics
Workshop on Rendering. 1994.

[Hav00] Havran, V. Heuristic ray shooting algorithms. Ph.D.
thesis, Ph.D. Thesis, Czech Technical University in
Prague, 2000.

[Hec84] Heckbert, P. S. and Hanrahan, P. Beam tracing polyg-
onal objects. ACM Siggraph Computer Graphics, 1984.

[Jev89] Jevans, D. and Wyvill, B. Adaptive voxel subdivision
for ray tracing. In Proc. Graphics Interface. 1989.

[Kar13] Karras, T. and Aila, T. Fast parallel construction of
high-quality bounding volume hierarchies. In Proc. 5th
High-Performance Graphics Conference. 2013.

[Keu16] Keul, K., Müller, S., and Lemke, P. Accelerating spa-
tial data structures in ray tracing through precomputed
line space visibility. Computer Science Research Notes,
WSCG, 2016.

[Keu17] Keul, K., Klee, N., and Müller, S. Soft shadow
computation using precomputed line space visibility
information. Journal of WSCG, 2017.

[Kwo98] Kwon, B., Kim, D. S., Chwa, K.-Y., and Shin, S. Y.
Memory-efficient ray classification for visibility oper-
ations. IEEE Transactions on Visualization and Com-

puter Graphics, 1998.

[Lai09] Laine, S., Siltanen, S., Lokki, T., and Savioja, L. Ac-
celerated beam tracing algorithm. Applied Acoustics,
2009.

[Lau09] Lauterbach, C., Garland, M., Sengupta, S., Luebke,
D., and Manocha, D. Fast bvh construction on gpus. In
Computer Graphics Forum. 2009.

[Mei17] Meister, D. and Bittner, J. Parallel locally-ordered
clustering for bounding volume hierarchy construc-
tion. IEEE Transactions on Visualization and Computer
Graphics, 2017.

[Mor07] Mortensen, J., Khanna, P., Yu, I., and Slater, M. A
visibility field for ray tracing. In Computer Graphics,
Imaging and Visualisation, CGIV’07. 2007.

[Pan10] Pantaleoni, J. and Luebke, D. Hlbvh: hierarchical
lbvh construction for real-time ray tracing of dynamic
geometry. In Proc. High Performance Graphics. 2010.

[Pha16] Pharr, M., Jakob, W., and Humphreys, G. Physi-
cally based rendering: From theory to implementation.
Morgan Kaufmann, 2016.

[Ren05] Ren, Z., Hua, W., Chen, L., and Bao, H. Intersec-
tion fields for interactive global illumination. The Visual
Computer, 2005.

[Res05] Reshetov, A., Soupikov, A., and Hurley, J. Multi-
level ray tracing algorithm. ACM Transactions on
Graphics (TOG), 2005.

[Rit12] Ritschel, T., Dachsbacher, C., Grosch, T., and Kautz,
J. The state of the art in interactive global illumination.
In Computer Graphics Forum. 2012.

[Sti09] Stich, M., Friedrich, H., and Dietrich, A. Spatial
splits in bounding volume hierarchies. In Proc. High
Performance Graphics. 2009.

[Vin16] Vinkler, M., Havran, V., and Bittner, J. Performance
comparison of bounding volume hierarchies and kd-
trees for gpu ray tracing. In Computer Graphics Forum.
2016.

[Wal03] Wald, I., Purcell, T. J., Schmittler, J., Benthin, C.,
and Slusallek, P. Realtime ray tracing and its use for in-
teractive global illumination. Eurographics State of the
Art Reports, 2003.

[Wan16] Wang, Y., Guo, P., and Duan, F. A fast ray tracing al-
gorithm based on a hybrid structure. Multimedia Tools
and Applications, 2016.

[Wod17] Wodniok, D. and Goesele, M. Construction of bound-
ing volume hierarchies with sah cost approximation on
temporary subtrees. Computers & Graphics, 2017.

[Yin14] Yin, M. and Li, S. Fast bvh construction and refit for
ray tracing of dynamic scenes. Multimedia tools and
applications, 2014.

[Yu09] Yu, I., Cox, A., Kim, M. H., Ritschel, T., Grosch,
T., Dachsbacher, C., and Kautz, J. Perceptual influence
of approximate visibility in indirect illumination. ACM
Transactions on Applied Perception (TAP), 2009.

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

19

Reference BVH + LS (9) BVH + LS (12) NTree (6) + LS (2) NTree (10) + LS (2)

Reference BVH + LS (9) BVH + LS (12) NTree (6) + LS (2) NTree (10) + LS (2)

D
et

ai
l4

D
et

ai
l3

D
et

ai
l2

D
et

ai
l1

Reference BVH + LS (9) BVH + LS (12) NTree (6) + LS (2) NTree (10) + LS (2)

Figure 6: The test results with the architectural scenes. All images were rendered in 720p and only present indirect
illumination. In bigger scenes using a lower parameter for the depth of the Line Space usage within the base
data structure, more approximation artifacts due to shaft simplification occur. The detailed magnifications and the
heatmaps specifically show the weaknesses of our technique using a low depth parameter. These artifacts especially
occur in the transitions of different Line Spaces. However, a deeper Line Space depth improves image quality
significantly, making Line Space accelerated results suitable for indirect illumination. Overall, the perception in
indirect illumination given a suitable depth parameter is mostly similar to ground truth renderings, but granting
significantly better performance.

ISSN 1213-6972
Journal of WSCG
http://www.wscg.eu/ Vol.26, 2018, No.1

20

