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Abstract. Many problems, not only in signal processing, image pro-
cessing, digital imaging, computer vision and visualization, lead to the
Least Square Error (LSE) problem or Total (Orthogonal) Least Square
Error (TLSE) problem computation. Usually the standard least square
error approximation method is used due to its simplicity, but it is not
an optimal solution, as it does not optimize the orthogonal distances,
but only the vertical distances. There are many problems for which the
LSE is not convenient and the TLSE is to be used. Unfortunately, the
TLSE is computationally much more expensive. This paper presents a
new, simple, robust and fast algorithm for the total least square error
computation in E2.
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1 Introduction

The fitting of geometric features to given 2D or 3D points is desired in various
fields of science and engineering. The least squares error approximation method
(LSE) [7], [6] is one of the best known, and most often applied, mathematical
tools in various disciplines of science and engineering, e.g. signal processing [4],
optics [18], surface modeling [12], regression modelling [8], nonlinear systems
[14]. In the past, fitting problems have usually been solved through the LSE
method with respect to the effective implementation and acceptable computing
cost. However the natural and best choice of the error distance is the shortest
distance between the given point and the model feature. This error definition
is used in total (orthogonal) least squares error approximation method (TLSE),
which fits the model more accurately than the standard LSE method [2], [1].

2 Least Square Error Approximation

In the vast majority the Least Square Error (LSE) methods measuring vertical
distances are used. This approach is acceptable in the case of explicit functions
f(x, y) = h, resp. f(x, y, z) = h. However, it should be noted that a user should



2 Michal Smolik et al.

keep in a mind, that smaller differences than 1.0, will have significantly smaller
weight than higher differences than 1.0 as the differences are taken in a square
resulting to dependence in scaling of the approximated data, i.e. the result will
depend on physical units used, etc. The main advantage of the LSE method
is its simplicity for fitting polynomial curves and it is easy to implement. The
standard LSE method leads to an over determined system of linear equations.
This approach is also known as polynomial regression.

Let us consider a data set Ω = {〈xi, yi, fi〉}Ni=1, i.e. data set containing for
xi and yi measured functional value fi and we want to find parameters a =
[a, b, c, d]T for optimal fitting function, as an example:

f(x, y,a) = a+ bx+ cy + dxy (1)

by minimizing the vertical squared distance D, i.e.:

D = min
a,b,c,d

N∑
i=1

(fi − f(xi, yi,a))
2
. (2)

Conditions for an extreme are given as a vector equation:

∂D

∂a
=

N∑
i=1

(fi − (a+ bxi + cyi + dxiyi))
∂f(x, y,a)

∂a
= 0. (3)

All those conditions can be rewritten in a matrix form as Ax = b. The
selection of bilinear form was used to show the LSE method application to a
non-linear case, if the case of linear function, i.e. f(x, y,a) = a + bx + cy, the
4th row and column of the matrix A is to be removed.

Several methods for LSE have been derived [5], [11], however those methods
are sensitive to the vector a orientation and not robust in general as a value
of
∑N
i=1 x

2
i y

2
i might be too high in comparison with the value N which has an

influence to robustness of numerical solution. Also the LSE methods are sensi-
tive to a rotation as they measure vertical distances. Rotational and translation
invariance is fundamental requirement not only in geometrically oriented appli-
cations.

3 Total Least Square Error Approximation

The Total (Orthogonal) Least Square (TLSE) method takes another approach
as it measures distances orthogonally and approximation by a line or plane is
used nearly exclusively [19], [22]. One significant property of the TLSE method
is its rotational and translational invariance [21], [20]. This approach leads to
an approximation by an implicit function F (x, y) = 0 in the E2 case, resp.
F (x, y, z) = 0, in the E3 case, i.e. dependence expressible as an implicit function.

There are several approaches how to solve TLSE problem and comprehensive
analysis is given in [9]. Many algorithms are based on Singular Value Decompo-
sition (SVD) or on a ”simple” solution based on the explicit line representation
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[13] in the form y = bx+ a. This formulation leads to a simple formula for cal-
culation of the a, b coefficients. However, it is not robust and it is sensitive to a
rotation. If we rotate the input points and then compute the LSE approxima-
tion, the result is different than when we first compute the LSE approximation
and then rotate the line. Although when using the TLSE approximation, there
is no such problem with rotation and the results are consistent. Also when a
line is close to a vertical one, there is a high numerical imprecision for the LSE
approximation and an overflow can appear as well, etc. If TLSE method is to
be used many times, it is reasonable to consider robust and fast method spe-
cialized for the E2 case. In the E2 case and the linear case a linear function
F (x) = ax+ by + c = 0 is used, the orthogonal distance d of the given point x
and the line p is determined as:

d =
|ax+ by + c|√

a2 + b2
, (4)

where x = [x, y]T is the given point and a line p is given as ax+ by+ c = 0. The
computational problem is determination of coefficients a, b, c of a line p ∈ E2.

There is a difference in approximation results for the LSE and the TLSE
method as each of them use a different minimization criteria. The difference can
be high for higher angles between x axis and the line, see Fig. 1 for an example.

Fig. 1. Difference between standard least square error method and total (orthogonal)
least square method.

In image processing, signal processing, digital imaging and computer graphics
specialized algorithms should be used in the E2 case. Such a solution for the E2

case was published in [3] which is based on a line representation in the polar
coordinates. Some specialized algorithms for a circle, resp. ellipse fitting were
developed recently as well. The algorithm fully described in [3] is based on polar
representation and leads to a formula which is stable. The derivation of the



4 Michal Smolik et al.

algorithm is not simple and uses goniometric functions, i.e. sin(θ) and cos(θ). A
special case for perfectly circular data is to be solved. The algorithm [3] is not
extensible to the E3 case.

3.1 Total Least Square Error - Goniometric Functions

The approach proposed by Alciatore [3] defines an implicit line as

xsin(θ) + ycos(θ) + ρ = 0, (5)

where θ is chosen to be line orientation with respect to the x axis. The LSE
method is computed as the sum of the squares of the related perpendicular
distances is minimal. That is, minimize the value

N∑
i=1

r2i (θ, ρ), (6)

where N is the number of points and ri are perpendicular distances.
After lengthy derivation, the authors end up with the following formulas

A = 2b′

B = −
(
a′ +

√
(a′)2 + 4(b′)2

)
C = Ax+By,

(7)

where A, B and C are parameters of implicit line Ax + By + C = 0, [x, y]T is
the centroid of the dataset {(xi, yi)}. Values of a′ and b′ are computed using

a′ =

N∑
i=1

(xi − x)
2 −

N∑
i=1

(yi − y)
2

b′ =

N∑
i=1

(xi − x) (yi − y). (8)

3.2 Total Least Square Error - Parametric Form

The approach proposed by Skala [16] defines a parametric line as

y = xT + ts, (9)

where xT is the centroid of the dataset {(xi, yi)}, s is a directional vector and t
a parameter t ∈ <. The TLSE method is computed as the sum of the squares of
the related perpendicular distances is minimal. That is, minimize the value

N∑
i=1

r2i =

N∑
i=1

((xi − xT )× s)T ((xi − xT )× s)
sTs

, (10)

where N is the number of points, ri are perpendicular distances and vector s is
to be calculated. After derivation, the author end up with the following formula(

Ω −
(
sTΩs

)
I
)
s = 0, (11)
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where Ω is

Ω =

N∑
i=1

xi ⊗ xTi , (12)

where ⊗ means a tensor product (result is a matrix).

4 Proposed Approach

In the following a new approach to TLSE computation will be described with
experimental verification of the proposed method.

Fundamental requirement for any algorithm is its robustness. It should be
fast and simple to implement as well. The proposed TLSE algorithm [17] is based
on a squared orthogonal distance computation. As the TSLE method has to be
translationally and rotationally invariant, the centroid of the given point set is
to be x0 = 0, this was shown also in [3]. As it is not a general case, the first step
is a data set transformation:

xi = xi − x0 x0 =
1

2

N∑
i=1

xi, (13)

where N is the number of the given points, xi = [x,yi]
T are the given points,

i = 1, . . . , N . This step has two consequences, the line p (ax+ by+ c = 0) passes
the origin of the coordinate system and therefore the coefficient c of the line p
is set c = 0 by definition, now.

There is a simple formulation of the TLSE problem using optimization and
Lagrange multipliers, i.e.

min
a,b,λ

D(a, b, λ) = min
a,b,λ

(
(axi + byi)

2
+ λg(a, b)

)
& g(a, b) = 0, (14)

where
g(a, b) = a2 + b2 − 1. (15)

Unfortunately, this approach does not lead to a simple solution.
The proposed algorithm is based on direct minimization of a distance given

as:

D(a, b) =

N∑
i=1

d2i =

N∑
i=1

(axi + byi)
2

a2 + b2
. (16)

For a minimum the following conditions must be fulfilled

∂D(a, b)

∂a
= 0 &

∂D(a, b)

∂b
= 0. (17)

Using (16) and two conditions (17) we get two conditions for an extreme

∂D(a, b)

∂a
= ab

N∑
i=1

(
x2i − y2i

)
+ (b2 − a2)

N∑
i=1

xiyi = 0

∂D(a, b)

∂b
= ab

N∑
i=1

(
x2i − y2i

)
+ (b2 − a2)

N∑
i=1

xiyi = 0.

(18)
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It can be seen that both equations above are equivalent and actually we have
got just one equation

ab

N∑
i=1

(
x2i − y2i

)
+ (b2 − a2)

N∑
i=1

xiyi = 0, (19)

using substitutions

ξ =

N∑
i=1

(
x2i − y2i

)
& η =

N∑
i=1

xiyi, (20)

(19) can be rewritten as

abξ + (b2 − a2)η = 0, (21)

Now, we need to determine values a, b. As we keep the normalization condition
for coefficients a, b during the extreme conditions, if

N∑
i=1

x2i ≥
N∑
i=1

y2i (22)

we can select the value a, e.g. a = 1, and solve the equation for b or vice versa.
This leads to a quadratic equation

bξ + (b2 − 1)η = 0 i.e. ηb2 + ξb− η = 0 (23)

and therefore

b1 =
−ξ +

√
ξ2 + 4η2

2η
i.e. b2 =

−ξ −
√
ξ2 + 4η2

2η
. (24)

The minimum distance is given by the b2 value and

b = b2 i.e. a = 1 (25)

and the a, b values are of general values
Now, the computed line p : ax + by = 0, which is represented by the vector

p = [a, b : 0]T , passes the origin of the coordinated system is to be ”moved”
back to the original coordinate system of the original data set using the standard
geometric transformation represented by a matrix T [15], i.e.a′b′

c′

 =

 1 0 0
0 1 0
−x0 −y0 1

ab
0

 (26)

(26) can be rewritten as
p′ = Tp. (27)

Now, the line p′ represents the line which optimally fits data in the sense of the
TLSE method.

The formula is simple, easy and robust. However, it should be noted, that
the proposed method above is not directly extensible to the E3 case as a line in
E3 cannot be represented by an implicit formula.
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5 Experimental Results

In this section we will compare our proposed approach for total least squares
approximation with other approaches. The firs approach we will compare with,
is the method presented in [3]. This method computes total orthogonal least
squares approximation like our proposed method. It uses trigonometrical func-
tions to derive the final formula for approximation. However the result of [3] is the
same as result of our proposed approach, the derivation of final approximation
formula in [3] is much more complicated. Derivation of our proposed approach
is much more simpler. Next we will compare with the traditional least squares
approximation method. This method minimizes the sum of square differences in
y axis, i.e. approximated line formula is y = f(x).

We used 100 uniformly generated points for testing purposes. The visualiza-
tion of generated input points is in Fig. 2a. The generated input points were
rotated by an angle ϕ = {0°, 1°, . . . , 45°}.

We computed all the three tested least squares approximation methods and
visualize the results in Fig. 2 and Fig. 3. It can be seen that the proposed
approach for total least squares approximation has the same results as Alcia-
tore’s method presented in [3], i.e. the both approximated lines have the same
mathematical formula. However the proposed approach is 21% faster than the
Alciatore’s method.

The results of traditional least squares approximation method differs from
the results of the proposed approach. The reason for this is a different criteria for
minimization, as the traditional method minimizes the sum of squared distances
in y axis and the proposed approach minimizes the sum of squared orthogonal
distances. For line that is parallel with the x axis both methods give the same

(a) Line rotation 0° (b) Line rotation 45°

Fig. 2. Results of line approximation for different line rotation angles. Rotation angle
is with respect to the x axis.
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(a) (b) (c)

Fig. 3. Results of line approximation for different line rotation angles. Line rotation
11° (a), 23° (b) and 35° (c)

result as the orthogonal distances are identical to the distances in y axis. The
more the angle of line with x axis increases, the more differs orthogonal distances
from the distances in y axis and thus both approximated lines differs more and
more, see Fig. 2 and Fig. 3. The additional comparison of TLSE approximation
method with other approximation methods is in [10] and the TLSE method gives
the most accurate results.

The more the angle of line with x axis increases, the more differs the standard
approximation and the proposed approach. To compute how much the standard
approximation differs from our proposed method for total least squares approx-
imation we need to define the distance measurement

dist ([a, b, c],x) =

∑N
i=1 |axi + byi + c|√

a2 + b2
, (28)

where [a, b, c] are coefficients of approximated line ax + by + c = 0 and x =
{[x1, y1], . . . , [xN , yN ]} are approximated points. To compute how much the stan-
dard LSE approximation differs from our proposed method, which is the correct
one, we define the following formula

error =
(dist ([a, b, c]StandardLSE ,x)− dist ([a, b, c]ProposedApproach,x))

dist ([a, b, c]ProposedApproach,x)
(29)

Using (29) we can compute the approximation line distance error, see Fig. 4.
It can be seen that for line with angle 0° the approximation error is 0%. The error
of the standard LSE increases with increasing the line angle. We performed the
error computation for line angle up to 45°, as for angle from 45° to 90° we should
use x = g(y) for the standard LSE approximation, otherwise the approximation
error will be too high for the standard LSE method (y = f(x)).

It should be noted that the TLSE approximation method by Alciatore [3]
and the proposed TLSE method give the identical results.
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Fig. 4. Approximation line distance error in %. The error is computed using (29).

6 Conclusion

We presented a new approach for total least squares error approximation. The
algorithm proved its simplicity and robustness and was compared with a LSE
and a TLSE approaches. The proposed TLSE method has similar computational
costs as standard LSE method and moreover, the approximation results are more
correct.

In the future we plan to extend this approach for implicit plane approxima-
tion in E3 as the extension is not straightforward due to non-linearity.
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