
A fast approximation of the Voronoi diagram for a
set of pairwise disjoint arcs

Dmytro Kotsur
 Taras Shevchenko National

University of Kyiv
64/13, Volodymyrska, st.,

Kyiv, Ukraine
dkotsur@gmail.com

Yaroslav Tereshchenko
Taras Shevchenko National

University of Kyiv
64/13, Volodymyrska, st.,

Kyiv, Ukraine
y_ter@ukr.net

Vasyl Tereshchenko
Taras Shevchenko National

University of Kyiv
64/13, Volodymyrska, st.,

Kyiv, Ukraine
vtereshch@gmail.com

ABSTRACT

We propose a method for fast approximation of the Voronoi diagram for a set of pairwise disjoint arcs on a plane.
The arcs are represented by parameterized curves. A set of input curves is discretized into partition set, for which
the Voronoi diagram is constructed. After merging corresponding Voronoi cells and removing redundant edges,
the Voronoi graph is approximated by Bezier curves. We also propose the elaboration and optimization of the
approximation. The total complexity of the algorithm is O N log N in the worst-case.

Keywords
Approximation, Voronoi diagram, Voronoi cell, Bezier curve, discretization, partition set, parametric curve.

1. INTRODUCTION
Relevance. Today there is a wide variety of algorithms
for solving problems of computational geometry. But
typically, the scope of these algorithms is very narrow.
For example, well-known algorithms for constructing
the Voronoi diagram (e.g., "divide and conquer"
[Prep85b], Fortunes algorithm [Fort87a]) can be
effectively applied only to a set of points and line
segments. However, when we solve practical
problems, we usually deal with more complex
geometrical shapes than just points or line segments.
Normally these complex objects can be represented by
parametric curves of arbitrary shape [Aic10a].
However, the construction of the exact Voronoi
diagram for the set of parametric curves is not a trivial
task. Even in the simplest example of the Voronoi
diagram for two arbitrary disjoint curves (which is just
a bisecting curve between them) we have to consider
a large number of particular cases. The construction of
the Voronoi diagram for three or more objects
represented by parametric curves is even more
sophisticated and would require a huge amount of
computational time. Therefore, for practical
applications it is reasonable to reduce the problem of
exact Voronoi diagram construction to a problem of
its approximation construction, which can be
performed in a reasonable computational time.

However, the problem of constructing approximations
of Voronoi diagram is not trivial and still requires
further study.
Analysis of recent research and publications. In a
large amount of works devoted to approximation of
Voronoi diagram, authors consider the spatial
discretization of 2D plane into cells using a discrete
grid with a fixed step [Sud06c], [Hof99c]. In this case,
the plane is sampled and then the result (discrete
image) is used for further transformations. After
performing all necessary transformations, the Voronoi
diagram is obtained. A significant drawback of these
methods is that the accuracy of the constructed
Voronoi diagram depends on the size of the grid, and
reducing its size leads to a significant increase in the
number of cells (quadratic dependence). Thus, in order
to achieve acceptable results in terms of precision, we
would require a lot of computational power.
Therefore, these methods can be extremely time-
consuming in some cases.
Another approach is an approximation by means of
constructing the Voronoi diagram for the simplest
geometric objects, such as points or line segments. In
particular, in [Ho09c] authors demonstrate an
approach to approximate the Voronoi diagram for
arbitrary geometric objects using Bezier curves and
taking into account the Voronoi diagram for points.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD)

Computer Science Research Notes
CSRN 2802

Short Papers Proceedings
http://www.WSCG.eu

7 ISBN 978-80-86943-41-1https://doi.org/10.24132/CSRN.2018.2802.2

However, this approximation is made only for the part
the Voronoi diagram (they solve the problem of
finding the minimum path). The approximation by
means of the Voronoi diagram for points has
significant prospects as well as it makes possible to
operate with less amount of simple objects. The points
on the curves can be selected based on the
discretization step, which can be fixed or can depend
on the characteristics of the curve. It allows to speed
up the construction of approximation, and at the same
time, to maintain the desired accuracy in critical
regions. Since the method is based on the construction
of the Voronoi diagram for simple geometric objects
(points or line segments), the critical regions of such
approximation can be easily refined by supporting
dynamic Voronoi diagram for points and inserting
new points (or line segments), where it is necessary.
Also there are some attempts to compute exact
Voronoi diagram [Ary02c], [Ary02b], [Har01c]. In
paper [Seo08c] authors describe an algorithm for
computing the precise Voronoi Diagram of planar
freeform curves, which represented with a parametric
form. The authors try to build the precise bisector
between two curves and precise junction points. But
this effort leads to the necessity of solving the system
of three nonlinear equations, which is not trivial task
itself, since it requires time-consuming numerical
methods. Another similar approach is described in
[Ram99a]. It has an asymptotic time of 𝑂(𝑛)), where
𝑛 is a number of curves. This method has the same
drawback as previous: computation of junction points
(authors use Newton-Raphson method).
Novelty and ideas. The purpose of this paper is to
develop an algorithm for fast and accurate
approximation of Voronoi diagram, which has
𝑂 𝑁 log𝑁 complexity in the worst case. Our
approach is based on a point sampling for input curves
and further construction of Voronoi diagram for
sampled points. Then we use a developed procedure
for merging the Voronoi cells and approximate edges
of Voronoi diagram by curves.

2. A METHOD FOR FAST
APPROXIMATE VORONOI DIAGRAM
CONSTRUCTION
Before describing the method and the solution of a
problem we recall the basic concepts [Aur13b] used in
this paper.

2.1 Basic concepts and statement problem
Definition 1. Suppose we are given a set of generator
points 𝑃 = 𝑝/, 𝑝), … , 𝑝2 ⊂ ℝ5, where (2 ≤ 𝑛 < ∞).
We call set 𝑃 the generator set of the Voronoi diagram.
Let’s denote by 𝐼2 a set of generators indices and

Euclidean distance between two objects 𝑥 and 𝑦 as
𝜌 𝑥, 𝑦 . We call the region given by:

𝑉𝑃 𝑝? = 𝑥 𝜌 𝑥, 𝑝? ≤ 𝜌 𝑥, 𝑝@ , (1)
where (𝑗 ≠ 𝑖), 𝑖, 𝑗 ∈ 𝐼2, 𝑥 ∈ ℝ), the Voronoi cell
(Voronoi polygon) associated with 𝑝?. Then the
Voronoi Diagram generated by 𝑃 (or the Voronoi
diagram of 𝑃) is defined as follows:

𝑉𝐷 𝑃 = 𝑉𝑃 𝑝/ , 𝑉𝑃 𝑝) , … , 𝑉𝑃 𝑝2 (2)
For any two generators 𝑝? and 𝑝@ we define a region
of dominance of 𝑝? over 𝑝@:
𝐻 𝑝?, 𝑝@ = 𝑥 𝜌 𝑥, 𝑝? ≤ 𝜌 𝑥, 𝑝@ , 𝑥 ∈ ℝG , (3)

where 𝑖, 𝑗 ∈ 𝐼2. Thus, the Voronoi cell can be defined
by the following statement:

𝑉𝑃 𝑝? = 𝐻 𝑝?, 𝑝@
@∈HI\ ?

 (4)

The boundary or bisector between two regions of
dominance 𝐻 𝑝?, 𝑝@ and 𝐻 𝑝@, 𝑝? is denoted by
𝑏 𝑝?, 𝑝@ and defined as follows:

𝑏 𝑝?, 𝑝@ = 𝐻 𝑝?, 𝑝@ ∩ 𝐻 𝑝@, 𝑝? , (5)
or alternatively:
𝑏 𝑝?, 𝑝@ = 𝑥 𝜌 𝑥, 𝑝? = 𝜌 𝑥, 𝑝@ , 𝑥 ∈ ℝG (6)

For a given generator set 𝑃 and a set of indexes 𝐼2, the
boundary 𝑏 𝑝?, 𝑝@ can be denoted in a short form as
𝑏?,@.
Definition 2. Let 𝐶 𝑡 = 𝑥O 𝑡 , 𝑦O 𝑡 be a
continuous parametric curve on a plane, 𝑡 ∈ 0,1 , and
parameter ∆𝑡 determines the step of approximation.
We call set of points 𝑃O = 𝑐 𝑖∆𝑡 	𝑖 = 0, 𝑛 the
partition set of the curve	𝐶, where 𝑛 = /

∆U
.

Problem statement.
Let 𝒞 = 𝐶/ 𝑡 , 𝐶) 𝑡 , … . , 𝐶2 𝑡 be a set of
continuous parametric curves, which are pairwise
disjoint. Given the partition sets 𝑃OX, 𝑃OY, … , 𝑃OI of
curves 𝒞 and their union 𝒫 = 𝑃OX ∪ 𝑃OY ∪ …∪ 𝑃OI,
build an approximation of Voronoi diagram 𝑉𝐷 𝒞
for set of curves 𝒞.

2.2 The solution for arbitrary objects
At the first we build Voronoi diagram for union of
partition points 𝒫:

				𝑉𝐷 𝑃 = 𝑉𝑃 𝑝 𝑝 ∈ 𝑃 (7)
Let 𝑙: 𝑃 → ℕ` be the function, that for a given point
returns index of curve, which this point belongs to:

𝑙 𝑝 = 𝑖
Gab

𝑝 ∈ 𝑃Oc. Then the approximation of
Voronoi cell associated with curve 𝐶? is obtained by
the union the Voronoi cells for each point in the
corresponding partition set:

𝑉𝑃 𝐶𝑖 ≅ 𝑉 𝑝
𝑙 𝑝 =𝑖

 (8)

Thus, the resulting approximation of the Voronoi
diagram for the set 𝒞 is:

	𝑉𝐷 𝒞 ≅ 𝑉𝑃 𝐶𝑖 𝑖 = 1, 𝑛 (10)

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD)

Computer Science Research Notes
CSRN 2802

Short Papers Proceedings
http://www.WSCG.eu

8 ISBN 978-80-86943-41-1

Figure 1. Voronoi diagram (green) for a set of

sampled points (black) comprising the partition
set of input nonintersecting Bezier curves (blue)

Initially, we choose a certain set of curve points for
constructing a Voronoi diagram, while maintaining
the connection of each point with the corresponding
curve. Next, we merge together the Voronoi cells,
whose centers belong to the same curve, and remove
the adjacent edges.
Figures 1 and 2 show an example of constructing a
Voronoi diagram for 20 nonintersecting Bezier curves.

2.3 Approximating Voronoi edges with
curves

After constructing the Voronoi diagram for points and
merging corresponding cells (removing respective
edges), we obtain an approximation by polygonal
chains (each chain connects two junction points). At
the next step we approximate obtained chains with
curves.
At first to make the approximation by curves we
should choose the canonical equation of a curve. The
type of approximating curve (canonical equation) for
Voronoi edge depends on the type and parameters of
curves, which it separates. We consider the general
case and make approximation by quadratic and cubic
Bezier curves. Other types of curves may be similarly
considered.
One of the most appropriate methods of
approximation by curves is least square
approximation. We fix the first and last points (start
and end point) of Bezier curve and then use the least
squares method to find best curve fit.
Thus, for quadratic Bezier curves we find the
coordinates of point		P/:

B t = t)Ph + 2 1 − t tP/ + 1 − t)P) (11)

Figure 2. An example of approximate Voronoi
diagram (red) for a set of 20 nonintersecting

Bezier curves (blue)

In this case the least square method is reduced to the
solution of a linear equation with one variable for each
coordinate, which can be easily solved:
φ P/ = Pl∗ − B tl

)
→n

lo/ min ⟹ 5t
5uX

= 0 (12)
In order to approximate polyline with a cubic Bezier

curve we should find x, y coordinates of two points P/
and	P):
B t = txPh + 3 1 − t t)P/ + 3 1 − t)tP) + txPx (13)

This problem reduces to the solution of the system
of linear algebraic equations for each coordinate. Each
system of equations consists of two equations:

φ P/, P) → min ⟹

dφ
dP/

= 0,

dφ
dP)

= 0.
 (14)

where

φ P/, P) = Pl∗ − B tl
)

n

lo/

 (15)

Thus, the total number of equations in the system of
linear equations depends on the order Bezier curve.
Implementation details. For each type of
approximation curve we get an analytical solution
(expressions for each of unknown point), which is
easy to implement in code.

3. COMPLEXITY ANALYSIS
The analysis of the complexity of the proposed
method is provided in the following statements.
Theorem 1. If an input set consists of 𝑚 objects on a
plane represented by nonintersecting parametric
curves and the total number of points used to discretize
these 𝑚 objects is 𝑁. Then, approximation of Voronoi

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD)

Computer Science Research Notes
CSRN 2802

Short Papers Proceedings
http://www.WSCG.eu

9 ISBN 978-80-86943-41-1

Figure 3. Execution time of the proposed method
for Voronoi diagram approximation (x-axis is a

number of input objects, y-axis shows an
execution time in seconds)

diagram for the set of m arbitrary-shaped objects
represented by parametric curves, can be computed in
time O 𝑁 log𝑁 .
Proof. In papers [Prep85b, Fort87a, Sha75c] authors
provide the detailed description and complexity
analysis of an algorithm for a Voronoi diagram
construction for a set of 𝑁 points in O 𝑁 log𝑁 . If
Voronoi diagram is represented by doubly connected
linked list, then the following lemmas hold:
Lemma 1. Merging two neighboring Voronoi cells
represented by doubly-connected linked lists can be
performed in O 1 time.
Proof. In order to merge two neighboring Voronoi
cells we should merge corresponding doubly-
connected linked lists. This operation is simple
pointers reassignment and it can be performed in O 1
time.
Lemma 2. Approximation of the Voronoi diagram for
arbitrary-shaped parametric curves on a plane can be
performed using the pre-computed Voronoi diagram
for points in O 𝑁 time.
Proof. An approximation of Voronoi diagram is
performed by merging the neighboring Voronoi cells,
whose generators correspond to the same curve. The
maximal number of Voronoi cells is N and one pair of
neighboring cells can be merged O 1 . Thus, we can
get an approximation of Voronoi diagram with edges
represented by polylines in time O 𝑁 (by merging all
necessary pairs of cells).

Taking into account Lemmas 1, 2 and the following
statement: quadratic or cubic Bezier curves fit
polynomial chains in time O 𝑀 , where 𝑀 - number
of points in chain; we can formulate following lemma:

Figure 4. Execution time comparison: green curve
is proposed method for an approximate Voronoi
diagram construction for N curves; blue curve
shows execution time of “divide and conquer”
[Prep85b] algorithm for N points on a plane.

Lemma 3. An approximation of Voronoi diagram for
arbitrary-shaped objects on a plane using Bezier
curves can be computed in O 𝑁 log𝑁 time.
Therefore, the approximation of the Voronoi diagram
for a set of 𝑚 arbitrary-shaped objects on a plane,
which are represented by non-intersecting parametric
curves can be performed in time O 𝑁 log𝑁 , that
concludes the proof.

4. IMPLEMENTATION DETAILS
In the implementation part we constructed the
partition for a set of curves (based on the uniform point
sampling) and then build the Voronoi diagram for the
obtained partition using the “divide and conquer”
algorithm described in [Sha75c]. In order to store the
correspondence between curve indexes and points in
partitioning, we used a hash map. For every index of a
point it stores the index of the corresponding curve and
also index of previous and next sampled point on a

Point
Index

Next point
index

Previous
point index

Curve
Index

1 2 -1 1

2 3 1 1

3 4 2 1

… … … …

N1 -1 N1-1 1

N1+1 N1+2 -1 2

N1+2 N1+3 N1+1 2

… … … …

N -1 N-1 M

Table 1. Example of a hash table, which maps
point indices to curve indices, it also stores indices

of previous and next points on a curve;

0

2

4

6

8

10

12

14

16

0 2000 4000 6000

Ex
ec

ut
io

n
tim

e
(s

)

Number of input points

0

200

400

600

800

1000

1200

Ex
ec

ut
io

n
tim

e
(m

s)

Number of objects (points or curves)

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD)

Computer Science Research Notes
CSRN 2802

Short Papers Proceedings
http://www.WSCG.eu

10 ISBN 978-80-86943-41-1

Figure 5. Voronoi diagram for a set of sampled

points comprising the partition set of input curves

curve (for example, see Table 1, value -1 indicates no
data). Another hash table maps index of a curve to an
index of one of its endpoints from partition set. At the
next step we merge Voronoi cells for neighboring
points of a curve and get an approximate Voronoi cell
of a curve (whose edges are polygonal chains).
Voronoi diagram is represented by doubly-connected
edge list (DCEL). The procedure of merging is the
following: we start from some partition point of curve
p; run BFS(p) and iterate through all neighboring
points of the same curve. At each step we merge pair
of Voronoi cells corresponding to the neighboring
points and remove redundant edges of Voronoi cells.
During the procedure of merging we also determine
junction points of the resulting Voronoi diagram.

5. EXPERIMENTAL RESULTS
The practical implementation is made in C++ using
OpenGL graphic library to visualize data and Qt
framework for GUI. An input of data is provided either

Figure 7. Voronoi diagram for a set of sampled

points, which comprises a partition set

Figure 6. An approximate Voronoi diagram (red)

for a set of 16 ellipses (blue)

by user manually or from SVG-files. The implemented
code allows also to visualize the main stages of our
algorithm (see Figures 1-2, 5-9). We also tested the
performance of our method. All experiments in this
paper were carried on Intel Core i7 2.3GHz processor
computer with 4GB RAM.
Figure 3 illustrates the results of the execution time
testing. The execution time of the proposed algorithm
was compared to the execution time of “divide and
conquer” algorithm as described in [Prep85b]. This
comparison (see Figure 4) shows how the complexity
of input objects influences the computational
efficiency of the method.
Figure 4 also demonstrates the increase in
computational time for curves in comparison to a set of
points by the factor of approximately 20 (in case of the
discretization step equal to ~0.1). The main reasons for
such increase are computational overheads (curve
discretization, approximation) and increase in total
number of processed points.

Figure 8. An approximate Voronoi diagram (red)

for a set of 18 ellipses and 24 points (blue)

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD)

Computer Science Research Notes
CSRN 2802

Short Papers Proceedings
http://www.WSCG.eu

11 ISBN 978-80-86943-41-1

Figure 9. An example of approximate Voronoi

diagram (red) for a set of 6 nonintersecting Bezier
curves, 8 ellipses and 20 points (blue)

6. CONCLUSION
Thus, we propose an algorithm for approximation of
the Voronoi diagram for a set of pairwise disjoint arcs
on a plane. Arcs are represented by parametric curves.
For curves we construct a partition set for which the
Voronoi diagram is built. At the next step we perform
a transformation of the obtained Voronoi diagram by
merging neighboring Voronoi cells, which correspond
to the same curve, and removing unnecessary edges.
Thus, we obtain an approximation of Voronoi diagram
with polynomial chains. We also propose to
approximate these polygonal chains by Bezier curves
and arcs. Cases of cubic and quadratic Bezier curves
were analyzed. The type of approximating curve is
chosen analytically. The total complexity of the
proposed algorithm is O 𝑁 log𝑁 .
However, we do not consider the case, when curves
intersect or share the endpoint(s). As it has been
shown in [Ram99a] applying the technique of
sampling leads to inadequacy of approximations in the
mentioned situations. Topological inconsistencies
[Ram99a] are also considered (during the process of
merging). A significant advantage of this approach is
the ability to refine approximations for critical areas,
defined by specific practical problems. This approach
makes it possible to refine a critical local region of
Voronoi diagram by supporting dynamic data
structures like concatenable queues [Sha75c].
Current research is implemented in software, the result
is illustrated on Figures 1-2 and 5-9.

7. REFERENCES
[Prep85b] Preparata, F. P. and Shamos, M.I.,

Computational Geometry: An introduction.
Springer-Verlag, Berlin, 1985.

[Fort87a] Fortune, S. A sweepline algorithm for
Voronoi diagrams. Algorithmica, N 2, pp. 153-
174, 1987.

[Sud06c] Sud, A., Govindaraju, N. and Manocha, D.
Interactive computation of discrete generalized
Voronoi diagrams using range culling. Proc.
International Symposium on Voronoi Diagrams in
Science and Engineering, P. 1-10, 2006.

[Hof99c] Hoff, K. E. , Culver, T., Keyser, J., Lin, M.
and Manocha, D. Fast computation of generalized
Voronoi diagrams using graphics hardware. Proc.
of ACM SIGGRAPH Annual Conference on
Computer Graphics, ACM, pp. 277–286, 1999.

[Ho09c] Ho, Y. J. and Liu, J. S. Collision-free
curvature-bounded smooth path planning using
composite bezier curve based on Voronoi diagram.
IEEE International Symposium on Computational
Intelligence in Robotics and Automation, Korea,
pp. 463-468, 2009.

[Ary02c] Arya, S. and Malamatos, T. Linear-size
approximate Voronoi diagrams, Proc. 13th ACM-
SIAM Sympos. Discrete Algorithms, pp. 147–155,
2002.

[Ary02b] Arya, S., Malamatos, T. and Mount, D. M.
Space-efficient approximate Voronoi diagrams,
Proc. of STOC, pp. 721-730, 2002.

[Har01c] Har-Peled, S. A replacement for Voronoi
diagrams of near linear size. Proc. of FOCS, pp.
94-103, 2001.

[Seo08c] Seong et al. Voronoi diagram computations
for planar NURBS curves. Proc. ACM Symp.
Solid & Phys. Modeling, NY, pp. 67–77, 2008.

[Ram99a] Ramamurthy, R. and Farouki, R. Voronoi
diagram and medial axis algorithm for planar
domains with curved boundaries: I. Theoretical
foundations. J.Comput.Appl.Math. 102, pp. 119–
141, 1999.

[Sha75c] Shamos, M. and Hoey, D. Closest-point
problems. Proc. 16th Annu. IEEE Sympos. Found.
Comput. Sci., pp. 151-162, 1975

[Ram99a] Ramamurthy, R. and Farouki, R. Voronoi
diagram and medial axis algorithm for planar
domains with curved boundaries: II. detailed
algorithm description. J.Comput.Appl.Math. 102,
pp. 253–277, 1999

[Aur13b] Aurenhammer, F., Klein, R. and Lee, D. T.
Voronoi Diagrams and Delaunay Triangulations.
World Scientific Publishing Co., 2013.

[Aic10a] Aichholzer, O., Aigner, W., Aurenhammer,
F., Hackl, T., Jüttler, B., Pilgerstorfer, E., Rabl, M.
Divide-and-conquer for Voronoi diagrams
revisited”. Computational Geometry: Theory and
Applications, 2010, V 43, Is. 8, P. 688-699.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD)

Computer Science Research Notes
CSRN 2802

Short Papers Proceedings
http://www.WSCG.eu

12 ISBN 978-80-86943-41-1

