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ON MAXIMUM AND COMPARISON PRINCIPLES FOR PARABOLIC

PROBLEMS WITH THE p-LAPLACIAN

VLADIMIR BOBKOV AND PETER TAKÁČ

Abstract. We investigate strong and weak versions of maximum and comparison principles for
a class of quasilinear parabolic equations with the p-Laplacian

∂tu−∆pu = λ|u|p−2u+ f(x, t)

under zero boundary and nonnegative initial conditions on a bounded cylindrical domain Ω ×

(0, T ), λ ∈ R, and f ∈ L∞(Ω× (0, T )). Several related counterexamples are given.

1. Introduction

Let ΩT
def
= Ω × (0, T ) be a parabolic cylinder, where Ω ⊂ RN (N ≥ 1) is a bounded domain

with Lipschitz boundary ∂Ω, T ∈ (0,+∞), and let ∂ΩT
def
= ∂Ω×(0, T ) be the corresponding lateral

surface. We consider the following initial-boundary value problem:





∂tu−∆pu = λ|u|p−2u+ f(x, t), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂ΩT .

(P)

Here, ∆pu
def
= div(|∇xu|

p−2∇xu) is the p-Laplacian with the spatial gradient ∇xu, p > 1, and

λ ∈ R. Dealing with (P), we assume that the source function f ∈ L∞(ΩT ) and initial function

u0 ∈ W 1,p
0 (Ω)∩L2(Ω), where W 1,p

0 (Ω) is the standard Sobolev space. Below, by λ1 we denote the

first positive eigenvalue of the p-Laplacian in Ω under the zero Dirichlet boundary conditions, i.e.,

λ1 = inf

{∫

Ω

|∇u|p dx : u ∈ W 1,p
0 (Ω) with

∫

Ω

|u|p dx = 1

}
.

In this article, we study qualitative properties of weak solutions to problem (P), such as max-

imum and comparison principles. It is well-known (see, e.g., [30] or [32]) that in the linear case

p = 2 any (classical) solution u of (P) satisfies the Weak Maximum Principle (WMP for short),

that is, the assumptions u0 ≥ 0 in Ω and f ≥ 0 in ΩT imply that u ≥ 0 in ΩT . Moreover, the

additional assumption u(x0, t0) = 0 for some (x0, t0) ∈ ΩT yields u ≡ 0 in Ωt0
def
= Ω× (0, t0), i.e.,

the Strong Maximum Principle (SMP) holds. At the same time, analogous principles for p 6= 2

cannot be satisfied, in general, without additional assumptions on the parameter λ, initial and

source data; they are significantly different for the fast diffusion (singular case, p < 2) and slow

diffusion (degenerate case, p > 2).

Consider, for instance, the following shifted Barenblatt solution of the equation ∂tu−∆pu = 0

for p > 2 [3, 22]:

u(x, t) =
1

(t+ α)k

(
C −

p− 2

p

(
k

N

) 1

p−1

(
|x|

(t+ α)k/N

) p

p−1

) p−1

p−2

+

, (1.1)
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where α > 0, C > 0, and k = (p − 2 + p/N)−1. It is not hard to see that (1.1) satisfies zero

boundary and nonnegative initial conditions on some ΩT ; however, it exhibits a finite speed of

propagation, and, in consequence, the SMP does not hold.

On the other hand, for p < 2, problem (P) possesses a finite time extinction phenomenon (also

known as complete quenching [10]), that is, there are nonnegative solutions of (P) which vanish

over Ω × {t0} for some t0 ∈ (0, T ) and are strictly positive in Ωt0 . An explicit example of such

solution to ∂tu−∆pu = 0 is given, e.g., in [17, pp. 64-65] for N = 1 as follows:

u(x, t) = (t0 − (2 − p)t)
1

2−p

+ v(x), (1.2)

where v satisfies the equation −(|v′|p−2v′)′ = v under boundary conditions v(−1) = v(1) = 0.

In [5], we investigated the SMP for problem (P) in the case λ ≤ 0 and found suitable versions

thereof for p < 2 and p > 2 (see also Theorems 2.4 and 2.8 below, and [27]). Moreover, we gave

several counterexamples alternative to (1.1) and (1.2). However, the case λ > 0 has not been

treated in details in [5].

On the other hand, consider two problems of the type (P) with ordered initial data u0 ≤ v0
in Ω and ordered source functions f ≤ g in ΩT . If the corresponding weak solutions u and v are

also ordered, i.e., u ≤ v in ΩT , we say that the Weak Comparison Principle (WCP) is satisfied.

Moreover, if the additional assumption u(x0, t0) = v(x0, t0) for some (x0, t0) ∈ ΩT yields u ≡ v

in Ωt0 , then the Strong Comparison Principle (SCP) holds. For the linear case p = 2 the WCP

and SCP readily follow from the WMP and SMP, respectively, by considering the difference v−u.

However, the p-Laplacian being nonlinear, it does not allow to use the same method for the

general case p 6= 2. Hence different arguments have to be employed. Furthermore, as in the case

of maximum principles, the WCP and SCP cannot be satisfied in the general forms for p 6= 2, and

their appropriate versions crucially depend on λ, data, and the choice of p < 2 or p > 2.

In the present article we concentrate on the SMP for the case λ > 0 and the WCP and SCP

for λ ≥ 0. Validity of the Hopf maximum principle (boundary point lemma) is also discussed.

Precise results are formulated in the next section. We remark that the right-hand side of (P) is

a model case of more general nonlinearities (cf. [31, Chapter 2]) and the results we have obtained

are typical for general settings.

In Table 1 we collect some known information on availability of maximum and comparison

principles for (P) and indicate several open problems. The facts without citations are proved in

the present article. Note that the most of the information on maximum and comparison principles

together with corresponding counterexamples is known for the case λ = 0. The WCP (and con-

sequently WMP) in the case p > 1 and λ ≤ 0 follows, in principle, from the monotonicity of the

operator −∆p and term −λ|u|p−2u, and we refer here, e.g., to [23, Lemma 3.1] for the case λ = 0,

and to [29, Lemma 4.9] for λ ≤ 0. Counterexamples to the SCP in the case λ = 0 follow from the

inspection of solutions of the forms (1.1) and (1.2).

Finally, let us remark that, among other qualitative properties of solutions for problem (P),

wide literature is devoted to Harnack-type inequalities, see [16, 17]. A version of the antimaximum

principle for (P) has been found in [29].

2. Main results

In this section we collect our main results. We recall that all proofs for the linear case p = 2

are well-known even under more general assumptions on a domain and parabolic operator, see,

e.g., [30] or [32]. We include the case p = 2 in our formulations for the sake of completeness. For

a basic treatment of the nonlinear case p 6= 2, including a brief derivation of problem (P), we refer

to the classical work by Díaz and de Thélin [13].
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WMP SMP WCP SCP

λ ≤ 0
p < 2 + [23] − [16] / ± [27] + [23] − [16] / ± / ?

p > 2 + [23] − [3] / ± [5] + [23] − [3] / ±

λ ∈ (0, λ1]
p < 2 + [5] − [5] / ± − / ? − / ?

p > 2 + [5] − [5] / ± + − [5] / ±

λ > λ1

p < 2 − − − −

p > 2 + − [5] / ± + − [5] / ±

λ ∈ R p > 1 + [30] + [30] + [30] + [30]

Table 1. Status of the maximum and comparison principles for problem (P). ’+’

- the principle is satisfied; ’−’ - a counterexample is known; ’±’ - the principle is

satisfied under additional assumptions; ’?’ - no satisfactory information.

Let f ∈ L∞(ΩT ), u0 ∈ W 1,p(Ω) ∩ L2(Ω), and let h be a continuous function on ∂ΩT =

(Ω× {0}) ∪ (∂Ω× [0, T ]). Under a weak solution of the problem





∂tu−∆pu = λ|u|p−2u+ f(x, t), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = h(x, t), (x, t) ∈ ∂ΩT

(2.1)

we mean a Lebesgue-measurable function u : ΩT → R satisfying

u ∈ C
(
[0, T ] → L2(Ω)

)
∩ Lp

(
(0, T ) → W 1,p(Ω)

)
,

and ∫

Ω

uϕdx
∣∣∣
t=τ

t=0
+

∫

Ωτ

(
−u ∂tϕ+ |∇xu|

p−2 〈∇xu,∇xϕ〉
)
dx dt

= λ

∫

Ωτ

|u|p−2uϕdx dt+

∫

Ωτ

f(x, t)ϕdxdt

for every τ ∈ (0, T ] and for all test functions

ϕ ∈ W 1,2
(
(0, τ) → L2(Ω)

)
∩ Lp

(
(0, τ) → W 1,p

0 (Ω)
)
.

The boundary condition u = h on ∂ΩT holds in the sense of traces of functions u(·, t)|∂Ω in W 1,p(Ω)

for a.e. t ∈ (0, T ). As usual, 〈·, ·〉 denotes the inner product in RN .

We start with a variant of the Weak Comparison Principle in a subdomain E ⊆ ΩT . Consider

the following two problems:

∂tu−∆pu = λ|u|p−2u+ f in ΩT , u(x, 0) = u0 in Ω, u = h1 on ∂ΩT , (2.2)

∂tv −∆pv = λ|v|p−2v + g in ΩT , v(x, 0) = v0 in Ω, v = h2 on ∂ΩT . (2.3)

We assume f, g ∈ L∞(Ω), u0, v0 ∈ W 1,p(Ω) ∩ L2(Ω), and h1, h2 are continuous on ∂ΩT .

Theorem 2.1 (WCP). Let E ⊆ ΩT be a subdomain. Assume that f ≤ g a.e. in E and let u, v

be weak solutions of problems (2.2), (2.3), respectively. Finally, assume either of the following two

conditions:

(i) p > 1 and λ ≤ 0;

(ii) p > 2, λ > 0, and u, v ∈ L∞(E).
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If u ≤ v a.e. in (Ω× [0, T )) \ E, then u ≤ v holds throughout E.

Remark 2.2. We point out that the initial and boundary conditions are included in our hypothesis

u ≤ v a.e. in Ec = (Ω× [0, T ))\E, the complement of E ⊂ ΩT = Ω× (0, T ) in the set Ω× [0, T ), so

that Ec contains both sets, Ω× {0} and ∂ΩT = ∂Ω× (0, T ). Consequently, the initial conditions

are prescribed on Ω × {0} ⊂ Ec whereas boundary conditions are prescribed on ∂ΩT ⊂ Ec. The

role played by the set E ⊂ ΩT is to deal with the case of the functions f, g ∈ L∞(Ω) satisfying

f ≤ g a.e. only in some subdomain E ⊂ ΩT , i.e., only locally.

Remark 2.3. Evidently, the WCP implies the WMP by taking u ≡ 0 as a solution to (2.2) under

the trivial initial and boundary data. Moreover, we know that the WMP for (P) is also satisfied

in the case p < 2 and λ ∈ (0, λ1] (see [5, Theorem 2.4]). However, to the best of our knowledge,

availability of the WCP for p < 2 and λ ∈ (0, λ1] is still an open problem for nonnegative source

and initial data. At the same time, in Section 4 below we present a counterexample to the WCP

for p < 2, λ > 0, and appropriately chosen sign-changing source functions. Moreover, for p < 2

and λ > λ1 the WCP is violated even under the trivial source and initial data as it is also shown

in Section 4.

Now we state the Strong Maximum Principle for problem (P).

Theorem 2.4 (SMP). Assume that f ∈ L∞(ΩT ), f ≥ 0 a.e. in ΩT and u0 ∈ W 1,p
0 (Ω) ∩ L2(Ω),

u0 ≥ 0 a.e. in Ω. Let u ∈ C1,0(ΩT ) be a weak solution of (P). Then the following assertions are

valid:

(i) If p < 2, λ ≤ λ1, and u0 6≡ 0 in Ω, then there exists t̄ ∈ (0, T ] such that u > 0 in Ωt̄.

(ii) If p = 2, λ ∈ R, and u0 6≡ 0 in Ω, then u > 0 in ΩT .

(iii) If p > 2, λ ≤ 0, and ess inf
K

u0 > 0 for any compact subset K of Ω, then u > 0 in ΩT .

(iv) If p > 2, λ > 0, and ess inf
K

u0 > 0 for any compact subset K of Ω, assume also u ∈ L∞(ΩT ).

Then u > 0 in ΩT .

Corollary 2.5. Let p < 2 and λ ≤ λ1. Then the conclusion of Theorem 2.4 (i) is equivalent to

u > 0 in Ωt̄(u), where

t̄(u)
def
= max{t ∈ (0, T ] : u > 0 in Ωt} > 0. (2.4)

Moreover, t̄(u) coincides with the following value:

t∗(u)
def
= max{t ∈ (0, T ] : ∀s ∈ (0, t) ∃xs ∈ Ω such that u(xs, s) > 0}.

Note that counterexamples (1.1), (1.2), and [5, pp. 226-227] show that the restriction of ΩT

to Ωt̄(u) in assertion (i) and additional assumption u0 > 0 in assertion (iii) are essential, and, in

general, cannot be removed.

Remark 2.6. Assume that ∂Ω ∈ C1+α, α ∈ (0, 1), and a weak solution u of (P) satisfies u ∈

L∞(ΩT ). Then u ∈ C1+β,(1+β)/2(Ω× [τ, T ]) for any τ ∈ (0, T ), where β ∈ (0, 1) is independent of

u; see [25, Theorem 0.1] (or [29, Lemma 4.6] for notations used in the present article). Moreover,

if the initial data u0 ∈ C1+β(Ω), then u ∈ C1+β,(1+β)/2(ΩT ). Here, C1+β,(1+β)/2(Ω× [τ, T ]) is the

standard parabolic Hölder space, see, e.g., [25, (0.6), p. 552].

Remark 2.7. Considering f ≡ 0 in Ωt0 for some t0 ∈ (0, T ), and u0 ≡ 0 in Ω, we see that the

strict positivity of u in ΩT can be violated by taking u ≡ 0 in Ωt0 . For the existence of a local

in time nontrivial solution of (P) in Ω × [t0, t0 + ε) we refer the reader to [29, Appendix A] and

references therein.

Let us give another version of the SMP which does not depend on the assumption u0 6≡ 0.

Theorem 2.8. Assume that f ∈ L∞(ΩT ), f ≥ 0 a.e. in ΩT and u0 ∈ W 1,p
0 (Ω) ∩ L2(Ω), u0 ≥ 0

a.e. in Ω. Let u ∈ C1,0(ΩT ) be a weak solution of (P) and there exists (x0, t0) ∈ ΩT such that

u(x0, t0) = 0. Then the following assertions are valid:
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(i) If p < 2 and λ ≤ λ1, then u(x, t0) = 0 for all x ∈ Ω.

(ii) If p = 2 and λ ∈ R, then u(x, t) = 0 for all (x, t) ∈ Ω× (0, t0].

(iii) If p > 2 and λ ≤ 0, then u(x0, t) = 0 for all t ∈ (0, t0].

(iv) If p > 2 and λ > 0, assume also u ∈ L∞(ΩT ). Then u(x0, t) = 0 for all t ∈ (0, t0].

Remark 2.9. The conclusions of assertions (i) of Theorems 2.4 and 2.8 remain valid for the case

p < 2 and λ > λ1 if we know a priori that a considered solution u of (P) is nonnegative in ΩT ,

i.e., it satisfies the WMP. In this case we can apply the SMP to (P) with the source function

f̃ = λ|u|p−2u+f , f̃ ≥ 0 in ΩT . However, the counterexample in Section 4 indicates that the WMP

for p < 2 and λ > λ1 may be violated, in general.

Remark 2.10. In Theorems 2.4 and 2.8 the zero boundary condition u = 0 on ∂ΩT is used, in

fact, to treat the case p < 2 and λ ∈ (0, λ1], only. (In this case we can guarantee that u ≥ 0 in

ΩT , see [5, Theorem 2.4].) In all other considered cases (i.e., p < 2, λ ≤ 0, and p > 2, λ ∈ R), the

assertions of Theorems 2.4 and 2.8 hold for corresponding solutions of (2.1) with h ≥ 0 on ∂ΩT ,

since the WCP given by Theorem 2.1 implies the WMP. In particular, Theorem 2.4 (iii) implies

that weak C1,0-solutions of (2.1) with p > 2, λ ∈ R, and h ≥ 0 cannot extinct in a finite time.

A further important development of maximum principle properties of solutions to problem (P)

can be given by the Hopf Maximum Principle (HMP).

Theorem 2.11 (HMP). Assume that f ∈ L∞(ΩT ), f ≥ 0 a.e. in ΩT and u0 ∈ W 1,p
0 (Ω) ∩ L2(Ω),

u0 ≥ 0 a.e. in Ω. Assume also that ∂Ω satisfies the interior sphere condition at a point (x1, t1) ∈

∂ΩT . Let u ∈ C1,0(ΩT ∪ {(x1, t1)}) be a weak solution of (P). If u(·, t1) > 0 in Ω and either

(i) p < 2 and λ ≤ λ1, or

(ii) p = 2 and λ ∈ R,

then the outer normal derivative of u at (x1, t1) is strictly negative, i.e.,

∂u(x1, t1)

∂ν
< 0,

where ν is the outer unit normal to ∂ΩT at (x1, t1).

By counterexample (1.1) or [5, p. 229] we know that the HMP is violated for p > 2 and λ ∈ R.

Finally we discuss the Strong Comparison Principle.

Hypothesis. We assume that Ω is of class C1+α for some α ∈ (0, 1) and satisfies the interior

sphere condition.

Consider the following initial-boundary value problems of the type (P):

∂tu−∆pu = λ|u|p−2u+ f in ΩT , u(x, 0) = u0 in Ω, u = 0 on ∂ΩT , (2.5)

∂tv −∆pv = λ|v|p−2v + g in ΩT , v(x, 0) = v0 in Ω, v = 0 on ∂ΩT . (2.6)

Here 0 ≤ f ≤ g a.e. in ΩT and 0 ≤ u0 ≤ v0 a.e. in Ω. Let u and v be bounded weak solutions of

(2.5) and (2.6), respectively. From Remark 2.6 we know that u, v ∈ C1+β,(1+β)/2(Ω × [τ, T ]) for

any τ ∈ (0, T ). Assume also that t̄(v), defined by (2.4) for the solution v, is strictly positive (it

can be achieved, e.g., by taking v0 6≡ 0 in Ω, see Corollary 2.5), that is, v > 0 in Ωt̄(v).

Theorem 2.12 (SCP). Let p < 2 and λ = 0. If there exists τ > 0 such that u < v in Ωτ , then

0 ≤ u < v in Ωt̄(v) and
∂v

∂ν
<

∂u

∂ν
≤ 0 on ∂Ωt̄(v). (2.7)

In words, Theorem 2.12 states that the local in time strict inequality u < v extends until

the maximal time of applicability of the SMP for v. Let us state also the SCP under different

conditions.
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Theorem 2.13. Let p < 2 and λ = 0. Assume that u0, v0 ∈ C1+β(Ω). If

0 ≤ u0 < v0 in Ω and either
∂v0
∂ν

≤
∂u0

∂ν
< 0 or

∂v0
∂ν

<
∂u0

∂ν
≤ 0 on ∂Ω, (2.8)

then (2.7) holds.

Note that the conditions in (2.8) do not directly yield u < v in some Ωτ , since we allow normal

derivatives of u0 and v0 to be equal on ∂Ω.

Remark 2.14. As we have already mentioned, the WCP for p < 2 and λ ∈ (0, λ1] is still unknown

for nonnegative source and initial data. However, if such version of the WCP is obtained, then

the corresponding SCP under the assumptions of Theorems 2.12 and 2.13 will be automatically

satisfied. Indeed, Theorems 2.12 and 2.13 can be applied to (2.5) and (2.6) with the source functions

f̃ = λ|u|p−2u+ f and g̃ = λ|v|p−2 + g,

where 0 ≤ f ≤ g a.e. in ΩT (and hence 0 ≤ f̃ ≤ g̃ a.e. in ΩT ). In particular, if we know a priori

that u ≤ v in Ω for p < 2 and λ > 0, then the assertions of Theorems 2.12 and 2.13 hold true.

In [5, Remark 4.2] it was indicated that, in general, the SCP may be violated for any λ ∈ R

whenever p > 2. However, with a help of the Hopf maximum principle, we have the following

version of the SCP even in this case.

Theorem 2.15. Let p > 2 and λ ≥ 0. Assume that for any t ∈ (0, t̄(v)) it holds

∂v

∂ν
(x, t) < 0 for all x ∈ ∂Ω. (2.9)

Then the assertions of Theorems 2.12 and 2.13 remain valid.

The rest of the article is organized as follows. In Section 3, we prove Theorems 2.1, 2.4, 2.8,

and 2.11. In Section 4, we give two counterexamples to the maximum and comparison principles

in the case p < 2 and λ > 0. Finally, Section 5 is devoted to the proofs of Theorems 2.12, 2.13,

and 2.15.

3. Weak Comparison and Strong Maximum Principles

We start with the proof of Theorem 2.1. Consider the function (u− v)+
def
= max{u− v, 0}.

Since we do not know a priori that (u− v)+ is an admissible test function for (2.2) and (2.3), we

apply the approach from [16, Lemma 3.1, Chapter VI] based on the Steklov averages. Define the

Steklov averages of a function w by

wh(x, t) =






1

h

∫ t+h

t

w(x, τ) dτ, t ∈ [0, T − h],

0, t > T − h,

where h ∈ (0, T ). First, arguing as in [16, Remark 1.1, Chapter II], it can be seen that the definition

of the weak solution u of (2.2) is equivalent to the following one:
∫

Ω×{t}

∂t(uh)ϕdx +

∫

Ω×{t}

〈(
|∇xu|

p−2∇xu
)
h
,∇xϕ

〉
dx

= λ

∫

Ω×{t}

(
|u|p−2u

)
h
ϕdx+

∫

Ω×{t}

f(x, t)h ϕdx (3.1)

for all h ∈ (0, T ), t ∈ (0, T − h), and ϕ ∈ W 1,p
0 (Ω). The initial data is understood in the sense that

uh(·, 0) → u0 in L2(Ω). Analogous definition is also valid for the weak solution v of (2.3).
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Let us note that ((u − v)h)+ ∈ W 1,p
0 (Ω) for each t ∈ [0, T − h). Testing now (3.1) and the

corresponding equation for v by ((u − v)h)+, and then subtracting them from each other, we get
∫

Ω×{t}

∂t((u − v)h)((u− v)h)+ dx

+

∫

Ω×{t}

〈(
|∇xu|

p−2∇xu− |∇xv|
p−2∇xv

)
h
,∇x((u− v)h)+

〉
dx

= λ

∫

Ω×{t}

(
|u|p−2u− |v|p−2v

)
h
((u − v)h)+ dx

+

∫

Ω×{t}

(f(x, t)− g(x, t))h((u− v)h)+ dx. (3.2)

Let us integrate this equality over (0, τ), where τ ∈ (0, T − h). First, notice that

∂t((u − v)h)((u − v)h)+ =
1

2

∂

∂t
[((u− v)h)+]

2

which yields the integral
∫

Ωτ

∂t((u − v)h)((u− v)h)+ dx dt

=
1

2

[∫

Ω

(((u− v)h)+(x, τ))
2 dx−

∫

Ω

(((u− v)h)+(x, 0))
2 dx

]
. (3.3)

Moreover, since u, v ∈ C([0, T ] → L2(Ω)) and u ≤ v a.e. in (Ω× [0, T )) \ E, we have
∫

Ω

(((u− v)h)+(x, 0))
2
dx → 0 as h → 0.

Letting now h → 0 in (3.2) and (3.3), we obtain

1

2

∫

Ω

((u− v)+(x, τ))
2 dx +

∫

Ωτ

〈
|∇xu|

p−2∇xu− |∇xv|
p−2∇xv,∇x(u − v)+

〉
dx dt

= λ

∫

Ωτ

(
|u|p−2u− |v|p−2v

)
(u − v)+ dx dt+

∫

Ωτ

(f(x, t)− g(x, t))(u − v)+ dx dt,

which implies that

1

2

∫

Ω

((u− v)+(x, τ))
2
dx ≤ λ

∫

Ωτ

(
|u|p−2u− |v|p−2v

)
(u− v)+ dx dt. (3.4)

(i) Assume that p > 1 and λ ≤ 0. Then (3.4) implies that
∫

Ω

((u− v)+(x, τ))
2
dx ≤ 0 for all τ ∈ (0, T ),

which yields u ≤ v in ΩT , and therefore u ≤ v in E.

(ii) Assume that p > 2 and λ > 0. To estimate the right-hand side of (3.4) we use the inequality

(|a|p−2a− |b|p−2b)(a− b) ≤ c1(|a|+ |b|)p−2|a− b|2,

where c1 > 0 does not depend on a, b ∈ R (see, e.g., [29, Appendix A, §A.2]). Recalling that

u, v ∈ L∞(E), we get

1

2

∫

Ω

((u− v)+(x, τ))
2
dx ≤ C1

∫ τ

0

∫

Ω

((u− v)+)
2
dx dt,

where C1 = C1(λ, τ, u, v) ∈ (0,+∞) is some constant. Therefore, Gronwall’s inequality implies

that
∫
Ω
((u − v)+(x, τ))

2
dx ≤ 0 for all τ ∈ (0, T ), and hence u ≤ v in E. �

Let us turn to the proof of Theorem 2.4. Note that assertion (ii) is the classical linear

case, see, e.g., [30] and [32]. Moreover, assertions (i) and (iii) of Theorem 2.4 were proved in [5,

Theorem 1.1] for λ ≤ 0 assuming that u(x, ·) is differentiable with respect to t ∈ (0, T ) for all

x ∈ Ω. First, we slightly modify the arguments from [5, Theorem 1.1] to prove assertion (i) for all

λ ≤ λ1 assuming only u ∈ C1,0(ΩT ).
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Since u0 ≥ 0 and u = 0 on ∂ΩT , we have u ≥ 0 in ΩT by [5, Theorem 2.4]. Let Σ be any

connected component of the nonempty open set {(x, t) ∈ ΩT : u(x, t) > 0} = ΩT ∩ {u > 0} 6= ∅.

If Σ = ΩT , the theorem is proved. So let Σ 6= ΩT which entails ∂Σ ∩ ΩT 6= ∅. Consequently,

there exists an open ball Bρ(x
∗, t∗) ⊂ RN ×R such that (x∗, t∗) ∈ ∂Σ ∩ΩT and B2ρ(x

∗, t∗) ⊂ ΩT .

Inspecting the open set Σ ∩ Bρ(x
∗, t∗), we observe that there is an open ball BR(x0, t0) ⊂ Σ ∩

Bρ(x
∗, t∗) with ∂BR(x0, t0)∩∂Σ 6= ∅, i.e., there is a point (x1, t1) ∈ ∂BR(x0, t0)∩∂Σ ⊂ Bρ(x∗, t∗) ⊂

ΩT . Taking a ball of smaller radius, if necessary, we may assume that (x1, t1) is a unique zero

point of u on ∂BR(x0, t0).

For r ∈ (0, R) sufficiently small to be specified later, such that Br(x1, t1) ⊂ ΩT , we define the

domain D = BR(x0, t0) ∩ Br(x1, t1). The set BR(x0, t0) \ Br(x1, t1) being compactly contained

inside Σ, we have ε
def
= inf{u(x, t) : (x, t) ∈ BR(x0, t0) \Br(x1, t1)} > 0. Now consider the function

v(x, t)
def
= ε

(
e−αd(x,t)2 − e−αR2

)
, (3.5)

where α > 0 and d(x, t)
def
=
√
|x− x0|2 + |t− t0| (compare with [30, Chapter 3, Section 3]). It is

easy to see that

0 < v ≤ ε in BR(x0, t0), v = 0 on ∂BR(x0, t0), v < 0 in R
N \BR(x0, t0),

Moreover, by the definition of ε we see that v ≤ u on ΩT \ D for every α > 0. Straightforward

calculations (see also [5, p. 225]) yield

g(x, t)
def
= ∂tv −∆pv − λ|v|p−2v ≡ −

(
εe−αd(x,t)2

)p−1
{
(p− 1)(2α|x− x0|)

p

·

[
1 + λ

(
1− e−α(R2−d(x,t)2)

)p−1

[(p− 1)(2α|x− x0|)
p]

−1

− (p− 2 +N)
[
(p− 1)(2α)p−1|x− x0|

p−2
]−1
]
+ 2α

(
εe−αd(x,t)2

)2−p

(t− t0)

}

for (x, t) ∈ BR(x0, t0).

Suppose that x0 6= x1. Then we are able to choose the radius r ∈ (0, R) so small that R ≥

|x− x0| > r holds for all (x, t) ∈ D. Therefore, recalling that 1 < p < 2, we have

1 + λ
(
1− e−α(R2−d(x,t)2)

)p−1

[(p− 1)(2α|x− x0|)
p]

−1

− (p− 2 +N)
[
(p− 1)(2α)p−1|x− x0|

p−2
]−1

≥ 1− |λ| [(p− 1)(2αr)p]
−1 − (p− 2 +N)

[
(p− 1)(2α)p−1Rp−2

]−1
≥

1

2

for a sufficiently large α > 0. Taking α even larger, if necessary, we obtain

g(x, t) ≤ −
(
εe−αd(x,t)2

)p−1
{
p− 1

2
(2αr)p − 2α

(
εe−αd(x,t)2

)2−p

|t− t0|

}
≤ 0

for (x, t) ∈ D. Therefore g ≤ 0 ≤ f in D.

Consider the case λ ≤ 0. Recalling that v ≤ u on ΩT \D, we apply Theorem 2.1, we get v ≤ u

in D. On one hand, since u ≥ 0 in ΩT , u(x1, t1) = 0 at (x1, t1) ∈ ΩT , and u ∈ C1(Ω × {t1}), we

see that ∇xu(x1, t1) = 0. On the other hand, v > 0 in D, v(x1, t1) = 0, v ∈ C1(Ω × {t1}), but

∇xv(x1, t1) 6= 0, since

〈∇xv(x1, t1), (x1 − x0)〉RN = −2αε|x1 − x0|
2e−αR2

< 0.

This is a contradiction to v ≤ u near x1 in D. Thus, we have x0 = x1, i.e., |t0 − t1| = R. The last

fact allows us to argue as in the proof of [32, Lemma 9.10, Chapter 9, §B, p. 86] (or, equivalently,

(N + 1)-dimensional generalization of [30, Lemma 2, Chapter 3, Section 2, p. 166]) to derive that

u(·, t1) ≡ 0 in Ω.
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Assume now that λ ∈ (0, λ1]. Recall that u ≥ 0 in ΩT . Considering the function f̃ = λ|u|p−2u+

f , we get f̃ ≥ 0 a.e. in ΩT . Hence, applying the proof from above to problem (P) with the source

function f̃ , we obtain again that u(·, t1) ≡ 0 in Ω.

Finally, consider

t̄(u)
def
= inf{t ∈ (0, T ] : ∃x ∈ Ω such that u(x, t) = 0} (3.6)

and put t̄ = T whenever u > 0 in Ω × (0, T ]. If t̄(u) = 0, then there exists a sequence {tn}n∈N

such that tn → 0 as n → +∞ and hence ‖u(·, tn)‖L2(Ω) = 0 for all n ∈ N. This implies that

‖u0‖L2(Ω) = 0, since u ∈ C
(
[0, T ] → L2(Ω)

)
. However, it contradicts the assumption u0 6≡ 0 in Ω.

Thus, t̄(u) > 0 and consequently u > 0 in Ωt̄(u). It is not hard to see that definitions (2.4) and

(3.6) coincide.

Let us now prove assertions (iii) and (iv) of Theorem 2.4. From Theorem 2.1 we know that

u ≥ 0 in ΩT . Suppose, by contradiction, that there exists (x0, t0) ∈ ΩT with u(x0, t0) = 0. To

exclude this case, we construct an appropriate nonnegative subsolution to (P) (different than (3.5))

which is strictly positive at (x0, t0), and apply the WCP to get a contradiction. Assume, without

loss of generality, that x0 = 0, and let KR be an open N -dimensional ball with radius R centered

at the origin, such that KR ⊂ Ω. Consider the function w : KR × [0, T ] → R given by

w(x, t) = C(R2 − |x|2)m(T − t), (3.7)

where constants C > 0 and m ≥ 2 will be specified later. To avoid confusion with notations, let

us denote the radial variable s
def
= |x|. Since w(x, t) = w(s, t), we have

∆pw ≡ (p− 1)|w′
s|

p−2w′′
ss + (N − 1)s−1|w′

s|
p−2w′

s,

and direct calculations imply

∂tw −∆pw − λ|w|p−2w = −C(R2 − s2)m

·

(
1− Cp−2(2m)p−1sp−2(R2 − s2)m(p−2)−p×

(
R2(p+N − 2)− ((2m− 1)(p− 1) +N − 1)s2

)
(T − t)p−1

+ λCp−2(R2 − s2)m(p−2)(T − t)p−1

)
.

Choosing m ≥ p
p−2 and recalling that p > 2, we see that all terms are uniformly bounded in

KR × [0, T ]. Hence, taking C > 0 small enough, we derive that ∂tw−∆pw− λ|w|p−2w ≤ 0 ≤ f in

KR × [0, T ]. On one hand, since w = 0 on ∂KR × [0, T ], we have w ≤ u on ∂KR × [0, T ]. On the

other hand, since KR ⊂ Ω and u0 > 0 locally uniformly in Ω, we can find (if necessary) smaller

C > 0 to satisfy w ≤ u in KR × {0}. Therefore, applying Theorem 2.1, we deduce that w ≤ u in

KR × [0, T ]. However, w(x0, t0) > 0, which contradicts the assumption u(x0, t0) = 0.

�

Corollary 2.5 follows directly from the proof of assertion (i) of Theorem 2.4.

Now we discuss the proof of Theorem 2.8. Assertion (i) of Theorem 2.8 follows again from

the proof of assertion (i) of Theorem 2.4. Assertion (ii) can be found in [30] and [32].

Let us prove assertions (iii) and (iv). Assume that u(x0, t0) = 0 and, without loss of generality,

x0 = 0. Suppose, by contradiction, that there exists t1 ∈ (0, t0) with u(x0, t1) > 0. Thus, due

to the continuity of u, there exists N -dimensional open ball KR centered at x0 = 0 such that

KR ⊂ {(x, t1) ∈ ΩT : u(x, t1) > 0}. Considering the function w : KR × [t1, T ] → R defined by

(3.7), we argue as in the proof of assertions (iii) and (iv) of Theorem 2.4 to derive that w ≤ u in

KR × [t1, T ], which leads to a contradiction. �

The Hopf Maximum Principle stated in Theorem 2.11 (i) can be proved using the same

arguments as in the proof of assertion (i) of Theorem 2.4 by considering the subsolution (3.5) in
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ball BR(x0, t0) ⊂ {(x, t) ∈ ΩT : u(x, t) > 0} 6= ∅ which touches ∂ΩT at the point (x1, t1) (i.e.,

t1 = t0). Assertion (ii) of Theorem 2.11 can be found in [30] and [32].

4. Nonuniqueness results

In this section we give two counterexamples to the maximum and comparison principles for

problem (P).

First we present a counterexample to the WCP in the case p < 2, λ > 0, and f is a specially

chosen sign-changing function in ΩT . For this end, we modify Example 2 from [19, p. 148] on

nonuniqueness of nontrivial weak solutions for an elliptic problem, in order to produce correspond-

ing nonuniqueness for the parabolic problem (P). This will eventually lead to a violation of the

WCP.

Let p < 2, λ > 0, and ∂Ω be of class C2, for simplicity. Consider the following elliptic problem:




−∆pw = λ|w|p−2w − w + h(x), x ∈ Ω,

w = 0, x ∈ ∂Ω,
(4.1)

where h ∈ L∞(Ω) will be specified later. We assume, without loss of generality, that 0 ∈ Ω. The

corresponding energy functional is given by

Eλ(w) =
1

p

∫

Ω

|∇w|p dx−
λ

p

∫

Ω

|w|p dx+
1

2

∫

Ω

|w|2 dx−

∫

Ω

h(x)w dx.

Note that problem (4.1) is supercritical whenever p < 2N
N+2 and N ≥ 2. However, Eλ is well-

defined and coercive on the reflexive Banach space X = W 1,p
0 (Ω) ∩L2(Ω) endowed with the norm

‖ · ‖ = ‖ · ‖W 1,p

0
(Ω) + ‖ · ‖L2(Ω). Clearly, Eλ is Fréchet differentiable on X . The coercivity on X

is guaranteed jointly by the first summand, 1
p

∫
Ω |∇w|p dx, and the third summand, 1

2

∫
Ω |w|2 dx.

Indeed, the latter dominated both, the second and fourth summands, by Hölder’s inequality.

Our aim is to find two different critical points of Eλ in X . First we construct a critical point

of Eλ of saddle type for a special choice of h. Fix some ε1 ∈ (0, 1) such that the ball B2ε1(0) is

compactly contained in Ω, and let a function w0 be defined as




w0(x) = |x|m for |x| ≤ ε1

w0(x) = 0 for x ∈ Ω \B2ε1(0),

w0 ∈ C2(Ω), ∆pw0 ∈ C(Ω),

where m ≥ N(2 − p)−1 (this choice will be clear later). Such w0 can be explicitly constructed

inside the annulus B2ε1(0)\Bε1(0) as a polynomial of the radial variable |x|. Define now h ∈ C(Ω)

by

h(x) = −∆pw0(x)− λ|w0(x)|
p−2w0(x) + w0(x), x ∈ Ω. (4.2)

By construction, w0 ∈ X and satisfies (4.1) pointwise with the source function h given by (4.2),

and therefore w0 is a critical point of Eλ. However, we claim that Eλ does not attain its local

minimum at w0. For this end, let us take any function z ∈ C2(Ω) such that




z(x) = 1 for |x| ≤ ε,

z(x) = z(|x|) ∈ [0, 1] for ε ≤ |x| ≤ ε1,

z(x) = 0 for x ∈ Ω \Bε1(0),

where ε ∈ (0, ε1), and show that Eλ(w0+ tz) < Eλ(w0) for t > 0 small enough. By the mean value

theorem, for any t > 0 there exists t0 ∈ (0, t) such that

Eλ(w0 + tz) = Eλ(w0) + t 〈E′
λ(w0 + t0z), z〉 . (4.3)

Let us investigate the function ζ : (0,+∞) → R defined as

ζ(t) =
1

t
〈E′

λ(w0 + tz), z〉 ≡
1

t
(〈E′

λ(w0 + tz), z〉 − 〈E′
λ(w0), z〉) .
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It is not hard to see that ζ ∈ C(0,+∞). Moreover, since w0 and z are radial in Bε1(0), we have

ζ(t) = =
NωN

t

( ε1∫

ε

rN−1 |w′
0 + tz′|

p−2
(w′

0 + tz′)z′ dr −

ε1∫

ε

rN−1 |w′
0|

p−2
w′

0z
′ dr

)

−
λNωN

t

( ε1∫

0

rN−1 |w0 + tz|p−2 (w0 + tz)z dr −

ε1∫

0

rN−1 |w0|
p−2 w0z dr

)

+NωN

ε1∫

0

rN−1z2 dr = NωN

(
Ẽλ(t) + Êλ(t) +

ε1∫

0

rN−1z2 dr

)
, (4.4)

where ωN is the volume of a unit ball in RN ,

Ẽλ(t) =
1

t

( ε1∫

ε

rN−1 |w′
0 + tz′|

p−2
(w′

0 + tz′)z′ dr −

ε1∫

ε

rN−1 |w′
0|

p−2
w′

0z
′ dr

)

−
λ

t

( ε1∫

ε

rN−1 |w0 + tz|p−2
(w0 + tz)z dr −

ε1∫

ε

rN−1 |w0|
p−2

w0z dr

)
,

and

Êλ(t) = −
λ

t

(∫ ε

0

rN−1 |w0 + t|p−2 (w0 + t) dr −

∫ ε

0

rN−1 |w0|
p−2 w0 dr

)
.

Since w0(r) = rm for r ≤ ε1, we get

lim
t→0

Êλ(t) = −λ(p− 1)

∫ ε

0

rN−1+m(p−2) dr = −∞ (4.5)

provided N − 1 +m(p− 2) ≤ −1 (that is, m ≥ N(2− p)−1) and λ > 0. On the other hand,

Ẽλ(0) = lim
t→0

Ẽλ(t) = (p− 1)

∫ ε1

ε

rN−1
(
|w′

0|
p−2|z′|2 − λ|w0|

p−2z2
)
dr (4.6)

is finite. Combining (4.4), (4.5), and (4.6), we obtain

lim
t→0

ζ(t) = NωN

(
Ẽλ(0)− λ(p− 1)

∫ ε

0

rN−1+m(p−2) dr +

∫ ε1

0

rN−1z2 dr

)
= −∞.

Thus, substituting ζ(t0) into (4.3) and recalling that ζ(t0) is continuous for t0 > 0, we see that

Eλ(w0 + tz) < Eλ(w0) for sufficiently small t > 0, i.e., Eλ(w0) decreases in direction z, and hence

w0 is not the point of a local minimum of Eλ in X .

On the other hand, since Eλ is coercive and weakly lower semicontinuous on X , it possesses

a global minimizer w1 ∈ X which becomes a second nontrivial weak solution of (4.1). Note that

w1 ∈ L∞(Ω) (see, e.g., [1, Théorème A.1, p. 96]), and therefore w1 ∈ C1+α(Ω) for some α ∈ (0, 1)

(cf. [24]).

Let us show now that nonuniqueness for elliptic problem (4.1) causes a corresponding nonunique-

ness for the following parabolic problem of the type (P):





∂tu−∆pu = λ|u|p−2u+ h(x) |v(t)|p−2v(t), (x, t) ∈ ΩT ,

u0(x) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂ΩT ,

(4.7)

where h is the sign-changing source function defined by (4.2) and v(t) is a (nontrivial) positive

solution of the Cauchy problem




∂tv − |v|p−2v = 0, t > 0,

v(0) = 0,
(4.8)
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where 1 < p < 2, which is given by

v(t) = (2 − p)
1

2−p t
1

2−p . (4.9)

If we look for solutions of (4.7) in the form u(x, t) = w(x)v(t), then

u0(x, t) = w0(x) v(t) and u1(x, t) = w1(x) v(t)

are two different solutions to (4.7) which implies the desired nonuniqueness. Thus, the WCP is

violated, since u0 = u1 on the parabolic boundary of ΩT . �

Note that it is not possible to obtain a similar nonuniqueness result if h ≥ 0 a.e. in Ω and

λ ≤ λ1. First, under these assumptions, any weak solution w of (4.1) is nonnegative. Indeed,

testing (4.1) by w−, we obtain

0 =

(∫

Ω

|∇w−|
p dx− λ

∫

Ω

|w−|
p dx

)
+

∫

Ω

|w−|
2 dx+

∫

Ω

h(x)w− dx ≥

∫

Ω

|w−|
2 dx ≥ 0.

However, this is possible only if w ≥ 0 a.e. in Ω. If h ≡ 0 a.e. in Ω, then it is not hard to observe that

(4.1) has a trivial solution only. Assume that h 6≡ 0 a.e. in Ω. As was noted above, w ∈ C1+α(Ω)

for some α ∈ (0, 1), and hence w > 0 in Ω, due to [34]. If we suppose that (4.1) has two (positive)

solutions, then the Díaz-Saá inequality (see [14, Lemma 2]) leads to a contradiction, and hence

the desired uniqueness for (4.1) follows. Let us remark also that a counterexample similar to (4.7)

cannot be applied to the case p > 2, since the Cauchy problem (4.8) has a trivial solution only.

Now we give a counterexample to all maximum and comparison principles in the case p < 2

and λ > λ1 under the trivial source and initial data. Consider the following particular case of (P):




∂tu−∆pu = λ|u|p−2u, (x, t) ∈ ΩT ,

u0(x) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂ΩT .

(4.10)

Let v(t) be the solution (4.9) of the Cauchy problem (4.8), and let w be a positive weak solution

to the following logistic problem (that is, (4.1) with h ≡ 0 in Ω):




−∆pw = λ|w|p−2w − w, x ∈ Ω,

w = 0 x ∈ ∂Ω,

see, e.g., [21, Theorem 1.1, (e), (b), p. 947]. It is not hard to see that u±(x, t) = ±w(x) v(t) is a

pair of positive and negative solutions to (4.10), and u ≡ 0 is a trivial solution of (4.10). Thus,

for u0 ≡ 0 and f ≡ 0, both weak and strong forms of maximum and comparison principles for (P)

are violated. �

The considered counterexamples indicate that the question about the validity of the WCP for

p < 2, λ > 0, and nontrivial nonnegative data remains open.

Finally, we refer the interested reader to [2, 4, 7, 9, 8, 11, 15, 18, 20] for the existence, uniqueness,

and nonuniqueness results to parabolic problems with some other types of nonlinearity.

5. Strong Comparison Principles

In this section we prove the versions of the SCP given by Theorems 2.12, 2.13, and 2.15.

Recall that we consider two initial-boundary value problems of the type (P):

∂tu−∆pu = λ|u|p−2u+ f in ΩT , u(x, 0) = u0 in Ω, u = 0 on ∂ΩT , (2.5)

∂tv −∆pv = λ|v|p−2v + g in ΩT , v(x, 0) = v0 in Ω, v = 0 on ∂ΩT . (2.6)

We assume that Ω ∈ C1+α and satisfies the interior sphere condition, λ ∈ R is a constant, 0 ≤ f ≤ g

a.e. in ΩT , and 0 ≤ u0 ≤ v0 a.e. in Ω. Let u and v be bounded weak solutions of (2.5) and (2.6),
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respectively, and let v be strictly positive in Ωt̄(v), where t̄(v) > 0 is defined by (2.4). From Remark

2.6 we know that u, v ∈ C1+β,(1+β)/2(Ω× [τ, T ]) for any τ ∈ (0, T ).

For τ, δ > 0 small enough we consider an open subset Oτ
δ of Ωt̄(v) given by

Oτ
δ

def
= Oδ × (τ, t̄(v)− τ), where Oδ

def
= {x ∈ Ω : dist(x, ∂Ω) < δ}. (5.1)

To prove Theorems 2.12, 2.13, and 2.15, we follow the strategy of [6]: show first that the SCP

holds in Oτ
δ , then extend it to the whole of Ωt̄(v).

Lemma 5.1. Let p < 2 and λ = 0. For any τ ∈ (0, t̄(v)/2) there exists δ > 0 such that for every

connected component Σ of Oτ
δ , the equality u(x0, t0) = v(x0, t0) for some (x0, t0) ∈ Σ implies u ≡ v

in Σ ∩ {t ≤ t0}.

Proof. From Theorems 2.1, 2.4, and 2.11 we know that

0 ≤ u ≤ v and 0 < v in Ωt̄(v),
∂v

∂ν
≤

∂u

∂ν
≤ 0 and

∂v

∂ν
< 0 on ∂Ωt̄(v).

Consequently, for any τ ∈ (0, t̄(v)/2) there exist δ > 0 and some constants η1, η2 > 0 such that

|∇xu| ≤ η2 and η1 ≤ |∇xv| ≤ η2 throughout Oτ
δ . Thus, considering w = v − u, we have w ≥ 0 in

Ω × {0}, w = 0 on ∂Ωt̄(v), w ≥ 0 in Ωt̄(v), and w ∈ C1+β,(1+β)/2(Ω × [τ, T ]) for any τ ∈ (0, T ).

Furthermore, subtracting (2.5) from (2.6), we obtain that w weakly satisfies the following linear

parabolic inequality in Oτ
δ :

∂tw − div(A(x, t)∇w) = g − f ≥ 0. (5.2)

Here, the (N ×N)-matrix A(x, t) is obtained via the mean value theorem as

A(x, t) =

∫ 1

0

|∇x((1 − s)u+ sv)|p−2
Ap(∇x((1 − s)u+ sv)) ds

where

Ap(~a)
def
= I+ (p− 2)

~a⊗ ~a

|~a|2
for ~a ∈ R

N \ {~0}

is a symmetric, positive definite (N × N)-matrix with the eigenvalues 1 and p − 1, I is the iden-

tity matrix, ⊗ denotes the tensor product, and integration in the definition of A(x, t) is taken

componentwise.

Let us show that A(x, t) forms a uniformly elliptic operator in Oτ
δ . Recall the inequalities

(
max
0≤s≤1

|a+ sb|

)p−2

≤

∫ 1

0

|a+ sb|p−2 ds ≤ Cp

(
max
0≤s≤1

|a+ sb|

)p−2

(5.3)

from [29, (A.6), p. 645], which hold with some constant Cp > 0, for all a, b ∈ RN with |a|+ |b| > 0.

Using (5.3), we derive
(

max
0≤s≤1

|∇x((1 − s)u+ sv)|

)p−2

≤

∫ 1

0

|∇x((1 − s)u+ sv)|p−2 ds

≤ Cp

(
max
0≤s≤1

|∇x((1− s)u+ sv)|

)p−2

for any (x, t) ∈ Oτ
δ , since |∇xu| + |∇x(v − u)| > 0 in Oτ

δ . Thus, estimating the quadratic form

of A(x, t) by that of Ap(~a) (see also [29, (A.10), p. 646]), we conclude that there exist C1, C2 > 0

such that

C1|ξ|
2 ≤ 〈A(x, t)ξ, ξ〉 ≤ C2|ξ|

2

for all (x, t) ∈ Oτ
δ and ξ ∈ RN . That is, the differential operator in (5.2) is uniformly parabolic

in Oτ
δ , since the corresponding elliptic operator is uniformly elliptic in this domain. Therefore, w

satisfies the SMP in Σ, as it follows from the combination of Harnack’s inequality [26] for weak

solutions of equation ∂tw − div(A(x, t)∇w) = 0 with the classical WCP. See also [28, Corollary

3.5] for an explicit statement of the SMP for (5.2). Hence, if w(x0, t0) = 0 for some (x0, t0) ∈ Σ,

then w ≡ 0 in Σ ∩ {t ≤ t0}, which implies the desired result. �
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Proof of Theorem 2.12. Assume that there exists τ > 0 such that u < v in Ωτ . Taking any η ∈

(0, τ), Lemma 5.1 guarantees that u < v in every connected component Σ of Oη
δ ⊂ Ωt̄(v) with some

δ > 0. Then for any δ1 ∈ (0, δ) there exists α > 0 such that u+α ≤ v on ∂(Ω \Oδ1)× [η, t̄(v)− η].

On the other hand,

∂t(u+ α) −∆p(u+ α) = ∂tu−∆pu ≤ ∂tv −∆pv.

Hence, Theorem 2.1 implies that u + α ≤ v in (Ω \ Oδ1) × [η, t̄(v) − η]. Consequently, u < v in

Ω× (0, t̄(v)− η]. Letting η → 0, we conclude that u < v in Ωt̄(v). �

By the same arguments as above we are able to prove Theorem 2.13. Consider the set

Õτ
δ

def
= Oδ × (0, t̄(v)− τ),

where τ, δ > 0 are sufficiently small and Oδ is defined in (5.1). First, we need the following local

SCP.

Lemma 5.2. Let p < 2 and λ = 0. Assume, in addition to the assumptions on problems (2.5),

(2.6), that u0, v0 ∈ C1+β(Ω) satisfy also

0 ≤ u0 ≤ v0 in Ω,
∂v0
∂ν

≤
∂u0

∂ν
≤ 0 and

∂v0
∂ν

< 0 on ∂Ω.

Then for any τ ∈ (0, t̄(v)) there exists δ > 0 such that for every connected component Σ of Õτ
δ , the

equality u(x0, t0) = v(x0, t0) for some (x0, t0) ∈ Σ implies u ≡ v in Σ ∩ {t ≤ t0}.

Proof. Note that, under the assumptions of the lemma, u and v belongs to C1+β,(1+β)/2(Ω× [0, T ]),

see Remark 2.6. Therefore, v satisfies the Hopf maximum principle uniformly on the time interval

[0, t̄(v) − τ) for any fixed τ > 0 which allows us to linearize the p-Laplacian in Õτ
δ as in the proof

of Lemma 5.1, and obtain the desired result. �

Proof of Theorem 2.13. Under the assumption (2.8), Lemma 5.2 implies that u < v in every

connected component Σ of Õτ
δ where τ ∈ (0, t̄(v)) and δ > 0 is small enough. Hence, the continuity

of u and v implies that we can find sufficiently small η > 0 and δ1 ∈ (0, δ) such that u < v in

(Ω \ Oδ1) × [0, η]. Thus, u < v in Ωη, and we apply Theorem 2.12 to conclude that u < v in

Ωt̄(v). �

Proof of Theorem 2.15. Note that Lemmas 5.1 and 5.2 mainly rely on the availability of the

WCP and the Hopf maximum principle for solution v. In the case p > 2 and λ ≥ 0, we know that

the WCP holds by Theorem 2.1 and the boundary estimate is imposed by the assumption (2.9) of

the theorem. Therefore, following the same arguments as in the proofs of Lemmas 5.1, 5.2, and

Theorems 2.12, 2.13, we obtain the desired result. �

6. Discussion

Our problem (P) is somewhat related to the degenerate diffusion problem (for 2 < p < ∞)

with an inhomogeneous logistic reaction function treated in S. Takeuchi [33, Sect. 3, p. e1015]:




∂tu−∆pu = λ |u|p−2u(a(x)− u) + f(x) , (x, t) ∈ ΩT ,

u(x, 0) = u0(x) , x ∈ Ω ,

u(x, t) = 0 , (x, t) ∈ ∂ΩT .

(EP)

Here, ∆pu
def
= div(|∇xu|p−2∇xu) is the p-Laplacian with the spatial gradient ∇xu, p > 2, λ ∈ R+ =

[0,∞), and both a, f ∈ L∞(Ω) are some nonnegative functions, a 6≡ 0 in Ω. The corresponding

semilinear problem with p = 2 has been widely studied in the literature, but the quasilinear

analogue with p 6= 2 is less known; cf. [12, 33].

Our methods developed in the present work for 2 < p < ∞ (and L∞(ΩT )-solutions) are aplicable

also to problem (EP), owing to the fact that the logistic reaction function

g(x, · ) : R → Rs 7−→ λ |s|p−2s(a(x)− s)
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satisfies the one-sided Lipschitz condition on the nonnegative half-line R+, by

∂g

∂s
(x, s) = λ p |s|p−2

(
p−1
p a(x)− s

)
≤ Lp ≡ const < ∞

for a.e. x ∈ Ω and for all s ∈ R+. More detailed weak comparison results for problem (EP) can

be found in A. Derlet and P. Takáč [12]. Further results on the existence, uniqueness, and

long-time asymptotic behavior of weak solutions are established in [12, 33].
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