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Abstract We investigate strong and weak versions of maximum and comparison principles
for a class of quasilinear parabolic equations with the p-Laplacian

∂t u − �pu = λ|u|p−2u + f (x, t)

under zero boundary and nonnegative initial conditions on a bounded cylindrical domain
� × (0, T ), λ ∈ R, and f ∈ L∞(� × (0, T )). Several related counterexamples are given.

Keywords p-Laplacian · Parabolic equation · Fast diffusion · Slow diffusion · Maximum
principle · Comparison principle · Uniqueness
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1 Introduction

Let �T
def= � × (0, T ) be a parabolic cylinder, where � ⊂ R

N (N ≥ 1) is a bounded

domain with Lipschitz boundary ∂�, T ∈ (0,+∞), and let ∂�T
def= ∂� × (0, T ) be the

corresponding lateral surface. We consider the following initial-boundary value problem:
⎧
⎪⎨

⎪⎩

∂t u − �pu = λ|u|p−2u + f (x, t), (x, t) ∈ �T ,

u(x, 0) = u0(x), x ∈ �,

u(x, t) = 0, (x, t) ∈ ∂�T .
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Here, �pu
def= div(|∇xu|p−2∇xu) is the p-Laplacian with the spatial gradient ∇xu, p > 1,

and λ ∈ R. Dealing with (P), we assume that the source function f ∈ L∞(�T ) and initial
function u0 ∈ W 1,p

0 (�) ∩ L2(�), where W 1,p
0 (�) is the standard Sobolev space. Below, by

λ1 we denote the first positive eigenvalue of the p-Laplacian in � under the zero Dirichlet
boundary conditions, i.e.,

λ1 = inf

{∫

�

|∇u|p dx : u ∈ W 1,p
0 (�) with

∫

�

|u|p dx = 1

}

.

In this article, we study qualitative properties of weak solutions to problem (P), such as
maximum and comparison principles. It is well-known (see, e.g., [30] or [32]) that in the
linear case p = 2 any (classical) solution u of (P) satisfies the Weak Maximum Principle
(WMP for short), that is, the assumptions u0 ≥ 0 in � and f ≥ 0 in �T imply that u ≥ 0
in �T . Moreover, the additional assumption u(x0, t0) = 0 for some (x0, t0) ∈ �T yields

u ≡ 0 in �t0
def= � × (0, t0), i.e., the Strong Maximum Principle (SMP) holds. At the

same time, analogous principles for p 	= 2 cannot be satisfied, in general, without additional
assumptions on the parameter λ, initial and source data; they are significantly different for
the fast diffusion (singular case, p < 2) and slow diffusion (degenerate case, p > 2).

Consider, for instance, the following shifted Barenblatt solution of the equation ∂t u −
�pu = 0 for p > 2 [3,22]:

u(x, t) = 1

(t + α)k

(

C − p − 2

p

(
k

N

) 1
p−1

( |x |
(t + α)k/N

) p
p−1

) p−1
p−2

+
, (1.1)

where α > 0, C > 0, and k = (p− 2+ p/N )−1. It is not hard to see that (1.1) satisfies zero
boundary and nonnegative initial conditions on some �T ; however, it exhibits a finite speed
of propagation, and, in consequence, the SMP does not hold.

On the other hand, for p < 2, problem (P) possesses a finite time extinction phenomenon
(also known as complete quenching [10]), that is, there are nonnegative solutions of (P)
which vanish over � × {t0} for some t0 ∈ (0, T ) and are strictly positive in �t0 . An explicit
example of such solution to ∂t u − �pu = 0 is given, e.g., in [17, pp. 64-65] for N = 1 as
follows:

u(x, t) = (t0 − (2 − p)t)
1

2−p
+ v(x), (1.2)

where v satisfies the equation−(|v′|p−2v′)′ = v under boundary conditions v(−1) = v(1) =
0.

In [5], we investigated the SMP for problem (P) in the case λ ≤ 0 and found suitable
versions thereof for p < 2 and p > 2 (see also Theorems 2.4 and 2.8 below, and [27]).
Moreover, we gave several counterexamples alternative to (1.1) and (1.2). However, the case
λ > 0 has not been treated in details in [5].

On the other hand, consider two problems of the type (P) with ordered initial data u0 ≤ v0
in � and ordered source functions f ≤ g in �T . If the corresponding weak solutions u and
v are also ordered, i.e., u ≤ v in �T , we say that the Weak Comparison Principle (WCP) is
satisfied.Moreover, if the additional assumption u(x0, t0) = v(x0, t0) for some (x0, t0) ∈ �T

yields u ≡ v in �t0 , then the Strong Comparison Principle (SCP) holds. For the linear case
p = 2 theWCP and SCP readily follow from theWMPand SMP, respectively, by considering
the difference v − u. However, the p-Laplacian being nonlinear, it does not allow to use the
same method for the general case p 	= 2. Hence different arguments have to be employed.
Furthermore, as in the case of maximum principles, the WCP and SCP cannot be satisfied in
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Table 1 Status of the maximum and comparison principles for problem (P). ’+’-the principle is satisfied;
’−’-a counterexample is known; ’±’-the principle is satisfied under additional assumptions; ’?’-no satisfactory
information

λ ≤ 0 λ ∈ (0, λ1] λ > λ1 λ ∈ R

p < 2 p > 2 p < 2 p > 2 p < 2 p > 2 p = 2

WMP + [23] + [23] + [5] + [5] − + + [30]

SMP − [16] / ± [27] − [3] / ± [5] − [5] / ± − [5] / ± − − [5] / ± + [30]

WCP + [23] + [23] − / ? + − + + [30]

SCP − [16] / ± / ? − [3] / ± − / ? − [5] / ± − − [5] / ± + [30]

the general forms for p 	= 2, and their appropriate versions crucially depend on λ, data, and
the choice of p < 2 or p > 2.

In the present article we concentrate on the SMP for the case λ > 0 and the WCP and
SCP for λ ≥ 0. Validity of the Hopf maximum principle (boundary point lemma) is also
discussed. Precise results are formulated in the next section. We remark that the right-hand
side of (P) is a model case of more general nonlinearities (cf. [31, Chapter 2]) and the results
we have obtained are typical for general settings.

InTable 1we collect someknown information on availability ofmaximumand comparison
principles for (P) and indicate several open problems. The facts without citations are proved
in the present article. Note that the most of the information on maximum and comparison
principles together with corresponding counterexamples is known for the case λ = 0. The
WCP (and consequently WMP) in the case p > 1 and λ ≤ 0 follows, in principle, from
the monotonicity of the operator −�p and term −λ|u|p−2u, and we refer here, e.g., to [23,
Lemma 3.1] for the case λ = 0, and to [29, Lemma 4.9] for λ ≤ 0. Counterexamples to the
SCP in the case λ = 0 follow from the inspection of solutions of the forms (1.1) and (1.2).

Finally, let us remark that, among other qualitative properties of solutions for problem
(P), wide literature is devoted to Harnack-type inequalities, see [16,17]. A version of the
antimaximum principle for (P) has been found in [29].

2 Main results

In this sectionwe collect ourmain results.We recall that all proofs for the linear case p = 2 are
well-known even under more general assumptions on a domain and parabolic operator, see,
e.g., [30] or [32].We include the case p = 2 in our formulations for the sake of completeness.
For a basic treatment of the nonlinear case p 	= 2, including a brief derivation of problem
(P), we refer to the classical work by Díaz and de Thélin [13].

Let f ∈ L∞(�T ), u0 ∈ W 1,p(�) ∩ L2(�), and let h be a continuous function on
∂�T = (� × {0}) ∪ (∂� × [0, T ]). Under a weak solution of the problem

⎧
⎨

⎩

∂t u − �pu = λ|u|p−2u + f (x, t), (x, t) ∈ �T ,

u(x, 0) = u0(x), x ∈ �,

u(x, t) = h(x, t), (x, t) ∈ ∂�T

(2.1)

we mean a Lebesgue-measurable function u : �T → R satisfying

u ∈ C
([0, T ] → L2(�)

) ∩ L p (
(0, T ) → W 1,p(�)

)
,
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and
∫

�

uϕ dx
∣
∣
∣
t=τ

t=0
+

∫

�τ

(−u ∂tϕ + |∇xu|p−2〈∇xu,∇xϕ〉) dx dt

= λ

∫

�τ

|u|p−2uϕ dx dt +
∫

�τ

f (x, t)ϕ dx dt

for every τ ∈ (0, T ] and for all test functions

ϕ ∈ W 1,2 (
(0, τ ) → L2(�)

) ∩ L p
(
(0, τ ) → W 1,p

0 (�)
)

.

The boundary condition u = h on ∂�T holds in the sense of traces of functions u(·, t)|∂� in
W 1,p(�) for a.e. t ∈ (0, T ). As usual, 〈·, ·〉 denotes the inner product in RN .

We start with a variant of the Weak Comparison Principle in a subdomain E ⊆ �T .
Consider the following two problems:

∂t u − �pu = λ|u|p−2u + f in �T , u(x, 0) = u0 in �, u = h1 on ∂�T , (2.2)

∂tv − �pv = λ|v|p−2v + g in �T , v(x, 0) = v0 in �, v = h2 on ∂�T . (2.3)

We assume f, g ∈ L∞(�), u0, v0 ∈ W 1,p(�) ∩ L2(�), and h1, h2 are continuous on ∂�T .

Theorem 2.1 (WCP). Let E ⊆ �T be a subdomain. Assume that f ≤ g a.e. in E and let
u, v be weak solutions of problems (2.2), (2.3), respectively. Finally, assume either of the
following two conditions:

(i) p > 1 and λ ≤ 0;
(ii) p > 2, λ > 0, and u, v ∈ L∞(E).

If u ≤ v a.e. in (� × [0, T ))\E, then u ≤ v holds throughout E.

Remark 2.2 We point out that the initial and boundary conditions are included in our hypoth-
esis u ≤ v a.e. in Ec = (�×[0, T ))\E, the complement of E ⊂ �T = �× (0, T ) in the set
� × [0, T ), so that Ec contains both sets, � × {0} and ∂�T = ∂� × (0, T ). Consequently,
the initial conditions are prescribed on � × {0} ⊂ Ec whereas boundary conditions are
prescribed on ∂�T ⊂ Ec. The role played by the set E ⊂ �T is to deal with the case of the
functions f, g ∈ L∞(�) satisfying f ≤ g a.e. only in some subdomain E ⊂ �T , i.e., only
locally.

Remark 2.3 Evidently, the WCP implies the WMP by taking u ≡ 0 as a solution to (2.2)
under the trivial initial and boundary data. Moreover, we know that the WMP for (P) is also
satisfied in the case p < 2 and λ ∈ (0, λ1] (see [5, Theorem 2.4]). However, to the best of
our knowledge, availability of the WCP for p < 2 and λ ∈ (0, λ1] is still an open problem
for nonnegative source and initial data. At the same time, in Section 4 below we present
a counterexample to the WCP for p < 2, λ > 0, and appropriately chosen sign-changing
source functions. Moreover, for p < 2 and λ > λ1 the WCP is violated even under the trivial
source and initial data as it is also shown in Section 4.

Now we state the Strong Maximum Principle for problem (P).

Theorem 2.4 (SMP). Assume that f ∈ L∞(�T ), f ≥ 0 a.e. in �T and u0 ∈ W 1,p
0 (�) ∩

L2(�), u0 ≥ 0 a.e. in �. Let u ∈ C1,0(�T ) be a weak solution of (P). Then the following
assertions are valid:
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(i) If p < 2, λ ≤ λ1, and u0 	≡ 0 in �, then there exists t̄ ∈ (0, T ] such that u > 0 in �t̄ .
(ii) If p = 2, λ ∈ R, and u0 	≡ 0 in �, then u > 0 in �T .
(iii) If p > 2, λ ≤ 0, and ess inf

K
u0 > 0 for any compact subset K of �, then u > 0 in �T .

(iv) If p > 2, λ > 0, and ess inf
K

u0 > 0 for any compact subset K of �, assume also

u ∈ L∞(�T ). Then u > 0 in �T .

Corollary 2.5 Let p < 2 and λ ≤ λ1. Then the conclusion of Theorem 2.4 (i) is equivalent
to u > 0 in �t̄(u), where

t̄(u)
def= max{t ∈ (0, T ] : u > 0 in �t } > 0. (2.4)

Moreover, t̄(u) coincides with the following value:

t∗(u)
def= max{t ∈ (0, T ] : for each s ∈ (0, t) there is xs ∈ � such that u(xs, s) > 0}.

Note that counterexamples (1.1), (1.2), and [5, pp. 226–227] show that the restriction of
�T to �t̄(u) in assertion (i) and additional assumption u0 > 0 in assertion (iii) are essential,
and, in general, cannot be removed.

Remark 2.6 Assume that ∂� ∈ C1+α , α ∈ (0, 1), and a weak solution u of (P) satisfies
u ∈ L∞(�T ). Then u ∈ C1+β,(1+β)/2(� × [τ, T ]) for any τ ∈ (0, T ), where β ∈ (0, 1)
is independent of u; see [25, Theorem 0.1] (or [29, Lemma 4.6] for notations used in the
present article). Moreover, if the initial data u0 ∈ C1+β(�), then u ∈ C1+β,(1+β)/2(�T ).
Here, C1+β,(1+β)/2(� × [τ, T ]) is the standard parabolic Hölder space, see, e.g., [25, (0.6),
p. 552].

Remark 2.7 Considering f ≡ 0 in �t0 for some t0 ∈ (0, T ), and u0 ≡ 0 in �, we see that
the strict positivity of u in �T can be violated by taking u ≡ 0 in �t0 . For the existence of a
local in time nontrivial solution of (P) in�×[t0, t0+ε)we refer the reader to [29, Appendix
A] and references therein.

Let us give another version of the SMP which does not depend on the assumption u0 	≡ 0.

Theorem 2.8 Assume that f ∈ L∞(�T ), f ≥ 0 a.e. in �T and u0 ∈ W 1,p
0 (�) ∩ L2(�),

u0 ≥ 0 a.e. in �. Let u ∈ C1,0(�T ) be a weak solution of (P) and there exists (x0, t0) ∈ �T

such that u(x0, t0) = 0. Then the following assertions are valid:

(i) If p < 2 and λ ≤ λ1, then u(x, t0) = 0 for all x ∈ �.
(ii) If p = 2 and λ ∈ R, then u(x, t) = 0 for all (x, t) ∈ � × (0, t0].
(iii) If p > 2 and λ ≤ 0, then u(x0, t) = 0 for all t ∈ (0, t0].
(iv) If p > 2 and λ > 0, assume also u ∈ L∞(�T ). Then u(x0, t) = 0 for all t ∈ (0, t0].
Remark 2.9 The conclusions of assertions (i) of Theorems 2.4 and 2.8 remain valid for the
case p < 2 and λ > λ1 if we know a priori that a considered solution u of (P) is nonnegative
in �T , i.e., it satisfies the WMP. In this case we can apply the SMP to (P) with the source
function f̃ = λ|u|p−2u + f , f̃ ≥ 0 in �T . However, the counterexample in Section 4
indicates that the WMP for p < 2 and λ > λ1 may be violated, in general.

Remark 2.10 In Theorems 2.4 and 2.8 the zero boundary condition u(x, t) = 0 on ∂�T is
used, in fact, to treat the case p < 2 and λ ∈ (0, λ1], only. (In this case we can guarantee
that u ≥ 0 in �T , see [5, Theorem 2.4].) In all other considered cases (i.e., p < 2, λ ≤ 0,
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and p > 2, λ ∈ R), the assertions of Theorems 2.4 and 2.8 hold for corresponding solutions
of (2.1) with h ≥ 0 on ∂�T , since the WCP given by Theorem 2.1 implies the WMP. In
particular, Theorem 2.4 (iii) implies that weak C1,0-solutions of (2.1) with p > 2, λ ∈ R,
and h ≥ 0 cannot extinct in a finite time.

A further important development ofmaximum principle properties of solutions to problem
(P) can be given by the Hopf Maximum Principle (HMP).

Theorem 2.11 (HMP). Assume that f ∈ L∞(�T ), f ≥ 0 a.e. in �T and u0 ∈ W 1,p
0 (�) ∩

L2(�), u0 ≥ 0 a.e. in �. Assume also that ∂� satisfies the interior sphere condition at a
point (x1, t1) ∈ ∂�T . Let u ∈ C1,0(�T ∪{(x1, t1)}) be a weak solution of (P). If u(·, t1) > 0
in � and either

(i) p < 2 and λ ≤ λ1, or
(ii) p = 2 and λ ∈ R,

then the outer normal derivative of u at (x1, t1) is strictly negative, i.e.,

∂u(x1, t1)

∂ν
< 0,

where ν is the outer unit normal to ∂�T at (x1, t1).

By counterexample (1.1) or [5, p. 229] we know that the HMP is violated for p > 2 and
λ ∈ R.

Finally we discuss the Strong Comparison Principle.

Hypothesis. We assume that � is of class C1+α for some α ∈ (0, 1) and satisfies the interior
sphere condition.

Consider the following initial-boundary value problems of the type (P):

∂t u − �pu = λ|u|p−2u + f in �T , u(x, 0) = u0 in �, u = 0 on ∂�T , (2.5)

∂tv − �pv = λ|v|p−2v + g in �T , v(x, 0) = v0 in �, v = 0 on ∂�T . (2.6)

Here 0 ≤ f ≤ g a.e. in�T and 0 ≤ u0 ≤ v0 a.e. in�. Let u and v be boundedweak solutions
of (2.5) and (2.6), respectively. From Remark 2.6 we know that u, v ∈ C1+β,(1+β)/2(� ×
[τ, T ]) for any τ ∈ (0, T ). Assume also that t̄(v), defined by (2.4) for the solution v, is
strictly positive (it can be achieved, e.g., by taking v0 	≡ 0 in �, see Corollary 2.5), that is,
v > 0 in �t̄(v).

Theorem 2.12 (SCP). Let p < 2 and λ = 0. If there exists τ > 0 such that u < v in �τ ,
then

0 ≤ u < v in �t̄(v) and
∂v

∂ν
<

∂u

∂ν
≤ 0 on ∂�t̄(v). (2.7)

In words, Theorem 2.12 states that the local in time strict inequality u < v extends until the
maximal time of applicability of the SMP for v. Let us state also the SCP under different
conditions.

Theorem 2.13 Let p < 2 and λ = 0. Assume that u0, v0 ∈ C1+β(�). If

0 ≤ u0 < v0 in � and either
∂v0

∂ν
≤ ∂u0

∂ν
< 0 or

∂v0

∂ν
<

∂u0
∂ν

≤ 0 on ∂�, (2.8)

then (2.7) holds.
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Note that the conditions in (2.8) do not directly yield u < v in some �τ , since we allow
normal derivatives of u0 and v0 to be equal on ∂�.

Remark 2.14 As we have already mentioned, the WCP for p < 2 and λ ∈ (0, λ1] is still
unknown for nonnegative source and initial data. However, if such version of the WCP is
obtained, then the corresponding SCP under the assumptions of Theorems 2.12 and 2.13 will
be automatically satisfied. Indeed, Theorems 2.12 and 2.13 can be applied to (2.5) and (2.6)
with the source functions

f̃ = λ|u|p−2u + f and g̃ = λ|v|p−2 + g,

where 0 ≤ f ≤ g a.e. in �T (and hence 0 ≤ f̃ ≤ g̃ a.e. in �T ). In particular, if we know a
priori that u ≤ v in � for p < 2 and λ > 0, then the assertions of Theorems 2.12 and 2.13
hold true.

In [5, Remark 4.2] it was indicated that, in general, the SCP may be violated for any
λ ∈ R whenever p > 2. However, with a help of the Hopf maximum principle, we have the
following version of the SCP even in this case.

Theorem 2.15 Let p > 2 and λ ≥ 0. Assume that for any t ∈ (0, t̄(v)) it holds

∂v

∂ν
(x, t) < 0 for all x ∈ ∂�. (2.9)

Then the assertions of Theorems 2.12 and 2.13 remain valid.

The rest of the article is organized as follows. In Sect. 3, we prove Theorems 2.1, 2.4,
2.8, and 2.11. In Sect. 4, we give two counterexamples to the maximum and comparison
principles in the case p < 2 and λ > 0. Finally, Sect. 5 is devoted to the proofs of Theorems
2.12, 2.13, and 2.15.

3 Weak comparison and strong maximum principles

We start with the proof of Theorem 2.1. Consider the function (u − v)+
def= max{u − v, 0}.

Since we do not know a priori that (u− v)+ is an admissible test function for (2.2) and (2.3),
we apply the approach from [16, Lemma 3.1, Chapter VI] based on the Steklov averages.
Define the Steklov averages of a function w by

wh(x, t) =

⎧
⎪⎨

⎪⎩

1

h

∫ t+h

t
w(x, τ ) dτ, t ∈ [0, T − h],

0, t > T − h,

where h ∈ (0, T ). First, arguing as in [16, Remark 1.1, Chapter II], it can be seen that the
definition of the weak solution u of (2.2) is equivalent to the following one:

∫

�×{t}
∂t (uh) ϕ dx +

∫

�×{t}
〈(|∇xu|p−2∇xu

)

h ,∇xϕ〉dx

= λ

∫

�×{t}
(|u|p−2u

)

h ϕ dx +
∫

�×{t}
f (x, t)h ϕ dx (3.1)

for all h ∈ (0, T ), t ∈ (0, T − h), and ϕ ∈ W 1,p
0 (�). The initial data is understood in the

sense that uh(·, 0) → u0 in L2(�). Analogous definition is also valid for the weak solution
v of (2.3).
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Let us note that ((u − v)h)+ ∈ W 1,p
0 (�) for each t ∈ [0, T − h). Testing now (3.1) and

the corresponding equation for v by ((u− v)h)+, and then subtracting them from each other,
we get

∫

�×{t}
∂t ((u − v)h)((u − v)h)+ dx

+
∫

�×{t}
〈(|∇xu|p−2∇xu − |∇xv|p−2∇xv

)

h ,∇x ((u − v)h)+〉dx

= λ

∫

�×{t}
(|u|p−2u − |v|p−2v

)

h ((u − v)h)+ dx

+
∫

�×{t}
( f (x, t) − g(x, t))h((u − v)h)+ dx . (3.2)

Let us integrate this equality over (0, τ ), where τ ∈ (0, T − h). First, notice that

∂t ((u − v)h)((u − v)h)+ = 1

2

∂

∂t

[
((u − v)h)+

]2

which yields the integral
∫

�τ

∂t ((u − v)h)((u − v)h)+ dx dt

= 1

2

[∫

�

(((u − v)h)+(x, τ ))2 dx −
∫

�

(((u − v)h)+(x, 0))2 dx

]

. (3.3)

Moreover, since u, v ∈ C([0, T ] → L2(�)) and u ≤ v a.e. in (� × [0, T ))\E , we have
∫

�

(((u − v)h)+(x, 0))2 dx → 0 as h → 0.

Letting now h → 0 in (3.2) and (3.3), we obtain

1

2

∫

�

((u − v)+(x, τ ))2 dx +
∫

�τ

〈|∇xu|p−2∇xu − |∇xv|p−2∇xv,∇x (u − v)+〉dx dt

= λ

∫

�τ

(|u|p−2u − |v|p−2v
)
(u − v)+ dx dt +

∫

�τ

( f (x, t) − g(x, t))(u − v)+ dx dt,

which implies that

1

2

∫

�

((u − v)+(x, τ ))2 dx ≤ λ

∫

�τ

(|u|p−2u − |v|p−2v
)
(u − v)+ dx dt. (3.4)

(i) Assume that p > 1 and λ ≤ 0. Then (3.4) implies that
∫

� ((u − v)+(x, τ ))2 dx ≤ 0
for all τ ∈ (0, T ), which yields u ≤ v in �T , and therefore u ≤ v in E .

(ii) Assume that p > 2 and λ > 0. To estimate the right-hand side of (3.4) we use the
inequality

(|a|p−2a − |b|p−2b)(a − b) ≤ c1(|a| + |b|)p−2|a − b|2,
where c1 > 0 does not depend on a, b ∈ R (see, e.g., [29, Appendix A, Sect. A.2]).
Recalling that u, v ∈ L∞(E), we get

1

2

∫

�

((u − v)+(x, τ ))2 dx ≤ C1

∫ τ

0

∫

�

((u − v)+)2 dx dt,
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where C1 = C1(λ, τ, u, v) ∈ (0,+∞) is some constant. Therefore, Gronwall’s
inequality implies that

∫

� ((u − v)+(x, τ ))2 dx ≤ 0 for all τ ∈ (0, T ), and hence
u ≤ v in E . ��

Let us turn to the proof of Theorem 2.4. Note that assertion (ii) is the classical linear case,
see, e.g., [30] and [32]. Moreover, assertions (i) and (iii) of Theorem 2.4 were proved in [5,
Theorem 1.1] for λ ≤ 0 assuming that u(x, ·) is differentiable with respect to t ∈ (0, T ) for
all x ∈ �. First, we slightly modify the arguments from [5, Theorem 1.1] to prove assertion
(i) for all λ ≤ λ1 assuming only u ∈ C1,0(�T ).

Since u0 ≥ 0 and u = 0 on ∂�T , we have u ≥ 0 in �T by [5, Theorem 2.4]. Let �

be any connected component of the nonempty open set {(x, t) ∈ �T : u(x, t) > 0} =
�T ∩ {u > 0} 	= ∅. If � = �T , the theorem is proved. So let � 	= �T which entails
∂� ∩ �T 	= ∅. Consequently, there exists an open ball Bρ(x∗, t∗) ⊂ R

N × R such that
(x∗, t∗) ∈ ∂� ∩ �T and B2ρ(x∗, t∗) ⊂ �T . Inspecting the open set � ∩ Bρ(x∗, t∗), we
observe that there is an open ball BR(x0, t0) ⊂ � ∩ Bρ(x∗, t∗) with ∂BR(x0, t0) ∩ ∂� 	= ∅,
i.e., there is a point (x1, t1) ∈ ∂BR(x0, t0)∩∂� ⊂ Bρ(x∗, t∗) ⊂ �T . Taking a ball of smaller
radius, if necessary, we may assume that (x1, t1) is a unique zero point of u on ∂BR(x0, t0).

For r ∈ (0, R) sufficiently small to be specified later, such that Br (x1, t1) ⊂ �T , we define
the domain D = BR(x0, t0) ∩ Br (x1, t1). The set BR(x0, t0)\Br (x1, t1) being compactly

contained inside �, we have ε
def= inf{u(x, t) : (x, t) ∈ BR(x0, t0)\Br (x1, t1)} > 0. Now

consider the function
v(x, t)

def= ε
(
e−αd(x,t)2 − e−αR2

)
, (3.5)

where α > 0 and d(x, t)
def= √|x − x0|2 + |t − t0| (compare with [30, Chapter 3, Section

3]). It is easy to see that

0 < v ≤ ε in BR(x0, t0), v = 0 on ∂BR(x0, t0), v < 0 in R
N\BR(x0, t0),

Moreover, by the definition of εwe see that v ≤ u on�T \D for every α > 0. Straightforward
calculations (see also [5, p. 225]) yield

g(x, t)
def= ∂tv − �pv − λ|v|p−2v ≡ −

(
εe−αd(x,t)2

)p−1
{

(p − 1)(2α|x − x0|)p

·
[

1 + λ
(
1 − e−α(R2−d(x,t)2)

)p−1 [
(p − 1)(2α|x − x0|)p

]−1

− (p − 2 + N )
[
(p − 1)(2α)p−1|x − x0|p−2]−1

]

+ 2α
(
εe−αd(x,t)2

)2−p
(t − t0)

}

for (x, t) ∈ BR(x0, t0).
Suppose that x0 	= x1. Then we are able to choose the radius r ∈ (0, R) so small that

R ≥ |x − x0| > r holds for all (x, t) ∈ D. Therefore, recalling that 1 < p < 2, we have

1 + λ
(
1 − e−α(R2−d(x,t)2)

)p−1 [
(p − 1)(2α|x − x0|)p

]−1

− (p − 2 + N )
[
(p − 1)(2α)p−1|x − x0|p−2]−1

≥ 1 − |λ| [(p − 1)(2αr)p
]−1 − (p − 2 + N )

[
(p − 1)(2α)p−1Rp−2]−1 ≥ 1

2
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for a sufficiently large α > 0. Taking α even larger, if necessary, we obtain

g(x, t) ≤ −
(
εe−αd(x,t)2

)p−1
{
p − 1

2
(2αr)p − 2α

(
εe−αd(x,t)2

)2−p |t − t0|
}

≤ 0

for (x, t) ∈ D. Therefore g ≤ 0 ≤ f in D.
Consider the case λ ≤ 0. Recalling that v ≤ u on �T \D, we apply Theorem 2.1,

we get v ≤ u in D. On one hand, since u ≥ 0 in �T , u(x1, t1) = 0 at (x1, t1) ∈ �T , and
u ∈ C1(�×{t1}), we see that∇xu(x1, t1) = 0. On the other hand, v > 0 in D, v(x1, t1) = 0,
v ∈ C1(� × {t1}), but ∇xv(x1, t1) 	= 0, since

〈∇xv(x1, t1), (x1 − x0)〉RN = −2αε|x1 − x0|2e−αR2
< 0.

This is a contradiction to v ≤ u near x1 in D. Thus, we have x0 = x1, i.e., |t0 − t1| = R.
The last fact allows us to argue as in the proof of [32, Lemma 9.10, Chapter 9, §B, p. 86] (or,
equivalently, (N + 1)-dimensional generalization of [30, Lemma 2, Chapter 3, Section 2, p.
166]) to derive that u(·, t1) ≡ 0 in �.

Assume now that λ ∈ (0, λ1]. Recall that u ≥ 0 in �T . Considering the function f̃ =
λ|u|p−2u + f , we get f̃ ≥ 0 a.e. in �T . Hence, applying the proof from above to problem
(P) with the source function f̃ , we obtain again that u(·, t1) ≡ 0 in �.

Finally, consider

t̄(u)
def= inf{t ∈ (0, T ] : ∃ x ∈ � such that u(x, t) = 0} (3.6)

and put t̄ = T whenever u > 0 in � × (0, T ]. If t̄(u) = 0, then there exists a sequence
{tn}n∈N such that tn → 0 as n → +∞ and hence ‖u(·, tn)‖L2(�) = 0 for all n ∈ N. This
implies that ‖u0‖L2(�) = 0, since u ∈ C

([0, T ] → L2(�)
)
. However, it contradicts the

assumption u0 	≡ 0 in �. Thus, t̄(u) > 0 and consequently u > 0 in �t̄(u). It is not hard to
see that definitions (2.4) and (3.6) coincide.

Let us now prove assertions (iii) and (iv) of Theorem 2.4. From Theorem 2.1 we know that
u ≥ 0 in�T . Suppose, by contradiction, that there exists (x0, t0) ∈ �T with u(x0, t0) = 0. To
exclude this case, we construct an appropriate nonnegative subsolution to (P) (different than
(3.5)) which is strictly positive at (x0, t0), and apply theWCP to get a contradiction. Assume,
without loss of generality, that x0 = 0, and let KR be an open N -dimensional ball with radius
R centered at the origin, such that KR ⊂ �. Consider the function w : KR × [0, T ] → R

given by
w(x, t) = C(R2 − |x |2)m(T − t), (3.7)

where constants C > 0 and m ≥ 2 will be specified later. To avoid confusion with notations,

let us denote the radial variable s
def= |x |. Since w(x, t) = w(s, t), we have

�pw ≡ (p − 1)|w′
s |p−2w′′

ss + (N − 1)s−1|w′
s |p−2w′

s,

and direct calculations imply

∂tw − �pw − λ|w|p−2w = −C(R2 − s2)m
(

1 − C p−2(2m)p−1s p−2(R2 − s2)m(p−2)−p

× (
R2(p + N − 2) − ((2m − 1)(p − 1) + N − 1)s2

)
(T − t)p−1

+ λC p−2(R2 − s2)m(p−2)(T − t)p−1
)

.
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Choosing m ≥ p
p−2 and recalling that p > 2, we see that all terms are uniformly bounded in

KR ×[0, T ]. Hence, taking C > 0 small enough, we derive that ∂tw −�pw −λ|w|p−2w ≤
0 ≤ f in KR × [0, T ]. On one hand, since w = 0 on ∂KR × [0, T ], we have w ≤ u on
∂KR × [0, T ]. On the other hand, since KR ⊂ � and u0 > 0 locally uniformly in �, we can
find (if necessary) smallerC > 0 to satisfyw ≤ u in KR ×{0}. Therefore, applying Theorem
2.1, we deduce that w ≤ u in KR × [0, T ]. However, w(x0, t0) > 0, which contradicts the
assumption u(x0, t0) = 0. ��

Corollary 2.5 follows directly from the proof of assertion (i) of Theorem 2.4.
Now we discuss the proof of Theorem 2.8. Assertion (i) of Theorem 2.8 follows again

from the proof of assertion (i) of Theorem 2.4. Assertion (ii) can be found in [30] and [32].
Let us prove assertions (iii) and (iv). Assume that u(x0, t0) = 0 and, without loss of

generality, x0 = 0. Suppose, by contradiction, that there exists t1 ∈ (0, t0)with u(x0, t1) > 0.
Thus, due to the continuity of u, there exists N -dimensional open ball KR centered at x0 = 0
such that KR ⊂ {(x, t1) ∈ �T : u(x, t1) > 0}. Considering the functionw : KR×[t1, T ] →
R defined by (3.7), we argue as in the proof of assertions (iii) and (iv) of Theorem 2.4 to
derive that w ≤ u in KR × [t1, T ], which leads to a contradiction. ��

The Hopf Maximum Principle stated in Theorem 2.11 (i) can be proved using the same
arguments as in the proof of assertion (i) of Theorem 2.4 by considering the subsolution (3.5)
in a ball BR(x0, t0) ⊂ {(x, t) ∈ �T : u(x, t) > 0} 	= ∅ which touches ∂�T at the point
(x1, t1) (i.e., t1 = t0). Assertion (ii) of Theorem 2.11 can be found in [30] and [32].

4 Nonuniqueness results

In this section we give two counterexamples to the maximum and comparison principles for
problem (P).

First we present a counterexample to the WCP in the case p < 2, λ > 0, and f is a
specially chosen sign-changing function in �T . For this end, we modify Example 2 from
[19, p. 148] on nonuniqueness of nontrivial weak solutions for an elliptic problem, in order
to produce corresponding nonuniqueness for the parabolic problem (P). This will eventually
lead to a violation of the WCP.

Let p < 2, λ > 0, and ∂� be of class C2, for simplicity. Consider the following elliptic
problem: {−�pw = λ|w|p−2w − w + h(x), x ∈ �,

w = 0, x ∈ ∂�,
(4.1)

where h ∈ L∞(�) will be specified later. We assume, without loss of generality, that 0 ∈ �.
The corresponding energy functional is given by

Eλ(w) = 1

p

∫

�

|∇w|p dx − λ

p

∫

�

|w|p dx + 1

2

∫

�

|w|2 dx −
∫

�

h(x)w dx .

Note that problem (4.1) is supercritical whenever p < 2N
N+2 and N ≥ 2. However, Eλ is

well-defined and coercive on the reflexive Banach space X = W 1,p
0 (�) ∩ L2(�) endowed

with the norm ‖ · ‖ = ‖ · ‖
W 1,p

0 (�)
+ ‖ · ‖L2(�). Clearly, Eλ is Fréchet differentiable on X .

The coercivity on X is guaranteed jointly by the first summand, 1
p

∫

�
|∇w|p dx , and the third

summand, 12
∫

�
|w|2 dx . Indeed, the latter dominated both, the second and fourth summands,

by Hölder’s inequality.
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Our aim is to find two different critical points of Eλ in X . First we construct a critical
point of Eλ of saddle type for a special choice of h. Fix some ε1 ∈ (0, 1) such that the ball
B2ε1(0) is compactly contained in �, and let a function w0 be defined as

⎧
⎪⎨

⎪⎩

w0(x) = |x |m for |x | ≤ ε1

w0(x) = 0 for x ∈ �\B2ε1(0),

w0 ∈ C2(�), �pw0 ∈ C(�),

wherem ≥ N (2− p)−1 (this choicewill be clear later). Suchw0 can be explicitly constructed
inside the annulus B2ε1(0)\Bε1(0) as a polynomial of the radial variable |x |. Define now
h ∈ C(�) by

h(x) = −�pw0(x) − λ|w0(x)|p−2w0(x) + w0(x), x ∈ �. (4.2)

By construction, w0 ∈ X and satisfies (4.1) pointwise with the source function h given by
(4.2), and therefore w0 is a critical point of Eλ. However, we claim that Eλ does not attain
its local minimum at w0. For this end, let us take any function z ∈ C2(�) such that

⎧
⎪⎨

⎪⎩

z(x) = 1 for |x | ≤ ε,

z(x) = z(|x |) ∈ [0, 1] for ε ≤ |x | ≤ ε1,

z(x) = 0 for x ∈ �\Bε1(0),

where ε ∈ (0, ε1), and show that Eλ(w0 + t z) < Eλ(w0) for t > 0 small enough. By the
mean value theorem, for any t > 0 there exists t0 ∈ (0, t) such that

Eλ(w0 + t z) = Eλ(w0) + t〈E ′
λ(w0 + t0z), z〉. (4.3)

Let us investigate the function ζ : (0,+∞) → R defined as

ζ(t) = 1

t
〈E ′

λ(w0 + t z), z〉 ≡ 1

t

(〈E ′
λ(w0 + t z), z〉 − 〈E ′

λ(w0), z〉
)
.

It is not hard to see that ζ ∈ C(0,+∞). Moreover, since w0 and z are radial in Bε1(0), we
have

ζ(t) = NωN

t

(∫ ε1

ε

r N−1
∣
∣w′

0 + t z′
∣
∣p−2

(w′
0 + t z′)z′ dr −

∫ ε1

ε

r N−1
∣
∣w′

0

∣
∣p−2

w′
0z

′ dr
)

− λNωN

t

(∫ ε1

0
r N−1 |w0 + t z|p−2 (w0 + t z)z dr −

∫ ε1

0
r N−1 |w0|p−2 w0z dr

)

+ NωN

∫ ε1

0
r N−1z2 dr = NωN

(

Ẽλ(t) + Êλ(t) +
∫ ε1

0
r N−1z2 dr

)

, (4.4)

where ωN is the volume of a unit ball in R
N ,

Ẽλ(t) = 1

t

(∫ ε1

ε

r N−1
∣
∣w′

0 + t z′
∣
∣p−2

(w′
0 + t z′)z′ dr −

∫ ε1

ε

r N−1
∣
∣w′

0

∣
∣p−2

w′
0z

′ dr
)

− λ

t

(∫ ε1

ε

r N−1 |w0 + t z|p−2 (w0 + t z)z dr −
∫ ε1

ε

r N−1 |w0|p−2 w0z dr

)

,

and

Êλ(t) = −λ

t

(∫ ε

0
r N−1 |w0 + t |p−2 (w0 + t) dr −

∫ ε

0
r N−1 |w0|p−2 w0 dr

)

.
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Since w0(r) = rm for r ≤ ε1, we get

lim
t→0

Êλ(t) = −λ(p − 1)
∫ ε

0
r N−1+m(p−2) dr = −∞ (4.5)

provided N − 1+m(p− 2) ≤ −1 (that is, m ≥ N (2− p)−1) and λ > 0. On the other hand,

Ẽλ(0) = lim
t→0

Ẽλ(t) = (p − 1)
∫ ε1

ε

r N−1 (|w′
0|p−2|z′|2 − λ|w0|p−2z2

)
dr (4.6)

is finite. Combining (4.4), (4.5), and (4.6), we obtain

lim
t→0

ζ(t) = NωN

(

Ẽλ(0) − λ(p − 1)
∫ ε

0
r N−1+m(p−2) dr +

∫ ε1

0
r N−1z2 dr

)

= −∞.

Thus, substituting ζ(t0) into (4.3) and recalling that ζ(t0) is continuous for t0 > 0, we see
that Eλ(w0 + t z) < Eλ(w0) for sufficiently small t > 0, i.e., Eλ(w0) decreases in direction
z, and hence w0 is not the point of a local minimum of Eλ in X .

On theother hand, since Eλ is coercive andweakly lower semicontinuouson X , it possesses
a global minimizer w1 ∈ X which becomes a second nontrivial weak solution of (4.1). Note
that w1 ∈ L∞(�) (see, e.g., [1, Théorème A.1, p. 96]), and therefore w1 ∈ C1+α(�) for
some α ∈ (0, 1) (cf. [24]).

Let us show now that nonuniqueness for elliptic problem (4.1) causes a corresponding
nonuniqueness for the following parabolic problem of the type (P):

⎧
⎨

⎩

∂t u − �pu = λ|u|p−2u + h(x) |v(t)|p−2v(t), (x, t) ∈ �T ,

u0(x) = 0, x ∈ �,

u(x, t) = 0, (x, t) ∈ ∂ �T ,

(4.7)

where h is the sign-changing source function defined by (4.2) and v(t) is a (nontrivial) positive
solution of the Cauchy problem

{
∂tv − |v|p−2v = 0, t > 0,
v(0) = 0,

(4.8)

where 1 < p < 2, which is given by

v(t) = (2 − p)
1

2−p t
1

2−p . (4.9)

If we look for solutions of (4.7) in the form u(x, t) = w(x)v(t), then

u0(x, t) = w0(x) v(t) and u1(x, t) = w1(x) v(t)

are two different solutions to (4.7) which implies the desired nonuniqueness. Thus, the WCP
is violated, since u0 = u1 on the parabolic boundary of �T . ��

Note that it is not possible to obtain a similar nonuniqueness result if h ≥ 0 a.e. in � and
λ ≤ λ1. First, under these assumptions, any weak solution w of (4.1) is nonnegative. Indeed,
testing (4.1) by w−, we obtain

0 =
(∫

�
|∇w−|p dx − λ

∫

�
|w−|p dx

)

+
∫

�
|w−|2 dx +

∫

�
h(x)w− dx ≥

∫

�
|w−|2 dx ≥ 0.

However, this is possible only if w ≥ 0 a.e. in �. If h ≡ 0 a.e. in �, then it is not hard to
observe that (4.1) has a trivial solution only. Assume that h 	≡ 0 a.e. in �. As was noted
above, w ∈ C1+α(�) for some α ∈ (0, 1), and hence w > 0 in �, due to [34]. If we suppose
that (4.1) has two (positive) solutions, then the Díaz-Saá inequality (see [14, Lemma 2]) leads
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to a contradiction, and hence the desired uniqueness for (4.1) follows. Let us remark also
that a counterexample similar to (4.7) cannot be applied to the case p > 2, since the Cauchy
problem (4.8) has a trivial solution only.

Now we give a counterexample to all maximum and comparison principles in the case
p < 2 and λ > λ1 under the trivial source and initial data. Consider the following particular
case of (P): ⎧

⎪⎨

⎪⎩

∂t u − �pu = λ|u|p−2u, (x, t) ∈ �T ,

u0(x) = 0, x ∈ �,

u(x, t) = 0, (x, t) ∈ ∂�T .

(4.10)

Let v(t) be the solution (4.9) of the Cauchy problem (4.8), and let w be a positive weak
solution to the following logistic problem (that is, (4.1) with h ≡ 0 in �):

{
− �pw = λ|w|p−2w − w, x ∈ �,

w = 0 x ∈ ∂�,

see, e.g., [21, Theorem 1.1, (e), (b), p. 947]. It is not hard to see that u±(x, t) = ±w(x) v(t)
is a pair of positive and negative solutions to (4.10), and u ≡ 0 is a trivial solution of (4.10).
Thus, for u0 ≡ 0 and f ≡ 0, both weak and strong forms of maximum and comparison
principles for (P) are violated. ��

The considered counterexamples indicate that the question about the validity of the WCP
for p < 2, λ > 0, and nontrivial nonnegative data remains open.

Finally, we refer the interested reader to [2,4,7–9,11,15,18,20] for the existence, unique-
ness, and nonuniqueness results to parabolic problems with some other types of nonlinearity.

5 Strong Comparison Principles

In this section we prove the versions of the SCP given by Theorems 2.12, 2.13, and 2.15.
Recall that we consider two initial-boundary value problems of the type (P):

∂t u − �pu = λ|u|p−2u + f in �T , u(x, 0) = u0 in �, u = 0 on ∂�T , (2.5)

∂tv − �pv = λ|v|p−2v + g in �T , v(x, 0) = v0 in �, v = 0 on ∂�T . (2.6)

We assume that � ∈ C1+α and satisfies the interior sphere condition, λ ∈ R is a constant,
0 ≤ f ≤ g a.e. in �T , and 0 ≤ u0 ≤ v0 a.e. in �. Let u and v be bounded weak solutions of
(2.5) and (2.6), respectively, and let v be strictly positive in �t̄(v), where t̄(v) > 0 is defined
by (2.4). FromRemark 2.6 we know that u, v ∈ C1+β,(1+β)/2(�×[τ, T ]) for any τ ∈ (0, T ).

For τ, δ > 0 small enough we consider an open subset Oτ
δ of �t̄(v) given by

Oτ
δ

def= Oδ × (τ, t̄(v) − τ), where Oδ
def= {x ∈ � : dist(x, ∂�) < δ}. (5.1)

To prove Theorems 2.12, 2.13, and 2.15, we follow the strategy of [6]: show first that the
SCP holds in Oτ

δ , then extend it to the whole of �t̄(v).

Lemma 5.1 Let p < 2 and λ = 0. For any τ ∈ (0, t̄(v)/2) there exists δ > 0 such that for
every connected component� ofOτ

δ , the equality u(x0, t0) = v(x0, t0) for some (x0, t0) ∈ �

implies u ≡ v in � ∩ {t ≤ t0}.
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Proof From Theorems 2.1, 2.4, and 2.11 we know that

0 ≤ u ≤ v and 0 < v in �t̄(v),
∂v

∂ν
≤ ∂u

∂ν
≤ 0 and

∂v

∂ν
< 0 on ∂�t̄(v).

Consequently, for any τ ∈ (0, t̄(v)/2) there exist δ > 0 and some constants η1, η2 > 0 such
that |∇xu| ≤ η2 and η1 ≤ |∇xv| ≤ η2 throughoutOτ

δ . Thus, consideringw = v−u, we have
w ≥ 0 in � × {0}, w = 0 on ∂�t̄(v), w ≥ 0 in �t̄(v), and w ∈ C1+β,(1+β)/2(� × [τ, T ]) for
any τ ∈ (0, T ). Furthermore, subtracting (2.5) from (2.6), we obtain that w weakly satisfies
the following linear parabolic inequality in Oτ

δ :

∂tw − div(A(x, t)∇w) = g − f ≥ 0. (5.2)

Here, the (N × N )-matrix A(x, t) is obtained via the mean value theorem as

A(x, t) =
∫ 1

0
|∇x ((1 − s)u + sv)|p−2

Ap(∇x ((1 − s)u + sv)) ds

where

Ap(a)
def= I + (p − 2)

a ⊗ a
|a|2 for a ∈ R

N\{0}

is a symmetric, positive definite (N × N )-matrix with the eigenvalues 1 and p − 1, I is the
identity matrix, ⊗ denotes the tensor product, and integration in the definition of A(x, t) is
taken componentwise.

Let us show that A(x, t) forms a uniformly elliptic operator inOτ
δ . Recall the inequalities

(

max
0≤s≤1

|a + sb|
)p−2

≤
∫ 1

0
|a + sb|p−2 ds ≤ Cp

(

max
0≤s≤1

|a + sb|
)p−2

(5.3)

from [29, (A.6), p. 645], which hold with some constant Cp > 0, for all a, b ∈ R
N with

|a| + |b| > 0. Using (5.3), we derive
(

max
0≤s≤1

|∇x ((1 − s)u + sv)|
)p−2

≤
∫ 1

0
|∇x ((1 − s)u + sv)|p−2 ds

≤ Cp

(

max
0≤s≤1

|∇x ((1 − s)u + sv)|
)p−2

for any (x, t) ∈ Oτ
δ , since |∇xu| + |∇x (v − u)| > 0 in Oτ

δ . Thus, estimating the quadratic
form of A(x, t) by that of Ap(a) (see also [29, (A.10), p. 646]), we conclude that there exist
C1,C2 > 0 such that

C1|ξ |2 ≤ 〈A(x, t)ξ, ξ 〉 ≤ C2|ξ |2

for all (x, t) ∈ Oτ
δ and ξ ∈ R

N . That is, the differential operator in (5.2) is uniformly parabolic
inOτ

δ , since the corresponding elliptic operator is uniformly elliptic in this domain. Therefore,
w satisfies the SMP in �, as it follows from the combination of Harnack’s inequality [26]
for weak solutions of equation ∂tw − div(A(x, t)∇w) = 0 with the classical WCP. See also
[28, Corollary 3.5] for an explicit statement of the SMP for (5.2). Hence, if w(x0, t0) = 0
for some (x0, t0) ∈ �, then w ≡ 0 in � ∩ {t ≤ t0}, which implies the desired result. ��
Proof of Theorem 2.12. Assume that there exists τ > 0 such that u < v in �τ . Taking
any η ∈ (0, τ ), Lemma 5.1 guarantees that u < v in every connected component � of
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Oη
δ ⊂ �t̄(v) with some δ > 0. Then for any δ1 ∈ (0, δ) there exists α > 0 such that

u + α ≤ v on ∂(�\Oδ1) × [η, t̄(v) − η]. On the other hand,

∂t (u + α) − �p(u + α) = ∂t u − �pu ≤ ∂tv − �pv.

Hence, Theorem 2.1 implies that u+α ≤ v in (�\Oδ1)×[η, t̄(v)−η]. Consequently, u < v

in � × (0, t̄(v) − η]. Letting η → 0, we conclude that u < v in �t̄(v). ��
By the same arguments as above we are able to prove Theorem 2.13. Consider the set

Õτ
δ

def= Oδ × (0, t̄(v) − τ),

where τ, δ > 0 are sufficiently small and Oδ is defined in (5.1). First, we need the following
local SCP.

Lemma 5.2 Let p < 2 and λ = 0. Assume, in addition to the assumptions on problems
(2.5), (2.6), that u0, v0 ∈ C1+β(�) satisfy also

0 ≤ u0 ≤ v0 in �,
∂v0

∂ν
≤ ∂u0

∂ν
≤ 0 and

∂v0

∂ν
< 0 on ∂�.

Then for any τ ∈ (0, t̄(v)) there exists δ > 0 such that for every connected component � of
Õτ

δ , the equality u(x0, t0) = v(x0, t0) for some (x0, t0) ∈ � implies u ≡ v in � ∩ {t ≤ t0}.
Proof Note that, under the assumptions of the lemma, u, v ∈ C1+β,(1+β)/2(� × [0, T ]),
see Remark 2.6. Therefore, v satisfies the Hopf maximum principle uniformly on the time
interval [0, t̄(v) − τ) for any fixed τ > 0 which allows us to linearize the p-Laplacian in Õτ

δ

as in the proof of Lemma 5.1, and obtain the desired result. ��
Proof of Theorem 2.13. Under the assumption (2.8), Lemma 5.2 implies that u < v in every
connected component � of Õτ

δ where τ ∈ (0, t̄(v)) and δ > 0 is small enough. Hence, the
continuity of u and v implies that we can find sufficiently small η > 0 and δ1 ∈ (0, δ) such
that u < v in (�\Oδ1) × [0, η]. Thus, u < v in �η, and we apply Theorem 2.12 to conclude
that u < v in �t̄(v). ��
Proof of Theorem 2.15. Note that Lemmas 5.1 and 5.2 mainly rely on the availability of the
WCP and the Hopf maximum principle for solution v. In the case p > 2 and λ ≥ 0, we know
that theWCP holds by Theorem 2.1 and the boundary estimate is imposed by the assumption
(2.9) of the theorem. Therefore, following the same arguments as in the proofs of Lemmas
5.1, 5.2, and Theorems 2.12, 2.13, we obtain the desired result. ��

6 Discussion

Our problem (P) is somewhat related to the degenerate diffusion problem (for 2 < p < ∞)
with an inhomogeneous logistic reaction function treated in S. Takeuchi [33, Sect. 3,
p. e1015]:

⎧
⎪⎨

⎪⎩

∂t u − �pu = λ |u|p−2u(a(x) − u) + f (x) , (x, t) ∈ �T ,

u(x, 0) = u0(x) , x ∈ �,

u(x, t) = 0 , (x, t) ∈ ∂�T .

(EP)
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Here, �pu
def= div(|∇xu|p−2∇xu) is the p-Laplacian with the spatial gradient ∇xu, p > 2,

λ ∈ R+ = [0,∞), and both a, f ∈ L∞(�) are some nonnegative functions, a 	≡ 0 in �.
The corresponding semilinear problem with p = 2 has been widely studied in the literature,
but the quasilinear analogue with p 	= 2 is less known; cf. [12,33].

Our methods developed in the present work for 2 < p < ∞ (and L∞(�T )-solutions) are
aplicable also to problem (EP), owing to the fact that the logistic reaction function

g(x, · ) : R → Rs �−→ λ |s|p−2s(a(x) − s)

satisfies the one-sided Lipschitz condition on the nonnegative half-line R+, by
∂g

∂s
(x, s) = λ p |s|p−2

(
p−1
p a(x) − s

)
≤ L p ≡ const < ∞

for a.e. x ∈ � and for all s ∈ R+. More detailed weak comparison results for problem (EP)
can be found inA. Derlet and P. Takác [12]. Further results on the existence, uniqueness,
and long-time asymptotic behavior of weak solutions are established in [12,33].
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6. Cuesta, M., Takáč, P.: A strong comparison principle for the Dirichlet p-Laplacian. In G. Caristi & E.
Mitidieri (Eds.), Lecture Notes in Pure and Applied Mathematics, Vol. 194 , (pp. 79–87). Marcel Dekker,
Inc., New York, Basel (1998). https://books.google.com/books?id=8owrhdOK-G8C

7. Dao, N.A., Díaz, J.I.: A gradient estimate to a degenerate parabolic equation with a singular absorption
term: The global quenching phenomena. J. Math. Anal. Appl. 437(1), 445–473 (2016). https://doi.org/
10.1016/j.jmaa.2015.11.059

8. Dao, N. A., Díaz, J.: Existence and uniqueness of singular solutions of p-Laplacian with absorption for
Dirichlet boundary condition. Proceedings of the AmericanMathematical Society (2017). https://doi.org/
10.1090/proc/13647

9. Dao, N.A., Díaz, J.I.: The extinction versus the blow-up: global and non-global existence of solutions
of source types of degenerate parabolic equations with a singular absorption. J. Differ. Equ. 263(10),
6764–6804 (2017). https://doi.org/10.1016/j.jde.2017.07.029

10. Dao, A.N., Díaz, J.I., Sauvy, P.: Quenching phenomenon of singular parabolic problems with L1 initial
data. Electronic Journal of Differential Equations, 201(136), 1–16 (2016). https://ejde.math.txstate.edu/
Volumes/2016/136/dao.pdf

11. Deguchi, H.: Existence, uniqueness and non-uniqueness of weak solutions of parabolic initial-value
problems with discontinuous nonlinearities. Proc R Soc Edinburgh Sect A: Math 135(6), 1139–1167
(2005). https://doi.org/10.1017/S0308210500004315
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29. Padial, J. F., Takáč, P., Tello, L.: An antimaximum principle for a degenerate parabolic problem. Adv.
Differ. Equ. 15(7/8), 601–648. (2010). http://projecteuclid.org/euclid.ade/1355854621

30. Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations. Prentice-Hall, Englewood
Cliffs (1967). https://doi.org/10.1007/978-1-4612-5282-5

31. Pucci, P., Serrin, J.B.: The maximum principle, vol. 73. Springer, New York (2007). https://doi.org/10.
1007/978-3-7643-8145-5

32. Smoller, J.: Shock waves and reaction-diffusion equations, vol. 258. Springer, New York (1983). https://
doi.org/10.1007/978-1-4684-0152-3

33. Takeuchi, S.: Stationary profiles of degenerate problemswith inhomogeneous saturation values. Nonlinear
Anal. Theory, Methods Appl. 63(5), e1009–e1016 (2005). https://doi.org/10.1016/j.na.2005.01.018

34. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim.
12(1), 191–202 (1984). https://doi.org/10.1007/bf01449041

Author's personal copy

https://doi.org/10.1137/S0036141091217731
http://gallica.bnf.fr/ark:/12148/bpt6k62167875/f537.item
https://doi.org/10.1007/978-1-4612-0895-2
https://doi.org/10.1007/978-1-4612-0895-2
https://doi.org/10.1007/978-1-4614-1584-8
https://doi.org/10.1017/S0308210500028262
https://books.google.com/books?id=8owrhdOK-G8C
https://books.google.com/books?id=8owrhdOK-G8C
https://doi.org/10.1017/S0956792500000917
https://doi.org/10.1080/17476933.2011.575461
https://doi.org/10.1080/17476933.2011.575461
https://doi.org/10.4171/rmi/77
https://doi.org/10.1137/0527036
https://doi.org/10.1016/0362-546x(88)90053-3
https://doi.org/10.1016/0362-546x(93)90038-t
https://doi.org/10.1016/0362-546x(93)90038-t
https://doi.org/10.1002/cpa.3160170106
https://doi.org/10.1002/cpa.3160200107
https://doi.org/10.1016/s0764-4442(01)02020-1
https://doi.org/10.1016/s0764-4442(01)02020-1
https://doi.org/10.1090/s1061-0022-2011-01188-4
http://projecteuclid.org/euclid.ade/1355854621
https://doi.org/10.1007/978-1-4612-5282-5
https://doi.org/10.1007/978-3-7643-8145-5
https://doi.org/10.1007/978-3-7643-8145-5
https://doi.org/10.1007/978-1-4684-0152-3
https://doi.org/10.1007/978-1-4684-0152-3
https://doi.org/10.1016/j.na.2005.01.018
https://doi.org/10.1007/bf01449041

	On maximum and comparison principles for parabolic problems with the p-Laplacian
	Abstract
	1 Introduction
	2 Main results
	3 Weak comparison and strong maximum principles
	4 Nonuniqueness results
	5 Strong Comparison Principles
	6 Discussion
	Acknowledgements
	References




