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Abstract—In this contribution we examine the use
and utility of parallel HMM classification in single-trial
movement-EEG classification of index finger reaching
and grasping movement. Parallel HMMs allow us to eas-
ily utilize the information contained in multiple channels.
Using HMM classifier output in parallel from examined
EEG channels we have been able to achieve as good a
classification score as with single electrode results, further
we do not rely on a single electrode giving persistently
good results. Our parallel approach has the added benefit
of not having to rely on small inter-session variability as
it gives very good results with fewer classifier parameters
being optimized. Without any classification optimization
we can get a score improvement of 11.2% against ran-
domly selected physiologically relevant electrode. If we
use subject specific information we can further improve
on the reference score by 1%, achieving a classification
score of 84.240.7%.

Keywords—EEG; BCI; parallel HMM; movement type
classification.

I. INTRODUCTION

The classification of movement direction is of great
significance in the field of Brain Computer Inter-
face (BCI) research. There are many approaches to
BCI control researched worldwide, using e.g., Visual
Evoked Potentials, P300 event-related wave, or dif-
ferent kinds of voluntary mental activities. We focus
on movement related activity, as controlling a BCI
with movement related EEG feels very natural and
only an imagination of the movement is sufficient to
control the BCI [1]. Moreover movement EEG based
systems can be designed as asynchronous ones, giving
the user more freedom [1]. The ability to distinguish
the direction of movement increases the number of
recognizable states, thus increasing the information
transfer rate. This is crucial as the existing BCIs
use only a few distinct types of movement (mostly
left/right hand or finger movement).

In EEG based BCI there are many ways to utilize
information from multiple electrodes, e.g. the spa-
tiotemporal development of signal power [2], channel
extraction using Indepent Component Analysis (ICA)
artifact suppression [3] or applying a spatial filter
(either standard Laplacian or one generated based on a
source separation algorithm) [4]. With Hidden Markov
Models (HMMs), features from multiple channels are
usually combined into single feature vector (multi-
variate HMM). This approach however relies on a
single 1D model. With parallel HMMs information

from multiple channel HMMs can be used to determine
the final classifier decision.

For BCI the variability of the EEG signals is an
ongoing problem. The EEG signal can vary greatly
from electrode to electrode, from subject to subject
and from session to session. Even though it makes
sense to optimize channels and feature subsets [5],
thus achieving a higher classification score. Though the
optimization may last just one session it may provide
a good starting point for the next session. On the other
hand having too many parameters to optimize can pose
problems for an online BCI application, which ideally
needs to be quite robust as well as provide good results.

The parallel HMM method presented in this paper is
intended to provide a way to efficiently utilize HMM-
based classification without the need to accept some
of the disadvantages of organizing the multichannel
features into a single multivariate HMM. The method
is similar to the one presented in [6], which is used
here as well and further improved.

The experiments are performed on a database of
EEG realizations of extension (reaching) and flexion
(grasping) movements of right index finger. Classifica-
tion of finger movements of the same limb is known
as a complex and challenging task as the activated
muscle mass is smaller than in e.g. arm movements
and the different contralateral preponderance cannot be
exploited as in different limb movements.

II. MOVEMENT-RELATED EEG

Recorded EEG is a composition of two basic com-
ponents: spontaneous activity and event-related re-
sponses. The event-related responses can be further
divided into induced responses and evoked responses
[1]. Induced responses are visible as changes in the
power of subbands in the EEG signal and EEG has to
be averaged in spectral domain to emphasize them.

Evoked responses are slow changes in the EEG
phase-locked to the movement. Induced responses are
of interest in this paper so we only deal with them.

For classification we use the induced oscillatory
EEG activity most prominent in g and § bands, the
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Fig. 1. Scalp electrode layout, according to [7].

Event Related Desynchronization (ERD) and Event
Related Synchronization (ERS), see [7], [4].

1ERD starts about 1 second prior to the movement
onset (see Fig. 2), usually localized to the contralat-
eral sensorimotor area (C3/CP3/C4/CP4) [8], [9]. The
desynchronisation accompanies even the mere mo-
tor imagery and is present in EEG of most adults.
The majority of papers dealing with left/right hand
movement recognition utilize the preponderance of
1ERD contralaterally to the performed movement. The
frequencies of the most movement reactive component
are (unlike in shoulder vs. finger movements) almost
identical (11.341.2 Hz and 11.241.4 Hz) for both the
extension and flexion movements [7], and there is no
significant difference in the duration of the movements.
On electrodes 10,11, and 15 the ERD was found
stronger in flexion-extension than in extension-flexion
movements.

BERS is displayed by central 3 rhythms as a re-
bound in the form of a phasic synchronisation [10]
after the movement onset. SERS represents a post-
movement rise of power in the [ band; the phe-
nomenon peaks about 1 s after the movement onset, see
Fig. 2. BERS is most prominent over the contralateral
hemisphere [10] and is focused slightly anterior of
the largest uERD. The amplitude of SERS is larger
in extension-flexion movement, however the activity
is more focused on the scalp for flexion/extension
movements [11]. The mean frequency of the most reac-
tive component is slightly higher for extension-flexion
movement (19.242.6 Hz) than in flexion-extension
movement (18.2+2.6 Hz) [11].

ITII. METHODS
A. Subjects And Experimental Procedure

The EEG database was obtained from study of
Stancak et al. [7]. The database contains EEG record-
ings of 11 right-handed healthy subjects voluntarily
performing 120 brisk right index finger extension
movements followed by a return to resting position

(reaching) and 120 brisk flexion movements followed
by return to resting position (grasping). The move-
ments were performed at irregular intervals of 1012
seconds. The subjects had their eyes closed during
the recording. The EEG was recorded on 21 scalp
electrodes placed over the contralateral sensorimotor
area (see Fig. 1), f, = 256 Hz; surface EMG electrodes
[7] were used to mark the onset of the movement.
The EEG was filtered using an 8-neighbor surface
Laplacian filter. The data were segmented into 10
seconds epochs, 5 seconds preceding and 5 seconds
following the onset of the EMG. Segments containing
eye or muscle artifacts were removed. The described
data processing was done by the authors of [7]. The
average number of artifact free EEG realizations of
each movement was 66.4116.5 per subject.

B. Feature Extraction

Various approaches for feature extraction have been
used in the literature, e.g. Davis-Bouldin index, linear
spectrum [4], various types of wavelets, power spectral
density, or raw EGG signals [2], [12].

Based on [4], [5] we used linear FFT coefficients
with 1 second window length (with 0.2 second step)
as features giving us 1 Hz frequency resolution. This
setup is shown to work best on similar data and
classifier setup [4]. The k-th feature vector consists
of p = 36 features covering frequency lines from 5 Hz
to 40 Hz Fj, = (fx[1], ..., fx[p]) where k is the time
index. One movement EEG realization is described by
feature matrix F € R36:45,

C. Classification

Hidden Markov Models (HMM) have several ad-
vantages for EEG classification [4], among others
utilization of the context information, ease of the
interpretation, and ability to model the EEG.

The HMM classifier setup from [5] was used as
reference. The used models have a left-to-right, no
skips architecture with 4 emitting states, which is
designed to capture the sequence of the movement-
related EEG phases (resting EEG, desynchronization,
post-movement synchronization, resting EEG) in the p
and [ bands [4] (see Fig. 2) generating p-dimensional
Gaussian random processes with diagonal covariance
matrices.

The design was extended by using multiple classi-
fiers applied to several EEG channels in parallel. Only
the 9 central electrodes as highlighted in Fig. 1 are
used for movement type classification.

As the average number of available movement EEG
realizations is relatively low, stratified 10-times re-
peated 5-fold Cross-Validation (CV) [5], [13] is uti-
lized to obtain more reliable classification estimates.

In order to further increase the significance of the
difference in classification score among various exper-
iments, all presented experiments use identical initial
conditions (same composition of training and testing
sets) for classification.

Each of the classifiers in the parallel HMM setup
is in each CV run initialized and trained separately



Fig. 2. HMM model of movement-related EEG.
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Fig. 3. Depiction of the used classification methods.
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using its own training realization set. This is unlike
[6], where the models are initialized using data from all
channels and trained with channel specific data. Each
testing realization is evaluated within all the respective
EEG channel models and the output loglikelihood of
each is noted. This process provides nChannels x
nMovementTypes = 9 x 2 = 18 loglikelihood values
on which the final class decision is based.

We applied four different decision methods (see Fig.

3):

1) Max LogLike: The maximum output loglikeli-
hood decides the class of the testing realization.
This method is equivalent to the one presented
in [6].

2) Max Count: Majority voting is used to determine
the output. Each channel is evaluated separately
and votes equally for the final output.

3) Max Sum LogLike: This method uses a sum of
class loglikelihoods to assign a label to a test
realization. The label with the greatest total log-
likelihood is selected. Summing loglikelihoods is
e.g. used in [12] in order to compare scalar and
multivariate HMM performance.

4) Var Num Max Ele: This method is similar to the
Max Sum LogLike. However not all channels are
summed, only n best channel loglikelihoods are
summed for each trial and movement type. This
method gives subject-optimized results as we
need to choose n so as to get the best resulting
classification accuracy. For n = 1 this method is
equivalent to Max LogLike, for n = nChannels

Class
Labels

Fig. 4. Dependence of the class score on number of channels
(electrodes) used. Colored dashed lines represent the individual
subjects. The solid black line is the average accuracy across the
indicated number of channels.
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to Max Sum LogLike.

IV. RESULTS AND DISCUSSION

We used 5-40 Hz band as reference as it encom-
passes the physiologically relevant phenomena and
in order to stay aligned with our previous research.
Moreover this band was shown to be the best general
choice [5] on a similar database.

The results of our experiments are summarized in
Tab. I. The reference results for each subject as well as
the electrode number on which they were acquired are
given. The best method for each subject is highlighted.
We can see that the Max Sum LogLike method gives
results as good as the reference ones and Var Num
Max Ele outperforms the reference results by 1%. If
we choose a method for each subject, including the
reference one, we can achieve a classification score of
85.6+0.7% (boldface values in Tab. I).

Fig. 4 further extends the result by showing how the
increasing number of summed channel loglikelihoods
influences the classification accuracy. The classification
results generally saturate at 5 summed channels out of
the 9 available.

Compared with [6] it is interesting to note that the
algorithm proposed there does not work well with our
data as the Max LogLike gives the worst results of all
the methods tried. This can be well seen from Fig. 4,
where we can see that using only the single best value
(n = 1) does not guarantee good results and including
multiple classifier outputs in the output label decision
is advantageous.

There are several important differences between
our dataset and that used in [6]. The database in
[6] contains left/right motor imagery and up/down
mental cursor movement imagery, while we use non-
lateralized movements which is a more complicated
task. We have added the ability to consider multiple
channel outputs, not just the most confident one. In
[6] the parallel HMM approach has decreased the error



TABLE I
COMPARISON OF CLASSIFICATION RESULTS FROM 5-40 HZ BAND AND PARALLEL HMM METHODS (EL. = ELECTRODE). BEST SCORE
FOR A GIVEN SUBJECT IS INDICATED BY BOLDFACE.

5-40 Hz band Max LogLike | Max Count | Max Sum LogLike Var Num Max Ele

Sub. Score [%] ‘ EL Score [%] Score [%] Score [%] Score [%] ‘ Num. EL
1 58.2+4.4 16 56.7£3.6 57.1£3.6 58.3+4.2 60.8+4.4 7
2 91.042.0 10 84.5+£1.9 90.0£2.0 90.942.2 93.54+2.3 5
3 76.0+£3.9 6 68.6+4.2 75.2+3.4 75.9+2.7 78.0+2.9 6
4 96.6+1.2 10 94.14+2.7 100.0-£0.0 100.0+0.0 100.0+0.0 8
5 84.1+£1.5 17 76.8+2.1 85.6£1.2 85.9+1.5 87.4+1.3 5
6 75.1+1.1 17 58.6+4.4 70.242.1 73.0+£2.7 74.0+2.4 5
7 80.7+1.7 17 73.8+2.6 78.2+1.7 78.5£1.6 78.5+1.6 9
8 94.4+1.2 6 66.5+£3.4 90.8+1.8 93.0+2.1 93.0+2.1 9
9 91.4+1.1 5 57.6£7.0 81.6+3.0 87.5+1.1 87.5+1.1 9
10 77.9£3.5 6 74.3+2.9 89.2+3.8 90.4+2.9 90.4+2.9 9
11 89.9+1.8 5 72.943.1 78.8+£3.4 80.1£2.9 83.0+£3.3 3
all ][ 832407 [ best [ 71.3+11 81.5+0.8 83.1407 [ 84.2+07

all 71.940.4 all 85.6+0.7%*

*Average of the best results from both the referential and the parallel HMM results (set in boldface).

rate by 2 - 10%. Quite a significant difference in error
rated was reported depending on feature sets.

Based on our previous research in Blind Source
Separation (BSS) techniques, parallel HMMs should
be advantageous when combined with BSS. It is a
common practice to use e.g. the first principal com-
ponent in Principal Component Analysis or the best
spatially fitting Independent component in Independent
Component Analysis (ICA). However the other ex-
tracted components can contain some complementary
information that would otherwise not be used, espe-
cially when using ICA to select components with some
specific characteristic, like the strength of ERD and
ERS. Then multiple components usually comply with
the characteristic. Instead of decomposing the selected
components back to scalp electrodes it might be more
beneficial to classify the components directly using the
parallel HMMs.

Though our voting approach has managed to out-
perform [6], the results aren’t as good as the reference
single electrode results. Having equivalent vote weights
can work well on our database where all the channels
can be expected to contain useful information, but
in general it would be prudent to assign weights to
the respective channels. Those could be based e.g. on
electrode position or on the similarity of the spatial
filter pattern extracted using BSS to the expected
pattern (based on e.g. physiological knowledge).

V. CONCLUSIONS

We have shown that parallel HMMS are a viable al-
ternative to the single electrode classification approach.
Parallel HMMs provide the option to utilize class in-
formation from multiple channels while keeping all the
advantages of Hidden Markov Model classifiers that
have consistently shown to outperform other classifiers
in EEG classification tasks.

Using subject-optimized number of summed output
loglikelihoods we were able to improve the reference
results by 1%, achieving a score of 84.2+0.7%. With

subject-specific choice of classification method a fur-
ther 1.4% improvement can be reached.
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