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1. Introduction 

In recent years, flexible multi-layered materials 

with very high performance are used to establish 

cost-effective processing with regard to long-term 

performance and reliability. Therefore, Young’s 

modulus of these materials is very important to 

predict large deformation.  

In this study, an innovative mechanical testing 

method (Circular Ring Method) is provided for 

measuring Young’s modulus of each layer in a 

flexible multi-layered material. By just measuring 

the vertical or the horizontal displacement of the 

ring, Young’s modulus of each layer can be easily 

obtained for thin multi-layered materials.  

Measurements were carried out on a two-layered 

wire (Cu: an electrodeposited material + SWPA: a 

spring steel material). 

The method is based on a nonlinear large 

deformation theory. Exact analytical solutions are 

obtained in terms of elliptic integrals. Besides the 

Circular Ring Method for a flexible multi-layered 

material studied here, the Circular Ring Method [1], 

[2], the Axial Compression Method [3] for a flexible 

single-layered material and the Cantilever Method 

[4] for a flexible multi-layered material have  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

already been developed, based on the nonlinear 

large deformation theory. 

2. Fundamental theory 

A typical illustration of a deflection shape is 

given in Fig.1 for a ring, subjected to opposite 

tensile forces at two points. Denoting the whole arc 

length of a circular ring by 4L and Taking into the 

boundary conditions                      ,            ,                      

and,                   , the maximum non-dimensional arc 

length AB, the maximum non-dimensional vertical 

displacementAB and the maximum non-

dimensional horizontal displacement AB are 

obtained as follows. 
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Fig. 1. Schematic illustration of circular ring subjected to opposite tensile forces 
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Ii : the second moment of area. 

The functions F(1/k, ZA,B), E(1/k, ZA,B) appeared 

in Eqs.(1), (2) and (3)are elliptic integrals of the first 

and second kinds, respectively. Using fundamental 

Eqs.(1)-(3) it is possible to calculate each Young’s 

modulus Ei from the following Eq.(4). 
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One quantity   (: the non-dimensional load) is 

required to calculate Young’s modulus Ei from Eq. 

(4). The value of   is obtained from a chart 

(Nomograph) of  - relation (: the vertical 

displacement) [Method 1] or  - relation (: the 

horizontal displacement) [Method 2]. 

3. Experimental investigation 

Several experiments were carried out using a 

two-layered wire [a Copper layer: Cu (0.011mm 

thick, 500mm long) + a spring steel wire: SWPA 

(0.38mm diameter, 500mm long)]. Young’s moduli 

of Cu and SWPA obtained by applying Method 2 

[Method 1 is omitted here.] are shown in Fig. 2 and 

3. The measured values remain nearly constant for 

a tensile load and the standard deviation (S.D.) is 

small although the method has a little scattered 

values. 
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Fig. 2. Young’s modulus for an electrodeposited 

           material (Cu) [Method 1 is omitted.] 

Fig. 3. Young’s modulus for a steel material 

 (SWPA) [Method 1 is omitted.] 
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