
Calibrating Low-cost Structured-light 3D Sensors

R. Chakib

Université de Limoges
XLIM / ASALI

123 Av. Albert Thomas
87000 Limoges, France

CORUO

reda.chakib@etu.unilim.fr

 N. Mérillou

Université de Limoges
XLIM / ASALI

123 Av. Albert Thomas
87000 Limoges, France
nicolas.merillou@unilim.fr

 P.-J. Vincent

CORUO
46 Av. des Bénédictins
87000 Limoges, France

pierre-jean.vincent@coruo.com

 S. Mérillou

Université de Limoges
XLIM / ASALI

123 Av. Albert Thomas
87000 Limoges, France
stephane.merillou@unilim.fr

ABSTRACT

Consumer-grade RGB-D cameras are widely accessible, but they suffer from a lack of accuracy when compared

to professional-grade 3D scanning solutions. In this paper, we propose a new method for calibrating an Intel

RealSense SR300 camera, adaptable to other structured light sensors. The method uses classical checkerboard

calibration and a coordinate-measuring machine (CMM) based setup with a calibrating plane. It delivers better

results than the manufacturers settings.

Keywords

Camera calibration, RGB-D camera, coordinate-measuring machine, pinhole model, intrinsic calibration.

1 INTRODUCTION

Despite being widely accessible and user-friendly, low-

cost structured light cameras suffer from a major

problem related to their accuracy. The manufacturers

generally use proprietary calibration methods with their

devices, which leads to semi-closed technologies.

Therefore, experienced end-users cannot benefit from

the full potential of their sensors. A proper calibration

may lead to a better precision when compared with the

factory default settings.

The introduction of the Microsoft Kinect was the

beginning of the era of consumer grade RGB-D

cameras. Then the Intel RealSense sensors line

introduced efficient, compact and easily embeddable

devices. We chose to work with the Intel RealSense

SR300, which covers short-range areas. This camera

contains a color sensor, an IR sensor and an IR

projector for depth measurement. The onboard imaging

chip processes the depth computation [Int16].

In use, the RealSense SR300 presents some

inaccuracies, for example when capturing a flat wall,

the point cloud is warped at the corners, see Fig. 1. The

IR sensor also suffers from distortion at the edges of the

IR frames as shown in Fig. 2.

Figure 1. Point cloud of a flat surface

captured using the SR300 with default settings.

This paper describes a new calibration method for the

Intel RealSense SR300 with a twofold achievement:

• Improving the accuracy over the

manufacturer’s calibration;

• Providing a general-purpose calibration

method that can be applied to similar devices;

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

30 ISBN 978-80-86943-40-4
https://doi.org/10.24132/CSRN.2018.2801.4

Figure 2. Distortion in the SR300 IR. The

panel with the pattern is rectangular.

Our algorithm consists in two main steps:

• A classic checkerboard calibration or 2D

calibration to correct the camera rays (IR

camera).

• A depth correction performed using a

Coordinate-Measuring Machine (CMM) for

high precision measurement.

The output is a calibration data file with the camera

parameters and a 3D grid of correction coefficients

covering the calibration domain in the view frustum of

the depth camera.

This paper is organized as follows. Section 2 gives a

brief introduction of the camera’s intrinsic parameters,

then it presents related works about RGB-D cameras

calibration. Section 3 presents our method and provides

all the details on the hardware setup. Section 4 contains

some experimental results along with a validation

approach for our method. Finally, Section 5 is a

discussion/conclusion on our work.

2 BACKGROUND AND RELATED

WORK

Camera calibration is the process of mathematically

describing how 3D spatial points project into the

camera image sensor. That is, a mathematical model of

the camera is required for calibration. We use the

pinhole camera model for the camera’s parameters

description.

2.1 Camera’s Intrinsic Parameters

The pinhole camera model describes the projection of

3D world points into the camera’s (2D) image plane.

Let us consider a point 𝑀𝑐 = [𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐]𝑇 in the camera

frame. We want to express the projection of Mc using

image coordinates which we denote 𝑃𝑐 = [𝑢𝑐 , 𝑣𝑐]𝑇

using the pinhole model.

First, we begin by normalizing the point Mn:

𝑀𝑛 = [𝑥𝑛 , 𝑦𝑛]𝑇 = [𝑥𝑐 𝑧𝑐⁄ , 𝑦𝑐 𝑧𝑐⁄]𝑇.

In the pinhole camera model, the rays are considered to

pass linearly through the optical center, which in the

case of real cameras is not true. In fact, the use of lenses

alters the linearity of the light rays which causes non-

linear distortion on the final images.

Using the normalized point, the distortion is performed

in two steps [HKH12]:

𝑀𝑔 = [
2𝑘3𝑥𝑛𝑦𝑛 + 𝑘4(𝑟2 + 2𝑥𝑛

2)

𝑘3(𝑟2 + 2𝑦𝑛
2) + 2𝑘4𝑥𝑛𝑦𝑛

]

𝑀𝑘 = (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘5𝑟6)𝑀𝑛 + 𝑀𝑔

where 𝑟2 = 𝑥𝑛
2 + 𝑦𝑛

2 and 𝑘𝑐 = [𝑘1, … , 𝑘5] is the vector

of the distortion coefficients.

The point Pc that we are looking for is:

[
𝑢𝑐

𝑣𝑐
] = [

𝑓𝑐𝑥 0
0 𝑓𝑐𝑦

] [
𝑥𝑘

𝑦𝑘
] + [

𝑢0𝑐

𝑢0𝑐
]

The parameters {𝑓𝑐𝑥, 𝑓𝑐𝑦 , 𝑝0𝑐 , 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5} are

called the intrinsic parameters of the camera where

{𝑓𝑐𝑥 , 𝑓𝑐𝑦} are the focal lengths and 𝑝0𝑐 = [𝑢0𝑐 , 𝑣0𝑐] is

the camera principal point. Intrinsic calibration

consists in finding these parameters. To do so, we

should establish the correspondence between a set of

3D points and their projected 2D image points

[Sem16].

Zhang [Zha04a] made the following classification for

calibration techniques, based on the dimensionality of

the calibration object:

1) 3D reference object-based calibration: the typical

3D calibration object is composed of two or three

orthogonal planes [Hei00]. The geometry of the

object should be known with high precision.

2) 2D plane-based calibration: consists in using a

planar object such as a checkerboard or circular

patterns printed on a panel captured from different

point of views. Many resources are available on the

subject [Zha00], [SM99].

3) 1D line-based calibration: first proposed by

Zhang [Zha04b], it consists in observing a set of

collinear points moving around a fixed point.

4) Self-calibration: or 0D calibration as referred to

by Zhang [Zha04a] because no calibration object is

required. The method consists in calibrating the

camera form a sequence of images of a static scene,

without any prior knowledge of the camera’s motion

[HZ05].

2.2 Depth Cameras Calibration

Although built around the Kinect v1 sensor, most of the

methods that we cite are supposed to be compatible

with a wide range of low cost structured light cameras

according to their respective authors. When the

calibration object is known (shape, color, size), the

calibration method is said to be supervised. Otherwise,

the method is called unsupervised.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

31 ISBN 978-80-86943-40-4

Smisek et al. [SJP11] proposed a geometrical model for

the Kinect v1 and estimated the intrinsic parameters of

both the IR and RGB cameras as well as their relative

pose. They also estimated internal parameters of the

depth camera. They used a checkerboard as the

calibration target of both the RGB and IR cameras of

the Kinect.

Herrera et al. [HKH12] have used a high-resolution

color camera rigidly attached to the Kinect to

compensate for the Kinect lower resolution color

sensor. The calibration target is a planar board where a

checkerboard is printed or stuck. In addition to the

intrinsic parameters and the relative pose, the authors

estimated the depth camera intrinsics.

Jin et al. [JLG14] have performed an intrinsic

calibration of a Kinect unit, using a set of well-

manufactured cuboids as their calibration target. Their

objective function is a linear combination of the

distance and angle errors from the cuboid. They re-

wrote the objective function in terms of the intrinsic

parameters of the camera prior to the optimization step.

Staranowicz et al. [SBMM15] have used a video of a

spherical object moving in front the camera as input to

their method. After a robust feature-extraction process,

their algorithm infers an initial estimation of the depth,

as well as the other calibration parameters, and then it

performs a refinement estimate of the different

parameters.

3 CALIBRATION METHOD

Our technique works as follow. First, the camera’s

intrinsic parameters are computed via a classical

checkerboard approach, to correct the x and y

coordinates. Then, the sensor is mounted on a CMM in

front of the measure plane. Successive captures of the

plane are acquired while moving towards it by using the

corrected model from the first step. Then, we compute

a 3D grid of correction coefficients that we infer from

the collected data (plane’s captures).

We could have dropped the checkerboard step, and

instead rotated the plane by 45 degrees at each of its

axis, but the errors in each direction would mix up. An

alternative would be also to drop the checkerboard

calibration, and to capture a calibrating sphere at

different positions, then compute the errors, but we

would be using inaccurate captures as we rely on the

manufacturer’s calibration.

3.1 2D Calibration

As previously said, to get more accurate camera’s

intrinsic parameters (i.e. in order to remove the

distortion shown in Fig. 2) we use a classical

checkerboard calibration. We photograph a

checkerboard from different viewpoints using the

camera, and simply use OpenCV calibration module to

compute the camera’s parameters, in our case we are

interested in the intrinsic values of the IR sensor.

Practically, we use the intrinsic values to compute the

point’s coordinates. The relationship between a 3D

point (x, y, z) in space and its correspondent (u, v) in the

depth image is as follows:

𝑥 =
(𝑢 − 𝑝𝑥)𝑧

𝑓𝑥

𝑦 =
(𝑣 − 𝑝𝑦)𝑧

𝑓𝑦

Where: (fx, fy) is the focal distance and (px, py) the

optical center coordinates. The coordinate z is the depth

that the sensor returns for the depth image pixel (u, v).

Finally, we apply on x and y a similar iterative

distortion compensation scheme to the one used in

OpenCV. The correction over the X and Y axes is

equivalent to correcting the camera’s ray directions.

Now, we need to adjust the position of each acquired

point all along its corresponding camera ray.

3.2 Depth Calibration

At this step, we compute a regular 3D grid of correction

coefficients over the view frustum of the sensor (a

truncated pyramid) or a part of it. A set of captures of a

calibrating plane is used to “feed” the grid’s nodes in

terms of point correction.

The process consists in two main steps:

• Data acquisition: “Real” points spread over the

calibration domain and their correction.

• Grid definition and nodes filling: “Virtual”

points embedding the local correction information

and regularly spread over the calibration domain.

For a given sensor, these steps are performed only once

to define its proper correction grid.

3.2.1 Data Acquisition
The input data is a set of points, captured by the sensor

that we want to calibrate spread over the calibration

domain which is the subspace defined by the correction

grid. Every point should have a correction coefficient.

To this end, we used a matte white plane with a marker

printed on its center. We place our plane against the

inner panel of the CMM as shown in Fig. 3. We adjust

the sensor’s orientation so that it sits parallel to the

calibrating plane (more details about the plane and the

sensor adjustments are given in section 3.4). Successive

captures of the plane are acquired by starting from the

farthest distance in the calibrating domain and moving

the sensor towards the plane with a fix step until the

whole domain is covered.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

32 ISBN 978-80-86943-40-4

Figure 3. The calibrating plane and its setup

on the CMM.

The 2D calibration process corrected the X and Y

coordinates, that is the camera rays. Therefore, for

every acquired point (of the plane), the correction

coefficient we are looking for should slide the point

back or forth along the camera ray so that the point’s

depth matches the real depth. In other words, we are

looking for the real distance between the plane and the

sensor to compute the correction coefficient.

To compute the real distance between the plane and the

sensor, we use image processing to detect the marker

printed on the calibrating plane and we apply the

similar triangles principle using the focal distance that

we already computed with the checkerboard method.

Once the first distance computed, we use the CCM in

order to infer the next distances for the successive

calibrating plane captures.

The correction coefficient of a given point P is equal to

the real distance of the plane tD(P), which is the true

depth, divided by the depth returned from the sensor

sD(P) as shown in Fig. 4. Therefore, the correction

coefficient c(P) is:

𝑐(𝑃) = 𝑡𝐷(𝑃)/𝑠𝐷(𝑃)

3.2.2 Grid Definition and Node Filling

3.2.2.1 Grid Definition

The 3D grid is a regular truncated pyramid shaped set

of nodes over the calibration domain. Every node is a

4D vector such that the first three components are the

nodes coordinates and the fourth component is the

correction scalar corresponding to the node. The nodes

are not actually sensor’s acquired points, but rather

“virtual” points embedding the correction information

of their neighborhood.

Figure 4. Correction coefficient for a given

point P: the real depth of the calibrating plane

tD(P) divided by the z coordinate of P returned

by the sensor sD(P).

The grid shape was chosen in order to guarantee a fair

distribution of the points contributing to the correction

computation in each node, regardless of the distance

from the sensor.

We divide the Z-axis according to a fix step. We use

the same step for capturing the calibrating plane with

the couple sensor/CMM.

For the X-axis and Y-axis, we also use fixed steps. In

addition, we take into account the maximum resolution

of the depth sensor that we should not exceed.

Finally, it is important to consider the approximate

number of points that will contribute to the correction

of a node via interpolation.

3.2.2.2 Nodes Filling

The nodes positions are defined by the grid

construction. Still, we need to compute the error

correction in each node. To do so, we begin by defining

the neighborhood of a node as all the cells that it

belongs to. Using the points from the calibrating

plane’s captures, we interpolate every subset of points

belonging to a neighborhood in order to compute its

corresponding node’s correction. In fact, each node

embeds the correction information of the subspace

defined by its neighborhood.

To interpolate over the defined neighborhoods, we used

the inverse distance weighting interpolation method. It

is defined as follows:

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

33 ISBN 978-80-86943-40-4

Let P the point to be corrected (the node), {Pi, i=1..N}

the vertices of its neighborhood, d(P, Pi) the distance

between the node P and the neighbor Pi, ci the

coefficient correction of the neighbor Pi, p a smoothing

parameter and c(P) the coefficient correction that we

are looking for:

𝑐(𝑃) = {
∑ 𝜔𝑖(𝑃)𝑁

𝑖=1 𝑐𝑖 ∑ 𝜔𝑖(𝑃)𝑁
𝑖=1⁄ , 𝑖𝑓 𝑑(𝑃, 𝑃𝑖) ≠ 0 ∀𝑖

𝑐𝑖 , 𝑖𝑓 𝑑(𝑃, 𝑃𝑖) = 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖

Where:

𝜔𝑖(𝑃) = 1 𝑑(𝑃, 𝑃𝑖)𝑝⁄

The smoothing parameter p controls the influence of far

points on the interpolation. We took p = 3.

Once filled, the grid can be used to correct any point

cloud captured within the subspace defined by it.

3.3 Applying the correction

In order to qualify for correction, a captured point cloud

must belong partially or totally to the domain defined

by the correction grid. That is, any point outside the

calibration area cannot be rectified.

Let PC a point cloud captured with a calibrated sensor

and G its correction grid. For every point P in PC, we

start by finding the point’s bounding cell BC in the grid

G. Therefore, the inverse weighting interpolation can

be applied across the nodes of BC to compute the

correction for the point P. Finally, we multiply P by the

computed coefficient to get a rectified point.

To determine the bounding cell of a given point, we

define a 3D grid (a truncated pyramid) in which cells

are numbered following IJK (K direction follows each

ray from camera center over our domain). The

coordinates (i,j,k) refer to the cell with the top-left-front

vertex (from the point of view of the sensor. See Fig. 5.

Figure 5. Top view of the newly defined 3D

space, IJK (top view).

Therefore, beside the (x,y,z) coordinates of a given

point M(x,y,z), we just defined new coordinates (i,j,k)

in the IJK grid which indicates the bounding cell of the

point as follows:

1 - We start by finding K-coordinate. In fact, for a

given k, all the nodes corresponding to the “level” k

share the same depth. Thus, for every level, we can

compare the current point’s depth to the first node of

each level starting from the farthest level to the

sensor. The first level for which the first node’s

depth is less than the point’s depth defines the K

component. Thus, the bounding cell that we are

looking for lays on that level.

2 - To find the J-coordinate, we restrict our search to

the kth level obtained from the previous step. We

compute a signed angle between OMYZ and Z-axis,

where OMYZ(0,y,z) is the orthogonal projection of M

on the plane YZ. We compare this angle against the

signed angles computed between the projections on

the plane YZ of the first node of each row from the

level k, and the Z-axis.

3 - For the I-coordinate, we restrict our search to the

kth level obtained from the first step, and the jth row

obtained from the second step. We compute a signed

angle between OMXZ and Z-axis, where OMXZ(x,0,z)

is the orthogonal projection of M on the plane XZ.

We compare this angle against the signed angles

computed between the projections on the plane XZ

of each node of the jth row from the kth level, and the

Z-axis.

3.4 Hardware Setup

We secure the calibrating plane against the inner panel

of the CMM using modeling clay. In fact, it allows

adjusting the plane, so it lays orthogonal to the Y-axis

of the CMM. We attach a mechanical touch probe to

the CMM and we “draw” a rectangle near the border of

calibrating plane. The probe should touch the

calibrating plane in the entire trajectory. If the test fails

in some area of the plane, we compensate for the

displacement of the calibrating plane using modeling

clay. Fig. 6 shows our setup.

Once the calibrating plane is properly set, we detach the

mechanical touching probe from the CMM and we

attach the couple geared head/sensor instead. Then, we

track the marker on the calibrating plane, and use the

geared head to fine tune the sensor’s orientation. To this

end, we perform the detection on the IR camera stream

and we highlight the marker’s corners when they align

over the X-axis or the Y-axis of the sensor in our

software. We align the corners couple wise, for

example top-left with top-right then top-left with

bottom-left. That is, we perform the alignment one

direction at a time (fig. 7).

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

34 ISBN 978-80-86943-40-4

Figure 6. Top: the calibrating plane laying on

the “inner panel” of the CMM. Bottom: the

mechanical probe used to check the

orthogonality of the plane with CMM Y-axis.

Figure 7. A real successful alignment; we used

the green circles to highlight the aligned corners.

When the four corners of the marker align, meaning the

sensor is parallel to the calibrating plane, we use the

CMM joystick to move the sensor over the X-Y axes of

the CMM so that the center of the marker matches the

optical center of the sensor in the IR image. We recall

that the optical center was computed during the

checkerboard calibration. Therefore, we can apply the

similar triangles principle to compute the ground truth

distance.

In order to enhance the marker’s detection, we turn off

sensor’s IR projector and use an external IR light

source to illuminate the plane for a continuous IR

illumination as the projector projects changing patterns.

Once the distance is measured, we spray a white matte

powder to hide the marker in order to avoid the black

color of the marker to distort theses points in the

captured point cloud.

4 RESULTS AND VALIDATION

4.1 Calibration domain

 According to the inner dimensions of the working

space of the CMM, and for the calibrating plane to be

fully covering the “frame” for each point cloud

captured, we defined our calibration domain as the

subspace of the depth view frustum located between 10

cm and 27 cm approximately from the IR camera

center. The correction grid is of 64x48x50 size.

4.2 Checkerboard Calibration

We performed a checkerboard calibration on the IR

sensor giving the results on table 1. We took 48 pictures

of a checkerboard using a 640x480 resolution. The

checkerboard has 10x8 square tiles of 3 cm edges.

Fig. 8 shows a picture of the checkerboard before and

after the correction via the computed distortion values.

See Table I for the numerical results.

Parameter Our values Intel SDK’s

extracted values

Focal distances

(pixels)

(473.448,

473.073)

(474.263,

474.263)

Principal point

(pixels)

(308.148,

242.341)

(304.816,

245.449)

Radial

distortion

(-0.117456,

-0.0642003,

0.0390934)

(-0.120845,

-0.0660312,

0.0516015)

Tangential

Distortion

(-0.00148510,

0.000892128)

(-0.00265185,

-0.00182552)

Average re-

projection

error

0.64 4.79

Table 1. The checkerboard calibration values vs

sdk’s

To compare the intrinsic parameters that we obtain

against those of Intel’s SDK, we use the re-projection

error. Meaning, we re-project back feature points using

the SDK’s camera matrix and compare against the

checkerboard reference positions, then we repeat the

process using our camera matrix. In the end, we

compute the average errors. See Table I for all the

numerical values. Our computed parameters give a

lower re-projection error than Intel’s parameters.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

35 ISBN 978-80-86943-40-4

Fig. 8. On the top, a checkerboard picture without

correction. On the bottom, the same picture after

correcting the distortion. Straight red lines shows

the distortion effect.

4.3 Depth Calibration

Before introducing our validation approach, we refer

the reader to the in-depth RealSense SR300 assessment

from a metrological point of view by Carfagni et al.

[CFG+17]. Authors give an overview of the RealSense

SR300 sensor capabilities and limits as a 3D scanning

device.

Fig. 9. The calibration sphere used in our

validation process: diameter 50.80 mm (2 inches).

Keeping the same hardware setup that we used for

depth calibration, we replace the plane by a calibration

sphere with a precisely known diameter Fig. 9. The

goal is to capture the sphere at different positions of the

calibration domain, then, estimate all the sphere centers

using a best-fit approach to form a trajectory with the

centers as nodes. For each capture or trajectory node,

we acquire two point-clouds, one using the SDK’s

calibration values and the other using our calibrating

values (checkerboard inferred intrinsic parameters). To

the set of clouds captured using our values, we

additionally apply depth correction.

We compute two errors per trajectory, a global error

and a local error.

4.3.1 Global Error

For this estimator, no reference sphere is chosen, hence

the term global. We denote the global error E.

We compute the distance of each sphere center to the

next sphere center, in the order of their captures as no

specific order is required. We will refer to the first set

of distances as point cloud distances and we will denote

it DPC. Equivalently, we compute the distances between

the successive CMM positions of the captures that we

will call CMM distances and we will denote DCMM. We

define the global error as the following:

𝐸 = ∑ |𝑑𝑃𝐶 − 𝑑𝐶𝑀𝑀|

𝑑𝑃𝐶 ∈ 𝐷𝑝𝑐

𝑑𝐶𝑀𝑀 ∈ 𝐷𝐶𝑀𝑀

/(𝑛𝑢𝑚_𝑠𝑝ℎ𝑒𝑟𝑒𝑠 − 1)

Where: dCMM is the correspondent of dPC in DCMM.

4.3.2 Local Error

A local error can be computed at each sphere center that

we captured. For a sphere S, we compute the local error

e(S) by taking the distances to all the other sphere

centers and comparing them against the respective

CMM inferred distances in a similar way of the global

error. The local error at the sphere’s center is:

𝑒(𝑆) = ∑ |𝑑𝑃𝐶 − 𝑑𝐶𝑀𝑀|

𝑑𝑃𝐶 ∈ 𝐷𝑝𝑐(𝑆)

𝑑𝐶𝑀𝑀 ∈ 𝐷𝐶𝑀𝑀(𝑆)

/(𝑛_𝑠𝑝ℎ𝑒𝑟𝑒𝑠 − 1)

 Where DPC(S) is the set of distances computed from

the point clouds and DCMM(S) is the set of distances

computed from the respective CMM positions. dCMM is

the correspondent of dPC in DCMM(S).

4.3.3 Results
We captured the calibrating sphere on twenty-seven

different positions as shown in Fig. 10.

We recorded sets of three calibrations using our method

under the same conditions. The plots in fig. 11 depict

the global and local errors that we obtained. Although

there are some positions where the RealSense SDK

calibration performed better than our calibration, our

average global error is lower in all the experiments, see

Table II for the average global error of each

experiment. Concerning local error, we can see that our

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

36 ISBN 978-80-86943-40-4

calibration is much better than the SDK’s in all the

experiments.

Fig. 10. The calibrating sphere captures over the

calibration domain. The blue line corresponds to

the Z-axis of the sensor.

Fig. 11. Shows a point cloud before and after the

calibration. We chose a flat surface point cloud in order

to see the actual difference. In fact, it is near the corners

of a flat surface covering the whole “frame” that the

distortion is mostly visible.

Fig. 11. Compared global error and local error

plots SDK versus our method. We averaged over 3

experiments.

Our calibration

average error

(mm)

SDK average

error (mm)

1st experiment 0.18 0.76

2nd experiment 0.27 0.76

3rd experiment 0.32 0.76

Table 2. The global error evaluation

Fig. 12 Left: front and top view of a point cloud

(flat surface) before correction. Right, the same

plane after correction using our method.

4.3.4 Notes on the method’s precision

The accuracy of our method essentially depends on two

factors:

• The average re-projection error of the

checkerboard calibration (see Table I). In our test,

the error is 0.64 pixels.

• The precision of the ground-truth distance

computed through image processing.

We will try to evaluate the second factor that is the

accuracy of the ground-truth distance. It heavily relies

on the average re-projection error as the corrected and

undistorted IR frames are used in the image-processing

step.

Using the similar triangles principle, the ground truth

distance 𝑑 is computed as follows:

𝑑 =
𝐿 𝑓

𝑙

Where, 𝐿 is the marker half-width (in millimeters), 𝑙 is
the marker half-width detected in the IR frame (in

pixels) and 𝑓 is the computed focal distance (in pixels)

from the checkerboard calibration.

Now, suppose that we make a mistake of 𝑛 pixels in our

detection, and that the computed distance is 𝑑′. Then,

the error corresponding to this detection is

approximatively:

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

37 ISBN 978-80-86943-40-4

𝐸(𝑛) ≈ d − d′ =
𝐿𝑓

𝑙
−

𝐿𝑓

𝑙 + 𝑛

Thus,

𝐸(𝑛) ≈
𝑛𝐿𝑓

𝑙(𝑙 + 𝑛)

The first thing to notice is that the bigger the value 𝑙,
the smaller the error. To increase 𝑙, the IR camera

should be set to its maximum resolution, that is

640x480 for the RealSense SR300, and the sensor

should be very close to the camera in such a way that

the marker cover most of the frame while still entirely

enclosed in for detection sake.

To get an idea about the precision we achieved in our

setup, we could get as close for a value of 225 pixels

for 𝑙.

Knowing that 𝐿 = 79.5 𝑚𝑚 and 𝑓 = 473.448 𝑝𝑖𝑥𝑒𝑙,

the error is:

𝐸(0.64 𝑝𝑖𝑥𝑒𝑙𝑠) ≈ 0.47 𝑚𝑚

Thus, we have approximatively a half millimeter

precision in our ground truth distance.

5 CONCLUSION

In this paper, we have proposed a supervised intrinsic

calibration method for the Intel RealSense SR300 that

relies on the use of a CMM for robust ground truth. It

has proven to give superior accuracy over the

manufacturer’s default calibration, as shown in the

“Results and Validation” Section. In addition, we can

apply it to other structured-light sensors, as we do not

use any special or exclusive calibration parameter to the

Intel RealSense SR300 sensor.

On the limitations side, when computing the X and Y

coordinates, the method involves the use of a non-

corrected yet depth coordinate (see equations page 3).

Still, our approach performs better than the default

manufacturer calibration, but as a future improvement,

we will estimate the gap and if needed perform iterative

calibration steps. On another side, we plan to make our

method fully automated.

6 REFERENCES

[Int16]https://software.intel.com/sites/default/files/ma

naged/0c/ec/realsense-sr300-product-datasheet-

rev-1-0.pdf

[HZ05] Hartley, R., & Zisserman, A. (2005). Multiple

view geometry in computer vision. Robotica, 23(2),

271-271.

[MVGV09] Moons, T., Van Gool, L., & Vergauwen,

M. (2009). 3D reconstruction from multiple images,

Part 1: Principles. Now Publishers Inc.

[HKH12] Herrera, D., Kannala, J., & Heikkilä, J.

(2012). Joint depth and color camera calibration

with distortion correction. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(10),

2058-2064.

[Sem16] Semeniuta, O. (2016). Analysis of Camera

Calibration with Respect to Measurement

Accuracy. Procedia CIRP, 41, 765-770.

[Zha04a] Z. Zhang, "Camera Calibration", Chapter 2,

pages 4-43, in G. Medioni and S.B. Kang, eds.,

Emerging Topics in Computer Vision, Prentice Hall

Professional Technical Reference, 2004.

[Hei00] Heikkila, J. (2000). Geometric camera

calibration using circular control points. IEEE

Transactions on pattern analysis and machine

intelligence, 22(10), 1066-1077.

[Zha00] Zhang, Z. (2000). A flexible new technique for

camera calibration. IEEE Transactions on pattern

analysis and machine intelligence, 22(11), 1330-

1334.

[SM99] Sturm, P. F., & Maybank, S. J. (1999). On

plane-based camera calibration: A general

algorithm, singularities, applications. In Computer

Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on. (Vol. 1). IEEE.

[Zha04b] Zhang, Z. (2004). Camera calibration with

one-dimensional objects. IEEE transactions on

pattern analysis and machine intelligence, 26(7),

892-899.

[SJP11] J. Smisek, M. Jancosek, T. Pajdla, 3D with

Kinect, in: IEEE Workshop on Consumer Depth

Cameras for Computer Vision, 2011.

[JLG14] Jin, B., Lei, H., & Geng, W. (2014,

September). Accurate intrinsic calibration of depth

camera with cuboids. In European Conference on

Computer Vision (pp. 788-803). Springer

International Publishing.

[SBMM15] Staranowicz, A. N., Brown, G. R.,

Morbidi, F., & Mariottini, G. L. (2015). Practical

and accurate calibration of RGB-D cameras using

spheres. Computer Vision and Image

Understanding, 137, 102-114.

[CFG+17] Carfagni, M., Furferi, R., Governi, L., Servi,

M., Uccheddu, F., & Volpe, Y. (2017). On the

performance of the Intel SR300 depth camera:

metrological and critical characterization. IEEE

Sensors Journal, 17(14), 4508-4519.

ISSN 2464-4617(print)
ISSN 2464-4625(CD)

Computer Science Research Notes
CSRN 2801

Full Papers Proceedings
http://www.WSCG.eu

38 ISBN 978-80-86943-40-4

