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ABSTRACT
We present a new representation of uniform subdivision surfaces based on Iterated Functions Systems formalism.
Main advantages of this new representation are the formalization of topological subdivision, multiscale representa-
tion of limit surface, separation of iterative space where the attractor is computed once for all and modeling space
where the attractor is projected many times. An important consequence of this approach is that all uniform subdi-
vision schemes are handled in the same way whatever there are primal or dual, approximating or interpolating.

Subdivision surfaces are no longer viewed as a set of rules but as a list of barycentric combinations to apply
on neighborhoods of the coarse mesh. These combinations are representative subsets of the attractor which is
deduced from a Controlled Iterated Functions System automaton. From this new point of view we present in this
paper a straightforward implementation to directly compute a tessellation of the subdivision surface from a control
mesh. This implementation takes full advantage of Graphics Processing Units high capability of computation and
Tessellation Stage of OpenGL/GLSL rendering pipeline to generate on the fly a tessellation of the limit surface
with a chosen Level of Details.
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1 INTRODUCTION
With their overpowered capability of computation,
Graphics Processing Units (GPUs) became an unavoid-
able tool for parallel computing in the last ten years.
Whenever a big amount of independent computations
are required, an implementation GPU-based must be
prioritized over Central Processing Unit (CPU) com-
putations. During the graphics pipeline, several usual
steps are highly parallelizable : the vertices positioning
and the fragment colorization and blending.

Unfortunately, GPU dedicated memory is limited and
transfer times may be longer than computation itself so
transmitted information should be as compact as pos-
sible. A usual solution is to compress the information
before sending them to the GPU and decompress it on
the fly during the rendering. This kind of solution re-
duces occupied memory space and information transfer
time but computations are added onto the GPU ; a com-
promise must be found to maximize the efficiency.

The main scope of this article is on the fly generation
of geometry for subdivision surfaces. From a given
control mesh, a tessellation of the limit surface is di-
rectly computed for a chosen Level of Details (LoD)
by applying precomputed barycentric combinations on
each patch of the coarse mesh. Patches are defined as
in [Sta98] and combinations are deduced from a Con-
trolled Iterated Function System (CIFS) automaton. In-
deed barycentric combinations are a representative sub-

set of the attractor of the CIFS which is unique in iter-
ative space but can be projected multiple times in mod-
eling space.

Usually, subdivision surfaces are computed with a set of
subdivision rules, which are different for each scheme,
applied iteratively on a control mesh. Thanks to this
new representation, steps which are blended in these
rules are separated : first the iterative process represents
by the generation of barycentric combinations with a
CIFS automaton, then the projection in modeling space
which is the application of combinations on a patch.
This separation enables to implement all uniform sub-
division schemes in the same way only by changing the
input list of precomputed barycentric combinations and
the connectivity of input patches.

Another interest of our method is that a vertex position
does not depend on the level of tessellation: whatever
the chosen LoD, the vertex always belongs to the limit
surface. This property is very useful in the CAGD con-
text where usual tools work on limit surfaces rather than
meshes. Moreover, isogeometric analysis using sub-
division surfaces is more and more often integrated in
CAD systems [PXXZ16] [BHU10]. This analysis relies
on a compatible representation for geometric modeling
and finite element simulation. A general representation
of meshes and surfaces, with different LODs is highly
recommended to handle isogeometric problems. Our
model is quite well adapted for this purpose.
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2 RELATED WORKS
Many subdivision schemes have been proposed in the
last forty years as [CC78], [DS78], or [Loo87] for in-
stance. From the beginning, authors have paid great
attention to the limit surface. Reif [Rei95] proposed a
general method to study convergence to the limit sur-
face. Halstead [HKD93] and Stam [Sta98] gave meth-
ods to directly compute points on the limit surface. To
cover the field of NURBS, extensions have been pro-
posed to cope for non uniform cubic schemes, first by
Sederberg [SZSS98], extended by Müller [MRF06] and
to high degree surfaces by Cashman [CADS09]. All
these schemes present a careful study of the conver-
gence to the limit surface.

Other consideration has been paid on Iterative Func-
tion Systems (IFS). In [ZT96], the distinction between
the iteration space, where attractors are defined, and
the modeling space, where shapes are modeled, en-
ables the generalization of IFS modeling and the def-
inition of attractor projection. Free form fractals and
usual free forms curves and surfaces (Bézier, uniform
B-splines) can also be defined as an IFS. A link be-
tween IFS and subdivision surfaces has been proven
very early by Warren and Weimer [WW01] and Shae-
fer et al [SLG05]. To our knowledge, the interest of the
separation between iteration and modeling spaces has
not been fully explored for subdivision surfaces.

Indeed, whatever the scheme, different aspects of sub-
division surfaces are usually blended in subdivision
rules: the connectivity of the control mesh, the subdivi-
sion in the parameterization space and the correspond-
ing subdivision in the geometrical space. On the other
hand, by using the IFS formalism, we can clearly sep-
arate these three aspects and enlarge the possibilities of
subdivision surfaces processing. An example can be
find in [PGSL14], where Podkorytov builds junctions
between two subdivision surfaces, one defined from a
primal scheme and the other from a dual scheme.

In video game context, real-time rendering of subdivi-
sion surface is an important challenge. Some works
[NLMD12][BFK+16] devoted to GPU implementation
focus on tessellation. Those works are mainly based
on Stam’s method [Sta98] with different adaptations.
But, they essentially deal with Catmull-Clark subdivi-
sion without general formalism. To our knowledge, no
proof of a possible extension of their methods to other
schemes has been produced.

3 OVERVIEW
To begin, the Iterated Function Systems formalism is
briefly presented in Section 4. In particular addresses
notion and its influence on equivalence between para-
metric and barycentric spaces are highlighted as well as
projection from barycentric to modeling space.

Then our method is explained step-by-step for the well-
known Catmull-Clark subdivision scheme [CC78] in
Section 5. First the mesh is cut in several patches. Then
barycentric combinations are computed for both regu-
lar and irregular cases. To finish, corresponding combi-
nations are applied on each patch to compute the limit
surface of the control mesh.

In Section 6, application of our method on several
subdivision schemes is presented. Doo-Sabin [DS78],
Loop [Loo87], and Simplest [PR97] schemes are han-
dled in the same way as Catmull-Clark scheme with dif-
ferences only on patches construction and coefficients
of barycentric combinations.

A simple and efficient implementation of our method
is precisely described in Section 7. It relies on the
OpenGL/GLSL rendering pipeline, in particular on the
Tessellation Stage which is the core of our implementa-
tion. Thanks to our formalism, all subdivision schemes
are handled in the same graphics pipeline. This im-
plementation also manages mesh animation, trimming,
and dynamic LoD without distinction between subdivi-
sion schemes. Some results are presented and compar-
isons with previous method are discussed.

In Section 8, a problem which appears along with
patches size expansion is presented. High-degree or
approximating schemes as Butterfly [DLG90] and
Quads-interpolating [Kob96] are used as examples to
highlight the combinatorial issue.

4 ITERATED FUNCTION SYSTEMS
Iterated Function Systems (IFS) [Hut81][Bar14] are a
very efficient tool to represent self-similar objects like
fractals, Bézier surfaces, B-spline surfaces... A self-
similar object F is defined as an object composed of
smaller copies of itself, which can be formalized by :

F =
N−1⋃
i=0

Ti(F). Each transformation Ti ∈ T maps F on

a subpart of itself. The set of transformations T =
{T0 . . .TN−1} is called an IFS. The fixed point F is
called the attractor associated to the IFS. According to
some conditions, each transformation Ti is contractive
for instance, F can be approximated from any initial

compact set K0 : Kn =
N−1⋃
i=0

Ti(Kn−1).

Every point of the attractor corresponds to an infinite
sequence of transformations. The sequence of transfor-
mation indexes is called the address of the point. The
simplest way to obtain points belonging to the attrac-
tor is to compute the fixed point Pi of each contractive
transformation Ti of the IFS. In the case of affine or
linear contractive transformations this can be done by
linear algebra. The address of Pi is iω (an infinite se-
quence of i). This means that any point of the attractor,
whose address is σ iω (where σ is a finite word) can be
computed in a finite time.
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The address function φ , mapping an address to its corre-
sponding point, defines a continuous parameterization
of the attractor. Given two IFS I and I ′ with the same
joining conditions (see [ZT96]), φ ′ ◦φ−1 defines a mor-
phism between the two attractors. The first attractor
may be used as a parametric space. For a quadrangu-
lar surface (like a Bézier Patch), the first attractor could
be the unit square defined with an appropriate IFS. The
computation of φ−1 can be achieved with the escape
algorithm [Bar14].

By choosing the right parameterizations, in a way their
addresses have the form σ iω , uniformly spaced and
cover the whole parametric space, a tessellation of the
attractor can be computed. The maximal authorized
length of σ is the level of tessellation of the attractor.
The higher it is, the closer from the real attractor the
tessellation is. Examples of second tessellation level for
two IFS in the parametric space are given in Figure 1.

P3

P0 P1

P2T3T3 T3T2 T2T3 T2T2

T2T1T2T0T3T1T3T0

T0T3 T0T2

T0T0 T0T1 T1T0

T1T3 T1T2

T1T1
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T3T3
T3T0

T2T3

T2T0 T3T1
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Figure 1: Two examples of IFS in parametric space :
on the left, the unit square is cut in four squares ; on the
right the "unit" equilateral triangle is cut in four equi-
lateral triangles. Both spaces have four transformations
labeled T0 . . .T3 and associated fixed points P0 . . .P3

Usually the iterative space, where a tessellation of the
attractor is computed, is the modeling space, where the
attractor is displayed. In our case, the iterative space is
a barycentric space, where every point is a barycentric
combination so that the sum of its coordinates is 1. The
computed tessellation is then projected in the model-
ing space by applying the generated combination onto
a control mesh. The whole process is summarized in
Figure 2.
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N(t) V.N(t)

Figure 2: Morphisms between parametric, barycentric,
and modeling spaces for a uniform quadratic B-Spline.
N is the function that associate a point of the parametric
space to the point of barycentric space of same address.
V is the projection of a barycentric combination onto a
control polygon
The subdivision process consisting in application of the
same set of transformations at each level of iteration

can be controlled using an automaton describing which
transformations can be apply at each state. Such IFS
are called Controlled Iterated function Systems (CIFS).
The notion of address remains the same and correspond
to the set of words accepted by the automaton.

Since subdivision surfaces are iterative models, an IFS
and so a CIFS automaton can be created to generate
them. For a given list of parametric points, addresses
are generated. These addresses are words which are
read by the CIFS automaton to compute a set of combi-
nations in a barycentric space. Resulting combinations
are then projected onto a control mesh : a tessellation
of the attractor, which is the limit surface in the subdi-
vision surface case, is computed.

5 CATMULL-CLARK
For sake of clarity, we first present our method with the
well-known Catmull-Clark scheme.

5.1 Patch construction
A mesh patch (denoted hereafter patch for short) is a set
of vertices necessary and sufficient to compute a piece
of the limit surface. No confusion must be made be-
tween these two terms. According to the subdivision
scheme, patches have different connectivities. In the
Catmull-Clark case, patches are composed of a central
face surrounded by a ring of faces [Sta98]. Some ex-
amples can be found in Figure 3.
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Figure 3: Two examples of Catmull-Clark patches and
their indexation. In blue a regular patch (with all the
central vertices of valence 4) and in red an irregular
patch (with a central vertex of valence 5). Notice that
the irregular central vertex, which is unique, is always
indexed as 0.
Every central vertex of a regular patch has a regular va-
lency. On the other hand, a patch containing at least
one extraordinary vertex (with irregular valency) in its
central face is considered as irregular. In this paper, the
number of extraordinary vertices per face is limited to
a single one to avoid a combinatorial explosion of the
number of cases.

When a patch is subdivided, with respect to usual sub-
division method, several subpatches are obtained. Each
subpatch is also a patch and so can be subdivided at its
turn. Every subdivision matrix associates a patch to one
of its subpatches. It can be easily deduced from subdi-
vision rules. The set of these transformations is a CIFS

ISSN 2464-4617(print) 
ISSN 2464-4625(CD)

Computer Science Research Notes 
CSRN 2801

Full Papers Proceedings 
http://www.WSCG.eu

51 ISBN 978-80-86943-40-4



whose the attractor is the piece of the limit surface de-
fined by the patch. This CIFS depends on the valency of
the irregular vertex, if it exists. For the sake of simplic-
ity, regular patches are treated first, then generalized to
irregular patches.

5.2 Regular patches
In the regular case, a Catmull-Clark subdivision surface
is identical to a bicubic uniform B-Spline surface. So
regular patches are grids of 4 by 4 vertices. Subpatches
are four in number and each one is also a regular patch.
The regular patch subdivision is presented in Figure 4.

15 4 5 6

7

813

14

12 11 10 9

3

0 1

2

15 4 65

7

8
9

101112

13

14
0 1

23

Figure 4: The regular patch subdivision of Catmull-
Clark scheme into four regular subpatches. Notice that
vertices are indexed in the same way in subpatches as
in their parent patch.
Four square subdivision matrices Mi∈[0;3] can be cre-
ated to transform the parent patch in each regular sub-
patches. The M0 subdivision matrix is given as an ex-
ample in Figure 5.

M0 =



V E F E E F F E F
B B C C C C
A A A A
B C C B C C
B C B C C C
A A A A
C B C B C C
E V E F F E F E F
C B B C C C
F E V E F E F E F
C C B B C C
E F E V F E F E F
C B C C B C
A A A A
B C C C B C
A A A A


A = 1

4 B = 3
8 C = 1

16

V = 9
16 E = 3

32 F = 1
64

Figure 5: The M0 subdivision matrix for the Catmull-
Clark subdivision scheme. Null coefficients are omit-
ted.
These subdivision matrices are stochastic and have a
unique eigenvalue equals to 1 and all others in inter-
val [0;1[. This implies that the associated transforma-
tion is contractive and so apply an infinity of times the
transformation on a patch will end in a unique fixed-
point. As proven in [HKD93], this fixed-point can be
computed directly by using the left eigenvector associ-
ated to the eigenvalue 1 as a barycentric combination Bi
which associates a patch to a point of the limit surface.

From every given a point (u;v) = TaTb . . .TyPz in the
parametric space, its address is used to compute the
corresponding barycentric combination BzMy . . .MbMa.
This combination transforms a regular patch into the
point of the limit surface of the local parameterization
(u;v). Computations of combinations can be expressed
as a CIFS automaton whose an example is given in Fig-
ure 6.

Figure 6: The CIFS automaton for the regular case of
Catmull-Clark subdivision scheme.
For a given Level of Details, several parametric points
are chosen to represent a discretization of parametric
space. These points must be uniformly spaced, cover
the whole parametric space, and correspond to a finite
address. Then each barycentric combinations associ-
ated to these points are computed. Apply all these com-
binations on the same patch create a tessellation of the
limit surface with the chosen Level of Details.

5.3 Irregular patches
A major interest of subdivision schemes is the manage-
ment of irregular connectivity. For example, bicubic
uniform B-Spline surfaces can not be computed on a
non-grid mesh. Catmull-Clark scheme, in addition to
generate bicubic uniform surfaces in regular case, per-
mits to generate C1-continue surfaces around extraor-
dinary vertices.
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Figure 7: An irregular patch (valence 5) subdivision of
Catmull-Clark scheme into four subpatches. Notice that
the red subpatch has the same connectivity as its parent
patch whereas the other ones become regular patches.
In presence of extraordinary vertices, patch connectiv-
ity and subdivision rules are different, so some barycen-
tric combinations should be recomputed. As showed in
Figure 7, subpatches connectivities are also different.

As long as the applied transformation is the one cen-
tered on the extraordinary vertex, the subpatch keeps
the connectivity of its parent. As soon as another trans-
formation is applied, the subpatch becomes regular.
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To manage irregular transformations, irregular subdivi-
sion matrices M̂i,k, which depend on the valency k of
the unique extraordinary vertex have to be introduced.
M̂i>0,k matrices are not so different from Mi>0 except
there are not square anymore. On the other hand, M̂0,k
is square but depends on the valency k of the extraordi-
nary vertex. This matrix is presented in Figure 8.

M̂0,k≥4 =



v e f e e f f e f · · · e f
B B C C C C
A A A A
B C C B C C
B C B C 0 · · · 0 C C
A A A A
C B C B C C
E V E F F E F E F
C B B C C C
F E V E F E F E F
C C B B C C
E F E V F E F E F
C B C C B C
A A A A
B B C B C C

A 0
. . . A A A

. . .
...

... C C B C C
... 0

. . . A A A
. . .

B C C C B C

A A
. . . A A



v = 4k2−7k
4k2 e = 6

4k2 f = 1
4k2

Figure 8: The M̂0,k>4 subdivision matrix for the
Catmull-Clark subdivision scheme. Black coefficients
are the fixed ones and the red depends on the valency
of the extraordinary vertex. A, B, C, V, E, and F coeffi-
cients are the same as in Figure 5.

Concerning computations of fixed points, B̂i>0,k do not
need to be computed because there are equal to BiM̂i,k.
Conversely every B̂0,k has to be computed : it is the
eigen-vector associated to the eigen-value 1 of M̂0,k.
Everything is summerized in the automaton of irregu-
lar case given in Figure 9.

M̂0

B̂0

B0

M0

M̂1

M1

B1
B2

M2

M̂2
B3M̂3

M3

Figure 9: The CIFS automaton associated to irregular
cases of Catmull-Clark subdivision scheme.

6 OTHER SUBDIVISION SCHEMES
As said before, our formalism handles any uniform sub-
division schemes. In this section, some usual schemes
are presented as CIFS automata.

6.1 Loop scheme
As for the Catmull-Clark scheme, the Loop subdivision
scheme [Loo87] creates C2-continue surfaces. Patches
are created in the same way : a central face and a ring
of faces as shown in Figure 10.
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310

9

8 2

0 1

Figure 10: Patches and subpatches of the Loop subdi-
vision scheme for the regular case (valence 6) and an
irregular case (valence 5). Notice that the red subpatch
is connectively-identical to the parent one and the other
three are regular.
The structure of CIFS automaton associated to the Loop
scheme is identical to the Catmull-Clark one. There are
three states which correspond to irregular patches, the
regular patch, and limit surface points and the transi-
tions are labeled exactly in the same way.
Since the subdivision rules of the two schemes are dif-
ferent, the transformation matrices associated to the
transitions are not the same in the two automata. Sub-
division of the parametric space is also different so ad-
dresses are generated differently as shown on the right
of Figure 1.

6.2 Doo-Sabin scheme
Unlike Catmull-Clark and Loop subdivision schemes,
which are primal, Doo-Sabin [DS78] is a dual subdi-
vision scheme which means that faces are not subdi-
vided anymore but vertices. So corresponding patches
are composed of a central vertex and a ring of adja-
cent faces. The valency of all the vertices is 4 ; irreg-
ular patches contain a unique non-quadrilateral face as
shown in Figure 11.

0
3

456

7

8

9 1 2
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1 2

3

456

7

8 9

Figure 11: Irregular patch (with a pentagonal face) of
the Doo-Sabin subdivision scheme and its four sub-
patches. Once more, the red subpatch is connectively
identical to the parent one and the three others become
regular.
At this point it is important to say that Doo-Sabin and
Catmull-Clark subdivision schemes are identical from
a topological subdivision point of view : it is a quad-
rangular subdivision with the same kind of connection
between subdivided faces. As for the Loop scheme, the
CIFS associated to Catmull-Clark and Doo-Sabin sub-
division schemes have the same structure (states and
transition labels). The only difference to highlight is
the difference of transformation matrices.
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6.3 Simplest scheme
Introduced by Peters and Reif [PR97] the Simplest sub-
division scheme, also called Midedge scheme, inserts a
vertex in the middle of each edge and creates new edges
between new vertices. Then old vertices and edges are
deleted.

As shown in Figure 12, applying the Simplest subdivi-
sion scheme twice is connectively-identical with Doo-
Sabin but with different coefficients. So the CIFS au-
tomaton associated to the Simplest scheme is the same
as Doo-Sabin one but coefficients of transformation
matrices are different.

Figure 12: Subpatches of the Simplest subdivision
scheme after one (red) and two (green) subdivisions.
After two subdivisions, the result is connectively-
identical with the Doo-Sabin scheme (see Figure 11).

7 IMPLEMENTATION
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Figure 13: Implementation overview.

In this section, we suggest an implementation of our
method in OpenGL/GLSL. Because our implementa-
tion needs Shader Storage Buffer Objects, the min-
imum version required for both core version is 4.3
or 4.0 with ARB_shader_storage_buffer_object exten-
sion. An overview is given in Figure 13.

7.1 First steps
For a given maximal Level of Details and a minimal and
maximal valence of extraordinary vertices authorized,
all combinations are computed for a chosen subdivision

scheme. Then meshes are cut in several patches respect-
ing inherent rules of the scheme. These two steps are
done once for all and results are written in buffers.

7.2 Buffers
Buffers require to have an array of arbitrary length so
they must be Shader Storage Buffer Objects (SSBOs).
Referring to OpenGL specifications, SSBOs reads and
writes use incoherent memory accesses and guarantee a
minimum possibility of memory allocation of 128MB.
Most GPU-implementations enable allocating a size up
to the limit of GPU memory.

Vertices buffers

There are two vertices buffers : the Input Vertices Buffer
which contains all vertices of the input control mesh
and the Modified Vertices Buffer which contains the ver-
tices after modification by the Vertex Shader.

Patches buffers

The GLSL Tessellation Shaders does not handle dy-
namic patch size. To bypass this constraint, two patches
buffers are created. The first one, called Patches Buffer,
contains all mesh patches written in a row, each patch
containing index of its vertices. The second one, the In-
dexed Patches Buffer, indexes patches of Patches Buffer
by a pointer to the begin and the length of each mesh
patch.

Barycentric Combinations Buffer

For a given valence of extraordinary vertex, each
barycentric combination contains as many coefficients
as vertices in patch. The number of combinations of
each patch size depends on the chosen maximal Level
of Details. The Barycentric Combinations Buffer is a
row containing all coefficients of all combinations of
each kind of patch. By knowing the maximal Level
of Details, the valence of extraordinary vertex, and
the parameterization (u;v) of the current limit surface
point, the index of associated barycentric combinations
can be computed.

7.3 Programmable rendering pipeline
Once all buffers are filled, the usual OpenGL/GLSL
rendering pipeline with the succession of shaders is per-
formed.

Vertex Shader

This shader treats one by one all the vertices of Input
Vertices Buffer and write them into theModified Vertices
Buffer. Vertices are ordered in the same way in both
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buffers. Vertex Shader can be simply a pass-through
shader by copying the Input Vertices Buffer into the
Modified Vertices Buffer but can also be the step where
mesh is animated. Animation is discussed in Subsec-
tion 7.4.

Tessellation Control Shader (TCS)

This shader configures the Tessellation Primitive Gen-
erator (TPG) which creates an abstract patch and trans-
fers it to Tessellation Evaluation Shader. An abstract
patch is a set of parametric points connected with trian-
gles. These triangles are chosen by the TPG in a way
to cover all the parametric space. The parametric space
can be of two types depending on the abstract patch
configuration : the unit square or the "unit" equilateral
triangle (cf Figure 1). The TCS describes how many
points of the abstract patch are on each bounding-edge
of parametric space and how many interior rings are
created but can not choose how to rely them. The more
detailed the limit surface is desired, the more important
is the number of inserted points. Level of Details can be
the same everywhere or adaptive and chosen on the fly
for each patch. More information about adaptive LoD
is given in Subsection 7.5.

Tessellation Evaluation Shader (TES)

This shader is the core of our implementation. From
one side, it reconstitutes the current mesh patch by
reading Indexed Patches Buffer which points to Patches
Buffer which contains indexes of vertices in Modified
Vertices Buffer. From the other side it reads the param-
eterization of all points of the abstract patch and de-
duced a list of associated barycentric combinations. To
finish, it applies every combination on the patch to com-
pute points of limit surface and rely them as describes
by the abstract patch.

Geometry Shader

This shader takes an OpenGL primitive (a triangle in
this case) as input and emits zero or more primitives
(triangle-strip). It can be simply a shader which applies
the Model-View-Projection matrix on each received tri-
angle but can also be used to trim the limit surface. Sub-
section 7.6 is dedicated to the trimming of the limit sur-
face by parametric space restriction.

Fragment Shader

As usual, this shader is in charge of coloration and illu-
mination, with a Phong model for example. As proven
in [BGN09], normal associate to every point of thelimit
surface is the cross-product of the two half-tangents
computed for the address of the point.

7.4 Animated meshes
The main idea is instead of animating the subdivide
mesh, the coarse mesh is animated and then subdivided.
Animation time is greatly reduce but time is spent to
generate geometry. In the common case of animation
by skeleton with an average of two bones by vertex ge-
ometry generation is slightly less two times longer than
animation. Resulting surfaces are not the same in both
methods : subdivide then animate deforms the limit sur-
face whereas animate then subdivide assures the con-
servation of limit surface continuity.

7.5 Adaptive Level of Details
An efficient method to avoid the time-consuming dis-
play of very detailed distant objects is the LoDs strat-
egy : the closer the object is, the more detailed it is ;
the farther it is, the faster it is displayed. In most im-
plementations, several meshes, with different LoDs, are
generated and one of them is picked up at display time.

The limit of this approach is that the different meshes
have to be predefined. On the contrary, with subdivision
surfaces, only the coarse mesh is defined and the LoDs
gives the number of subdivision. Iteratively generating
geometry on the fly can be quite long with a multipass
render. With our method, geometry is not iteratively
generated but directly only by selecting the appropriate
set of barycentric combinations to apply on the mesh
patch.

Another advantage of our method is that an object does
not need to be uniformly subdivided (i.e. all faces are
subdivided the same number of times). Each face is
independently treated from the others, with its own tes-
sellation that can be non-uniform. To avoid cracks, a
condition has to be imposed : even faces can be subdi-
vided as wanted, edges are subdivided in the same way
on both sides.

A naive method to ensure respect of edge uniform sub-
division is to project every face of control mesh in im-
age plane. Each edge is subdivided in function of its
screen length and face is subdivided in function of its
screen area. The OpenGL’s invariance rules insures that
multiple projection of the same edge results in the same
screen length and so same subdivision for both adjacent
sides.

7.6 Trimming
Trimming is a restriction of the parametric space that
results in a restriction (holes for instance) on the limit
surface. Quality of trimming is strongly dependent on
the level of tessellation. To enhance quality, trimmed
faces have to be more tessellated. Thanks to dynamic
LoDs, untrimmed faces do not need to be as tessellated
as trimmed ones.

ISSN 2464-4617(print) 
ISSN 2464-4625(CD)

Computer Science Research Notes 
CSRN 2801

Full Papers Proceedings 
http://www.WSCG.eu

55 ISBN 978-80-86943-40-4



First, tessellation is traced in parametric space. If a
point is outside the restriction it is tagged as valid other-
wise not. For every triangle of tessellation, the number
of valid vertices is counted. Each case is treated differ-
ently. All of them are presented in Figure 14.

Figure 14: Example of trimming on a parametric space
tessellated by 8 original triangles represented by their
colored bounds. New triangles are filled if they are dis-
played, empty if not. Red triangles have three valid ver-
tices so they are displayed as is. Blue triangles have an
invalid vertex which becomes a vertex on each adjacent
edge and the quadrilateral result is split into two trian-
gles. Green triangle has two invalid vertices so both are
recomputed. Black triangle is completely included in
the restriction so they are discarded.

The intersections between the triangles edges are new
point of parametric space. New points means new ad-
dresses and so new barycentric combinations. In order
to get valid trimmed boundary points, new combina-
tions have to be computed and applied on the patch.

7.7 Results and performance
In this section, several methods are compared in term of
occupied memory space and computation time for the
regular case of the Catmull-Clark subdivision scheme.
These methods are three in number :

1. LoD meshes : one mesh is defined for each LoD.
Only one is picked up and display.

2. Iterative subdivision : only patches of coarse mesh
are transfered to the GPU and geometry is generated
iteratively with respect to subdivision rules.

3. Ours : as Iterative subdivision, only patches are
transfered to the GPU but geometry is generated di-
rectly by applying barycentric combinations.

Let n the maximal LoD, Vi the number of vertices and Fi
the number of faces/patches of the mesh associated to
the LoD of i. k is the number of existing valences. Two
tables are given to compare these three methods in term
of occupied memory space (Table 1) and computation
time (Table 2).

Methods LoD It. sub. Ours
Vertices Vn V0 V0

Indexed vertices 4
n
∑

i=0
4iF0 18F0 18F0

Combinations 0 0 k ∗ (2n +1)2

Table 1: Comparisons of occupied memory space be-
tween the three methods. A face is defined by 4 point-
ers to vertices and an average patch by 16 pointers to
vertices plus 2 pointers to index the patch.

Methods LoD It. sub. Ours
Animated vertices Vn V0 V0

Subdivision 0
n−1
∑

i=0
Fi 0

Combinations 0 0 (2n +1)2F0

Table 2: Comparisons of computation time between the
three methods. Animation of a vertex costs 25 basic op-
erations (times or plus) per bones (matrix-vector prod-
uct of size 4). A subdivision corresponds to the compu-
tation of 1 face-vertex, 4 edge-vertices and 4 vertex-
vertices so 267 basics operations. Application of a
barycentric combination costs an average of 93 basics
operations (application of a 16 coefficients combination
onto a patch of three coordinates vertices).

Name Gaussian Tetris Head Body
Vertices 100 74 4276 13 652
Faces 81 72 4249 13 650

LoD = 0 0.26 0.27 0.79 1.82
LoD = 1 0.26 0.28 1.24 3.27
LoD = 2 0.29 0.32 3.41 10.2
LoD = 3 0.42 0.57 16.4 47.6
LoD = 4 1.06 1.48 62.5 ≈200
LoD = 5 2.53 3.58 167 ≈500

Table 3: Computation times (in ms) of our method for
different meshes and LoD. Tests are performed on a
Dell Precision T7600 : Intel Xeon CPU E5-2609 @
2.40 GHz x8 and a Nvidia Quadro K2000/PCIe/SSE2.

In term of occupied memory space, subdivision meth-
ods are obviously better than the LoD method because
only the coarse mesh is needed. Because barycen-
tric combinations have to be loaded in the memory,
our method required a little more space than iterative
method.
In term of computation time, our method is faster than
iterative method because application of barycentric
combination requires less computation than subdivi-
sion. On another side, our implementation is slower
than LoD methods because animation is approxima-
tively two times quicker than generation. Even if
dynamic Level of Details permits to reduce the gap
between the two methods, LoD method is still the
fastest one.
Our method has been tested on some meshes : results
are presented in Figure 15 and computation times are
compared in Table 3.
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Figure 15: From left to right : Catmull-Clark and Doo-Sabin schemes applied on Tetris meshes ; Loop scheme
applied on an Icosphere and Catmull-Clark scheme applied on Human Head mesh enlightened by a Blinn-Phong
shader. Red faces correspond to regular patches, green to extraordinary valence of 3, blue of 5 and magenta of 6.

8 LIMITS
Even if our formalism can handle every uniform sub-
division scheme, for certain schemes a combinatorial
issue appears because of many possibilities of irregular-
ities. In this case, the CIFS automaton still contains a
unique regular state but also several irregular states that
must be treated separately. Some examples are given in
this section.

8.1 High degree schemes
The only condition for building patches is : "at most
one extraordinary vertex inside a valid patch" (there is
no condition on the exterior ring). The higher the de-
gree of the surface is, the larger the patch is and so
more possibilities of irregularities appear as shown in
Figure 16.

Figure 16: From left to right : subdivision patch for
bicubic subdivision (Catmull-Clark), biquintic, and bi-
heptic. Red vertices are the maintained possibilities of
extraordinary vertices after reduction by symmetry and
rotation. Notice the number of red vertices increases
with the degree of surface.

A recurrence appears for odd degree regarding these
three examples : the number of possibilities of extraor-
dinary vertices for a surface of degree d is the sum of
integer from 1 to (d−1)/2.

8.2 Interpolating schemes
Interpolating schemes need larger patches than approx-
imating schemes so they suffer from the same issue
as the high-degree schemes. For example Butterfly
[DLG90] and Quads-interpolating [Kob96] schemes
need a supplementary ring with respect to Catmull-
Clark and Loop schemes in order to build a mesh patch.
These patches and their subpatches are presented in
Figure 17.

Figure 17: The parent patch and one of its subpatches
for the regular case of Quads-interpolating (left) and
Butterfly (right) subdivision schemes. Patches are cen-
tered on the filled face and the supplementary faces
(compared to corresponding approximating schemes)
are transparent.

9 CONCLUSION
In this article, subdivision surfaces are presented in the
Controlled Iterated Functions Systems formalism. In
this formalism, subdivision schemes are not viewed as
a set of rules anymore but as a list of barycentric com-
binations. From this new point of view, all the uniform
schemes, whatever they are approximating or interpo-
lating, primal or dual, are handled in the same way.
Usual tools as trimming and multi-resolution render are
also independent from the chosen scheme.

An implementation based on this formalism is also sug-
gested. This implementation generates directly and on
the fly the limit surface from a control mesh faster than
usual iterative subdivision surfaces but required a lit-
tle more memory space. Compared to a usual LoD ap-
proach, our method is slower but saves a lot of memory
space.
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