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ABSTRACT 

Consumer-grade RGB-D cameras are widely accessible, but they suffer from a lack of accuracy when compared 

to professional-grade 3D scanning solutions. In this paper, we propose a new method for calibrating an Intel 

RealSense SR300 camera, adaptable to other structured light sensors. The method uses classical checkerboard 

calibration and a coordinate-measuring machine (CMM) based setup with a calibrating plane. It delivers better 

results than the manufacturers settings. 
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1 INTRODUCTION 

Despite being widely accessible and user-friendly, low-

cost structured light cameras suffer from a major 

problem related to their accuracy. The manufacturers 

generally use proprietary calibration methods with their 

devices, which leads to semi-closed technologies. 

Therefore, experienced end-users cannot benefit from 

the full potential of their sensors. A proper calibration 

may lead to a better precision when compared with the 

factory default settings.  

The introduction of the Microsoft Kinect was the 

beginning of the era of consumer grade RGB-D 

cameras. Then the Intel RealSense sensors line 

introduced efficient, compact and easily embeddable 

devices. We chose to work with the Intel RealSense 

SR300, which covers short-range areas. This camera 

contains a color sensor, an IR sensor and an IR 

projector for depth measurement. The onboard imaging 

chip processes the depth computation [Int16].  

In use, the RealSense SR300 presents some 

inaccuracies, for example when capturing a flat wall,  

 

the point cloud is warped at the corners, see Fig. 1. The 

IR sensor also suffers from distortion at the edges of the 

IR frames as shown in Fig. 2. 

 

 
Figure 1. Point cloud of a flat surface 

captured using the SR300 with default settings.  

 

This paper describes a new calibration method for the 

Intel RealSense SR300 with a twofold achievement: 

• Improving the accuracy over the 

manufacturer’s calibration; 

• Providing a general-purpose calibration 

method that can be applied to similar devices; 
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Figure 2. Distortion in the SR300 IR. The 

panel with the pattern is rectangular. 

 

Our algorithm consists in two main steps: 

• A classic checkerboard calibration or 2D 

calibration to correct the camera rays (IR 

camera). 

• A depth correction performed using a 

Coordinate-Measuring Machine (CMM) for 

high precision measurement. 

The output is a calibration data file with the camera 

parameters and a 3D grid of correction coefficients 

covering the calibration domain in the view frustum of 

the depth camera. 

This paper is organized as follows. Section 2 gives a 

brief introduction of the camera’s intrinsic parameters, 

then it presents related works about RGB-D cameras 

calibration. Section 3 presents our method and provides 

all the details on the hardware setup. Section 4 contains 

some experimental results along with a validation 

approach for our method. Finally, Section 5 is a 

discussion/conclusion on our work. 

 

2 BACKGROUND AND RELATED 

WORK 

Camera calibration is the process of mathematically 

describing how 3D spatial points project into the 

camera image sensor. That is, a mathematical model of 

the camera is required for calibration. We use the 

pinhole camera model for the camera’s parameters 

description. 
 

2.1 Camera’s Intrinsic Parameters 

The pinhole camera model describes the projection of 

3D world points into the camera’s (2D) image plane. 

Let us consider a point  𝑀𝑐 = [𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐]𝑇 in the camera 

frame. We want to express the projection of Mc using 

image coordinates which we denote  𝑃𝑐 = [𝑢𝑐 , 𝑣𝑐]𝑇 

using the pinhole model. 

First, we begin by normalizing the point Mn: 

𝑀𝑛 = [𝑥𝑛 , 𝑦𝑛]𝑇 = [𝑥𝑐 𝑧𝑐⁄ , 𝑦𝑐 𝑧𝑐⁄ ]𝑇. 

In the pinhole camera model, the rays are considered to 

pass linearly through the optical center, which in the 

case of real cameras is not true. In fact, the use of lenses 

alters the linearity of the light rays which causes non-

linear distortion on the final images. 

Using the normalized point, the distortion is performed 

in two steps [HKH12]: 

𝑀𝑔 = [
2𝑘3𝑥𝑛𝑦𝑛 + 𝑘4(𝑟2 + 2𝑥𝑛

2)

𝑘3(𝑟2 + 2𝑦𝑛
2) + 2𝑘4𝑥𝑛𝑦𝑛

] 

𝑀𝑘 = (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘5𝑟6)𝑀𝑛 + 𝑀𝑔 

where 𝑟2 = 𝑥𝑛
2 + 𝑦𝑛

2 and 𝑘𝑐 = [𝑘1, … , 𝑘5] is the vector 

of the distortion coefficients. 

The point Pc that we are looking for is: 

[
𝑢𝑐

𝑣𝑐
] = [

𝑓𝑐𝑥 0
0 𝑓𝑐𝑦

] [
𝑥𝑘

𝑦𝑘
] + [

𝑢0𝑐

𝑢0𝑐
] 

The parameters {𝑓𝑐𝑥, 𝑓𝑐𝑦 , 𝑝0𝑐 , 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5} are 

called the intrinsic parameters of the camera where 

{𝑓𝑐𝑥 , 𝑓𝑐𝑦} are the focal lengths and  𝑝0𝑐 = [𝑢0𝑐 , 𝑣0𝑐] is 

the camera principal point. Intrinsic calibration 

consists in finding these parameters. To do so, we 

should establish the correspondence between a set of 

3D points and their projected 2D image points 

[Sem16]. 

Zhang [Zha04a] made the following classification for 

calibration techniques, based on the dimensionality of 

the calibration object: 

1) 3D reference object-based calibration: the typical 

3D calibration object is composed of two or three 

orthogonal planes [Hei00]. The geometry of the 

object should be known with high precision. 

2) 2D plane-based calibration: consists in using a 

planar object such as a checkerboard or circular 

patterns printed on a panel captured from different 

point of views. Many resources are available on the 

subject [Zha00], [SM99].  

3) 1D line-based calibration: first proposed by 

Zhang [Zha04b], it consists in observing a set of 

collinear points moving around a fixed point.  

4) Self-calibration: or 0D calibration as referred to 

by Zhang [Zha04a] because no calibration object is 

required. The method consists in calibrating the 

camera form a sequence of images of a static scene, 

without any prior knowledge of the camera’s motion 

[HZ05]. 
 

2.2 Depth Cameras Calibration 

Although built around the Kinect v1 sensor, most of the 

methods that we cite are supposed to be compatible 

with a wide range of low cost structured light cameras 

according to their respective authors. When the 

calibration object is known (shape, color, size), the 

calibration method is said to be supervised. Otherwise, 

the method is called unsupervised. 
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Smisek et al. [SJP11] proposed a geometrical model for 

the Kinect v1 and estimated the intrinsic parameters of 

both the IR and RGB cameras as well as their relative 

pose. They also estimated internal parameters of the 

depth camera. They used a checkerboard as the 

calibration target of both the RGB and IR cameras of 

the Kinect. 

Herrera et al. [HKH12] have used a high-resolution 

color camera rigidly attached to the Kinect to 

compensate for the Kinect lower resolution color 

sensor. The calibration target is a planar board where a 

checkerboard is printed or stuck. In addition to the 

intrinsic parameters and the relative pose, the authors 

estimated the depth camera intrinsics. 

Jin et al. [JLG14] have performed an intrinsic 

calibration of a Kinect unit, using a set of well-

manufactured cuboids as their calibration target. Their 

objective function is a linear combination of the 

distance and angle errors from the cuboid. They re-

wrote the objective function in terms of the intrinsic 

parameters of the camera prior to the optimization step. 

Staranowicz et al. [SBMM15] have used a video of a 

spherical object moving in front the camera as input to 

their method. After a robust feature-extraction process, 

their algorithm infers an initial estimation of the depth, 

as well as the other calibration parameters, and then it 

performs a refinement estimate of the different 

parameters. 

 

3 CALIBRATION METHOD 

Our technique works as follow. First, the camera’s 

intrinsic parameters are computed via a classical 

checkerboard approach, to correct the x and y 

coordinates. Then, the sensor is mounted on a CMM in 

front of the measure plane. Successive captures of the 

plane are acquired while moving towards it by using the 

corrected model from the first step. Then, we compute 

a 3D grid of correction coefficients that we infer from 

the collected data (plane’s captures). 

We could have dropped the checkerboard step, and 

instead rotated the plane by 45 degrees at each of its 

axis, but the errors in each direction would mix up. An 

alternative would be also to drop the checkerboard 

calibration, and to capture a calibrating sphere at 

different positions, then compute the errors, but we 

would be using inaccurate captures as we rely on the 

manufacturer’s calibration. 
 

3.1 2D Calibration 

As previously said, to get more accurate camera’s 

intrinsic parameters (i.e. in order to remove the 

distortion shown in Fig. 2) we use a classical 

checkerboard calibration. We photograph a 

checkerboard from different viewpoints using the 

camera, and simply use OpenCV calibration module to 

compute the camera’s parameters, in our case we are 

interested in the intrinsic values of the IR sensor.  

Practically, we use the intrinsic values to compute the 

point’s coordinates. The relationship between a 3D 

point (x, y, z) in space and its correspondent (u, v) in the 

depth image is as follows: 

𝑥 =
(𝑢 − 𝑝𝑥)𝑧

𝑓𝑥

 

𝑦 =
(𝑣 − 𝑝𝑦)𝑧

𝑓𝑦

 

Where: (fx, fy) is the focal distance and (px, py) the 

optical center coordinates. The coordinate z is the depth 

that the sensor returns for the depth image pixel (u, v).  

Finally, we apply on x and y a similar iterative 

distortion compensation scheme to the one used in 

OpenCV. The correction over the X and Y axes is 

equivalent to correcting the camera’s ray directions.  

Now, we need to adjust the position of each acquired 

point all along its corresponding camera ray. 
 

3.2 Depth Calibration 

At this step, we compute a regular 3D grid of correction 

coefficients over the view frustum of the sensor (a 

truncated pyramid) or a part of it. A set of captures of a 

calibrating plane is used to “feed” the grid’s nodes in 

terms of point correction.  

The process consists in two main steps: 

• Data acquisition: “Real” points spread over the 

calibration domain and their correction. 

• Grid definition and nodes filling: “Virtual” 

points embedding the local correction information 

and regularly spread over the calibration domain.  

For a given sensor, these steps are performed only once 

to define its proper correction grid. 
 

3.2.1 Data Acquisition 
The input data is a set of points, captured by the sensor 

that we want to calibrate spread over the calibration 

domain which is the subspace defined by the correction 

grid. Every point should have a correction coefficient. 

To this end, we used a matte white plane with a marker 

printed on its center. We place our plane against the 

inner panel of the CMM as shown in Fig. 3. We adjust 

the sensor’s orientation so that it sits parallel to the 

calibrating plane (more details about the plane and the 

sensor adjustments are given in section 3.4). Successive 

captures of the plane are acquired by starting from the 

farthest distance in the calibrating domain and moving 

the sensor towards the plane with a fix step until the 

whole domain is covered. 
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Figure 3. The calibrating plane and its setup 

on the CMM. 
 

The 2D calibration process corrected the X and Y 

coordinates, that is the camera rays. Therefore, for 

every acquired point (of the plane), the correction 

coefficient we are looking for should slide the point 

back or forth along the camera ray so that the point’s 

depth matches the real depth. In other words, we are 

looking for the real distance between the plane and the 

sensor to compute the correction coefficient. 

To compute the real distance between the plane and the 

sensor, we use image processing to detect the marker 

printed on the calibrating plane and we apply the 

similar triangles principle using the focal distance that 

we already computed with the checkerboard method. 

Once the first distance computed, we use the CCM in 

order to infer the next distances for the successive 

calibrating plane captures. 

The correction coefficient of a given point P is equal to 

the real distance of the plane tD(P), which is the true 

depth, divided by the depth returned from the sensor 

sD(P) as shown in Fig. 4. Therefore, the correction 

coefficient c(P) is: 

𝑐(𝑃) = 𝑡𝐷(𝑃)/𝑠𝐷(𝑃) 

 

3.2.2 Grid Definition and Node Filling 

3.2.2.1 Grid Definition 

The 3D grid is a regular truncated pyramid shaped set 

of nodes over the calibration domain. Every node is a 

4D vector such that the first three components are the 

nodes coordinates and the fourth component is the 

correction scalar corresponding to the node. The nodes 

are not actually sensor’s acquired points, but rather 

“virtual” points embedding the correction information 

of their neighborhood. 

 

 
Figure 4. Correction coefficient for a given 

point P: the real depth of the calibrating plane 

tD(P) divided by the z coordinate of P returned 

by the sensor sD(P). 

The grid shape was chosen in order to guarantee a fair 

distribution of the points contributing to the correction 

computation in each node, regardless of the distance 

from the sensor. 

We divide the Z-axis according to a fix step. We use 

the same step for capturing the calibrating plane with 

the couple sensor/CMM. 

For the X-axis and Y-axis, we also use fixed steps. In 

addition, we take into account the maximum resolution 

of the depth sensor that we should not exceed. 

Finally, it is important to consider the approximate 

number of points that will contribute to the correction 

of a node via interpolation. 

3.2.2.2 Nodes Filling 

The nodes positions are defined by the grid 

construction. Still, we need to compute the error 

correction in each node. To do so, we begin by defining 

the neighborhood of a node as all the cells that it 

belongs to. Using the points from the calibrating 

plane’s captures, we interpolate every subset of points 

belonging to a neighborhood in order to compute its 

corresponding node’s correction. In fact, each node 

embeds the correction information of the subspace 

defined by its neighborhood. 

To interpolate over the defined neighborhoods, we used 

the inverse distance weighting interpolation method. It 

is defined as follows: 
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Let P the point to be corrected (the node), {Pi, i=1..N} 

the vertices of its neighborhood, d(P, Pi) the distance 

between the node P and the neighbor Pi, ci the 

coefficient correction of the neighbor Pi, p a smoothing 

parameter and c(P) the coefficient correction that we 

are looking for: 

𝑐(𝑃) = {
∑ 𝜔𝑖(𝑃)𝑁

𝑖=1 𝑐𝑖 ∑ 𝜔𝑖(𝑃)𝑁
𝑖=1⁄ , 𝑖𝑓 𝑑(𝑃, 𝑃𝑖) ≠ 0 ∀𝑖

𝑐𝑖 , 𝑖𝑓  𝑑(𝑃, 𝑃𝑖) = 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖
    

 

Where: 

𝜔𝑖(𝑃) = 1 𝑑(𝑃, 𝑃𝑖)𝑝⁄   

The smoothing parameter p controls the influence of far 

points on the interpolation. We took p = 3. 

Once filled, the grid can be used to correct any point 

cloud captured within the subspace defined by it. 

 

3.3 Applying the correction 

In order to qualify for correction, a captured point cloud 

must belong partially or totally to the domain defined 

by the correction grid. That is, any point outside the 

calibration area cannot be rectified. 

Let PC a point cloud captured with a calibrated sensor 

and G its correction grid. For every point P in PC, we 

start by finding the point’s bounding cell BC in the grid 

G. Therefore, the inverse weighting interpolation can 

be applied across the nodes of BC to compute the 

correction for the point P. Finally, we multiply P by the 

computed coefficient to get a rectified point. 

To determine the bounding cell of a given point, we 

define a 3D grid (a truncated pyramid) in which cells 

are numbered following IJK (K direction follows each 

ray from camera center over our domain). The 

coordinates (i,j,k) refer to the cell with the top-left-front 

vertex (from the point of view of the sensor. See Fig. 5. 

 

 
Figure 5. Top view of the newly defined 3D 

space, IJK (top view). 

 

 

 

Therefore, beside the (x,y,z) coordinates of a given 

point M(x,y,z), we just defined new coordinates (i,j,k) 

in the IJK grid which indicates the bounding cell of the 

point as follows: 

1 - We start by finding K-coordinate. In fact, for a 

given k, all the nodes corresponding to the “level” k 

share the same depth. Thus, for every level, we can 

compare the current point’s depth to the first node of 

each level starting from the farthest level to the 

sensor. The first level for which the first node’s 

depth is less than the point’s depth defines the K 

component. Thus, the bounding cell that we are 

looking for lays on that level. 

2 - To find the J-coordinate, we restrict our search to 

the kth level obtained from the previous step. We 

compute a signed angle between OMYZ and Z-axis, 

where OMYZ(0,y,z) is the orthogonal projection of M 

on the plane YZ. We compare this angle against the 

signed angles computed between the projections on 

the plane YZ of the first node of each row from the 

level k, and the Z-axis.  

3 - For the I-coordinate, we restrict our search to the 

kth level obtained from the first step, and the jth row 

obtained from the second step. We compute a signed 

angle between OMXZ and Z-axis, where OMXZ(x,0,z) 

is the orthogonal projection of M on the plane XZ. 

We compare this angle against the signed angles 

computed between the projections on the plane XZ 

of each node of the jth row from the kth level, and the 

Z-axis. 

 

3.4 Hardware Setup 

We secure the calibrating plane against the inner panel 

of the CMM using modeling clay. In fact, it allows 

adjusting the plane, so it lays orthogonal to the Y-axis 

of the CMM. We attach a mechanical touch probe to 

the CMM and we “draw” a rectangle near the border of 

calibrating plane. The probe should touch the 

calibrating plane in the entire trajectory. If the test fails 

in some area of the plane, we compensate for the 

displacement of the calibrating plane using modeling 

clay. Fig. 6 shows our setup. 

Once the calibrating plane is properly set, we detach the 

mechanical touching probe from the CMM and we 

attach the couple geared head/sensor instead. Then, we 

track the marker on the calibrating plane, and use the 

geared head to fine tune the sensor’s orientation. To this 

end, we perform the detection on the IR camera stream 

and we highlight the marker’s corners when they align 

over the X-axis or the Y-axis of the sensor in our 

software. We align the corners couple wise, for 

example top-left with top-right then top-left with 

bottom-left. That is, we perform the alignment one 

direction at a time (fig. 7). 
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Figure 6. Top: the calibrating plane laying on 

the “inner panel” of the CMM.  Bottom: the 

mechanical probe used to check the 

orthogonality of the plane with CMM Y-axis. 

 

 
Figure 7. A real successful alignment; we used 

the green circles to highlight the aligned corners. 
 

When the four corners of the marker align, meaning the 

sensor is parallel to the calibrating plane, we use the 

CMM joystick to move the sensor over the X-Y axes of 

the CMM so that the center of the marker matches the 

optical center of the sensor in the IR image. We recall 

that the optical center was computed during the 

checkerboard calibration. Therefore, we can apply the 

similar triangles principle to compute the ground truth 

distance. 

In order to enhance the marker’s detection, we turn off 

sensor’s IR projector and use an external IR light 

source to illuminate the plane for a continuous IR 

illumination as the projector projects changing patterns. 

Once the distance is measured, we spray a white matte 

powder to hide the marker in order to avoid the black 

color of the marker to distort theses points in the 

captured point cloud. 

4 RESULTS AND VALIDATION 

4.1 Calibration domain 

 According to the inner dimensions of the working 

space of the CMM, and for the calibrating plane to be 

fully covering the “frame” for each point cloud 

captured, we defined our calibration domain as the 

subspace of the depth view frustum located between 10 

cm and 27 cm approximately from the IR camera 

center. The correction grid is of 64x48x50 size. 

4.2 Checkerboard Calibration 

We performed a checkerboard calibration on the IR 

sensor giving the results on table 1. We took 48 pictures 

of a checkerboard using a 640x480 resolution. The 

checkerboard has 10x8 square tiles of 3 cm edges. 

Fig. 8 shows a picture of the checkerboard before and 

after the correction via the computed distortion values. 

See Table I for the numerical results. 

 
 

Parameter Our values Intel SDK’s 

extracted values 

Focal distances 

(pixels) 

(473.448, 

473.073) 

(474.263, 

474.263) 

Principal point 

(pixels) 

(308.148, 

242.341) 

(304.816, 

245.449) 

Radial 

distortion 

(-0.117456,               

-0.0642003, 

0.0390934) 

(-0.120845,              

-0.0660312, 

0.0516015) 

Tangential 

Distortion 

(-0.00148510, 

0.000892128) 

(-0.00265185,          

-0.00182552) 

Average re-

projection 

error 

0.64 4.79 

Table 1. The checkerboard calibration values vs 

sdk’s 

To compare the intrinsic parameters that we obtain 

against those of Intel’s SDK, we use the re-projection 

error. Meaning, we re-project back feature points using 

the SDK’s camera matrix and compare against the 

checkerboard reference positions, then we repeat the 

process using our camera matrix. In the end, we 

compute the average errors. See Table I for all the 

numerical values. Our computed parameters give a 

lower re-projection error than Intel’s parameters. 

 

ISSN 2464-4617(print) 
ISSN 2464-4625(CD)

Computer Science Research Notes 
CSRN 2801

Full Papers Proceedings 
http://www.WSCG.eu

35 ISBN 978-80-86943-40-4



 
Fig. 8. On the top, a checkerboard picture without 

correction. On the bottom, the same picture after 

correcting the distortion. Straight red lines shows 

the distortion effect. 

4.3 Depth Calibration 

Before introducing our validation approach, we refer 

the reader to the in-depth RealSense SR300 assessment 

from a metrological point of view by Carfagni et al. 

[CFG+17]. Authors give an overview of the RealSense 

SR300 sensor capabilities and limits as a 3D scanning 

device. 

 

Fig. 9. The calibration sphere used in our 

validation process: diameter 50.80 mm (2 inches). 

Keeping the same hardware setup that we used for 

depth calibration, we replace the plane by a calibration 

sphere with a precisely known diameter Fig. 9. The 

goal is to capture the sphere at different positions of the 

calibration domain, then, estimate all the sphere centers 

using a best-fit approach to form a trajectory with the 

centers as nodes. For each capture or trajectory node, 

we acquire two point-clouds, one using the SDK’s 

calibration values and the other using our calibrating 

values (checkerboard inferred intrinsic parameters). To 

the set of clouds captured using our values, we 

additionally apply depth correction. 

We compute two errors per trajectory, a global error 

and a local error. 
 

4.3.1 Global Error 

For this estimator, no reference sphere is chosen, hence 

the term global. We denote the global error E.  

We compute the distance of each sphere center to the 

next sphere center, in the order of their captures as no 

specific order is required. We will refer to the first set 

of distances as point cloud distances and we will denote 

it DPC. Equivalently, we compute the distances between 

the successive CMM positions of the captures that we 

will call CMM distances and we will denote DCMM. We 

define the global error as the following: 

𝐸 = ∑ |𝑑𝑃𝐶 − 𝑑𝐶𝑀𝑀|

𝑑𝑃𝐶 ∈ 𝐷𝑝𝑐

𝑑𝐶𝑀𝑀 ∈ 𝐷𝐶𝑀𝑀

/(𝑛𝑢𝑚_𝑠𝑝ℎ𝑒𝑟𝑒𝑠 − 1) 

Where: dCMM is the correspondent of dPC in DCMM. 
 

4.3.2 Local Error 

A local error can be computed at each sphere center that 

we captured. For a sphere S, we compute the local error 

e(S) by taking the distances to all the other sphere 

centers and comparing them against the respective 

CMM inferred distances in a similar way of the global 

error. The local error at the sphere’s center is: 

𝑒(𝑆) = ∑ |𝑑𝑃𝐶 − 𝑑𝐶𝑀𝑀|

𝑑𝑃𝐶 ∈ 𝐷𝑝𝑐(𝑆)

𝑑𝐶𝑀𝑀 ∈ 𝐷𝐶𝑀𝑀(𝑆)

/(𝑛_𝑠𝑝ℎ𝑒𝑟𝑒𝑠 − 1) 

 Where DPC(S) is the set of distances computed from 

the point clouds and DCMM(S) is the set of distances 

computed from the respective CMM positions. dCMM is 

the correspondent of dPC in DCMM(S). 
 

4.3.3 Results 
We captured the calibrating sphere on twenty-seven 

different positions as shown in Fig. 10. 

We recorded sets of three calibrations using our method 

under the same conditions. The plots in fig. 11 depict 

the global and local errors that we obtained. Although 

there are some positions where the RealSense SDK 

calibration performed better than our calibration, our 

average global error is lower in all the experiments, see 

Table II for the average global error of each 

experiment. Concerning local error, we can see that our 
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calibration is much better than the SDK’s in all the 

experiments.  

 
Fig. 10. The calibrating sphere captures over the 

calibration domain. The blue line corresponds to 

the Z-axis of the sensor. 

Fig. 11. Shows a point cloud before and after the 

calibration. We chose a flat surface point cloud in order 

to see the actual difference. In fact, it is near the corners 

of a flat surface covering the whole “frame” that the 

distortion is mostly visible.  

Fig. 11. Compared global error and local error 

plots SDK versus our method. We averaged over 3 

experiments. 

 
Our calibration 

average error 

(mm) 

SDK average 

error (mm) 

1st experiment 0.18 0.76 

2nd experiment 0.27 0.76 

3rd experiment 0.32 0.76 

Table 2. The global error evaluation 

 

 

Fig. 12 Left: front and top view of a point cloud 

(flat surface) before correction. Right, the same 

plane after correction using our method. 

 

4.3.4 Notes on the method’s precision 

The accuracy of our method essentially depends on two 

factors: 

• The average re-projection error of the 

checkerboard calibration (see Table I). In our test, 

the error is 0.64 pixels. 

• The precision of the ground-truth distance 

computed through image processing. 

We will try to evaluate the second factor that is the 

accuracy of the ground-truth distance. It heavily relies 

on the average re-projection error as the corrected and 

undistorted IR frames are used in the image-processing 

step. 

Using the similar triangles principle, the ground truth 

distance 𝑑 is computed as follows: 

𝑑 =
𝐿 𝑓

𝑙
 

Where, 𝐿 is the marker half-width (in millimeters), 𝑙 is 
the marker half-width detected in the IR frame (in 

pixels) and 𝑓 is the computed focal distance (in pixels) 

from the checkerboard calibration. 

Now, suppose that we make a mistake of 𝑛 pixels in our 

detection, and that the computed distance is 𝑑′. Then, 

the    error    corresponding    to    this    detection    is 

approximatively: 
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𝐸(𝑛) ≈ d − d′ =
𝐿𝑓

𝑙
−

𝐿𝑓

𝑙 + 𝑛
 

Thus, 

𝐸(𝑛) ≈
𝑛𝐿𝑓

𝑙(𝑙 + 𝑛)
 

The first thing to notice is that the bigger the value 𝑙, 
the smaller the error. To increase 𝑙, the IR camera 

should be set to its maximum resolution, that is 

640x480 for the RealSense SR300, and the sensor 

should be very close to the camera in such a way that 

the marker cover most of the frame while still entirely 

enclosed in for detection sake. 

To get an idea about the precision we achieved in our 

setup, we could get as close for a value of 225 pixels 

for 𝑙.  

Knowing that 𝐿 = 79.5 𝑚𝑚 and 𝑓 = 473.448 𝑝𝑖𝑥𝑒𝑙, 

the error is: 

𝐸(0.64 𝑝𝑖𝑥𝑒𝑙𝑠) ≈ 0.47 𝑚𝑚 

Thus, we have approximatively a half millimeter 

precision in our ground truth distance. 

5 CONCLUSION 

In this paper, we have proposed a supervised intrinsic 

calibration method for the Intel RealSense SR300 that 

relies on the use of a CMM for robust ground truth. It 

has proven to give superior accuracy over the 

manufacturer’s default calibration, as shown in the 

“Results and Validation” Section. In addition, we can 

apply it to other structured-light sensors, as we do not 

use any special or exclusive calibration parameter to the 

Intel RealSense SR300 sensor.  

On the limitations side, when computing the X and Y 

coordinates, the method involves the use of a non-

corrected yet depth coordinate (see equations page 3). 

Still, our approach performs better than the default 

manufacturer calibration, but as a future improvement, 

we will estimate the gap and if needed perform iterative 

calibration steps. On another side, we plan to make our 

method fully automated. 
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