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Abstract

The significant properties of the maximum likelihood (ML) estimate are consis-

tency, normality, and efficiency. While it has been proven that these properties

are valid when the sample size approaches infinity, the behavior of an ML es-

timator when working with small sample sizes is largely unknown. However,

in real tasks, we usually do not have sufficient data to completely fulfill the

conditions of an optimal ML estimate. The question arises as to what amount

of data is required to be able to estimate a Gaussian model that provides suf-

ficiently accurate likelihood estimates. This issue is addressed with respect to

the number of dimensions of the pattern space.

Keywords: Maximum-likelihood estimate, likelihood function, Gaussian

model, Gaussian mixture model, sample size, dimensionality, pattern space,

heteroscedastic data.

1. Introduction

The maximum likelihood (ML) method is widely used in many applications

for estimating the parameters of statistical models. The accuracy of the esti-

mation directly corresponds to the amount of data utilized in the estimation

process. The theory of probability and mathematical statistics indicates that
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the desired properties of the ML estimation, namely, consistency, normality, and

efficiency, can be achieved only if the sample size N tends to infinity. This is

impossible in practical tasks, where we usually only have a limited sample size

available. Thus, the question arises as to how the precision of the ML estimate

is related to the sample size. However, it is difficult to obtain an exact answer to

this question. Users of statistical models have argued that this question cannot

be properly answered because the appropriate sample size for an ML estimate

is heavily influenced by the possible ill-conditionality of data, correlation of

features in multidimensional samples, etc.

Most studies addressing the influence of sample size on ML estimation have

focused on the accuracy of the estimated model parameters [1], [2], others have

addressed behavior of the determinant of the sample covariance matrix of Gaus-

sian distribution depending on the sample size [3], [4]. A relatively large group

of statistical analysis studies addresses the estimation of eigenvalues of covari-

ance matrices in tasks wherein the number of samples N is of the same order of

magnitude as the space dimensions d. Typically, they are large numbers (i.e.,

space dimensions d� 100), and the goal of these tasks in particular is the prin-

cipal component analysis (PCA) of the covariance matrix for the subsequent

reduction of the space dimensions [5], [6].

The question we attempt to answer in this paper is: what is the indicatively

sample size required to estimate the parameters of the Gaussian model that can

provide previously defined accuracy values of the likelihood (or log-likelihood)

function for the various dimensions of pattern space? The accuracy of the values

of the log-likelihood function provided by the Gaussian model is of interest to

us because they are key attributes for classification in many pattern recognition

tasks. Therefore, we do not address the aspect of the accuracy of the estimation

of each model parameter, but only the correspondence among the sample size,

accuracy of the log-likelihood function, and the dimension of the pattern space.

Our research focuses on covariance matrices with a maximum dimension d =

100, and in the vast majority of cases (results), it will be fulfilled that N � d.

Very few studies have focused on the abovementioned question. In [7], [8]
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and in various forums on the web, many recommendations have been made,

according to which the sample size (e.g., for models with covariance structure)

should be at least 5 (preferably 10) per parameter. Furthermore, it has also been

reported that in the case of a small number of space dimensions, the sample size

for estimation should be significantly increased. For instance, a sample size of at

least 100 samples forms the recommendation for estimating a Gaussian model

for dimension d = 1 (we note that in this case only 2 parameters are estimated).

Most such studies report fairly subjective experiences of researchers, and no

study has presented a rigorous approach to determine the sample size needed for

various dimensions, particularly for statistical modeling in pattern recognition

tasks.

In our previous study [9], we addressed this question only for small dimen-

sions of pattern space (d ≤ 10) and we did not examine the dependence between

the likelihood accuracy and the sample size for individual dimensions of pattern

space. Here, we address all significant aspects of these questions (see Sections

2, 3, 4, and 5).

The results obtained in solving this task can find significance in statistical

modeling, wherein Gaussian models are widely used. They can also be useful

for constructing Gaussian mixture models (GMMs), which is a widely accepted

technique for powerful and flexible modeling of heterogeneous data (e.g., data

of a non-Gaussian nature) coming from various populations. Just remind that

any continuous distribution can be approximated sufficiently well by a weighted

sum of the Gaussian distribution [10]. The accuracy of a GMM approximation

is closely related to the number of components in the mixture and of course to

the accuracy of individual components in the GMM. The parameters of individ-

ual components of the GMM (i.e., means, covariance matrices, and weights) are

usually estimated by the expectation-maximization (EM) algorithm from the

training data (training samples). To determine an optimal number of compo-

nents in the GMM, methods based on the information criterion [11], [12], or the

cross validation technique [13] are usually applied. However, the convergence

of the objective function of these methods does not reflect the accuracy (ro-
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bustness) of the estimated components and therefore the accuracy of the final

model. Nevertheless, such accuracy may be approximately determined from the

”effective” amount of data involved in modeling individual components.

Gaussian modeling is the subject of constant research by statisticians [14],

[15], [16]. It is typically used in tasks of pattern recognition [17], [18], [19], [20],

[21], [22],computer vision [23], [24], [25], speech and language recognition [26],

[27], [28], machine learning [29], [30]; however, it also finds use in very different

areas such as medical or technical diagnostics [31], [32], [33], [34], [35], [36].

2. Determining accuracy of likelihood estimate

2.1. Mean value of Gaussian log-likelihood function

Our goal is to determine the statistical dependency of the accuracy of the

likelihood function values on the data size from which parameters of this function

are estimated. We primarily focus on the family of Gaussian functions in this

study. For this purpose, we construct in a space of d dimensions a generator

G of random numbers (vectors) xi, which generator is directed by a Gaussian

model with randomly determined mean µG and covariance matrix CG, i.e.,

ΘG = (µG,CG).

For a Gaussian source with parameters ΘG, we first determine the mean

value of the log-likelihood function E{ln L(ΘG|X )}, i.e.,

E{ ln L(ΘG |X )} = lim
N→∞

{
1

N

N∑
i=1

ln p(xi

∣∣∣ΘG)

}
, (1)

where X = {x1, ...,xN} are independent observations, which are randomly gen-

erated by the Gaussian distribution model with parameters ΘG. From informa-

tion theory it is well-known that the relation (1) corresponds to the differential

entropy H(X) that is for the multivariate normal distribution given by [9] [37]

E { lnL(Θ |X)} = −H(X) = −d2 ln 2π − 1
2 ln detC − 1

2d . (2)

where C denotes the covariance matrix and d the number of dimensions of the

pattern space.
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2.2. Accuracy of log-likelihood values in dependence on sample size for Gaussian

model estimation

In order to simplify writing the mean of the log-likelihood function of the

Gaussian source with parameters ΘG, we further use the following notation in

the form LE−ln(G) using (1) and (2):

LE−ln(G) = E
{

lnL(ΘG|X)
}

= 1.4189d− 0.5 ln detCG, (3)

where d denotes the number of dimensions of the pattern space and CG the

covariance matrix of the source model.

With this source G, we randomly generate a set of training data Y =

{y1, ...,yI} and a set of test data Z = {z1, ...,zJ}. In general, a set of samples

Y does not contain samples from the set Z and vice versa. Next, we use the set

Y of the training data, and for an increasing number of samples, we gradually

estimate (using the ML approach) the parameters of the Gaussian model. If a

subset of training data Yi = {y1, ...,yi} has been used for estimating param-

eters, we denote the estimated parameters as Θ i = (µi,Ci) (note: i ≥ d + 1

must be satisfied here). We next define the average value LAv−ln(Θ i|Z) of log-

likelihoods on the Gaussian model with parameters Θ i and a set of test data

Z = {z1, ...,zJ} as

LAv−ln(Θ i |Z )} = 1
J

J∑
j=1

ln p(zj |Θ i) . (4)

We determine the minimum value i∗ of training data Yi∗ = {y1, ...,yi∗}, for

which the difference between the mean value of the log-likelihood of the genera-

tor LE−ln(G) (see [38]) and LAv−ln(Θ i|Z) is smaller than the established error

∆

i∗ = min
i
{ [LE−ln(G)− LAv−ln(Θ i|Z) ] ≤ ∆} . (5)

Note that if J in (4) approaching infinity, then the expression in brackets (5)

refers to Kullback-Leibler divergence, for which a closed-form solution can be

applied [39].
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The question arises as to how the error ∆ can reasonably be set. Since (5)

includes log-likelihoods, we can form a good argument for the derivation of ∆

on the percentage basis of the log-likelihood characteristics. However, the lower

bound of the difference of both log-likelihood characteristics in (5) may approach

negative infinity (e.g., for models estimated from small-sized training data and

a larger number of dimensions of the pattern space). Therefore, it is difficult

to justify the basis for calculating the percentage. Instead of deriving the error

∆ based on the log-likelihood characteristics LAv−ln(Θ i|Z) and LE−ln(G), we

infer the error by using the likelihood (not log-likelihood) characteristics. For

this purpose, we rewrite (1) in the form

LE−ln(G) = E
{

lnL(ΘG |X )
}

=

= ln

 lim
N→∞

[
N∏
i=1

p(xi

∣∣∣ΘG )

] 1
N

 = ln {LE(G)} , (6)

where LE(G) denotes the ”mean value” or more precisely the geometric mean

of the likelihood function of the generator G. Similarly, it is possible to rewrite

(4) as

LAv−ln(Θ i|Z) = ln


 J∏
j=1

p(zj |Θ i)

 1
J

 = ln {LAv(Θ i|Z)} , (7)

where LAv(Θ i|Z) again denotes the geometric average of likelihood values com-

puted on the Gaussian model with parameters Θ i and a set of test data Z.

We now consider the ratio LAv(Θ i|Z) /LE(G). With increasing i for esti-

mation of the model Θ i, this ratio varies from 0 to 1, with the value reaching 1

as i approaches infinity. For increasing i, we now attempt to determine a model

Θ i such that the ratio LAv(Θ i|Z) and LE(G) just exceeds the predetermined

value β, i.e., LAv(Θ i|Z) /LE(G) ≥ β, where β can be set in terms of estimation

accuracy in the range from 0 to 1 (alternatively, from 0% to 100%). To the

given inequality, we now apply logarithms, and after manipulation, we obtain

lnLE(G)− lnLAv(Θ i|Z) = LE−ln(G)− LAv−ln(Θ i|Z) ≤ − lnβ . (8)
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Table 1: Corresponding values ∆β for selected values of likelihood accuracy β

β 0.5 0.8 0.9 0.95 0.98 0.99

∆β = − lnβ 0.693 0.223 0.105 0.051 0.020 0.010

This inequality can now be used to to manipulate (5)

i∗β = min
i
{ [LE−ln(G)− LAv−ln(Θ i |Z ) ] ≤ − lnβ = ∆β} . (9)

The interpretation of this inequality is such that we attempt to determine the

least value of training data i∗β with which we are able to estimate model pa-

rameters Θ i that will provide the (geometric) mean of the likelihood values for

test data set Z with accuracy higher than β LE(G), where LE(G) denotes the

(geometric) mean of likelihood function of generator G. At the same time, we

always assume a sufficiently large size of test data J .

If we now perform in an d -dimensional space a sufficient number of experi-

ments (this number K should be at least 100) with randomly generated model

parameters ΘG and randomly generated sets of training and test data, for se-

lected β values, we can obtain the resulting set i∗β(k)(k = 1, ...,K) and arrive

at certain interesting statistical features.

3. Results of analytical and experimental studies

To verify the proposed method for estimating the training data size to

determine the Gaussian model that can provide likelihood values with the

previously defined properties, we carried out a number of experiments using

d = 1, 2, . . . , 10, 15, 20, 25, . . . , 50, 60, . . . , 100 and likelihood accuracy β =0.5,

0.8, 0.9, 0.95, 0.98, and 0.99. For these selected values of β, we determined the

corresponding values of ∆β (Table 1). For each combination of d and β, we

carried out at least 100 experiments (several hundred for d = 1, 2, and 3), each

with randomly generated parameters and randomly generated training Y and

test Z data sets. We mention here that in each experimental trial, the training
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and test data sets contained up to 2 million new data values provided by the

source generator G along with the corresponding parameters.

In addition to the mean value i∗β(k) calculated for each d and β, we attempted

to define a suitable interval or rather a kind of upper limit for the number

of required samples for which it is possible to achieve the desired accuracy

of likelihood values. Our analysis of the procedure of obtaining the values

i∗β(k) (i.e., procedures of randomly generated parameters µG and CG, randomly

generated training Y and test Z data, averaging operations etc.) led us to the

assumption (also confirmed practically) that i∗β(k) follows a normal distribution.

In this case, the confidence interval can be defined for i∗β(k). In our case, we

are interested in the upper limit i∗β−up of this interval, for which the following

expression holds [38]

i∗β−up = i∗β−mean + 1.64
σ∗β√
K
, (10)

where i∗β−mean = 1
K

∑K
k=1 i

∗
β(k), σ∗β represents the standard deviation computed

from values i∗β(k), k=1, . . . , K and K the number of samples in the experiment

(as mentioned previously K was generally equal to 100). It should be noted that

(10) is valid for a confidence level of 95%. The results of our experiments are

listed in Table 2 and illustrated in Figure 1.

We mention here that the number of experiments was greater than 2500.

Computational problems occurred only when we estimated values of i∗0.99−up for

dimensions of d=60, 70, 80, 90, and 100; many experiments were not completed

because their execution exceeded the allocated computing time per experiment,

which was 720 hours. Because missing values of these incomplete experiments

clearly disrupt the correctness of the final estimations, the results of i∗0.99−up for

d=60, 70, 80, 90, and 100 are not listed in Table 2 and illustrated in Figure 1.

Finally, we briefly discuss the influence of ill-conditionality of the task on

the results. We mention here that for all experiments with randomly generated

Gaussian distribution parameters, we always determined the condition number

of matrix κ(CG), particularly the Frobenius norm condition number defined as
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Table 2: Results of experiments for β=0.5, 0.8, 0.9, 0.95, 0.98, and 0.99; d(j) denotes the

number of dimensions of the pattern space for the j-th experimental data set, and σ∗
β the

standard deviation.

j d(j)
β=0.50 β=0.80 β=0.90 β=0.95 β=0.98 β=0.99

i∗β−up σ∗β i∗β−up σ∗β i∗β−up σ∗β i∗β−up σ∗β i∗β−up σ∗β i∗β−up σ∗β

1 1 4.6 3.0 7.9 5.6 12.6 9.6 20.6 16.2 39.0 31.5 67.1 64.4

2 2 8.8 3.9 16.2 8.6 28.6 15.7 49.6 25.7 108.5 74.4 208.9 169

3 3 13.1 5.7 27.4 12.2 53.3 25.6 97.6 48.2 217.3 103 413.7 179

4 4 19.1 5.8 40.3 13.5 77.2 24.6 142.0 53.7 354.7 147 750.6 315

5 5 24.5 6.3 55.9 15.8 109.1 35.6 199.2 68.0 473.0 163 977.7 331

6 6 32.4 9.2 74.1 20.0 150.3 44.9 282.5 84.5 692.7 200 1 395 412

7 7 39.7 9.9 94.6 21.0 197.9 46.7 377.1 94.2 918.4 235 1 786 502

8 8 47.9 10.7 117.9 24.4 240.4 48.4 469.6 99.0 1 121 258 2 357 673

9 9 56.9 11.7 140.1 25.1 289.2 53.1 555.6 110 1 400 293 2 836 746

10 10 68.2 12.1 167.3 26.3 359.0 55.7 696.1 125 1 674 311 3 459 926

11 15 124.7 14.3 332.1 39.1 690.6 87.2 1 371 159 3 353 518 7 315 2 783

12 20 208.3 22.5 582.4 60.4 1 242 133 2 293 341 6 352 1 389 15 770 9 262

13 25 301.8 22.9 849.7 73.8 1 848 174 3 655 430 9 450 1 992 22 470 11 735

14 30 416.8 28.8 1 169 79.1 2 530 195 5 041 450 12 728 2 166 28 538 15 890

15 35 552.7 35.1 1 574 84.2 3 466 249 6 832 667 17 579 3 223 41 718 19 388

16 40 689.3 35.8 2 017 109 4 393 260 8 731 793 22 488 4 412 53 882 27 883

17 45 854.6 36.5 2 526 131 5 485 332 10 848 1 107 27 805 6 397 67 753 41 860

18 50 1 053 41.1 3 093 141 6 796 361 13 483 1 842 34 067 6 680 78 176 45 624

19 60 1 498 49.0 4 447 186 9 811 684 19 848 2 403 56 472 19 402 - -

20 70 1 978 55.4 5 919 207 13 133 761 26 706 3 166 76 921 28 404 - -

21 80 2 534 79.8 7 552 302 17 134 1 255 34 440 3 721 91 743 37 542 - -

22 90 3 184 83.8 9 606 323 21 331 1 397 43 418 5 651 123 996 45 581 - -

23 100 3 905 99.6 11 707 467 25 776 1 808 52 081 6 369 136 858 51 032 - -

below [40]

κ(CG) =
∥∥∥ (CG)−1

∥∥∥
F

∥∥∥CG
∥∥∥
F
. (11)

A matrix with condition number close to 1 is said to be well-conditioned, whereas

when the condition number κ(.) becomes large, the problem is regarded as

being ill-conditioned. The question subsequently is, how large must κ(.) be for

a problem to be classified as ill-conditioned? Again, there is no clear answer

to this question. Analytical studies indicate that for a system with condition

number κ(.), we can expect a reduction of roughly log10κ(.) decimal places in

the accuracy of the solution. The standard double-precision number format
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Figure 1: Illustration of experimental results for β=0.5, 0.8, 0.9, 0.95, 0.98, and 0.99.

in computation works with about 16 decimal digits of accuracy. Thus, these

form the limits for the computation of ill-conditioned covariance matrices. In

our case, in all experiments, most of the values κ(CG) were in the interval

< 1; 106). However, even for several tens of values for which κ(CG) > 106, we

did not encounter any problems in computation, and the values of i∗β−up were

within the standard specified limits.

4. Determination of required data size based on dimensionality of

pattern space and value of likelihood accuracy β

Our next concern is to determine whether it would be possible to describe

the dependency between i∗β−up and the dimension size (d) of the pattern space

by a suitable functional relationship. If such a functional relationship with

sufficient accuracy of approximation existed, it would not be necessary for a

”fast” determination of the sample size of training data (with the specified

accuracy β) to determine the recommended values in Table 2; they could instead

be determined from a simple mathematical relation. Based on the method of

determining the values of i∗β−up (which is a statistical variable with variance σ∗β)
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and the shape of the curves reflecting dependency of i∗β−up onto the number of

dimensions of a pattern space, we decided to use polynomial regression. Here,

we note that polynomial regression is a form of linear regression in which the

relationship between the independent and the dependent variables is modeled

as an I -th degree polynomial. It is expected that the values of the independent

variables are burdened with a random error ε. Therefore, it is assumed (for a

fixed β) that the values of i∗up(j) can be approximated by a polynomial

i∗up(j) = q0 + q1d
1(j) + q2d

2(j) + ... + qId
I(j) + εj , (12)

where j = 1, ... , J, and J denotes the number of observations (in our case, the

number of sets of experiments), I the degree of the polynomial used to approx-

imate the observed dependence, and qi the i -th coefficient of the polynomial

approximation. Further, di(j) denotes the i -th power of the j -th element of

the input sequence of measurement (e.g., di(17) = 45i, see Table 2), i∗up(j) the

j -th element of the output sequence of measurement, and εj the disturbance (or

error) term.

A standard approach in regression analysis to approximate overdetermined

systems is the method of least squares. The polynomial least-squares method

falls into category of linear or ordinary least squares (OLS), which has a closed-

form solution. The approach describes the variance in a prediction of the de-

pendent variable i∗up(j) as a function of the independent variable (in our case

the dimensionality d) and the deviations from the fitted curve. Here, we remark

that the Best Linear Unbiased Estimator (BLUE) of the coefficients is given by

the OLS estimator; however, in this case, from the GaussMarkov theorem [41],

the errors in linear regression model must have an expectation of zero, have no

correlation, and have equal variances. From the manner of obtaining the source

data, we can consider that the first two conditions are fulfilled in our case. How-

ever, the third condition is not met, i.e., errors εj for individual dimensions d(j)

have different variances (see Table 2); the data are heteroscedastic. However,

if the data are uncorrelated but have different variances (heteroscedastic data),

a modified approach based on weighted least squares can be used. Aitken [42]

11



showed that when a weighted sum of squared residuals is minimized, the esti-

mation of qi (i=0,1,. . . , I ) is the BLUE if each weight is equal to the reciprocal

of the variance of the measurements. We denote the weighted sum of squared

residuals as ∆2(q), and it can be expressed in the form

∆2(q) =

J∑
j=1

wj

[
I∑
i=0

qi d
i(j )− i∗up(j )

]2

, (13)

where J represents the number of observations (in our case the number of sets

of measures), I the degree of the polynomial used in the approximation, and qi

the i -th coefficient of the polynomial approximation. Further, d i(j ) represents

the i -th power of the j -th element of the input sequence of measurement, i∗up(j)

the j -th element of the output sequence of measurement, and wj the weight for

a couple of values (
∑I
i=0 qid

i(j ), i∗up(j )), which according to Aitken [42] must

equal wj = 1/(σ∗β(j ))2 . Equation (13) can also be transcribed into a matrix

notation as

∆2(q) =
(
Dq − i∗up

)T
W
(
Dq − i∗up

)
, (14)

where matrices DJ×(I+1) and W J×J are respectively in the form

D =


1 d1(1) d2(1) .... dI(1)

1 d1(2) d2(2) .... dI(2)

: : : : :

1 d1(J) d2(J) .... dI(J)

 and W =


w1 0 ... 0

0 w2 ... 0

: : : :

0 0 ... wJ


(15)

and vectors q and i∗up in the form q = [q0, q1, . . . , qI ]
T and i∗up = [i∗up(1), . . . , i∗up(J)]T,

respectively.

To determine the values of qi, i=0, 1, . . . , I that minimize ∆2(q), we

differentiate (14) with respect to q , and we set the result equal to 0

∂

∂q
∆2(q) = 2(DTWDq −DTW i∗up) = 0 . (16)

The vector q of coefficients of the polynomial approximation of the I -th degree,

which minimizes the weighted sum of squared residuals, can be expressed as

q = (DTWD)−1DTW i∗up . (17)
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We tested the functional dependence i∗up(j ) on the dimensionality d using a

polynomial of the first, second, and third degrees. To evaluate the goodness of

fit, we used a measure based on the root mean squared error (RMSE ), which is

also known as the standard error of the regression, and is defined as

RMSE =

√
1

v
∆2(q) , (18)

where ∆2(q) represents the weighted sum of squared residuals as defined in (13)

or (14) and v the residual degrees of freedom, which is defined as the number

of response values minus the number of fitted coefficients estimated from the

response values. In our case, v = J − (I + 1). The results of our experiments

for the polynomials with degrees I = 1, 2, and 3 are listed in Table 3. From the

RMSE values, it is apparent that polynomials of the second degree approximate

the relationship between i∗up(j ) and the number of dimensions of the pattern

space with sufficient accuracy, i.e., RMSE for I = 2 and I = 3 are nearly

identical.

For practical use of the obtained results, i.e., for easily memorizing the values

of coefficients qi of the polynomial approximation, we attempted to express

the resulting polynomials in an even simpler form at the cost of only a slight

increase in the corresponding RMSE. Table 4 lists the resulting coefficients q̂i

for individual values of β along with the resulting polynomial representing a

simplified relationship between the required sample size Ŝβ and the dimensions

of the pattern space d. For a better insight into the results, we depict in Figures

2a-2f the sample size as a function of d for individual values of β dependencies

expressed both by polynomials with coefficients qi and simplified polynomials

with coefficients q̂i.

A very interesting feature emerges upon analyzing the simplified approxima-

tion polynomial for β = 0.95. We can write the value of the sample size Ŝ0.95

in the form

Ŝ0.95 = 5d(d+ 3) = 10×
[
d(d+ 3)

2

]
, (19)

where the term in brackets, i.e., d(d+3)/2, is equal to the number of parameters

of the Gaussian model, which are estimated using training data (d parameters
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Table 3: The resulting coefficients qi of the approximation polynomials including correspond-

ing root mean squared error (RMSE) computed for polynomial degrees of I = 1, 2, and 3 and

for β = 0.5, 0.8, 0.9, 0.95, 0.98, and 0.99.

β
I=1 I=2

q1 q0 RMSE q2 q1 q0 RMSE

0.50 20.8 -50.5 8.32 0.36 2.98 1.23 0.15

0.80 50.1 -107.8 8.07 1.12 5.59 0.70 0.15

0.90 84.0 -147.7 6.23 2.52 9.82 -0.11 0.16

0.95 121.8 -179.0 4.25 5.11 16.2 -0.98 0.14

0.98 204.4 -228.7 2.26 13.4 33.4 -7.9 0.17

0.99 304.0 -290.0 1.08 31.2 43.7 -5.4 0.13

β
I=3

q3 q2 q1 q0 RMSE

0.50 −2.0 · 10−5 0.36 2.93 1.33 0.15

0.80 −2.7 · 10−4 1.15 5.19 1.46 0.14

0.90 −1.3 · 10−4 2.53 9.68 0.12 0.16

0.95 1.6 · 10−3 5.00 17.35 -2.62 0.13

0.98 1.5 · 10−2 12.6 40.00 -14.8 0.16

0.99 6.5 · 10−2 28.8 58.8 -20.1 0.13

for the mean and d(d+1)/2 for the covariance matrix). This result indicates

that if we want to achieve a β value ≥0.95, we must use at least 10 times more

training data compared to the number of estimated parameters of the Gaussian

model. Here, we recall that the values of the sample size Ŝβ are determined

from the upper limits i∗β−up of confidence intervals with confidence level of 95%.

In a similar manner, we can also interpret the relation for Ŝ0.98, which leads to

the recommendation that we use a data size that is at least 26 times the number

of model parameters to be estimated for the Gaussian model.
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Table 4: Simplified approximation polynomials representing relationships between the sample

size Ŝβ and the dimension d of the pattern space.

β
I=2

q̂2 q̂1 q̂0 RMSE Sample size Ŝβ

0.50 0.35 3.5 0 0.30 Ŝ0.50 = 0.35 d(d+ 10)

0.80 1.10 6.6 0 0.26 Ŝ0.80 = 1.1 d(d+ 6)

0.90 2.50 10.0 0 0.17 Ŝ0.90 = 2.5 d(d+ 4)

0.95 5.00 15.0 0 0.24 Ŝ0.95 = 5 d(d+ 3)

0.98 13.00 39.0 0 0.22 Ŝ0.98 = 13 d(d+ 3)

0.99 30.00 45.0 0 0.15 Ŝ0.99 = 30 d(d+ 1.5)

5. Determination of value of likelihood accuracy β based on data size

In some applications, it is useful to know the correspondence between the

likelihood accuracy β and the size n of the training data set. To derive de-

pendencies between the likelihood accuracy β and the number n of data for

modeling Gaussian density functions, we use results of previous experiments

and techniques described especially in Section 2. Remind that for each dimen-

sion d of the pattern space we performed at least one hundred independent

experiments each with randomly generated parameters and randomly gener-

ated training Y and test Z data sets. Results of experiments are given in Table

5. Table 5 lists the indicative number of data to construct a Gaussian density

function which provides the likelihood accuracy β = 0.1, 0.2, . . . , 0.9, 0.95, 0.98,

and 0.99 ; these results are presented for dimensions of the pattern space

d = 1, 2, . . . , 10, 15, 20, 25, . . . , 50, 60, . . . , 100 (e.g. for modeling the Gaussian

density function in the space of dimension d = 10 and the likelihood accuracy

β = 0.9, we will need approximately 360 data).

For a better insight into the results presented in Table 5, we depict in Figure

3 the likelihood accuracy β as a function of the sample size n for individual

15



Figure 2: Illustrations of dependencies between the sample size Sβ and the dimension d of

the pattern space depicted both for approximation and simplified approximation polynomials

and expressed for β = 0.5, 0.8, 0.9, 0.95, 0.98, and 0.99.

dimension d; such a function we denote as βd(n). Figure 3 shows the dependence

β10(n), i.e. for d = 10. Let us mention that the shape of this dependence is

very similar for the other examined dimensions d.

The functional dependence of this process is appropriate to model1 by the

1For this purpose we used the Curve Fitting Toolbox in Matlab.
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Table 5: The correspondence among the indicative number of training data n, the accuracy

β of the Gaussian likelihood function and the dimension of the pattern space d.

d
# of likelihood accuracy β

samples 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98 0.99

1 n 3.5 3.6 3.8 4.0 4.3 4.8 5.5 7 13 21 39 67

2 n 6.4 6.8 7.3 8.0 8.8 10 12 16 29 50 110 210

3 n 10.5 11.4 11.9 13.1 14.5 17 21 27 53 97 220 420

4 n 13.5 14.5 15.6 17.0 19 23 28 40 77 142 355 750

5 n 16.3 17.6 19.2 21.5 25 29 37 56 109 200 473 980

6 n 18 20 23 27 32 40 53 78 150 285 695 1 400

7 n 22 25 28 33 40 49 68 95 200 380 920 1 800

8 n 25 29 33 39 48 60 82 118 240 470 1 150 2 400

9 n 30 35 40 47 57 72 97 140 290 560 1 400 2 850

10 n 33 38 45 54 68 85 120 168 360 700 1 700 3 500

15 n 55 66 80 98 125 165 230 335 695 1 400 3 400 7 400

20 n 84 103 130 160 210 280 400 585 1 250 2 300 6 400 15 800

25 n 125 155 190 235 300 400 560 850 1 850 3 700 9 500 22 500

30 n 170 210 255 320 420 550 780 1 200 2 550 5 100 12 800 28 500

35 n 225 275 340 430 550 730 1 050 1 600 3 500 6 900 17 600 42 000

40 n 275 340 420 530 690 930 1 300 2 100 4 400 8 800 22 500 54 000

45 n 335 415 520 660 850 1 140 1 630 2 500 5 500 11 000 28 000 68 000

50 n 400 500 630 800 1 050 1 400 2 000 3 100 6 800 13 500 34 000 78 000

60 n 540 700 880 1 140 1 500 2 020 2 900 4 500 9 800 20 000 57 000 -

70 n 740 930 1 180 1 500 1 980 2 660 3 830 5 900 13 200 26 700 77 000 -

80 n 920 1 170 1 500 1 930 2 540 3 450 5 000 7 600 17 200 34 500 92 000 -

90 n 1 160 1 480 1 900 2 400 3 200 4 300 6 200 9 600 21 400 43 500 124 000 -

100 n 1 420 1 800 2 300 3 000 3 900 5 300 7 600 11 700 25 800 52 000 137 000 -

rational function, which can be written as

βd(n) = P (n)/Q(n) (20)

where P a Q are polynomials. Based on a careful analysis of the data in Table

5 we found that the functional relationship (20) can be approximated (with

sufficient accuracy for all investigated dimensions d) by a simple rational func-
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Figure 3: Illustration the likelihood accuracy β10(n) as a function of the sample size n for

dimension d = 10.

tion where P (n) and Q(n) are polynomials of the first degree. The functional

relationship (20) can therefore be indicated in the shape

βd(n) = a1(n+ a2)/(n+ a3) . (21)

Values of the coefficients a1, a2, and a3 are specified for each dimension d of

the pattern space in Table 6. Since the values of a1 are for all dimensions very

close to 1, we tried to rewrite the equation (21) into a simplified form

β̂d(n) ≈ (n+ â2)/(n+ â3) . (22)

Approximate coefficients â1, â2, and â3 are listed in the second (upright) part

of Table 6 including intervals of values of n for which relationships β̂d(n) can

be used. To evaluate the goodness of fit, we again (as in Section 4) used the

root mean squared error (RMSE). The RMSE, which expresses here the error

of approximation of β, is for each dimension less than 0.01 with the exception

d = 1 and 2, where it is less than 0.02. Figure 4 summarizes all the results

obtained in Section 5.

6. Conclusion

Our paper attempts to contribute towards solving problems that frequently

appear in practical applications involving statistical Gaussian modeling. A fre-
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Table 6: Rational functions and corresponding coefficients for modeling dependencies βd(n)

and β̂d(n).

d
βd(n) = a1(n− a2)/(n− a3) β̂d(n) ≈ (n− â2)/(n− â3)

a1 a2 a3 â1 â2 â3 n

1 1.001 -3.39 -2.47 1 -3.4 -2.4 〈4;∞)

2 1.008 -6.16 -3.39 1 -6.1 -3.4 〈7;∞)

3 1.001 -10.01 -5.47 1 -10.0 -5.5 〈11;∞)

4 0.997 -12.82 -6.38 1 -12.8 -6.4 〈14;∞)

5 0.996 -15.16 -5.82 1 -15.2 -5.8 〈16;∞)

6 1.005 -16.62 -0.73 1 -16.3 -0.7 〈18;∞)

7 1.002 -19.42 0.48 1 -19.4 0.5 〈22;∞)

8 1.004 -22.24 3.46 1 -22.0 3.5 〈25;∞)

9 1.003 -27.12 3.01 1 -27.0 3.0 〈30;∞)

10 1.005 -29.11 9.35 1 -28.8 9.2 〈33;∞)

15 1.006 -46.98 32.14 1 -46 32 〈55;∞)

20 1.006 -69.81 71.24 1 -68 72 〈84;∞)

25 0.998 -104.3 91.70 1 -104 92 〈120;∞)

30 1.003 -140.5 134.1 1 -140 132 〈170;∞)

35 1.001 -185.3 176.8 1 -185 177 〈220;∞)

40 1.001 -218.9 250.1 1 -220 250 〈270;∞)

45 1.001 -270.6 310.3 1 -270 310 〈330;∞)

50 1.002 -319.9 412.2 1 -320 400 〈400;∞)

60 1.003 -425.9 648.0 1 -420 640 〈540;∞)

70 1.001 -582.3 808.7 1 -580 810 〈740;∞)

80 1.002 -723.2 1 084 1 -720 1 100 〈900;∞)

90 1.001 -901.4 1 368 1 -910 1 370 〈1 100;∞)

100 1.002 -1 108 1 681 1 -1 100 1 700 〈1 400;∞)
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quent issue in such cases involves the sample size needed for maximum-likelihood

estimates of such a Gaussian model. Our results provide useful recommenda-

tions for researchers working on applications wherein it is necessary to construct

statistical models from experimental data with a given accuracy. The recom-

mended values of the sample size resulting from our simplified approximation

of the polynomial model (for accuracies of β ≥ 0.95) are easy to remember (10

times the number of estimated parameters of the Gaussian model), and they

surprisingly almost exactly coincide with recommendations for sample size as

indicated by ”statistical practitioners”, but without the theoretical justification.

Further, the derived dependencies of likelihood accuracy β on size n of the data

sets for a given dimension d of the pattern space are very simple and can be

useful in many application tasks.

Our experiments were performed for space dimensions of d ≤ 100. Here, we

note that some statistical modeling tasks (e.g., in the area of computer vision)

work with considerably higher dimensions. Therefore, in our further research,

we plan to address tasks wherein d > 100.

It must be mentioned that the results presented in the paper should be

seen as a recommendation for estimation of the accuracy of the model; it is

always useful to seek additional training data for increasing the model accuracy

and robustness (particularly for tasks with a small number of pattern-space

dimensions). We believe that the presented results could aid in applications

wherein statistical modeling and statistical pattern recognition are involved.
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Figure 4: Illustration the likelihood accuracy βd(n) as a function of the sample size n for

dimension d = 1, 2, . . . , 10, 15, 20, . . . , 50, 60, . . . , 100.
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