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Abstract – This paper deals with dissipativity, stability, 
chaotic behavior and related structural properties of a 
relatively broad class of finite dimensional strictly causal 
systems. The class of nonlinear systems under 
consideration is described in the state-space 
representation form. System properties are investigated 
by a new approach based on a new abstract state energy 
concept, and on a proper generalization of the well 
known Tellegen’s theorem as a form of the energy 
conservation principle. The resulting energy function is 
induced by the output signal power and determines 
both, the structure of a proper system representation as 
well as the corresponding system state space topology. 
The state minimality, as well as parameter minimality 
requirements plays a crucial role in the proposed 
method.  Several examples are solved, and results of 
simulation are shown for illustration of fundamental 
ideas and basic attributes of the proposed method.  
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I.  INTRODUCTION 
In many real-world situations some natural 

concepts, such as causality principle and different 
forms of conservation laws, have generally been 
recognized as system properties of crucial practical 
importance. For example, the Tellegen’s theorem is 
well known in the field of electrical engineering [1, 2]. 
It is one of few general theoretical results that apply in 
non-linear and time-varying situations, too. In the 
paper a more general class of abstract strictly causal 
system representations is addressed. The proposed 
approach gets out from the hypothesis that any 
physically correct system representation must not be in 
contradiction not only with a set of measured data but 
also with a form of an energy conservation principle.  

Thus, if a specific physical structure of the system 
under investigation would be explicitly known, then 
the concept of physical energy could serve as a 
fundamental tool for system analysis and synthesis.  

II. TELLEGEN'S THEOREM USED FOR SYSTEMS 
Tellegen's theorem is one of the most powerful 

theorems in network theory. Most of the energy 
distribution theorems and extremum principles in 
network theory can be derived from it. The Tellegen 

theorem provides a useful tool to analyze complex 
network systems including electrical circuits, 
biological and metabolic networks, pipeline transport 
networks, and chemical process networks. The 
classical Tellegen’s principle can be seen as main 
reasons for using it as a starting point of proposed 
method. The main aim of the contribution is to 
develop a new approach based on a generalized form 
of the classical Tellegen’s principle as an abstract 
formulation of the energy conservation law, and to 
investigate some possibilities of its systematic use to 
solution of basic problems of nonlinear system theory 
[3 - 6]. Some connections of dissipativity, state and 
parameter minimality, instability and chaos with are 
investigated from this point of view. In order to 
explain essential features of the theorem [2], consider 
an arbitrarily connected electrical network with n 
components and choose associated reference 
directions for branch voltages vk and currents ik. Let 
Kirchhoff’s laws be given by the following equations: 

Ai(t) = 0;         Bv(t) = 0                      (1) 

where A is a node incidence matrix, B is a loop 
incidence matrix and i(t), v(t) are defined as follows: 
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Let the vectors i(t), v(t) be the elements of an 
Euclidean space En and invoke the inner product: 
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Let I be the set of all the vectors i(t) and V the set 
of all the vectors v(t) satisfying the equations (1).  

Theorem 1: (Tellegen’s theorem) If i(t)∈I and v(t)∈V 
then it holds that: 

( ), ( )i t v t 0=                            (4) 

It is worth noticing a close relation between 
physical correctness and Tellegen’s theorem. It is also 
important to realize that the branch currents and 
voltages are chosen arbitrarily complied only with 
Kirchhoff’s laws. It implies that different sets I , V of 
the branch currents and voltages satisfying the laws 
can be selected and the relation:          

( ), ( ) ,   ( ) ,   ( )i t v t 0 i t I v t V= ∈ ∈        (5) 

still holds.  
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Figure 1.  Block diagram of open loop system (without state or 
output feedback) with input v(t), output y(t), state x(t), initial 

conditions x0(t) and matrices A, B, C 

III. GENERALIZED TELLEGEN’S PRINCIPLE 
Consider a class of state equivalent representations 

(see block diagram of Fig.1) described by equations 
(6) – (8) and structure [4] shown in Fig. 2.  

( ) ( ) ( );  ( ) ( )dx t A x t B v t y t C x t
dt

= ⋅ + ⋅ = ⋅          (6) 
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Figure 2.  Physicaly correct structure for generalized Tellegen 
theorem (αi should be function of xi or time) 

For the system described by previous equations 
and structure according Fig. 2 the generalized Tellegen 
theorem is given by 

( )( ), 0T dx tx t
dt

=                        (9) 
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Figure 3.  RLC circuit used as linear example 

IV. LINERAR SYSTEM EXAMPLE 
In this part the linear example is presented. Let us 

have a 2nd order RLC circuit shown in Fig. 3, which 
can be described by equations 
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State space equations are 
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or differential equation 
2

1 1 1 1
12

2 2

2

1 1

1

d i R di R i
L CR dt LC LCRdt

dE E
L dt LCR

   
+ + + +   
   

= +

       (12) 

Tellegen equation for power is 

( )1 1 1 2 2 0R L L C C R RE i v i v i v i v i⋅ − + + + =       (13) 

and after manipulation 
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From (18) can be derived also equation for energy  
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Suppose following values of circuit: R1=0.5 [Ω]; 
L=2.5 [H]; C=0.1 [F]; R2=20 [Ω]. Therefore eq. (11) is 
rewritten as 
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State transformation leads to system described by 
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From generalized Tellegen equation (9) can be 
derived 
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where PD is dissipated power and PI is input 
power. Proof is given in next equations (20) - (22). 
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The generalized Tellegen principle described by 
eq. (9) can be used also for system supplied only by 
initial condition as well for nonlinear system. It will 
show that type of system can be easily described by 
energy or power function. It is important to note that 
state space energy can be derived from power by  
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Time evolution of energy for RLC circuit (Fig. 2), 
and time evolution of state space energy of abstract 
system described by eq. (19) are displayed in Fig. 4 - 
response on initial condition and unit step. Booth 
curves are exactly same (therefore only one curve is 
visible in Fig. 4). 

   

Figure 4.  Left - Time evolution of energy in RLC circuit (Fig. 3) 
and time evolution of state space energy, eq. (21) as response on 

initial conditions vC(0)=1 or  x(0)=[x1(0) x2(0)]=[1 0]T. Booth 
curves are the same. Right - Time evolution of energy in RLC 

circuit (Fig. 3) and time evolution of state space energy, eq. (21) as 
response on unit step. Mean value of energy EC+EL=0.05056. 

Booth curves are the same. 

V. NONLINEAR SYSTEM 
In this part the example of nonlinear (but non-

chaotic) system is presented [7 - 8]. System is 

described by eq. (24) or block diagram (Fig. 6). For 
nonlinear function f(x2), two functions were used: (x2)2 
and abs(x2). Prescribed value is w and k is gain. The 
equivalent electronic system is shown in Fig. 8. 
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Figure 5.  Block diagram of nonlinear system   

   

Figure 6.  2D phase portrait of nonlinear systems (x2 versus x1).   
Left: f(x2) = x2

2; w=1; k=10. Right: f(x2) = abs(x2); w=1; k=10 

 

Figure 7.  Time evolution of state space energy in nonlinear 
system for parameters: f(x2) = x2

2; w=1; k=10; 
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Figure 8.  Equivalent nonlinear circuit. A - instrumentation 
amplifiers with gain k and 1; F - nonlinear function; R 1 - controlled 

resistor; L1, C1, R2 - passive parts.  

VI. CHAOTIC SYSTEM 
The chaotic system is given by eq. (25) and 

structure see Fig. 9, where w is prescribed value and k2 



 

and k3 are gains [9 - 10]. Simulation results for w=1; 
α2=1; α3=0.89; α33=0.1; k2=0.1; k3=3 and initial 
condition [0 0.1 0] are shown in Fig, 10 - 12. 
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Chaotic behavior can be controlled by means of 
values k2 and k3. 
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Figure 9.  Structure of chaotic system 

  

Figure 10.  3D phase portrait of chaotic system (left) and 2D phase 
portrait, x2 versus x1 (right) 

 

Figure 11.  Time evolution of signals of chaotic system 

 

Figure 12.  Time evolution of state space energy of chaotic system  

VII. CONCLUSION 
In this paper the generalized Tellegen principle 

was used for power or energy description of different 
types of physical systems. It was derived, that abstract 
state space energy based on Tellegen principle can be 
used for linear, nonlinear or chaotic system. Most 
important is, that time evolution of energy can be used 
for classification of systems - for nonlinear system is 
periodic around the mean value, for chaotic system is 
non-periodic around mean value. 
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