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Bichromatic Travelling Waves for Lattice Nagumo Equations∗
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Abstract. We discuss bichromatic (two-color) front solutions to the bistable Nagumo lattice differential equa-
tion. Such fronts connect the stable spatially homogeneous equilibria with spatially heterogeneous
2-periodic equilibria and hence are not monotonic like the standard monochromatic fronts. We pro-
vide explicit criteria that can determine whether or not these fronts are stationary and show that
the bichromatic fronts can travel in parameter regimes where the monochromatic fronts are pinned.
The presence of these bichromatic waves allows the two stable homogeneous equilibria to spread out
through the spatial domain towards each other, buffered by a shrinking intermediate zone in which
the periodic pattern is visible.
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1. Introduction. In this paper we consider the Nagumo lattice differential equation (LDE)

(1.1) u̇j(t) = d
[
uj−1(t)− 2uj(t) + uj+1(t)

]
+ g
(
uj(t); a

)
,

posed on the spatial lattice j ∈ Z, with t ∈ R. We assume d > 0 and use the standard cubic
bistable nonlinearity g(u; a) = u(1 − u)(u − a) with a ∈ (0, 1). This LDE is well known as
a prototypical model that describes the competition between two stable states u = 0 and
u = 1 in a discrete spatial environment. A crucial role is reserved for so-called travelling front
solutions, which have the form

(1.2) uj(t) = Φ(j − ct), Φ(−∞) = 0, Φ(+∞) = 1.

Such solutions are often referred to as invasion waves, as they provide a mechanism by which
the energetically preferred state can invade the spatial domain.

Our work focuses on the case where c = 0 holds for these primary invasion waves, indicating
a delicate balance between the two competing states. In this case (1.1) can admit stable
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8, 306 14 Plzeň, Czech Republic (pstehlik@kma.zcu.cz).

973

http://www.siam.org/journals/siads/18-2/M118922.html
mailto:hhupkes@math.leidenuniv.nl
mailto:l.morelli@math.leidenuniv.nl
mailto:pstehlik@kma.zcu.cz


974 H. J. HUPKES, L. MORELLI, AND P. STEHĹIK

spatially periodic rest-states. Numerical results indicate that these states can act as a buffer
between regions of space where u = 0 and u = 1 dominate the dynamics. This buffer shrinks
as these two stable states appear to move towards each other. This latter process is governed
by secondary two-component invasion waves that we analyze in detail in this paper.

Nagumo PDE. The LDE (1.1) can be seen as the nearest-neighbor discretization of the
Nagumo reaction-diffusion PDE [35]

(1.3) ut = uxx + g(u; a), x ∈ R,

on a spatial grid with size h = d−1/2. This PDE has been used as a highly simplified model
for the spread of genetic traits [1] and the propagation of electrical signals through nerve
fibers [3]. In higher space dimensions it also serves as a desingularization of the standard
mean-curvature flow that is often used to describe the evolution of interfaces [18].

Fife and McLeod [21] used phase plane analysis to show that (1.3) admits a front solution
for each a ∈ [0, 1]. Such solutions have the form

(1.4) u(x, t) = Φ(x− ct), Φ(−∞) = 0, Φ(+∞) = 1,

for some smooth waveprofile Φ and wavespeed c that has the same sign as a− 1
2 . These fronts

hence connect the two stable spatially homogeneous equilibria u(x, t) ≡ 0 and u(x, t) ≡ 1.
Exploiting the comparison principle, Fife and McLeod were able to show that these front

solutions have a surprisingly large basin of attraction. Indeed, any solution to (1.3) with an
initial condition u(x, 0) = u0(x) that has u0(x) ≈ 0 for x � −1 and u0(x) ≈ 1 for x � +1
will converge to a shifted version of this front as t→∞.

These front solutions can be used as building blocks to capture the behavior of a more
general class of solutions to (1.3). Consider, for example, the two-parameter family of functions

(1.5) uplt;α0,α1(x, t) = Φ(x− ct+ α0) + Φ(−x− ct+ α1)− 1,

with α1 ≥ α0. Each of these functions can be interpreted as a shifted version of the front
solution (1.4) that is reflected in a vertical line to form a plateau.

If c < 0, then any initial configuration that has u0(x) ≈ 0 for |x| � L and u0(x) ≈ 1 for
|x| ≤ L will converge to a member of the family (1.5) as t→∞. This provides a mechanism
by which compact regions where u ∼ 1 can spread out to fill the entire domain.

On the other hand, when c > 0, one can construct entire solutions that converge to an
element of (1.5) as t → −∞ and tend to zero as t → +∞. These solutions are stable under
small perturbations [44]. In particular, they can be viewed as a robust elimination process
whereby compact regions that have u ∼ 1 are annihilated by two incoming travelling fronts
that collide as t→∞.

Nagumo LDE. For many physical phenomena such as crystal growth in materials [6],
the formation of fractures in elastic bodies [39], and the motion of dislocations [10] and
domain walls [14] through crystals, the discreteness and topology of the underlying spatial
domain have a major impact on the dynamical behavior. It is hence important to develop
mathematical modelling tools that can incorporate such structures effectively. Indeed, by now
it is well known that discrete models can capture dynamical behavior that their continuous
counterparts cannot.
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The LDE (1.1) has served as a prototypical system in which such effects can be explored.
It arises as a highly simplified model for the propagation of action potentials through nerve
fibers that have regularly spaced gaps in their myelin coating [3]. Two-dimensional versions
have been used to describe phase transitions in Ising models [2], to analyze predator-prey
interactions [38], and to develop pattern recognition algorithms in image processing [12, 13].
Recently, an interest has also arisen in Nagumo equations posed on graphs [40], motivated by
the network structure present in many biological systems [36].

Many authors have studied the LDE (1.1), focusing primarily on the richness of the set
of equilibria [31] and the existence of travelling and standing front solutions [33, 45]. Such
solutions have the form (1.2), which leads naturally to the waveprofile equation

(1.6) − cΦ′(ξ) = d
[
Φ(ξ − 1)− 2Φ(ξ) + Φ(ξ + 1)

]
+ g
(
Φ(ξ); a

)
.

Since the behavior of every lattice point is governed by the same profile Φ, we refer to these
front solutions as monochromatic waves in this paper (in order to distinguish them from
the bichromatic waves we discuss in what follows). The seminal results by Mallet-Paret [33]
show that for each a ∈ [0, 1] and d > 0 there exists a unique c = cmc(a, d) for which such
monochromatic (mc) solutions exist.

Pinning. Upon fixing a ∈ (0, 1) \ {1
2}, Zinner [45] established that cmc(a, d) 6= 0 for d� 1,

while Keener [30] showed that cmc(a, d) = 0 for 0 < d � 1. Upon fixing d > 0, Mallet-Paret
established [33] that cmc(a, d) 6= 0 for a ≈ 1 and a ≈ 0. In addition, again for fixed d > 0,
the results in [24, 34] strongly suggest that there exists δ > 0 so that cmc(a, d) = 0 whenever∣∣a− 1

2

∣∣ ≤ δ; see Figure 1.
This last phenomenon is called pinning and distinguishes the LDE (1.1) from the PDE

(1.3). It is a direct consequence of the fact that we have broken the translational invariance of
space. Indeed, (1.6) becomes singular in the limit c→ 0, and the corresponding waveprofiles
indeed typically lose their smoothness. Many results suggest that this phenomenon is generic
for discrete systems [2, 7, 16, 17, 29]. However, by carefully tuning the nonlinearity g it is
possible to design systems for which this pinning is absent [15, 26]. Understanding the pinning
phenomenon is an important and challenging mathematical problem that also has practical
ramifications.

Periodicity. In this paper we study waves that connect spatially homogeneous stationary
solutions of (1.1) with spatially heterogeneous 2-periodic stationary solutions. It is well known
that many physical systems exhibit spatially periodic features [22, 23, 37]. Examples that also
feature spatial discreteness include the presence of twinning microstructures in shape memory
alloys [4] and the formation of domain-wall microstructures in dielectric crystals [41].

In many cases the underlying periodicity comes from the spatial system itself. For example,
in [19, 20, 25] the authors consider chains of alternating masses connected by identical springs
(and vice versa). The dynamical behavior of such systems can be easily modelled by LDEs
with periodic coefficients. In certain limiting cases the authors were able to construct so-called
nanopterons, which are multicomponent wave solutions that have low-amplitude oscillations
in their tails.

However, periodic patterns also arise naturally as solutions to spatially homogeneous dis-
crete systems. Indeed, we shall see in section 3 that the LDE (1.1) with d > 0 admits many
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Figure 1. Existence regions for monochromatic and bichromatic wave solutions to (1.1).

periodic equilibria. In addition, the results in [31] explore the periodicity and chaos present
in the set of equilibria to homogeneous LDEs with simplified nonlinearities.

It is also possible to introduce a natural periodicity into the structure of (1.1) by taking
d < 0. This can be seen by introducing new variables vj = (−1)juj , which restores the
applicability of the comparison principle. This choice essentially decomposes the lattice sites
Z into two groups, Zodd and Zeven, that each have their own characteristic behavior.

Such antidiffusion models have been used to describe phase transitions for grids of par-
ticles that have viscoelastic interactions [8, 9, 42]. In [5] this problem has been analyzed in
considerable detail. The authors show that the resulting two-component system admits co-
existing patterns that can be both monostable and bistable in nature. Similar results with
piecewise linear nonlinearities but more general couplings between neighbors can be found in
[43].

Bichromatic waves. In this paper we are interested in the parameter region where cmc(a, d) =
0. In a subset of this region it is possible to show that (1.1) has spatially heterogeneous stable
equilibria. We focus on the simplest case and consider so-called bichromatic (two-color) equi-
libria, which are spatially periodic with period two. As such, they are closely connected to
solutions of the Nagumo equation posed on a graph with two vertices. We set out to construct
bichromatic front-solutions to (1.1), which can be seen as waves that connect the spatially
homogeneous equilibrium u ≡ 0 with such a 2-periodic state. We emphasize that these dif-
fer from the traditional front-solutions (1.2) in the sense that the odd and even lattice sites
each have their own waveprofile, as illustrated in Figure 2. Consequently, the bichromatic
front-solutions are not monotone.

Our first main contribution is contained in section 3, where we give a detailed description
of the set of parameters (a, d) where such 2-periodic equilibria exist and where they are
stable. In contrast to the setting encountered in [5], the relevant bifurcation curves cannot
all be described explicitly. Besides a global result stating that the number of such equilibria
decreases as d is increased, we also obtain precise asymptotics that describe the boundaries
near the three corners (a, d) ∈ {(0, 0), (1/2, 1/24), (1, 0)} in Figure 1.

As in [5], these preparations allow the existence of bichromatic fronts to be established in
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Figure 2. A monochromatic travelling wave of (1.1) (left panel) connects two spatially homogeneous station-
ary solutions. A bichromatic travelling wave of (1.1) (right panel) connects a spatially homogeneous stationary
solution with a spatially heterogeneous one; see also M118922 02.mov [local/web 2.53MB].

a straightforward fashion. Indeed, one can apply the general theory developed by Chen, Guo,
and Wu in [11] for discrete periodic systems that admit a comparison principle. These results
imply that there exists a unique wavespeed cbc(a, d) for which such bichromatic (bc) fronts
exist. If cbc(a, d) 6= 0, the Fredholm theory developed in [28] together with the techniques
from [27, section 3] can be used to show that these travelling fronts depend smoothly on (a, d)
and are nonlinearly stable.

However, these general results cannot distinguish between the cases cbc(a, d) = 0 and
cbc(a, d) 6= 0 where we have standing, respectively, travelling fronts. This should be contrasted
to the situation for the PDE (1.3), where the sign of the wavespeed is given by the sign of
a simple integral [21]. Indeed, there is a large set of parameters (a, d) for which the discrete
bichromatic fronts fail to travel, even though the analogous integral does not vanish.

Our second main contribution is that we provide explicit criteria in section 4 that can
guarantee cbc = 0 or cbc > 0. Together these results cover most of the parameter region
where bichromatic fronts exist. In any case, they provide a two-component generalization of
the coercivity conditions introduced in [33], which ensure that cmc(a, d) 6= 0 for the boundary
regions a ≈ 1 and a ≈ 0.

Our arguments to guarantee cbc = 0 are closely related to the setup used by Keener [30]
to establish that monochromatic waves are pinned for 0 < d � 1. In particular, for small
values of d one can neglect the diffusion term in section 1.1 and use properties of the cubic to
show that the derivative of the waveprofile must change signs. This contradicts the fact that
waveprofiles must be strictly monotonic if they travel.

On the other hand, in section 4 we develop an intuitive geometric construction involving
reflections to describe a planar recurrence relation that standing bichromatic fronts must
satisfy. This allows us to rule out the presence of such fronts when a scalar inequality is
violated. This consequently implies the presence of travelling bichromatic fronts.

The parameter regimes where these two arguments apply both converge towards the corner
points (0, 0) and (1, 0). Near these corners we need the delicate asymptotics described above
to distinguish between the two cases.

Colliding fronts. One of the main reasons for our interest in these bichromatic fronts is
that they present mechanisms via which the stable homogeneous states u = 0 and u = 1
can spread throughout the domain, even though the primary invasion waves are blocked from
propagation. By using techniques similar to those in [44], we believe it should be possible

M118922_02.mov
http://epubs.siam.org/doi/suppl/10.1137/18M1189221/suppl_file/M118922_02.mov
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Figure 3. Colliding front of (1.1) consisting of a right-travelling bichromatic front connection between the
homogeneous equilibrium u ≡ 0 and a 2-periodic intermediate state that collides with a left-travelling bichromatic
connection between the 2-periodic state and the homogeneous equilibrium u ≡ 1. This is further illustrated in
M118922 04.mov [local/web 926KB].

to construct entire solutions consisting of a right-travelling bichromatic front connection be-
tween the homogeneous equilibrium u ≡ 0 and a 2-periodic intermediate state that collides
with a left-travelling bichromatic connection between a 2-periodic intermediate state and the
homogeneous equilibrium u ≡ 1; see Figure 3. The resulting state after the collision is then a
pinned monochromatic front that connects 0 with 1. We have been able to numerically verify
the existence of these solutions in the parameter regions predicted by the theory developed in
this paper; see M118922 04.mov [local/web 926KB].

2. Main results. Our interest here is in the LDE

(2.1) ẋj(t) = d
[
xj−1(t)− 2xj(t) + xj+1(t)

]
+ g
(
xj(t); a

)
posed on the one-dimensional lattice, i.e., j ∈ Z. The bistable nonlinearity is explicitly given
by

(2.2) g(u; a) = u(1− u)(u− a),

with a ∈ (0, 1). Our results concern so-called bichromatic (two-color) travelling wave solutions
to the LDE (2.1). Such solutions can be written in the form

(2.3) xj(t) =

 Φu(j − ct) if j is even,

Φv(j − ct) if j is odd,

for some wavespeed c ∈ R and R2-valued waveprofile

(2.4) Φ = (Φu,Φv) : R→ R2.

M118922_04.mov
http://epubs.siam.org/doi/suppl/10.1137/18M1189221/suppl_file/M118922_04.mov
M118922_04.mov
http://epubs.siam.org/doi/suppl/10.1137/18M1189221/suppl_file/M118922_04.mov
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Substituting this Ansatz into (2.1), we obtain the travelling wave system

(2.5)
−cΦ′u(ξ) = d

[
Φv(ξ − 1)− 2Φu(ξ) + Φv(ξ + 1)

]
+ g
(
Φu(ξ); a

)
,

−cΦ′v(ξ) = d
[
Φu(ξ − 1)− 2Φv(ξ) + Φu(ξ + 1)

]
+ g
(
Φv(ξ); a

)
.

Upon introducing the functions

(2.6) G(u, v; a, d) =

 G1(u, v; a, d)

G2(u, v; a, d)

 =

 2d(v − u) + g(u; a)

2d(u− v) + g(v; a)

 ,

we see that any stationary solution

(2.7) (Φu,Φv)(ξ) =
(
u, v
)

to (2.5) must satisfy the nonlinear algebraic equation

(2.8) G(u, v; a, d) = 0.

The full bifurcation diagram for this equation is described in section 3. For our purposes
here, however, it suffices to summarize a subset of the conclusions from this analysis, which
we do in our first result below. In particular, there exists a region Ωbc in the (a, d)-plane
for which the spatially homogeneous system (u̇, v̇) = G(u, v; a, d) has a stable equilibrium(
ubc(a, d), vbc(a, d)

)
that can be interpreted as a bichromatic equilibrium state for the LDE

(2.1).

Proposition 2.1 (see section 3). There exists a continuous curve dbc : [0, 1] → [0, 1
24 ] with

dbc(
1
2) = 1

24 and dbc(1− a) = dbc(a) so that for every 0 ≤ d < dbc and 0 < a < 1 the system
(2.8) has nine distinct equilibria (u, v) ∈ [0, 1]2. Upon writing

(2.9) Ωbc = {0 < d < dbc(a) and 0 < a < 1},

there exist C∞-smooth maps

(2.10) (ubc, vbc) : Ωbc → (0, 1)2

with ubc < a < vbc so that for every (a, d) ∈ Ωbc we have

(2.11) G
(
ubc(a, d), vbc(a, d); a, d

)
= 0

together with

(2.12) detD1,2G
(
ubc(a, d), vbc(a, d); a, d

)
> 0, TrD1,2G

(
ubc(a, d), vbc(a, d); a, d

)
< 0.

We note that the statements (2.11)–(2.12) are also valid upon replacing the bichromatic rest-
state (ubc, vbc) by the monochromatic equilibria (0, 0) and (1, 1). We will be interested in
waves that connect these monochromatic and bichromatic equilibria together. More precisely,
we set out to find solutions to (2.5) that satisfy either the “lower” boundary conditions

(2.13) lim
ξ→−∞

Φ(ξ) = (0, 0), lim
ξ→+∞

Φ(ξ) = (ubc, vbc),
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or the “upper” boundary conditions

(2.14) lim
ξ→−∞

Φ(ξ) = (ubc, vbc), lim
ξ→+∞

Φ(ξ) = (1, 1).

Examples of such solutions can be found in M118922 02.mov [local/web 2.53MB], respectively,
M118922 03.mov [local/web 723KB].

The result below summarizes several key facts concerning the existence and uniqueness of
such waves. It introduces subregions of Ωbc denoted by Tlow and Tup where the bichromatic
travelling waves (2.3) exist with nonzero speeds clow > 0 and cup < 0; see Figure 4. With the
exception of the inequalities clow ≥ 0 and cup ≤ 0, these properties follow directly from the
theory developed in [11, 28].

Theorem 2.2 (see section 4.1). There exist continuous maps

(2.15) clow : Ωbc → [0,∞), cup : Ωbc → (−∞, 0]

that satisfy the following properties.
(i) Upon introducing the open sets

(2.16)
Tlow = {(a, d) ∈ Ωbc : clow > 0},

Tup = {(a, d) ∈ Ωbc : cup < 0},

the functions clow and cup are C∞-smooth on Tlow, respectively, Tup.
(ii) There exist C∞-smooth functions

(2.17) Φlow : Tlow →W 1;∞(R;R2), Φup : Tup →W 1;∞(R;R2),

such that for any # ∈ {low,up} and any (a, d) ∈ T#, the pair

(2.18) (c,Φ) =
(
c#(a, d),Φ#(a, d)

)
satisfies (2.5) together with the boundary condition (2.13) if # = low or (2.14) if
# = up. In addition, we have the componentwise inequality Φ′# > (0, 0).

(iii) For any # ∈ {low, up} and any (a, d) ∈ Ωbc\T#, there exists a nondecreasing function
Φ : R→ R2 that satisfies (2.5) with c = 0 together with the boundary condition (2.13)
if # = low or (2.14) if # = up.

(iv) Pick # ∈ {low,up} and (a, d) ∈ Ωbc, and consider any c 6= 0 together with a function
Φ ∈ W 1,∞(R;R2) that satisfies (2.5) together with the boundary condition (2.13) if
# = low or (2.14) if # = up. Then we must have c = c#(a, d) and Φ = Φ#(a, d)(·−ϑ)
for some ϑ > 0. In particular, we have (a, d) ∈ T#.

(v) Pick # ∈ {low,up} and (a, d) ∈ Ωbc, and consider any nondecreasing function Φ :
R → R2 that satisfies (2.5) with c = 0 together with the boundary condition (2.13) if
# = low or (2.14) if # = up. Then we must have (a, d) ∈ Ωbc \ T#.

We numerically determined the locations of the sets Tlow and Tup in Figure 4. In particular,
we simulated (2.1) with an initial condition that consists of the stable 2-periodic pattern
multiplied by a hyperbolic tangent. By checking if this solution converges to a travelling or

M118922_02.mov
http://epubs.siam.org/doi/suppl/10.1137/18M1189221/suppl_file/M118922_02.mov
M118922_03.mov
http://epubs.siam.org/doi/suppl/10.1137/18M1189221/suppl_file/M118922_03.mov
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Figure 4. Numerical bounds for the parameter sets Ωbc, Tlow, and Tup, introduced in Theorem 2.2, in the
neighborhood of the cusp ( 1

2
, 1

24
).

stationary wave, one can decide whether (a, d) ∈ Tlow. This procedure hinges on the crucial
fact that the waves in item (ii) of Theorem 2.2 are nonlinearly stable under the dynamics of
(1.1); see [11, Thm. 4].

The main contribution of the present paper is that we provide an explicit and verifiable
inequality to rigorously confirm that the sets Tlow and Tup touch the boundary curve d =
dbc(a). In order to formulate this inequality, we first extend the bichromatic equilibria (2.10)
to this boundary by writing

(2.19) (ubc, vbc)
(
a, dbc(a)

)
= lim

d↑dbc(a)
(ubc, vbc)(a, d).

Inspection of (2.8) readily shows that this pair (2.19) is a solution to the fixed-point problem

(2.20) (u, v) =
(
ua(v), va(u)

)
,

in which we have introduced the functions

(2.21) ua(v) = v − g(v; a)

2dbc(a)
, va(u) = u− g(u; a)

2dbc(a)
.

The two critical points of these cubic functions are given by

(2.22) γ±(a) =
1

3

[
a+ 1±

√
a2 − a+ 1− 6dbc(a)

]
.

Our approach relies on a geometric construction that rules out the existence of solutions to
the recurrence relation that standing waves must satisfy. Indeed, in section 4.2 we will recast
(2.5) with c = 0 as a discrete map that involves horizontal and vertical reflections through
the curves u = ua(v) and v = va(u). Due to the monotonicity of the waveprofiles, several key
features of the stable manifold for the pair (2.19) can therefore be captured by reflecting the
lines u = u

(
a, dbc(a)

)
and v = v

(
a, dbc(a)

)
through these curves.
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The resulting reflected functions can be written as

(2.23) ua,r(v) = 2ua(v)− ubc

(
a, dbc(a)

)
, va,r(u) = 2va(u)− vbc

(
a, dbc(a)

)
.

For any a ∈ (0, 1), we now define the set of intersections

(2.24) Ia = {(u, v) : u = ua(v) and v = va,r(u)},

which are all mapped onto the horizontal line v = v
(
a, dbc(a)

)
. Assuming that this set is

nonempty, we pick the specific representative
(2.25)
u∗(a) = max{u : there exists (u, v) ∈ Ia with 0 ≤ u ≤ ubc

(
a, dbc(a)

)
and 0 ≤ v ≤ γ−(a)},

which allows us to define the scalar function

(2.26) Γ(a) = ua,r
(
γ+(a)

)
− u∗(a).

The full geometric interpretation of this definition will be clarified and illustrated in section
4.2. For now, we simply remark that it measures the difference between two critical points
associated to the unstable manifold of (0, 0) and the stable manifold of the pair (2.19). When
Γ(a) > 0 holds, the critical points are ordered in such a way that connections between these
two manifolds are blocked. This forces the inequality c 6= 0, implying that Tlow indeed touches
the boundary curve d = dbc(a).

We wish to emphasize that there is an essential difference between computing Γ(a) and
simulating the full LDE (2.1) to check whether c 6= 0. Indeed, the first problem only requires
knowledge of the curves (2.21)–(2.23) and is hence two-dimensional. On the other hand, the
second problem is infinite dimensional and therefore necessarily involves truncations.

We are now ready to formulate our final result, which provides analytical bounds for the
parameter regions Tlow and Tup where the bichromatic waves actually travel (i.e., where clow >
0, respectively, cup < 0). Both regions contain a neighborhood of the cusp (a, d) = (1

2 ,
1
24). In

addition, the corners (0, 0) and (1, 0) are accumulation points for the sets Tup, respectively,
Tlow.

Theorem 2.3 (see section 4.3). The sets Tlow and Tup satisfy the following properties.
(i) For each (a, d) ∈ Tup we have d > 1

8a
2, while for each (a, d) ∈ Tlow we have d >

1
8(1− a)2.

(ii) If (a, d) ∈ Tlow, then also (a′, d) ∈ Tlow for all (a′, d) ∈ Ωbc that have a′ ≥ a. On the
other hand, if (a, d) ∈ Tup, then also (a′, d) ∈ Tup for all (a′, d) ∈ Ωbc that have a′ ≤ a.

(iii) There exists ε > 0 so that we have the inclusions

(2.27) (a, d) ∈ Tlow ∩ Tup

for all (a, d) ∈ Ωbc that have

(2.28) 0 <

∣∣∣∣a− 1

2

∣∣∣∣+

∣∣∣∣d− 1

24

∣∣∣∣ < ε.
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(iv) The expression (2.26) is well defined for all 0 < a < 1. If Γ(a∗) > 0 for some
0 < a∗ < 1, then there exists ε > 0 so that (a, d) ∈ Tlow for all (a, d) ∈ Ωbc that have

(2.29) 0 < |a− a∗|+ |d− dbc(a∗)| < ε.

(v) The inequality Γ(a) > 0 holds whenever 1− a > 0 is sufficiently small. In particular,
we have (0, 0) ∈ T up and (1, 0) ∈ T low.

Using numerics, we have verified that Γ(a) > 0 holds for a ∈
[
.498, .999]; see section

4.3. Together with (ii) and (v) above, this strongly suggests that Tlow is a connected set that
extends towards the right boundary of Ωbc. By symmetry, this is equivalent to the statement
that Tup is a connected set that extends towards the left boundary of Ωbc.

3. Bichromatic stationary solutions. In this section we uncover the structure of the
solution set to G(u, v; a, d) = 0 as a function of the parameters (a, d). Our first result shows
that for d � 1 this equation only has the monochromatic roots (0, 0), (a, a), and (1, 1). The
threshold d+(a) between this region and the region with five distinct roots can be explicitly
computed. However, we only have qualitative and asymptotic results for the boundary d−(a)
where the root-count increases to the maximal value of nine. In Figure 5 we compare these
asymptotics to numerically computed values for d−(a).

We remark here that the monotonicity of the root-count with respect to d does not hold
for general bistable nonlinearities g. Although the behavior for large and small values of d is
universal, additional bifurcation curves can (and do) occur between d− and d+. In light of
this, it is not surprising that several of our results require us to use the precise formula for the
cubic. Of course, the explicit expansions discussed above for the curve d−(a) also depend on
the specific form of g(u; a), but these can readily be recomputed if the nonlinearity is changed.

Proposition 3.1 (see section 3.3). There exist two continuous functions

(3.1) d± : [0, 1]→ [0,∞)

that satisfy the following properties.
(i) For any 0 < a < 1 we have the explicit expression

(3.2) d+(a) =
g′(a; a)

4
,

together with the identities

(3.3) d−(a) = d−(1− a), d+(a) = d+(1− a)

and the inequality d−(a) < d+(a). In addition, we have

(3.4) d−(0) = d+(0) = d−(1) = d+(1) = 0

together with d−(1
2) = 1

24 .
(ii) We have d− ∈ C∞

(
[0, 1

2)
)
∩C∞

(
(1

2 , 1]
)
. In addition, d− is strictly increasing on [0, 1

2 ]
and strictly decreasing on [1

2 , 1].
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Figure 5. Comparison of the asymptotics for d− described in Proposition 3.1(v) with the numerically
computed border of the set Ω−.

(iii) Pick any a ∈ (0, 1). The equation G(u, v; a, d) = 0 has nine distinct roots for 0 ≤
d < d−(a), five distinct roots for d− < d < d+(a), and three distinct real roots for
d ≥ d+(a).

(iv) Pick any a ∈ (0, 1). The equation G(u, v; a, d) = 0 has seven distinct roots for d =
d−(a) if a 6= 1

2 and five if a = 1
2 .

(v) We have the expansion d−(a) = 1
8a

2 + 1
32a

4 + O(a5) for a ↓ 0. In addition, writing
a− : [0, 1

24 ]→ [0, 1
2 ] for the inverse function of d− on [0, 1

2 ], we have the expansion

(3.5) a−(d) =
1

2
−

√
−1152

(
d− 1

24

)3

+O

((
d− 1

24

)2)
as d ↑ 1

24 .

In order to break the symmetry caused by the swap u ↔ v, we set out to describe the
roots of G(u, v; a, d) = 0 that have v > u. To this end, we introduce two regions,

(3.6)
Ω− = {(a, d) : 0 < a < 1 and 0 < d < d−(a)},

Ω+ = {(a, d) : 0 < a < 1 and d−(a) < d < d+(a)},

that are studied separately in the two results below. In Ω− there are three such bichromatic
equilibria with v > u. These equilibria can be ordered, and the middle one is the only stable
one. Two (or three) of these equilibria collide at d = d−(a) in a saddle node (or pitchfork)
bifurcation, leaving a single unstable bichromatic equilibrium in Ω+. This equilibrium in
turn collides with its swapped counterpart and the monochromatic equilibrium (a, a) on the
boundary d+(a). These processes are illustrated in Figure 6. In particular, we see that Ω−
coincides with the set Ωbc introduced in section 2; cf. Figures 4 and 5.

Proposition 3.2 (see section 3.3). There exist continuous functions

(3.7) (uA, vA) : Ω− → [0, 1]2, (uB, vB) : Ω− → [0, 1]2, (uC , vC) : Ω− → [0, 1]2

that satisfy the following properties.
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A

B C

D

d+(0.45)
d-(0.45)

d-(0.45)

d-(0.45)

d-(0.45)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u

v

A

B C

D

d+(0.5)

d-(0.5)

d-(0.5)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8
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u

v

Figure 6. Illustration of the functions (uA, vA), (uB , vB), (uC , vC) from Proposition 3.2 and the function
(uD, vD) from Proposition 3.3 for a = .45 (left panel) and a = .5 (right panel). The bifurcations occurring at
d+(a) and d−(a) are indicated by squares and circles; see Proposition 3.1.

(i) Pick any (a, d) ∈ Ω−. Then we have

(3.8) G(u#(a, d), v#(a, d); a, d) = 0

for all # ∈ {A,B,C}. If also (a, d) ∈ Ω−, then the matrix

(3.9) D1,2G(u#(a, d), v#(a, d); a, d)

has two strictly negative eigenvalues if # = B or one strictly positive and one strictly
negative eigenvalue if # ∈ {A,C}.

(ii) For any 0 ≤ a ≤ 1 we have the identities

(3.10) (uA, vA)(a, 0) = (0, a), (uB, vB)(a, 0) = (0, 1), (uC , vC)(a, 0) = (a, 1).

(iii) For any (a, d) ∈ Ω− we have the ordering

(3.11) 0 < uA(a, d) < uB(a, d) < uC(a, d) < a < vA(a, d) < vB(a, d) < vC(a, d).

(iv) For any a ∈ [0, 1
2 ] we have

(3.12) (uB, vB)
(
a, d−(a)

)
= (uC , vC)

(
a, d−(a)

)
,

while for any a ∈ [1
2 , 1] we have

(3.13) (uA, vA)
(
a, d−(a)

)
= (uB, vB)

(
a, d−(a)

)
.

Proposition 3.3 (see section 3.3). There exist continuous functions

(3.14) (uD, vD) : Ω+ → [0, 1]2

that satisfy the following properties.
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(i) Pick any (a, d) ∈ Ω+. Then we have

(3.15) G(uD(a, d), vD(a, d); a, d) = 0.

If also (a, d) ∈ Ω+, then the matrix

(3.16) D1,2G(uD(a, d), vD(a, d); a, d)

has one strictly positive eigenvalue and one strictly negative eigenvalue.
(ii) For any 0 ≤ a ≤ 1 we have the identity

(3.17) (uD, vD)
(
a, d+(a)

)
= (a, a).

(iii) For any (a, d) ∈ Ω+ we have the ordering

(3.18) 0 < uD(a, d) < a < vD(a, d) < 1.

(iv) For any a ∈ [0, 1
2 ] we have the identity

(3.19) (uD, vD)
(
a, d−(a)

)
= (uA, vA)

(
a, d−(a)

)
,

while for any a ∈ [1
2 , 1] we have

(3.20) (uD, vD)
(
a, d−(a)

)
= (uC , vC)

(
a, d−(a)

)
.

Corollary 3.4. For any (a, d) ∈ Ω−, we have the identities

(3.21)

(
uA, vA

)
(a, d) =

(
1− vC , 1− uC

)
(1− a, d),(

uB, vB
)
(a, d) =

(
1− vB, 1− uB

)
(1− a, d),(

uC , vC
)
(a, d) =

(
1− vA, 1− uA

)
(1− a, d).

In addition, for any (a, d) ∈ Ω+ we have the identity

(3.22)
(
uD, vD

)
(a, d) =

(
1− vD, 1− uD

)
(1− a, d).

Proof. The symmetry g(1− u, 1− a) = −g(u, a) implies that

(3.23) G(1− u, 1− v; 1− a, d) = −G(u, v; a, d).

In addition, we have G(u, v; a, d) = 0 if and only if G(v, u; a, d) = 0. The statements hence
follow from the ordering (3.11).

Our final result concerns the special case a = 1
2 , in which case it is possible to be more

explicit. In particular, the bichromatic roots (uB, vB) and (uD, vD) lie on the line u + v = 1
and collide precisely when g′(u; 1

2) = g′(v; 1
2) = 0.
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Corollary 3.5. For any 0 ≤ d ≤ 1
24 we have

(3.24) uB

(
1

2
, d

)
= 1− vB

(
1

2
, d

)
,

while for any 1
24 ≤ d ≤

1
16 = d+(1/2) we have

(3.25) uD

(
1

2
, d

)
= 1− vD

(
1

2
, d

)
.

In addition, we have the identities

(3.26)
uA(1

2 ,
1
24) = uB(1

2 ,
1
24) = uC(1

2 ,
1
24) = uD(1

2 ,
1
24) = 1

2 −
1
6

√
3,

vA(1
2 ,

1
24) = vB(1

2 ,
1
24) = vC(1

2 ,
1
24) = uD(1

2 ,
1
24) = 1

2 + 1
6

√
3.

3.1. Geometry of the cubic. Our strategy to establish Propositions 3.1–3.3 hinges upon
geometric properties of the cubic g(u; a). As preparation, we introduce the notation

(3.27) uinfl(a) =
1

3
(a+ 1)

together with

(3.28) umin(a) = uinfl(a)− 1

3

√
1− a(1− a), umax(a) = uinfl(a) +

1

3

√
1− a(1− a)

and note that

(3.29) g′
(
umin(a); a

)
= 0, g′′

(
uinfl(a); a

)
= 0, g′

(
umax(a); a

)
= 0.

In addition, we note that g′′(u; a) > 0 for u < uinfl(a) and g′′(u; a) < 0 for u > uinfl(a). When
0 < a < 1

2 , we have the ordering

(3.30) 0 < umin(a) < a < uinfl(a) < umax(a) < 1.

Recalling the definition (2.6), one readily sees that

(3.31) G1(u, v; a, d) +G2(u, v; a, d) = g(u; a) + g(v; a).

In order to exploit the fact that this identity does not depend on d, we first use basic properties
of the cubic to parametrize solutions to g(u; a)+g(v; a) = 0. Restricting ourselves to a ∈ [0, 1

2 ],
it is possible to construct two solution curves v±(u) that are defined for u ∈ [0, a]; see Figure
7.

Lemma 3.6. Fix 0 < a < 1
2 . Then there are two constants

(3.32) a < v−;max < v+;min < 1

together with two C∞-smooth functions

(3.33) v− : [0, a]→ [a, v−;max], v+ : [0, a]→ [v+;min, 1]

that satisfy the following properties.
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0

1

0

1

Figure 7. The functions v± defined in Lemmas 3.6–3.7 for a = 0.45 (left) and a = 0.5 (right). In the latter
case the derivatives have a discontinuity at umin( 1

2
).

(i) We have g(u; a) = −g(v−(u); a) = −g(v+(u); a) for all 0 ≤ u ≤ a.
(ii) If g(u; a) = −g(v; a) for some pair u ∈ (0, a) and v ∈ [0, 1], then v = v−(u) or

v = v+(u).
(iii) We have v−(0) = v−(a) = a and v+(0) = v+(a) = 1.
(iv) We have the identities

(3.34) v′±(u) = −[g′(v±(u); a)]−1g′(u; a)

for all 0 ≤ u ≤ a.
(v) We have v′−(u) > −1 for all 0 ≤ u < a, together with v′−(a) = −1.

Proof. Since 0 < a < 1
2 , we have g(umax(a); a) > −g(umin(a); a), which implies that

v±(u) 6= umax(a). Properties (i)–(iv) hence follow immediately from the implicit function
theorem.

To obtain (v), we take umin(a) < u < a and recall a < v−(u) < umax. If v−(u) ≤ uinfl(a),
then clearly g′(v−(u); a) > g′(u; a) > 0, as desired. In order to handle the remaining case
v−(u) > uinfl(a), we introduce the reflection urefl = 2uinfl(a) − u. Exploiting the point sym-
metry of the graph of g(·; a) around its inflection point

(
uinfl(a), g(uinfl(a); a)

)
, the inequality

g(uinfl(a); a) > 0 implies that

(3.35) uinfl(a) < v−(u) < urefl.

Since g′′(ũ; a) < 0 for ũ > uinfl(a), we obtain

(3.36) g′
(
v−(u); a

)
> g′(urefl; a) = g′(u; a) > 0,

which implies v′−(u) > −1.

Lemma 3.7. Fix a = 1
2 . Then there are two functions

(3.37) v− : [0, a]→ [a, umax(a)], v+ : [0, a]→ [umax(a), 1]

that satisfy items (i)–(iii) from Lemma 3.6 together with the following additional properties.
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(i) We have

(3.38) v−
(
umin(a)

)
= v+

(
umin(a)

)
= umax(a).

(ii) For any u ∈ [0, a] \ {umin(a)} we have the identities

(3.39) v′±(u) = −[g′(v±(u); a)]−1g′(u; a).

(iii) We have v−(u) = 1 − u for all umin(a) ≤ u ≤ 1, while v+(u) = 1 − u for all 0 ≤ u ≤
umin(a).

(iv) We have the limits

(3.40) lim
u↑umin(a)

v′−(u) = lim
u↓umin(a)

v′+(u) = 1,

together with

(3.41) lim
u↑umin(a)

v′′−(u) = lim
u↓umin(a)

v′′+(u) = −4

3

√
3.

Proof. Items (i) and (iii) follow directly from the symmetry of g(·; a), while (ii) follows
from the implicit function theorem. To obtain (iv), we first compute

(3.42) g(umin+u; a) = g(umin; a)+
1

2

√
3u2−u3, g(umax+v; a) = −g(umin; a)−1

2

√
3v2−v3.

In particular, the identity

(3.43) g(umin + u; a) = −g(umax + v; a)

can be rewritten as

(3.44) v2 = u2 − 2

3

√
3
[
u3 + v3

]
,

which can be interpreted as a fixed point problem for v2 upon assuming that v and u have
the same sign. For small |u| this problem has a solution that can be expanded as

(3.45) v2 = u2 − 4

3

√
3u3 +O(u4),

which yields

(3.46) v = u− 2

3

√
3u2 +O(u3).

The desired limits follow directly from this expansion.
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3.2. Tangencies. Let us now fix a ∈ [0, 1
2 ]. In order to find solutions to G(u, v; a, d) = 0

with d > 0, we introduce the function

(3.47) vd(u) = u− g(u; a)

2d

and note that the results above show that it suffices to find u ∈ [0, a] for which one of the
equations

(3.48) v±(u) = vd(u)

holds.
Our goal here is to show that nontransverse intersections of this type can only occur at

local minima of v± − vd. Together with the strict monotonicity

(3.49) ∂dvd(u) < 0

that holds for u ∈ (0, a), this will allow us to obtain global results in section 3.3.
For the moment, we note that

(3.50) v−(a) = vd(a) = a

for every d > 0. In addition, we may compute

(3.51) v′d(a) = 1− g′(a; a)

2d
,

together with

(3.52) v′−(a) = −[g′(a; a)]−1g′(a; a) = −1.

In particular, when g′(a) = 4d, the intersection (3.50) is tangential. In what follows we show
that in fact v− > vd on [0, a) for this critical value of d.

For intersections with u ∈ (0, a) such explicit computations are significantly harder to carry
out, which is why we pursue a more indirect approach here. As preparation, we compute

(3.53) v′′±(u) = − g′′(u)

g′
(
v±(u)

) − g′(u)2

g′
(
v±(u)

)3 g′′(v±(u)
)

together with

(3.54) v′′d(u) = −g
′′(u)

2d
.

In addition, for any κ ≤ g′(uinfl(a); a) = 1
3(a2 − a+ 1), we introduce the expressions

(3.55)
ul(κ) = uinfl(a)−

√
1
3(g′(uinfl(a); a)− κ),

ur(κ) = uinfl(a) +
√

1
3(g′(uinfl(a); a)− κ).

It is easy to verify that ul(κ) and ur(κ) are the two solutions to the quadratic equation
g′(u; a) = κ.
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Lemma 3.8. Fix 0 < a ≤ 1
2 and d > 0 and suppose that

(3.56) v′#(u) = v′d(u) = β

for some # ∈ {−,+} and 0 ≤ u ≤ a, with u 6= umin(a) in case a = 1
2 . Then the following

statements hold.
(i) We have

(3.57) 2d[v′′#(u)− v′′d(u)] =
1

1− β
g′′(u; a) +

β3

1− β
g′′
(
v#(u); a

)
.

(ii) If # = −, then we have β ∈ [−1, 0)∪(1,∞). On the other hand, the inclusion β ∈ (0, 1)
holds if # = +.

(iii) We have u = ul
(
2d(1− β)

)
.

(iv) Suppose that # = −. Then the identity

(3.58) v#(u) = ul
(
2d(1− β−1)

)
holds if v−(u) ≤ uinfl(a). On the other hand, we have

(3.59) v#(u) = ur
(
2d(1− β−1)

)
if v−(u) > uinfl(a).

(v) The identity

(3.60) v#(u) = ur
(
2d(1− β−1)

)
holds if # = +.

Proof. We first consider the case 0 < a < 1
2 . For any 0 ≤ ũ ≤ a, one sees that v′d(ũ) = 1

holds if and only if g′(ũ; a) = v′±(ũ) = 0, which shows that β /∈ {0, 1}.
For any 0 ≤ ũ ≤ a we have g′(v+(ũ); a) < 0, and hence

(3.61) sign
[
v′+(ũ)

]
= sign

[
g′(ũ; a)

]
.

If # = +, this shows that g′(u; a) > 0 and v′d(u) > 0; hence β ∈ (0, 1).
On the other hand, we have g′(v−(ũ); a) > 0 for all 0 ≤ ũ ≤ a. If g′(u; a) < 0, then we

have v′d(u) = β > 1, while if g′(u; a) > 0 and # = −, we may use item (v) from Lemma 3.6 to
conclude

(3.62) − 1 ≤ v′−(u) = β < 0,

which establishes (ii).
In order to obtain (iii), it suffices to recall the bound u ≤ a ≤ uinfl(a) and note that the

identity v′∗(u) = β implies that

(3.63) g′(u) = 2d(1− β).
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On the other hand, the identity v′±(u) = β implies

(3.64) g′
(
v±(u)

)
= −2dβ−1(1− β).

Items (iv) and (v) now follow directly, remembering that v+(u) ≥ umax(a) ≥ uinfl(a).
Exploiting (3.53), we may now compute

(3.65)
v′′±(u) = β

2d(1−β)g
′′(u; a) + (2d)2(1−β)2β3

(2d)3(1−β)3 g′′(v±(u); a)

= β
2d(1−β)g

′′(u; a) + β3

2d(1−β)g
′′(v±(u); a).

The desired identity in (i) hence follows directly from (3.54). In order to conclude the proof,
it suffices to note that the arguments above remain valid when a = 1

2 . Indeed, the critical
cases g′(u; a) = 0 and g′(v±; a) = 0 are excluded by the requirement that u 6= umin(a).

Lemma 3.9. Fix 0 < a ≤ 1
2 , and suppose that

(3.66) v′−(u) = v′d(u)

for some umin(a) ≤ u < a and d > 0, with u 6= umin(a) if a = 1
2 . Then we have

(3.67) v′′−(u) > v′′d(u).

Proof. Exploiting (v) of Lemma 3.6 and (ii) of Lemma 3.8, we have v′−(u) ∈ (−1, 0). In
addition, the inequalities v−(u) > u and g′′′ < 0 imply that g′′(v−(u); a) ≤ g′′(u; a). Writing
β = v′−(u), we may hence estimate

(3.68)

2d[v′′−(u)− v′′d(u)] ≥ 1
1−β g

′′(u; a) + β3

1−β g
′′(u; a

)
= β3+1

1−β g
′′(u; a)

> 0,

in which we used g′′(u; a) > 0.

Intersections with v′±(u) > 0 are more delicate to analyze. Items (i), (iii), and (iv) of
Lemma 3.8 suggest that it is worthwhile to consider the two functions

(3.69)
hl(β) = 1

2d(1−β)

[
g′′
(
ul
(
2d(1− β)

)
; a
)

+ β3g′′
(
ul
(
2d(1− β−1)

)
; a
)]
,

hr(β) = 1
2d(1−β)

[
g′′
(
ul
(
2d(1− β)

)
; a
)

+ β3g′′
(
ur
(
2d(1− β−1)

)
; a
)]
.

Lemma 3.10. Pick 0 < a ≤ 1
2 and 0 < d ≤ g′(a;a)

4 . Then for any β > 1 the inequality

(3.70) hl(β) < 0

holds, while for any β ∈ (0,∞) \ {1} we have

(3.71) hr(β) > 0.
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Proof. Observe first that for β > 0 we have

(3.72) max{2d(1− β), 2d(1− β−1)} ≤ 2d ≤ g′(a; a)

2
≤ g′(uinfl(a); a)

2
,

which implies that hl(β) and hr(β) are well defined.
A little algebra yields

(3.73)

hl(β) =
√

3
d(1−β)

[√
g′(uinfl(a); a) + 2d(β − 1) + β3

√
g′(uinfl(a); a) + 2dβ−1(1− β)

]
,

hr(β) =
√

3
d(1−β)

[√
g′(uinfl(a); a) + 2d(β − 1)− β3

√
g′(uinfl(a); a) + 2dβ−1(1− β)

]
.

It is clear that hl(β) < 0 for β > 1. Upon writing

(3.74)
∆(β) = g′(uinfl(a); a) + 2d(β − 1)−

(
β6g′(uinfl(a); a) + 2dβ5(1− β)

)
= (1− β6)

(
g′(uinfl(a); a)− 2d

)
+ 2dβ(1− β4),

it is easy to verify that ∆(β) < 0 for β > 1 and ∆(β) > 0 for 0 < β < 1. This yields the final
inequality (3.71).

Lemma 3.11. Pick 0 < a ≤ 1
2 and 0 < d ≤ g′(a;a)

4 . Then we have

(3.75) v′−(0) < v′d(0).

In addition, suppose that

(3.76) v′−(u) = v′∗(u)

for some 0 ≤ u ≤ a, with u 6= umin(a) if a = 1
2 . Then one of the following two statements

must hold.
(a) We have the inequality

(3.77) v′′−(u) > v′′d(u).

(b) We have the identities

(3.78) u = a, d =
g′(a)

4
, v′′−(u) = v′′d(u).

Proof. An easy computation yields

(3.79) v′d(0) = 1− g′(0; a)

2d
≥ 1− 2g′(0; a)

g′(a; a)
> −g

′(0; a)

g′(a; a)
= v′−(0).

We introduce the critical value

(3.80) uc = sup{0 ≤ u ≤ a : v−(ũ) ≤ uinfl(a) for all 0 ≤ ũ ≤ u}

and remark that uc = 0 when a = 1
2 . This allows us to define the value

(3.81) uI = sup
{

0 ≤ u ≤ min{uc, umin(a)} : v′d(u) > v′−(u)
}
,
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which again satisfies uI = 0 when a = 1
2 .

We claim that also v′d(uI) > v′−(uI). Indeed, assuming this is false, we can define β =
v′d(uI) = v′−(uI) ≥ 0. Item (ii) of Lemma 3.8 then implies β > 1. Since hl(β) < 0, we must
have

(3.82) v′′−(uI) < v′′d(uI),

which yields a contradiction.
In particular, if (3.76) holds, then we must have u ≥ min{umin(a), uc}. If umin(a) ≤ u < a,

Lemma 3.9 shows that (a) must hold. On the other hand, if uc ≤ u < umin(a), then we can
define β = v′d(u) = v′−(u) ≥ 0 and conclude as above that β > 1. In addition, we have
v−(u) ≥ uinfl(a), which allows us to use hr(β) > 0 and item (iv) of Lemma 3.8 to show that
(a) must hold. In the final case u = a, the remarks at the start of this section together with
a direct computation of v′′d(a) and v′′−(a) imply the identities in (b).

In the remainder of this section we collect several consequences of these computations. In
each case, we either rule out nontransverse intersections of v± with vd or show that they must
occur at local minima of v± − vd.

Corollary 3.12. Fix 0 < a ≤ 1
2 together with 0 < d ≤ g′(a;a)

4 , and suppose that

(3.83) v′+(u) = v′d(u)

for some 0 ≤ u ≤ a, with u 6= umin(a) if a = 1
2 . Then we have

(3.84) v′′+(u) > v′′d(u).

Proof. Using the fact that hr(β) > 0 for β ∈ (0, 1), this follows directly from items (i),
(ii), and (v) of Lemma 3.8.

Corollary 3.13. Fix 0 < a ≤ 1
2 together with 0 < d < g′(a;a)

4 , and suppose that

(3.85) v′−(u) = v′∗(u)

for some 0 ≤ u ≤ a, with u 6= umin(a) if a = 1
2 . Then we have

(3.86) v′′−(u) > v′′d(u).

In addition, we have

(3.87) v′−(a) > v′d(a).

Proof. The first inequality follows directly from the fact that option (b) in Lemma 3.11
cannot hold because of the restriction on d. The final inequality can be verified directly by
noting that

(3.88) v′d(a) = 1− g′(a; a)

2d
< 1− 2g′(a; a)

g′(a; a)
= −1 = v′−(a).
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Corollary 3.14. Fix 0 < a ≤ 1
2 together with d = g′(a;a)

4 . Then we have

(3.89) v′−(u) < v′d(u)

for all 0 ≤ u < a, with the exception of u = umin(a) in the special case a = 1
2 .

Proof. It is easy to verify that v′−(a) = v′d(a) and v′′−(a) = v′′d(a). We also compute

(3.90) v′′′d (a) = −2
g′′′(a; a)

g′(a; a)
=

12

a(1− a)
> 0

together with

(3.91)
v′′′−(u) = − g′′′(u;a)

g′(v−(u);a) − 3g
′′(u;a)g′(u;a)
g′(v−(u);a)3 g

′′(v−(u); a)

−3 g′(u;a)3

g′(v−(u);a)5 g
′′(v−(u); a)2 + g′(u;a)3

g′(v−(u);a)4 g
′′′(v−(u); a),

which gives

(3.92) v′′′−(a) = −6
g′′(a; a)2

g′(a; a)2
≤ 0.

In particular, we see that

(3.93) v′−(a− ε) < v′d(a− ε)

for all sufficiently small ε > 0. If a 6= 1
2 , the conclusion now follows from (3.75) together with

(a) from Lemma 3.11.
For a = 1

2 , one also needs to use the identities

(3.94) v′d
(
umin(a)

)
= 1, v′′d

(
umin(a)

)
= −12

√
3

together with the limits in item (iv) of Lemma 3.7 to conclude that

(3.95) v′−(umin(a)− ε) < v′d(umin(a)− ε)

for all sufficiently small ε > 0. The arguments above allow us to extend this to ε ∈ (0, umin(a)].
In addition, we have v′−(ũ) = −1 < v′d(ũ) for umin(a) < ũ < a.

Corollary 3.15. Pick 0 < a ≤ 1
2 and 0 < d ≤ g′(a;a)

4 . Then we have

(3.96) v′−(u) < v′d(u)

for all 0 ≤ u < umin(a).

Proof. Writing dc = g′(a;a)
4 , we may use Corollary 3.14 to compute

(3.97) v′d(u) = 1− 1

2d
g′(u; a) ≥ 1− 2

g′(a; a)
g′(u; a) = v′dc(u) > v′−(u)

for u ∈ [0, umin(a)).
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0

1

0

1

Figure 8. Fix 0 < a < 1
2

. The branches uB and uC described in Lemma 3.18 arise as the two intersections
of v+ and vd on [0, a], which collide as d ↑ d−(a) (left). On the other hand, the branch uAD described in Lemma
3.17 arises as the unique intersection of the curves v− and vd on [0, a), which converges to a as d ↑ d+(a) (right).

Corollary 3.16. Fix a = 1
2 and 0 < d ≤ g′(a;a)

4 . Then we have

(3.98) v′+(u) > v′d(u)

for all umin(a) < u ≤ a.

Proof. Item (iv) of Lemma 3.7 allows us to compute

(3.99) v′d
(
umin(a)

)
= 1 = lim

u↓umin(a)
v′+(u)

together with

(3.100) v′′d
(
umin(a)

)
< lim

u↓umin(a)
v′′+(u),

which allows us to conclude that

(3.101) v′+(umin(a) + ε) > v′d(umin(a) + ε)

for all sufficiently small ε > 0. Corollary 3.12 allows us to extend this conclusion to the desired
interval ε ∈

(
0, a− umin(a)

)
.

3.3. Structure. We are now ready to analyze the global structure of the solution set to
G(u, v; a, d) = 0. Our first two results fix a ∈ (0, 1

2 ] and track the intersections of the curves
v± that were introduced in section 3.1 with the curve vd introduced in section 3.2. These
intersections disappear as the parameter d is increased; see Figure 8.

Lemma 3.17. Fix 0 < a ≤ 1
2 . Then there exists a continuous strictly increasing function

(3.102) uAD :

[
0,
g′(a; a)

4

]
→ [0, a]

that satisfies the following properties.

(i) We have uAD(0) = 0 and uAD(g
′(a;a)

4 ) = a.
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(ii) The identity v−
(
uAD(d)

)
= vd

(
uAD(d)

)
holds for any 0 < d ≤ g′(a;a)

4 .

(iii) Suppose that v−(u) = vd(u) for some 0 < d ≤ g′(a;a)
4 and 0 ≤ u ≤ a. Then in fact

u ∈ {uAD(d), a}.
(iv) Consider any 0 < d < g′(a;a)

4 for which (a, d) 6= (1
2 ,

1
24). Then we have the inequality

(3.103) v′−
(
uAD(d)

)
< v′d

(
uAD(d)

)
.

(v) For any d > g′(a;a)
4 and 0 ≤ u < a we have v−(u) > vd(u).

Proof. For convenience, we introduce the function hd(u) = v−(u) − vd(u) and set out to
count the zeros of hd on the interval [0, a]. We first note that hd(a) = 0 for all d > 0. When

d = g′(a;a)
4 , this is in fact the only zero, which can be seen by using (3.89) and explicitly

verifying the inequality

(3.104) v−
(
umin(a)

)
> vd

(
umin(a)

)
for (a, d) = (1

2 ,
g′( 1

2
; 1
2

)

4 ).

On the other hand, (3.87) implies that hd has at least two zeros for 0 < d < g′(a;a)
4 .

Furthermore, we claim that hd has precisely two zeros for 0 < d ≤ d1 upon choosing d1 > 0
to be sufficiently small. Indeed, for any u ∈ (0, a) we have v′′d(u) < 0, and we can enforce

(3.105)
∣∣v′d(u)

∣∣+ vd(u) ≥ 1 + max
0≤ũ≤a

{
∣∣v′−(ũ)

∣∣}
by restricting the size of d > 0.

We now pick ε > 0 in such a way that the function hd is strictly decreasing on [0, umin(a)+ε]

for all d1 ≤ d ≤ g′(a;a)
4 . This is possible because Corollary 3.15 allows us to enforce h′d < 0 on

this interval, with the exception of the single point u = umin(a) when a = 1
2 .

Let us now define the critical value

(3.106) dc = sup

{
d1 ≤ d ≤

g′(a; a)

4
: hd = 0 has two distinct solutions on [0, a]

}
and assume for the moment that dc < g′(a; a)/4. The preparations above show that there
exists umin(a) < u < a with hdc(u) = 0 and h′dc(u) = 0. Corollary 3.13 now implies h′′dc(u) >
0. As a consequence of the monotonicity ∂dvd(u) < 0, this means that for all sufficiently
small δ > 0, the function hd with d = dc − δ must have at least three zeros. This yields a
contradiction, which implies that dc = g′(a; a)/4.

We may hence define uAD(d) ∈ [0, a] to be the leftmost root of hd(u) = 0 for 0 < d ≤
dc. The statements (i)–(v) follow readily from the observations above together with the
monotonicity ∂dvd(u) < 0 that holds for u ∈ (0, a).

Lemma 3.18. Fix 0 < a ≤ 1
2 . Then there exists a constant 0 < d− <

g′(a;a)
4 together with

two continuous functions

(3.107) (uB, uC) : [0, d−]→ [0, a]× [0, a]

that satisfy the following properties.
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(i) We have (uB, uC)(0) = (0, a) and uB(d−) = uC(d−).
(ii) The function uB is strictly increasing, while the function uC is strictly decreasing.
(iii) For any 0 < d ≤ d− the identity v+(u#) = vd(u#) holds for # ∈ {B,C}.
(iv) If v+(u) = vd(u) for some 0 < d ≤ d− and 0 ≤ u ≤ a, then in fact u ∈ {uB(d), uC(d)}.
(v) For any 0 < d < d− we have

(3.108) v′+
(
uB(d)

)
< v′d

(
uB(d)

)
, v′+

(
uC(d)

)
> v′d

(
uC(d)

)
.

If a 6= 1
2 , then we also have

(3.109) v′+
(
uC(d−)

)
= v′+

(
uB(d−)

)
= v′d

(
uB(d−)

)
= v′d

(
uC(d−)

)
.

(vi) For any d > d− the inequality v+(u) > vd(u) holds for all 0 ≤ u ≤ a.
(vii) If a = 1

2 , then we have d−(1
2) = 1

24 together with uB( 1
24) = uC( 1

24) = umin(a).

Proof. Writing hd(u) = v+(u) − vd(u), we observe first that hd is strictly decreasing on
[0, umin(a)] because v′d > 0 and v′+ < 0 on the interior of this interval.

In addition, in the special case a = 1
2 , we can use Corollary 3.16 to conclude that hd is

strictly increasing on [umin(a), a]. Since hd
(
umin(a)

)
= 0 occurs precisely when d = 1

24 , all the
desired statements can be easily verified.

Throughout the remainder of this proof we therefore assume that 0 < a < 1
2 . Arguing as

in the proof of Lemma 3.17, we may pick d1 > 0 in such a way that hd has precisely two zeros
on [0, a] for every 0 < d ≤ d1. This allows us to define the critical value

(3.110) d− = sup{d1 ≤ d : hd = 0 has two distinct solutions on [0, a]}.

Since v− < v+, it is clear that d− <
g′(a;a)

4 .
Let us assume for the moment that hd− has two or more zeros on [0, a]. This implies

that there exists at least one u ∈ (0, a) for which hd−(u) = 0 and h′d−(u) = 0. Using

Corollary 3.13 it follows that h′′d−(u) > 0 must hold for all such zeros. As a consequence of the
monotonicity ∂dvd(u) < 0, this means that for all sufficiently small δ > 0, the function hd with
d = d− − δ must have at least three zeros. This yields a contradiction, which by continuity
shows that hd−(u) = 0 has precisely one root on [0, a]. Upon defining uB(d) and uC(d) to be
the leftmost, respectively, rightmost root of hd(u) = 0, the desired properties (i)–(vii) can be
easily verified.

Recalling the function G introduced in (2.6), we see that

(3.111) D1,2G(u, v; a, d) =

 g′(u)− 2d 2d

2d g′(v)− 2d

 .

In order to study the stability and parameter-dependence of the roots constructed in Lemmas
3.17–3.18, it is crucial to understand when the determinant of D1,2G vanishes. The result
below states that this happens at tangential intersections of v± and vd.

Lemma 3.19. Fix 0 < a < 1
2 together with d > 0, and suppose that

(3.112) v#(u) = vd(u)
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for some # ∈ {−,+} and u ∈ [0, a]. Then we have detD1,2G(u, vd(u); a, d) = 0 if and only if
v′#(u) = v′d(u).

Proof. We first consider the case v′#(u) = 0, which occurs when g′(u; a) = 0 and hence

u = umin(a). Using 0 < a < 1
2 , we see that

(3.113) v−(u) < umax(a) < v+(u).

Writing v = vd(u) = v±(u), we hence obtain g′(v; a) 6= 0, and hence

(3.114) detD1,2G(u, v; a, d) = −2dg′(v; a) 6= 0.

Since v′d(u) = 1, the desired equivalence indeed holds for this case.
Assuming now that v′#(u) 6= 0 and hence g′(u; a) 6= 0, we again write v = vd(u) = v#(u)

and use (3.34) to compute

(3.115) g′(v; a) = −[v′#(u)]−1g′(u; a).

In particular, we find

(3.116)

detD1,2G(u, v; a, d) = (g′(u; a)− 2d)
(
− [v′#(u)]−1g′(u; a)− 2d

)
− 4d2

= −[v′#(u)]−1g′(u; a)2 − 2dg′(u; a) + 2d[v′#(u)]−1g′(u; a)

= 2dg′(u; a)[v′#(u)]−1
[
1− g′(u;a)

2d − v′#(u)
]

= 2dg′(u; a)[v′#(u)]−1
[
v′d(u)− v′#(u)

]
,

from which the statement follows.

In order to characterize the dependence of d−(a) on a, we introduce the function

(3.117) Gsn(u, v, d; a) =
(
G1(u, v; a, d), G2(u, v; a, d), detD1,2G(u, v; a, d)

)T
and symbolically write
(3.118)

[D1,2,3Gsn(u, v, d; a)]−1 =
[

detD1,2,3Gsn(u, v, d; a)
]−1


∗ ∗ ∗

∗ ∗ ∗

γ1(u, v, d; a) γ2(u, v, d; a) γ3(u, v, d; a)

 .

For any 0 < a ≤ 1
2 , we use the functions defined in Lemma 3.18 to introduce the notation

(3.119) ω(a) =
(
uB
(
d−(a)

)
, v+

(
uB(d−(a))

)
, d−(a)

)
=
(
uC
(
d−(a)

)
, v+

(
uC(d−(a))

)
, d−(a)

)
,

which corresponds to the critical point where the branches uB and uC collide.

Corollary 3.20. Upon fixing 0 < a < 1
2 , the following two statements are equivalent.

(a) The identity Gsn(u, v, d; a) = 0 holds for some d > 0 and some pair (u, v) ∈ [0, 1]2 that
has v ≥ u.
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(b) We have (u, v, d) = ω(a) or (u, v, d) = (a, a, g
′(a;a)

4 ).

Proof. As preparation, we note that detD1,2G(a, a; a, d) = 0 if and only if d = g′(a;a)
4 . In

addition, it is easy to check that detD1,2G(0, 0; a, d) > 0 and detD1,2G(1, 1; a, d) > 0 for all
d ≥ 0.

The implication (b)→(a) can now be verified directly using Lemma 3.19 and (3.109). In
addition, we only need to establish the reverse implication under the additional assumption
that v > u.

Let us therefore assume that (a) holds with g(u) = −g(v) 6= 0, which allows us to write

(3.120) 0 < u < a < v < 1.

In particular, Lemma 3.6 implies that v = v−(u) or v = v+(u). Lemma 3.19 together with
(3.108) and (3.103) now imply that (b) must hold.

Lemma 3.21. We have the identities

(3.121)
γ1(0, 1, 0; 0) = −2,

γ2(0, 1, 0; 0) = 0.

In addition, the identity

(3.122) γ3(ω(a); a) = 0

holds for any 0 < a < 1
2 , together with the inequalities

(3.123)

detD1,2,3Gsn(ω(a); a) < 0,

γ1(ω(a); a)− γ2(ω(a); a) < 0,

γ1(ω(a); a)γ2(ω(a); a) ≥ 0.

Proof. Let us assume for the moment that Gsn(u, v, d; a) = 0, which directly implies

(3.124) (g′(u; a)− 2d)g′(v; a) = 2dg′(u; a).

In view of the identity
(3.125)

D1,2,3Gsn(u, v, d; a) =


g′(u; a)− 2d 2d 2(v − u)

2d g′(v; a)− 2d 2(u− v)

(g′(v; a)− 2d)g′′(u; a) (g′(u; a)− 2d)g′′(v; a) −2(g′(u; a) + g′(v; a))

 ,

we can use (3.124) to compute
(3.126)

detD1,2,3Gsn(u, v, d; a) = 2(v − u)
[
g′(u; a)(g′(u; a)− 2d)g′′(v; a)− g′(v; a)(g′(v; a)− 2d)g′′(u; a)

]
= 2(v − u)

[
2dg′(u; a)2 1

g′(v;a)g
′′(v; a)− g′(v; a)(g′(v; a)− 2d)g′′(u; a)

]
.
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Expanding the subdeterminants of (3.125) and reusing (3.124), we also find

(3.127)

γ1(u, v, d; a) = 2d(g′(u; a)− 2d)g′′(v; a)− (g′(v; a)− 2d)2g′′(u; a),

γ2(u, v, d; a) = 2d(g′(v; a)− 2d)g′′(u; a)− (g′(u; a)− 2d)2g′′(v; a),

γ3(u, v, d; a) = 0,

which allows us to explicitly verify (3.121).
Let us now fix 0 < a < 1

2 . For any (u, v) ∈ [0, 1]2 and d > 0 we introduce the function

(3.128)
h
(
u, v, d

)
= 1

2dg
′′(u; a)− g′′(u;a)

g′(v;a) −
g′(u;a)2

g′(v;a)3 g
′′(v; a)

= 1
2dg′(v;a)2

[
g′(v; a)(g′(v; a)− 2d)g′′(u; a)− 2dg

′(u;a)2

g′(v;a) g
′′(v; a)

]
,

which allows us to rewrite (3.126) in the form

(3.129) detD1,2,3Gsn(u, v, d; a) = −4d(v − u)g′(v; a)2h(u, v, d).

Using (3.53) and (3.54), we observe that

(3.130) v′′+(u)− v′′d(u) = h
(
u, v+(u), d

)
.

In particular, Corollary 3.12 and (3.109) imply that

(3.131) h
(
ω(a)

)
> 0,

which shows that

(3.132) detD1,2,3Gsn(ω(a); a) < 0,

as desired.
Let us now write (u, v, d) = ω(a) and compute

(3.133)

γ1

(
ω(a); a

)
− γ2

(
ω(a); a

)
= g′(u)

(
g′(u)− 2d)g′′(v)− g′(v)

(
g′(v)− 2d)g′′(u)

= 1
2(v − u)−1detDGsn(u, v, d; a)

≤ 0.

In addition, since u > umin(a) and hence v′d(u) = v′+(u) > 0, we have g′(u) < 2d. This allows
us to define

(3.134)
α =

√
2d
(
2d− g′(u; a)

)3/2
g′′(v; a),

β =
√

2d
(
2d− g′(v; a)

)3/2
g′′(u; a)

and compute
(3.135)
γ1(ω(a); a)γ2(ω(a); a) = (4d2)(4d2)g′′(u; a)g′′(v; a) + (4d2)2g′′(u; a)g′′(v; a)

−2d(g′(u; a)− 2d)3g′′(v; a)2 − 2d(g′(v; a)− 2d)3g′′(u; a)2

= 2αβ + α2 + β2

≥ 0,

as desired.
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Corollary 3.22. The map a 7→ ω(a) is C∞-smooth on (0, 1
2), and we have d′−(a) > 0.

Proof. Since d− <
g′(a;a)

4 , we may use Corollary 3.20, together with the first inequality in
(3.123), to apply the implicit function and establish the C∞-smoothness of ω.

Since g′(a; a)/4 ↓ 0 as a ↓ 0, a squeezing argument shows that lima↓0 ω(a) = (0, 1, 0).
Exploiting (3.121) and (3.123), the continuity of γ1 and γ2 implies that

(3.136) γ1(ω(a); a) < γ2(ω(a); a) ≤ 0

for all 0 < a < 1
2 . In particular, writing (u, v, d) = ω(a), we may use the inequalities

(3.137) D2g(u; a) < 0, D2g(v; a) < 0

to compute
(3.138)

d′−(a) = −[detD1,2,3Gsn(ω(a); a)]−1
[
γ1(ω(a); a)D2g(u; a) + γ2(ω(a); a)D2g(v; a)

]
> 0.

Proof of Proposition 3.1. Items (i), (iii), and (iv) follow from Lemmas 3.17–3.18 and the
observations in the proof of Corollary 3.20. Item (ii) follows from Corollary 3.22, while the
expansions in (v) follow from Propositions SM1.1 and SM1.4 in the supplementary material
file M118922 01.pdf [local/web 255KB].

Proof of Proposition 3.2. The identity g(1− u, 1− a) = −g(u, a) implies that

(3.139) G(1− u, 1− v; 1− a, d) = −G(u, v; a, d).

This allows us to extend the solutions constructed in Lemmas 3.17–3.18 to the entire interval
0 ≤ a ≤ 1 in the fashion outlined in Corollary 3.4, which yields (ii) and (iv).

To establish (i), we note that for each # ∈ {A,B,C} the sign of detD1,2G(u#, v#; a, d) is
constant on Ω− on account of Corollary 3.20. Using (ii) the eigenvalues of these matrices can
be explicitly computed at d = 0, which yields the desired stability properties.

To obtain the strict ordering in (iii), we fix 0 < a ≤ 1
2 and 0 < d < d−(a). We observe that

v+(u) ≥ v−(u) for u ∈ [0, a], with equality only at u = umin(a) for a = 1
2 . Since vd(0) = 0,

this implies that uA(a, d) < uB(a, d) and vA(a, d) < vB(a, d). By construction, we also have
uB(a, d) < uC(a, d). In addition, it cannot be the case that vB(a, d̃) = vC(a, d̃) for any
0 < d̃ < d−(a) since then G2 = 0 implies that also uB(a, d̃) = uC(a, d̃). Using the general
identity

(3.140) Da,d(u#, v#) = −[D1,2G(u#, v#; a, d)]−1D3,4G(u#, v#; a, d),

we see that

(3.141) ∂dv#(a, 0) = − 1

g′(v#(a, 0); a)

(
u#(a, 0)− v#(a, 0)

)
,

which yields

(3.142) ∂dvB(a, 0) =
1

g′(1; a)
<

1− a
g′(1; a)

= ∂dvC(a, 0).

These observations allow us to conclude vB(a, d) < vC(a, d), as desired.

Proof of Proposition 3.3. Arguing in a similar fashion as the proof of Proposition 3.2, the
statements follow from Lemma 3.17 and Corollary 3.20.

http://epubs.siam.org/doi/suppl/10.1137/18M1189221/suppl_file/M118922_01.pdf


BICHROMATIC TRAVELLING WAVES ON DISCRETE MEDIA 1003

4. Travelling waves. Our goal here is to establish the existence of bichromatic wave
solutions to the Nagumo LDE (2.1) and to obtain detailed results concerning their speed. In
particular, we establish Theorems 2.2 and 2.3, which are the main results of this paper. The
general ideas developed in this section can also be applied to other bistable nonlinearities g,
but the quantitative results will naturally differ.

Upon introducing the standard discrete Laplacian

(4.1) [∆+u](ξ) = u(ξ + 1) + u(ξ − 1)− 2u(ξ)

together with the off-diagonal matrix

(4.2) J =

(
0 1
1 0

)
,

the travelling wave system (2.5) can be rewritten as

(4.3) − cΦ′ = dJ∆+Φ +G(Φ; a, d).

For any (a, d) ∈ Ω−, we seek solutions to (4.3) that satisfy the boundary conditions

(4.4) lim
ξ→−∞

Φ(ξ) = (0, 0), lim
ξ→+∞

Φ(ξ) =
(
uB(a, d), vB(a, d)

)
.

The existence of such solutions will be established in section 4.1, where we also show c ≥ 0
and establish Theorem 2.2. In section 4.2 we subsequently set out to derive criteria that
distinguish between the two cases c = 0 and c > 0. We verify these criteria in section 4.3 for
parameters (a, d) ∈ Ω− that are close to the cusp (1

2 ,
1
24) and the corner (1, 0). This allows us

to establish our main results contained in Theorem 2.3.

4.1. Existence of waves. Our preparatory work in section 3 allows us to invoke the theory
developed in [11] to establish a general existence result for bichromatic waves. Indeed, the
equilibria (0, 0) and (uB, vB) are both stable under the dynamics of (u̇, v̇) = G(u, v; a, d)
and all intermediate equilibria are unstable. Using a straightforward estimate based on the
ordering (3.11), the wavespeeds can be shown to be nonnegative.

Lemma 4.1. Pick (a, d) ∈ Ω−. Then there exists a constant c ∈ R and a nondecreasing
function Φ : R → R2 that satisfy (4.3)–(4.4). This constant c is unique, while the function
Φ is unique up to translation if c 6= 0. In the latter case we also have Φ′(ξ) > (0, 0) for all
ξ ∈ R.

Proof. In order to apply the theory from [11], it suffices to linearly stretch the variables
(u, v) in such a way that (uB, vB) is mapped to (1, 1). Indeed, the assumptions (A1)–(A5) in
[11, section 1] with n = 2 can be verified by a simple inspection of the LDE (2.1). On the
other hand, condition (BS) in [11, section 8] is satisfied on account of the discussion above
concerning the stability of the 2-periodic equilibria of this LDE. The existence of the pair
(c,Φ) now follows directly from [11, Thm. 6]. In addition, the monotonicity properties can be
read off from [11, Thm. 5], while the uniqueness claims were established in [11, Thm. 3].

Lemma 4.2. Pick (a, d) ∈ Ω−. Then the constant c defined in Lemma 4.1 satisfies c ≥ 0.
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Proof. Suppose that c 6= 0. We estimate

(4.5)
−cΦ′v(ξ) = d[Φu(ξ + 1) + Φu(ξ − 1)− 2Φv(ξ)] + g(Φv(ξ); a)

≤ 2d[u− v(ξ)] + g(Φv(ξ); a).

Since 0 < uB(a, d) < a < vB(a, d), there exists ξ∗ ∈ R for which Φv(ξ∗) = uB(a, d). This
yields

(4.6) − cΦ′v(ξ∗) ≤ g(u; a) < 0,

from which we conclude c > 0.

Writing c(a, d) and Φ(a, d) for the wavespeed and waveprofile defined in Lemma 4.1, we
introduce the set

(4.7) T = {(a, d) ∈ Ω− : c(a, d) > 0},

which corresponds to the set Tlow used in section 2. In addition, for any (a, d) ∈ T we introduce
the linear operators

(4.8) La,d : W 1,∞(R;R2)→ L∞(R;R2), Ladj
a,d : W 1,∞(R;R2)→ L∞(R;R2),

which act as

(4.9)
La,dφ = −c(a, d)φ′ − dJ∆+φ−DG(Φ(a, d); a, d)φ,

Ladj
a,dψ = c(a, d)ψ′ − dJ∆+ψ −DG(Φ(a, d); a, d)ψ.

The results in [28, section 8] imply that there exists Ψ = Ψ(a, d) ∈ W 1,∞(R;R2) with Ψ >
(0, 0) for which we have the identities

(4.10) KerLa,d = span{Φ′(a, d)}, KerLadj
a,d = span{Ψ(a, d)}

together with the normalization

(4.11)

∫ ∞
−∞
〈Ψ(ξ),Φ′(ξ)〉 dξ = 1.

In particular, [32, Thm. A] implies that

(4.12) RangeLa,d =

{
f ∈ L∞(R;R2) :

∫ ∞
−∞
〈Ψ(ξ), f(ξ)〉 dξ = 0

}
.

These ingredients allow us to use the implicit function theorem to show that the pair (c,Φ)
depends smoothly on the parameters (a, d) ∈ T . In addition, we obtain a sign on ∂ac.
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Lemma 4.3. The maps

(4.13)
T 3 (a, d) 7→ c(a, d) ∈ (0,∞),

T 3 (a, d) 7→ Φ(a, d) ∈ BC1(R;R2)

are C∞-smooth. In addition, we have

(4.14) ∂ac(a, d) > 0

for all (a, d) ∈ T .

Proof. The C1-smoothness of the maps (c,Φ) follows from [28, Thm. 2.3]. On account of
the smoothness of the function g, this can readily be extended to the desired C∞-smoothness
by using the ideas in [28, section 8] to set up an implicit function argument along the lines of
[33, Prop. 6.5].

Differentiating (4.3) with respect to a, we compute

(4.15) − [∂ac]Φ
′ − c[∂aΦ′] = dJ∆+[∂aΦ] +DG(Φ; a, d)∂aΦ + ∂aG(Φ; a, d),

which gives

(4.16) − [∂ac]Φ
′ + La,d∂aΦ = ∂aG(Φ; a, d).

Applying (4.12) and noting that ∂ag(u; a) = −u(1− u) < 0 for all u ∈ (0, 1), we obtain

(4.17) − ∂ac =

∫ ∞
−∞
〈∂aG(Φ(ξ); a, d),Ψ(ξ)〉 dξ < 0,

as desired.

Corollary 4.4. If (a, d) ∈ T , then also (a′, d) ∈ T for all (a′, d) ∈ Ω− with a′ ≥ a.

Proof of Theorem 2.2. The statements follow directly from Lemmas 4.1–4.3.

4.2. Characterization of waves. We now set out to derive conditions that guarantee
either c(a, d) = 0 or c(a, d) > 0. To this end, we introduce the functions

(4.18) ua,d(v) = v − g(v; a)

2d
, va,d(u) = u− g(u; a)

2d

and note that

(4.19) u#(a, d) = ua,d
(
v#(a, d)

)
, v#(a, d) = va,d

(
u#(a, d)

)
for each # ∈ {A,B,C} and (a, d) ∈ Ω−. The local extrema of these functions are located at
the critical points

(4.20)
γc;±(a, d) = 1

3(a+ 1)± 1
3

√
a2 − a+ 1− 6d

= uinfl(a)±
√

1
3(g′(uinfl(a); a)− 2d).

One can verify that the functions ua,d and va,d are strictly decreasing on [γc;−(a, d), γc;+(a, d)]
and strictly increasing outside this interval. The following ordering result exploits this char-
acterization and will allow us to establish c(a, d) = 0 for a significant portion of the parameter
set Ω−.
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Lemma 4.5. For any (a, d) ∈ Ω− we have the ordering

(4.21) 0 ≤ γc;−(a, d) ≤ a ≤ γc;+(a, d) ≤ vB(a, d).

If (a, d) ∈ Ω−, then the inequalities in (4.21) are all strict.

Proof. Let us first fix (a, d) ∈ Ω−. We note that 2d < 2d+(a) = g′(a;a)
2 ≤ g′(uinfl(a);a)

2 ,
which implies that γc;±(a, d) are well defined. In addition, this allows us to compute

(4.22) u′a,d(a) = 1− g′(a; a)

2d
≤ −1,

which means that a ∈
(
γc;−(a, d), γc;+(a, d)

)
.

In particular, the function v 7→ ua,d(v) is strictly decreasing on [a, γc;+(a, d)]. On account
of the orderings
(4.23)

ua,d
(
vA(a, d)

)
= uA(a, d) < uB(a, d) = ua,d

(
vB(a, d)

)
, a < vA(a, d) < vB(a, d),

we hence cannot have vB(a, d) ≤ γc;+(a). The results for the general case (a, d) ∈ Ω− now
follow by continuity.

Lemma 4.6. Consider any (a, d) ∈ Ω− for which d ≤ 1
8(1− a)2. Then we have c(a, d) = 0.

Proof. Fix any 0 < a < 1, write d∗ = 1
8(1 − a)2, and suppose that (a, d∗) ∈ Ω−. On

account of Corollary 4.4 it suffices to show that c(a, d∗) = 0. Assuming to the contrary that
c = c(a, d∗) > 0, we compute

(4.24)

0 > −cΦ′v(ξ)

= d∗[Φu(ξ + 1) + Φu(ξ − 1)− 2Φv(ξ)] + g(Φv(ξ); a)

> −2d∗Φv(ξ) + g(Φv(ξ); a)

= −2d∗ua,d∗
(
Φv(ξ)

)
.

Since 0 < γc;+(a, d∗) < vB(a, d∗), there exists ξ∗ ∈ R for which Φv(ξ∗) = γc;+(a, d∗). The key
point is that

(4.25) ua,d∗
(
γc;+(a, d∗)

)
= 0,

which allows us to obtain a contradiction by picking ξ = ξ∗ in (4.24).

We now set out to derive a (nonsharp) condition that guarantees c(a, d) > 0. The strategy
will be to rule out the existence of standing bichromatic waves. Let us therefore pick any
(a, d) ∈ Ω− \ T , which implies c(a, d) = 0. Writing (Φu,Φv) = Φ(a, d) for the corresponding
profile, we introduce the sequence

(4.26) (ui, vi) =
(
Φu(2i),Φv(2i+ 1)

)
,

which satisfies the limits

(4.27) lim
i→−∞

(ui, vi) = (0, 0), lim
i→+∞

(ui, vi) = (uB(a, d), vB(a, d)
)
,
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0

Figure 9. Illustration of the two reflections described by the system (4.30). The values have been modified
for illustrative purposes, since the real regions are minuscule.

together with the difference equation

(4.28)
0 = d

[
vi + vi−1 − 2ui

]
+ g(ui; a),

0 = d
[
ui+1 + ui − 2vi

]
+ g(vi; a).

Applying a shift to the first equation, we obtain the implicit system

(4.29)
vi+1 = 2

[
ui+1 − g(ui+1;a)

2d

]
− vi,

ui+1 = 2
[
vi − g(vi;a)

2d

]
− ui,

which can be written as

(4.30)
vi+1 = 2va,d(ui+1)− vi,

ui+1 = 2ua,d(vi)− ui.

In particular, we can obtain (ui+1, vi+1) by first reflecting (ui, vi) horizontally through the
curve u = ua,d(v) and then vertically through the curve v = va,d(u). Based on this geometric
intuition, we set out to construct a rectangle

(4.31) [utop(a, d), uB(a, d)]× [vtop(a, d), vB(a, d)]

that must contain (ui0+1, vi0+1) for some critical i0, together with a rectangle

(4.32) [0, ubot(a, d)]× [0, vbot(a, d)]

that must contain the intermediate point (ui0+1, vi0); see Figure 9.
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Lemma 4.7. There exist continuous functions

(4.33) (vbot, vtop) : Ω− → [0, 1]2

that satisfy the inequalities

(4.34) 0 < vbot(a, d) < γc;−(a, d) < vtop(a, d) < γc;+(a, d) < vB(a, d)

together with the identities

(4.35) ua,d
(
vbot(a, d)

)
= ua,d

(
vtop(a, d)

)
= uB(a, d)

for each (a, d) ∈ Ω−. Furthermore, these functions can be continuously extended to Ω− in
such a way that (4.35) holds whenever d > 0.

Proof. Pick any (a, d) ∈ Ω−. On account of the identity ua,d(0) = 0 and the inequalities

(4.36) ua,d
(
γc;+(a, d)

)
< ua,d

(
vB(a, d)

)
= uB(a, d) < a = ua,d(a),

the equation ua,d(v) = uB(a, d) has three distinct solutions on (0, vB(a, d)]. Using the fact that
uB(a, 0) = 0, these solutions can be extended continuously to d = 0 by writing vbot(a, 0) = 0
and vtop(a, 0) = a. The extension to d = d−(a) > 0 can be achieved by standard continuity
arguments.

For any (a, d) ∈ Ω− with d > 0 we now define the constant

(4.37) utop(a, d) = 2ua,d
(
γc;+(a, d)

)
− uB(a, d).

We note that
(
utop(a, d), γc;+(a, d)

)
can be seen as the horizontal reflection of

(
uB(a, d), γc;+(a, d)

)
through the curve u = ua,d(v).

Lemma 4.8. Pick any (a, d) ∈ Ω− for which c(a, d) = 0, and consider the sequence {(ui, vi)}
defined in (4.26). Then there exists i0 ∈ Z for which

(4.38)
(
utop(a, d), vtop(a, d)

)
≤
(
ui0+1, vi0+1

)
≤
(
uB(a, d), vB(a, d)

)
,

while

(4.39) (0, 0) ≤
(
ui0 , vi0

)
≤
(
uB(a, d), vbot(a, d)

)
.

Proof. For any i ∈ Z we have the inequalities

(4.40) ui ≤ ui+1 ≤ uB(a, d),

which implies that we must have ui ≤ ua,d(vi) ≤ ui+1. In particular, we see that

(4.41) ua,d(vi) ≤ uB(a, d),

which implies that

(4.42) vi /∈
(
vbot(a, d), vtop(a, d)

)
.
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In addition, we have

(4.43) ui = 2ua,d(vi)− ui+1 ≥ 2ua,d(vi)− uB(a, d).

In particular, for every i we have either

(4.44) (0, 0) ≤ (ui, vi) ≤
(
uB(a, d), vbot(a, d)

)
or

(4.45)
(
utop(a, d), vtop(a, d)

)
≤ (ui, vi) ≤

(
uB(a, d), vB(a, d)

)
.

The limits (4.27) imply that there exists M � 1 so that (4.44) holds for all i ≤ −M and
(4.45) holds for all i ≥M . In particular, there must be a jump between these two sets.

For any (a, d) ∈ Ω− with d > 0, the inequalities (4.34) imply that the function ua,d is
strictly increasing on [0, vbot(a, d)]. This allows us to define an inverse

(4.46) uinv
a,d : [0, uB(a, d)]→ [0, vbot(a, d)].

In addition, we introduce the function

(4.47) va,d;r(u) = 2va,d(u)− vB(a, d),

which can be interpreted as the vertical reflection of the line v = vB(a, d) through the curve
v = va,d(u).

For any (a, d) ∈ Ω− with d > 0, these definitions allow us to introduce the notation

(4.48) ubot(a, d) = max{u ∈ [0, uB(a, d)] : va,d;r(u) = uinv
a,d(u)}.

On account of the inequalities

(4.49) va,d;r(0) < 0 = uinv
a,d(0) < uinv

a,d

(
uB(a, d)

)
= vbot(a, d) < vB(a, d) = va,d;r

(
uB(a, d)

)
,

one can verify that ubot is well defined and continuous in (a, d).

Lemma 4.9. Pick (a, d) ∈ Ω−, and assume that

(4.50) ubot(a, d) < utop(a, d)

holds. Then we have c(a, d) > 0.

Proof. Suppose to the contrary that c(a, d) = 0, and consider the sequence {(ui, vi)}
defined by (4.26), together with the critical value i0 ∈ Z that appears in Lemma 4.8. Since
the sequence {ui} is nondecreasing, we have ui0+1 ≥ ui0 , which implies that

(4.51) ui0+1 ≥ ua,d(vi0).

Exploiting 0 ≤ vi0 ≤ vbot(a, d) this gives

(4.52) 0 ≤ vi0 ≤ uinv
a,d

(
ui0+1

)
.

On the other hand, the inequality vi0+1 ≤ vB(a, d) yields

(4.53) vi0 ≥ va,d;r(ui0+1).

Combining this with (4.52), we see that ui0+1 ≤ ubot(a, d). However, (4.38) implies that
ui0+1 ≥ utop(a, d), which yields the desired contradiction.
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Figure 10. The darkest region contains all pairs (a, d) where the assumption ubot(a, d) < utop(a, d) was
verified numerically. We also include the boundaries of the sets T and Ω− as computed numerically by the
procedure described in section 2.

4.3. Verification of utop > ubot. In Figure 10 we show where one may numerically
verify that the scalar inequality (4.50) holds, which ensures that c(a, d) > 0. We also plot the

curve d = (1−a)2

8 , below which we have established that c(a, d) = 0. Taken together, we feel
that these results cover a reasonable portion of the parameter space Ω−.

Our final task is to analytically verify (without resorting to any numerics) that c(a, d) > 0
near the cusp (a, d) =

(
1
2 ,

1
24

)
and the corner (a, d) = (1, 0). As preparation, we construct a

simplified but weaker version of the condition utop > ubot by exploiting the monotonicity of
va,d;r.

Lemma 4.10. Pick (a, d) ∈ Ω− with d > 0. Then the function va,d;r is strictly increasing
on [0, uB(a, d)].

Proof. We note first that v′a,d(u) = 1 − g′(u;a)
2d > 0 for u ∈ [0, umin(a)]. In particular, we

only have to consider the case uB(a, d) > umin(a), which cannot occur for a = 1
2 .

Let us first assume that 0 < a < 1
2 . Using (3.108) or (3.109), we may conclude that

(4.54) v′a,d
(
uB(a, d)

)
≥ v′+

(
uB(a, d)

)
> 0.

Since uB(a, d) ≤ a ≤ γc;+(a, d), this implies that uB(a, d) ≤ γc;−(a, d). In particular, va,d and
hence va,d;r are strictly increasing on [0, uB(a, d)].

It remains to consider a ∈ (1
2 , 1). Since vB(1− a, d) > umax(1− a), we may use Corollary

3.4 to conclude

(4.55) uB(a, d) = 1− vB(1− a, d) < 1− umax(1− a) = umin(a).

Corollary 4.11. Consider any (a, d) ∈ Ω− with d > 0, and suppose that

(4.56) va,d;r

(
utop(a, d)

)
> vbot(a, d).

Then we have utop(a, d) > ubot(a, d).
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Proof. This follows from the uniform bound uinv
a,d ≤ vbot(a, d) and the fact that va,d;r is

strictly increasing.

We now set out to verify the explicit condition (4.56) for the boundary points
(
a, d−(a)

)
with a ∼ 1 and a = 1

2 . Using the continuity of utop and ubot, this means that c(a, d) > 0 for
all (a, d) ∈ Ω− that are sufficiently close to these critical boundary points.

Lemma 4.12. We have the expansions

(4.57)
uB
(
a, d−(a)

)
= 1

4(1− a)2 + 1
8(1− a)3 +O

(
(1− a)4

)
,

vB
(
a, d−(a)

)
= 1− 1

2(1− a) +O
(
(1− a)4

)
as a ↑ 1.

Proof. Exploiting Corollary 3.4 together with the symmetry d(a) = d(1− a), we obtain

(4.58) uB
(
a, d−(a)

)
= 1− vB

(
1−a, d−(1−a)

)
, vB(a, d−(a)) = 1−uB

(
1−a, d−(1−a)

)
.

The desired expansions hence follow from Proposition SM1.1 in the supplementary material
file M118922 01.pdf [local/web 255KB].

Lemma 4.13. We have the expansions

(4.59)
utop

(
a, d−(a)

)
= 1

4(a− 1)2 +O
(
(1− a)3

)
,

va,d−(a);r

(
utop

(
a, d−(a)

))
= 1 +O

(
1− a

)
as a ↑ 1.

Proof. These expansions can be found by substitution of (4.57) into the definitions (4.37)
and (4.47).

On account of the identity γc;−(1, 0) = 1
3 and the inequality vbot(a, d) ≤ γc;−(a, d), we see

that Corollary 4.11 implies that

(4.60) utop

(
a, d−(a)

)
> ubot

(
a, d−(a)

)
whenever 1− a > 0 is sufficiently small.

Lemma 4.14. The inequality (4.56) holds for (a, d) = (1
2 ,

1
24).

Proof. Writing (acp, dcp) = (1
2 ,

1
24), we can explicitly compute

(4.61) γc;+(acp, dcp) =
1

2
+

1

6

√
2,

which, together with the expressions (3.26) and (4.37), yields

(4.62) utop(acp, dcp) =
1

2
− 4

9

√
2 +

1

6

√
3.

Using (4.47), we obtain

(4.63) vacp,dcp;r

(
utop(acp, dcp)

)
=

1

2
− 1240

243

√
2 +

229

54

√
3 ∼ 0.6286.

http://epubs.siam.org/doi/suppl/10.1137/18M1189221/suppl_file/M118922_01.pdf
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In particular, we have

(4.64) vacp,dcp;r

(
utop(acp, dcp)

)
> acp ≥ γc;−(acp, dcp) ≥ vbot(acp, dcp),

as desired.

Proof of Theorem 2.3. Items (i), (ii), and (iii) follow from Lemma 4.6, Corollary 4.4, and
Lemma 4.14, respectively. Item (iv) follows from Lemma 4.5, together with Lemma 4.9 and
the continuity of the functions ubot and utop. Indeed, the expression (2.26) can be rewritten
as

(4.65) Γ(a) = utop

(
a, d−(a)

)
− ubot

(
a, d−(a)

)
.

Finally, item (v) follows directly from (4.60).
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