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Introduction
Presumably complex systems can be better 
understood when they are broken down into 
their constituent elements and structured 
hierarchically. Then, judgments about these 
elements can be synthesized on the basis 
of their relative importance at each level of 
the hierarchy into a set of overall priorities. 
By breaking down a reality into homogenous 
clusters and subdividing them into smaller 
ones, it is possible to integrate large amounts 
of information into the structure of a problem 
and form a more comprehensive picture of the 
whole system.

There is a decision support methodology 
(DSM) which conforms to the above 
prescription. It is called the Analytic Hierarchy 
Process (AHP) and was devised at the Wharton 
School of Business by Thomas Saaty (1980). 
Its contemporary applications can be found, 
for example in Lidinska and Jablonsky (2018), 
Abdelmaguid and Elrashidy (2016), Kramulová 
and Jablonský (2016), and Ponis et al. (2015). 
This DSM is based on the pairwise judgments 
technique which comes from an infl uential paper 
of Marquis de Condorcet (1785), who used this 
technique in the election process (Young, 1988), 
and which was popularized by Thurstone (1927) 
thanks to his fi rst contemporary application at 
the beginning of the 20th century.

When group decision-making (GDM) is 
taken into consideration, the AHP seems 
a particularly attractive methodology, and 
although it has been examined numerous times 
from the perspective of its effectiveness and 
applicability in GDM processes (see e.g. Scala 
et al., 2016; Saaty & Peniwati, 2008; Saaty & 
Vargas, 2012; Aguarón et al., 2014; Hosseinian 
et al., 2012; Moreno-Jiménez et al., 2005, 
2008; Altuzarra et al., 2010; Sun & Greenberg, 
2006), still a research gap could have been 
identifi ed. Thus, this paper examines judgments 

consistency infl uence on the credibility 
of priority ratios (PRs) within a particular 
priority vector (PV) derived from inconsistent 
pairwise judgments made by a decision maker 
(DM). Examination results generalize to the 
synthesized pairwise comparison matrix that 
is obtained on the basis of individual pairwise 
comparison matrices for all group members. 
Having in mind that a consistency index for the 
PCM denoting group preferences cannot be 
greater than the consistency index of the most 
inconsistent individual PCM it became possible 
to designate the credibility of the priority 
vector for the group on the basis of the most 
inconsistent individual PCM.

The article is organized around three 
main sections: the introductory section 
which elaborates on pairwise judgments, 
AHP, and GDM with application of AHP; the 
methodological section devoted to the research 
methodology, comprising an illustrative 
example of the problem and selected pitfalls 
during priority ratios estimation process 
which builds on preselected measures of 
estimation errors; the investigational section 
encompassing the research outcome, its 
contribution to the research fi eld and the 
examination breakthrough from the viewpoint 
of other research papers. The fi nal part of the 
article constitutes the section ‘Conclusions‘ 
which summarizes examination fi ndings.

1. Background
The AHP can be considered to be both 
a descriptive and prescriptive model of decision 
making. It promotes pairwise judgments (i.e. 
valuation on the basis of pairwise comparisons) 
of criteria and alternatives with respect to 
a criterion. Genuinely (as proposed by the 
creator of AHP), the comparison process 
proceeds with the application of a fundamental 
scale of absolute numbers that has been 
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proven in practice i.e. Saaty’s numerical scale 
which comprises of the integers from one 
(equivalent to the verbal judgment - ’equally 
preferred‘) to nine (equivalent to the verbal 
judgment - ’extremely preferred‘), and their 
reciprocals. Other numerical scales have been 
considered also see e.g. Dong et al. (2008). 
The methodology of AHP is based on the well-
defi ned mathematical structure of consistent 
matrices and their associated principal right 
eigenvector’s (REV) ability to generate true or 
approximate weights, see e.g. Merkin (1979), 
Saaty and Vargas (1984).

Generally, the problem of deriving PRs from 
a pairwise comparison matrix (PCM) de no ted 
as nxnijaA ][  with elements jiij aaa  , is to 
estimate w = [w1, w2, w3,…, wn]T on the basis of 
matrix A which comprises a decision maker’s 
pairwise judgments (denoting DM preferences) 
concerning the importance of a given binary 
set of alternatives. Commonly PRs wi , where 
I = 1,…, n, are selected to be positive and 
normalized to unity  

n

i iw 1, and the elements 
aij of matrix A are then the DM’s judgments 
about the PRs jiij www  , where i, j = 1,…,n, 
and n is the number of all alternatives being 
considered. In a perfect judgment case then, 
the problem can be designated as:

wwA    (1)

and w can be computed by solving the 
eigenvector equation (1). In a perfect case 
(matrix A is consistent) λ is the only nonzero 
eigenvalue of A i.e. the nonzero solution of the 
characteristic equation:

  0det  IA   (2)

where I denotes the identity matrix of order n. 
In this case, also λ = n. On the other hand, 
when the case is not perfect (matrix A is not 
consistent) an estimate of the true w is the 
normalized principal right eigenvector (REV) 
associated with the maximal eigenvalue. Thus, 
in order to obtain the estimate it is needed to 
solve the general eigenvector equation:

wwA  max  (3)

where λmax denotes the principal eigenvalue 
which is not smaller than n, is simple and its 
existence is guaranteed by the Perron-Frobenius 
Theorem, see e.g. Saaty and Vargas (1984).

The matrix of ratios A = (w i./.w j) is consistent, 
if and only if n is its principal eigenvalue and 
A ∙ w = n ∙ w. Further, w > 0 is unique to within 
a multiplicative constant.

If the elements of a matrix A satisfy the 
condition wij = 1/wji for all i, j = 1,…, n then 
the matrix A is said to be reciprocal. If its 
elements satisfy the condition wikwkj = wij for all 
i, j, k = 1,…, n and the matrix is reciprocal, then 
it is called cardinally transitive or consistent. 
Matrix A can also be only transitive if the 
following conditions hold: (i) if for any i = 1,…, n, 
an element wij is not less than an element wik 
then wij ≥ wik for i = 1,…, n, and (ii) if for any 
i = 1,…, n, an element wji is not less than an 
element wki then wji ≥ wki for i = 1,…, n. In 
the case of reciprocal PCMs – which are the 
only accepted PCMs for the AHP although 
counterarguments exist in literature (see e.g. 
Linares et al., 2016) the two conditions (i) and 
(ii) are equivalent.

Fundamentally, all theories are based on 
axioms, so is the AHP. Its creator Saaty (2006) 
defi nes fi ve conditions for good approximations: 
reciprocity, homogeneity (the elements being 
compared must be of the same order of 
magnitude), independency (judgments about, 
or the priorities of, the elements in a hierarchy 
cannot depend on lower level elements), near 
consistency and uniform continuity (elements 
wi, I = 1,…, n should be relatively insensitive 
to small changes in the elements aij, only then 
good approximations to aij remain wi / wj  ratios).

The central point of AHP and the key issue 
for a theory of choice that is based upon AHP 
is the methodology of capturing (in)consistency 
of PCMs within the AHP. In order to derive 
credible priority vectors (PV) within AHP, it is 
necessary to impose some boundaries on (in)
consistency of PCMs involved in the process. 
Indeed, signifi cant violation of the PCM (in)
consistency may mislead the true values of 
priority ratios within the PV making the entire 
methodology itself useless. On the other hand, 
it does not mean that a high consistency of PCM 
guarantees credible values of PV because even 
perfectly consistent PCMs may not be error free, 
see e.g. Grzybowski (2016) and Temesi (2011). 
That is why establishing some relations between 
(in)consistency of PCM and the credibility of 
priority ratios estimates seems so important.

The AHP genuine measure of PCM (in)
consistency belongs to Saaty (1980) and is 
strictly related to the REV, which makes it 
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especially attractive. It does not mean that the 
other PCM inconsistency measures (called 
consistency or inconsistency indices) do not 
exist. To the contrary, a number of other indices 
can be found in literature, see e.g. Mizuno 
(2019), Peláez, Martínez and Vargas (2018), 
Dixit (2018), Fedrizzi and Ferrari (2017), 
proposed quite recently.

A detailed analysis of all consistency indices 
available in literature is beyond the scope of this 
research. However, a reader interested in various 
approaches to consistency measurement during 
pairwise comparisons may want to review those 
references. It behooves to mention that pairwise 
judgments consistency measurement was also 
a topic of more cross-sectional surveys e.g. 
Brunelli (2018), Kou et al. (2016). Having the 
perspective on a scale of research devoted 
to various ways of pairwise comparisons 
consistency identifi cation, it remains to mention 
that Saaty’s concept for pairwise comparisons 
consistency measurement proposed for AHP 
is currently systematically criticized, see e.g. 
Xu et al. (2008), Koczkodaj and Szwarc (2014), 
Koczkodaj and Urban (2018).

However, taking into account that the 
AHP creator’s concept is still applied in the 
way it was proposed a few decades ago, 
interested readers in a detailed perspective of 
Saaty’s concept, as well a more fundamental 
analysis of the whole AHP approach, may 
want to study a more detailed examination of 
this methodology for instance in Wu and Kou 
(2016), Kou et al. (2016), and Saaty (2008b). 
Further discussion within this area, for reasons 
of brevity, is deliberately omitted. Instead, some 
key issues of group decision making with the 
application of AHP will be briefl y depicted.

It is a fact that most of real-life decisions 
are not made by individuals, but by groups of 
individuals e.g. committees, councils, etc. From 
that perspective the relation between the quality 
of pairwise judgments made by individuals and 
the quality of the representative judgment for 
a group of individuals is of great importance.

Thus, the prescription exists for an individual 
judgments aggregation in a way which enables 
obtaining a representative group judgment. 
The reciprocal property of the AHP plays an 
important role from that perspective. Generally, 
judgments have to be combined in such a way 
that reciprocals of the synthesized judgments 
are equal to the syntheses of these judgment 
reciprocals.

It has been deduced that the only unique way to 
do that is to apply the geometric mean procedure. 
It can be done in two ways (Saaty, 2008b):
 if experts are appointed as decision makers, 

then rather than combining their individual 
judgments, their fi nal outcome from 
a hierarchy is synthesized with application 
of a geometric mean;

 on the other hand, if the individuals 
themselves have different degrees of 
importance i.e. voting powers, their 
individual judgments are raised to their 
voting power and the group outcome is 
established on the basis of their individual 
judgments i.e. the weighted geometric 
mean is formed (Formulae 7 and 8).
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where wk denotes a priority of importance for 
the individual.

In the latter case, the fi nal outcome for 
a hierarchy is computed with the application 
of the standard AHP aggregation i.e. with 
application of the weighted arithmetic mean 
(the priority of the particular alternative under 
its criterion is weighted by the priority of its 
criterion(s), then the total priority of the given 
alternative is determined by the sum of their 
weighted priorities).

It has been proven that application of 
the geometric mean procedure for individual 
preferences aggregation is the only one which 
satisfi es a number of important properties 
(Aczel & Saaty, 1983). It has been also proven, 
(see e.g. Liu, Zhang, & Wang, 2012; Grošelj 
& Stirn, 2012; Escobar, Aguarón, & Moreno-
Jimenez, 2004; Xu, 2000), that the CI(A) of 
the group preferences cannot be greater than 
the CI(A*) of the most inconsistent individual 
PCM = A*, i.e.:

Cl(A) ≤ max{Cl(A1), Cl(A2),...CI(An)}.

However, despite the relevance of 
the fi ndings stated above, it needs to be 
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stressed that relatively consistent individual 
pairwise judgments do not guarantee 100% 
preferences credibility derived thereof, see 
e.g. Temesi (2011). Thus, rather then focusing 
on inconsistency of the group preferences, 
primarily the consistency of individual pairwise 
judgments must be meticulously controlled from 
the perspective of its relationship with priority 
ratios estimation errors which can distort 
credibility of a particular priority vector. The 
necessity of research in this area seems to be 
paramount.

2. Research Methodology
It is emphasized, that few research papers 
have dealt in depth with the above presented 
problem i.e. the relation between a level of 
the pairwise judgments (in)consistency and 
the range of possible estimation errors for 
established priority ratios, see e.g. Grzybowski 
(2016) and Kazibudzki (2019a).

However, despite of the relevance of fi ndings 
published therein, those research studies 
concentrate on average estimation errors within 
particular priority vectors. The consequence of 
such a perspective is a tacit assumption that 
estimation errors for particular priority ratios are 
more or less the same as the mean error for 
the particular priority vector. It turns out, that it 
is not necessarily true, especially when relative 
measures for estimation errors are considered. 
The examination of these issues is in order and 
will be made briefl y in the below subsection 
entitled ‘Problem illustration’, and then 
thoroughly in the paper’s subsection entitled 
‘Examination breakthrough’. The problem 
exemplifi cation is fi rst to be considered.

2.1 Problem Illustration
The following hypothetical normalized 
priority vector (the vector of priority ratios) is 
considered: PV(w) = [0.0625, 0.1042, 0.1458, 
0.1875, 0.2292, 0.2708]. It is assumed that 
the vector refl ects ‘true’ (not estimated) the 
DM‘s relative preference toward six objects 
whose relative characteristics are known e.g. 
the strength of preferences toward the objects 
is associated with the size of these objects 
(their mass, volume, circumference etc.), so 
their relative importance can be calculated by 
dividing the particular object’s size by the total 
size of all objects. On the basis of this ‘true’ 
PV(w), the PCM(w) is formed denoted as A(w) 
with elements wij = wi / wj:





























11.18181.44441.85712.64.3333
0.846211.22221.57142.23.6667
0.69230.818211.28571.83
0.53850.63640.777811.42.3333
0.38460.45450.55560.714311.6667
0.23080.27270.33330.42860.61

)(wA

Then, A(w) is perturbed by perturbation 
factor e which single value in this example 
is given e = 0.5. This technique allows to 
emulate inconsistency during DMs judgments 
concerning objects and is widely accepted 
for this purpose since its fi rst application i.e. 
Zahedi (1986). In this way the perturbed matrix 
A(x) is obtained, where xij = wije for i ≠ j and 
i, j  N = {1,…,6}.





























10.59090.72220.92861.32.1667
0.423110.61110.78571.11.8333
0.34620.409110.64290.91.5
0.26920.31820.388910.71.1667
0.19230.22730.27780.357110.8333
0.11540.13640.16670.21430.31

)(xA

Further, the upper triangle elements of A(x) 
are rounded to the closest value of Saaty’s 
scale and reciprocity is imposed (only the 
upper triangle elements i.e. elements above 
A(x) diagonal are considered for rounding while 
the lower triangle elements are computed as 
reciprocals of the upper triangle elements). 
In this way the scaled and reciprocal A(v) 
is obtained which refl ects DMs judgments 
concerning objects expressed with application 
of the particular preference scale, in this 
example Saaty’s scale. Other scales can be 
applied also, for references see e.g. Dong et al. 
(2008).





























123459
0.513347

0.33330.33331346
0.250.33330.3333135
0.20.250.250.333313

0.11110.14290.16670.20.33331

)(vA

It should be emphasized that A(v), on 
the basis of Saaty’s consistency philosophy, 
should be considered as acceptably consistent 
because its CI(A(v)) = 0.0670, RI(6) = 1.24 
thus CR(A(v)) = 0.0541 which informs of 
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an acceptable level of consistency (Saaty 
suggested that CR < 0.1).

On the basis of A(v), PV(v) is calculated, 
in this example, with the application of the 
REV method as the genuine AHP prioritization 
technique (PT). It behooves to mention that 
other PTs, which were suggested in literature for 
this purpose, can be also applied. For brevity, 
they will not be discussed in this research. 
However, the interested reader may want to fi nd 
references where these PTs are scrutinized. 
The most recent are Orbán-Mihálykó et al. 
(2017), Kazibudzki (2016b), Kułakowski (2015).

Continuing the main stream of the 
research, on the basis of A(v) the following 
PV(v) is obtained with application of the REV 
method: PV(v) = [0.0277, 0.0566, 0.1027, 
0.1714, 0.2679, 0.3736], which is different 
than PV(w) = [0.0625, 0.1042, 0.1458, 0.1875, 
0.2292, 0.2708]. Having those two vectors 
of priority ratios, it is possible to compute 
deviations among their elements i.e. maximal 
absolute deviation (MaxAD), mean absolute 
deviation (MAD), minimal absolute deviation 
(MinAD), maximal relative deviation (MaxRD), 
mean relative deviation (MRD), and minimal 
relative deviation (MinRD), see formulae in 
Tab. 1.

From the perspective of this research, 
devoted to designating the priority ratios 
estimate credibility, four deviations presented 
in Tab. 1 i.e. MaxAD, MaxRD, MAD and MRD, 
become especially signifi cant because they 
enable designation of confi dence intervals for 
‘true‘ priority ratios (as in the classic statistical 
estimation theory).

In this exclusively illustrative example, the 
confi dence for those intervals is purely hypothetic 
because it cannot be designated only on the basis 
of one case. However, iterations of similar cases 
are possible using Monte Carlo simulations which 
results can provide meaningful data in this matter. 
This issue is scrutinized further in the article’s 
subsection ‘Examination methodology’.

Returning to the problem’s illustration 
issue, the values of four deviations especially 
signifi cant for the considered problem study 
are presented in Tab. 2. On the basis of these 
values (Tab. 2), the hypothetic confi dence 
intervals for priority ratios estimates (PRE) 
can be established and illustrated (Fig. 1–2). 
As can been noticed (Fig. 1–2), the hypothetic 
confi dence intervals for priority ratios have 
different features i.e. range and symmetry in 
relation to the estimated priority ratios values. 
Those features depend upon applied deviation.
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Tab. 1: Formulae for deviations among ‘true’ and estimated vectors of priority ratios

MAD MaxAD MRD MaxRD

0.0472 0.1028 0.3239 0.5568

Source: own

Tab. 2: Deviations among ‘true’ and estimated vectors of priority ratios

EM_4_2019.indd   199EM_4_2019.indd   199 25.11.2019   11:02:4425.11.2019   11:02:44



200 2019, XXII, 4

Information Management

Noticeably, a higher spread of hypothetic 
confi dence intervals and their higher 
asymmetry is observed when relative and/or 
maximum deviations are applied. For relative 
deviations, the spread of hypothetic confi dence 
intervals also depends on the value of the 
particular priority ratio i.e. higher values of 
priority ratios entail a larger spread for their 
hypothetic confi dence intervals: the problem 
is clearly visible for MaxRD (Fig. 2). It is very 
important to notice that although the spread 
and asymmetry of the hypothetic confi dence 
intervals for relative deviations are signifi cant, 
the hypothetic confi dence intervals for the fi rst 
and second priority ratio i.e.

]041.0,0209.0[1v , ]0837.0,0427.0[2 v ,

established with the application of MRD do not 
encompass the ‘true’ values of the fi rst and 
second priority ratio which equal respectively 
x1 = 0.0625, x2 = 0.1042.

It bears mentioning that the MRD has also 
another very unattractive feature i.e. it can 
mask signifi cant dispersion among particular 
priority ratios deviation.

For example, let two normalized 
hypothetic vectors of priority ratios be given as 
PV(z) = [0.2262, 0.2729, 0.1390, 0.3619], and 
its estimate PV(s) = [0.2143, 0.3571, 0.1429, 
0.2857]. In this case PV(z) is the ‘true‘ priority 
vector in relation to which a mean relative 

Fig. 1: Hypothetic confi dence intervals for PRE set with application 
of MAD and MaxAD

Source: own

Fig. 2: Hypothetic confi dence intervals for PRE set with application 
of MRD and MaxRD

Source: own
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deviation for priority ratios is calculated. In 
such a situation, one receives MRD = 0.15 
which seems a rather small relative deviation. 
However, as can be noticed, singular relative 
deviations (SRD) among priority ratios 
within PV(z) and PV(s) equal, respectively 
SRD = [0.0527, 0.3087, 0.0280, 0.2106], 
and are highly divergent. In consequence, 
a reversal of priority ratios ranking is noted i.e. 
PV(z) = {3, 2, 4, 1} and PV(s) = {3, 1, 4, 2}. 
This is the exemplary situation which needs 
prevention, thus it is argued to withdraw relative 
deviations from further application to similar 
problems.

Nevertheless, because the above 
proposition is based only on a hypothetic 
illustrative example, it is thoroughly examined 
further in this paper in the subsection entitled 
‘Examination breakthrough’ for more credible 
conclusions.

2.2 Examination Methodology
Continuing the main stream of the research, 
in real AHP applications, the ‘true’ vector 
of priority ratios (in the illustrative example 
denoted as PV(w)) is unknown. The entire 
AHP concept assumes it can be estimated with 
the application of the selected prioritization 
technique (PT), which in classic AHP is the REV 
method described earlier in this paper.

As can be noticed from the earlier provided 
example, an estimate of the unknown PV can be 
more or less credible. In general, this credibility 
generally depends on the applied preference 
scale, PT, and the consistency of PCM on the 
basis of which the estimate of unknown PV is 
derived. An examination concerning differences 
between various preference scales and PTs 
in relation to credibility of PVs obtained with 
their application is beyond the scope of this 
research. However, the relation between the 
consistency of PCM and the PV estimate 
credibility seems particularly attractive. The 
examination proceeds with the application of 
Monte Carlo simulations coded and performed 
in Wolfram Mathematica Software.

Taking into account the fact that Saaty’s 
concept of PCM consistency measurement was 
seriously questioned (see e.g. Xu et al., 2008; 
Grzybowski, 2012 Koczkodaj & Szwarc, 2014; 
Grzybowski, 2016; Koczkodaj & Urban, 2018), 
and the credibility of REV as the PT is slightly 
undermined (see e.g. Kazibudzki, 2019b; Bana 
e Costa & Vansnick, 2008; Schoner & Wedley, 

1989; Budescu et al., 1986; Belton & Gear, 
1983; Johnson et al., 1979), for the Monte Carlo 
simulations in this research, the Logarithmic 
Least Squares Method (LLSM) developed by 
Crawford and Williams (1980, 1985) is applied, 
as the oldest alternative for the REV (Formulae 
9 and 10), as well LLSM based consistency 
index CI(LLSM) proposed by the same authors 
(Formula 11), and examined by Aguarón and 
Moreno-Jimenez (2003).
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To properly examine the problem from the 
given perspective, the following simulation 
scenario is considered. It behooves to mention 
that its assumptions come from Grzybowski 
(2016) who fi rst devised its framework for 
a similar analysis. Thus, the following steps in 
the scenario are considered:

Step 1: For the assumed n, randomly 
generate a ‘true’ [n × 1] priority vector 
w = [w1,…, wn]T and the corresponding ‘genuine’ 
PCM(w) = G(w).

Step 2: Randomly select an element wxy for 
x < y of G(w), and replace it with wxyeB, where eB 
is a relatively signifi cant error, randomly drawn 
(with application of uniform distribution) from the 
interval eB[2;4]. Errors of that magnitude are 
basically considered as relatively “signifi cant”, 
see e.g. Dijkstra (2013), Grzybowski (2016).

Step 3: For every element wij, i < j ≤ n, 
other than wxy, randomly select a value eij for 
the relatively small error in accordance with the 
given probability distribution  (applied in equal 
proportions as gamma, log-normal, truncated 
normal, and uniform distribution) and replace 
the element wij with the element wijeij where eij 
is randomly drawn from the interval eij[0,5;1,5] 
with application of uniform distribution.

Step 4: For all i, j such that i < j, round all 
values of wijeij of G(w) to the closest value from 
the selected scale.
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Step 5: Replace all elements wij for i > j of 
G(w) with 1/wij. The perturbed PCM(w) in Steps 
2–5 denote as P(v).

Step 6: On the basis of P(v) compute the 
value of the examined consistency index CI as 
well as the estimate of the vector w denoted as 
v derived from P(v) with application of assigned 
prioritization technique. Then calculate MaxAD1 
and MaxAD2 i.e. the maximum and the second 
maximum absolute deviation between priority 
ratios of w and v in accordance with formula 
presented in Tab. 1. Save the values computed 
in this step as one record.

Step 7: Repeat Steps 2–6 NP times.
Step 8: Repeat the scenario NT times.
Step 9: Save all the records as one database 

fi le.
The above presented simulation framework 

enables examination of relations between 
performance of a given consistency index 
and greatest deviations between a ‘true’ and 
estimated vector of priority ratios. This way 
it is possible to associate various values of 
a given consistency index with highest potential 
estimation errors for obtained priority ratios.

For formality, the simulation framework 
presented above exactly emulates steps 
scrutinized in the example provided earlier in 
this paper in subsection ‘Problem illustration’. 
All parameters of the applied probability 
distributions in the simulation framework 
i.e. gamma, log-normal, truncated normal, 
and uniform, are set in such a way that the 
expected value EV(eij) = 1. In this way the 
simulation examination and its results refl ect 
the reasonable assumption concerning human 
nature i.e. decision makers judgments are 
more or less deviated from optimal outcome but 
‘close’ to it.

3. Results and Discussion
For brevity it was decided to scrutinize the 
examination results for n = 4. It behooves 
to mention that for n = 3, direct interrelation 
between consistency indices is observed, see 
e.g. Bozóki and Rapcsák (2008) and/or Dijkstra 
(2013).

3.1 Research Outcome
The simulation results are presented in Tab. 
3 and 4. They are based on NP = 100, and 
NT = 1000.

3.2 Examination Contribution
Having the empirical distribution of maximal 
absolute deviations between ‘true‘ and 
estimated priority vectors, the empirical 
confi dence intervals for particular priority ratios 
can be established e.g. with the application 
of ‘average maximum absolute deviation’ 
established during simulations. On the basis of 
selected statistics, the credibility of the priority 
vector can also be designated with the selected 
rank of a quantile. Thus, one can expect 
a confi dence interval with an average level of 
certainty for maximal absolute deviation when 
the average maximum absolute deviation is 
applied. In addition, one can expect a confi dence 
interval noted by the rank of the quantile, when 
quantiles of maximum absolute deviations 
are applied. Noticeably, confi dence intervals 
established on the basis of quantiles will be 
slightly exaggerated because the maximum 
absolute deviation among given priority ratios 
within two priority vectors cannot repeat itself 
(remaining deviations must be smaller). That is 
why another approach is proposed.

Noticeable, in multicriteria decision making 
processes, a decision maker (DM) is usually 
interested in the most attractive alternative. So, 
the probability of the highly ranked alternative 
reversal is of great importance. Thus, it is 
proposed to apply a maximum absolute 
deviation and the second maximum absolute 
deviation for examination, if the risk of rank 
reversal for the fi rst two alternatives exists, and 
for examination purposes, how high the risk is.

To exemplify, the following hypothetic 
normalized vector of priority ratios is considered: 
PV(v) = [0.62, 0.24, 0.1, 0.04]. The PV(v) 
designates the following ranks for evaluated 
options: A1 ≺ A2 ≺ A3 ≺ A4. It is assumed that 
the PV(v) was derived from the PCM for which 
CI(LLSM) = 0.109736. In this case, a decision 
maker may wonder about the probability of the 
highly ranked option reversal. In light of the 
research outcome, the answer for this inquiry 
depends on the level of certainty assumed by 
a decision maker.

When this level equals 95%, then the 
0.95-quantile of the maximum absolute deviation 
distribution for CI(LLSM) = 0.109736 equals 
0.208885 (Tab. 3), and 0.95-quantile of the 
second maximal absolute deviation distribution 
equals 0.150579. Thus, if a difference between 
the fi rst two priority ratios of the hypothetic PV(v) is 
higher than 0.150579 + 0.208885 i.e. 0.359464 
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i i th interval
for CILLSM 

Average 
CILLSM

within i th 
interval

p–quantiles of MaxAD1 between w and v
for i th interval of CILLSM 

Average 
MaxAD1 
between
w and vp = 0.8 p = 0.9 p = 0.95 p = 0.98 p = 0.99

1 [0.0, 0.0202) 0.009789 0.055462 0.081919 0.123431 0.194786 0.241852 0.042064
2 [0.0202, 0.081) 0.050333 0.083198 0.127897 0.173985 0.230384 0.266555 0.058667
3 [0.081, 0.141) 0.109736 0.128978 0.167430 0.208885 0.257923 0.292974 0.086182
4 [0.141, 0.201) 0.170316 0.135142 0.175823 0.215673 0.260070 0.291170 0.097059
5 [0.201, 0.261) 0.230957 0.139692 0.181055 0.217441 0.260860 0.294106 0.100639
6 [0.261, 0.322) 0.290961 0.148930 0.185320 0.216985 0.258141 0.293103 0.104673
7 [0.322, 0.382) 0.351898 0.152956 0.183949 0.214520 0.257819 0.291483 0.108191
8 [0.382, 0.442) 0.411428 0.154353 0.184168 0.216551 0.261614 0.295555 0.111088
9 [0.442, 0.503) 0.472071 0.151550 0.181402 0.215974 0.259817 0.291782 0.111199

10 [0.503, 0.563) 0.532404 0.150774 0.184129 0.220709 0.265578 0.302564 0.111745
11 [0.563, 0.623) 0.591957 0.151667 0.187019 0.224346 0.271002 0.304387 0.112368
12 [0.623, 0.684) 0.652322 0.152885 0.189522 0.229630 0.275033 0.309352 0.112625
13 [0.684, 0.744) 0.713164 0.156414 0.196321 0.236259 0.286920 0.318705 0.114256
14 [0.744, 0.804) 0.773112 0.159058 0.201239 0.240192 0.290268 0.326163 0.115300
15 [0.804, 0.865) 0.833323 0.161285 0.202429 0.240903 0.290718 0.326226 0.116094
16 [0.865, 0.925) 0.893977 0.160628 0.203376 0.242114 0.294927 0.334319 0.116101
17 [0.925, 0.985) 0.954481 0.167689 0.210992 0.248777 0.297410 0.334572 0.119510
18 [0.985, 1.046) 1.014420 0.171211 0.215302 0.257097 0.307838 0.342969 0.120865
19 [1.046, 1.106) 1.075330 0.175970 0.219679 0.259016 0.312604 0.352029 0.122409
20 [1.106, 1.166) 1.135290 0.177132 0.222577 0.262351 0.312678 0.345093 0.123456
21 [1.166, 1.226) 1.194820 0.183751 0.229224 0.270164 0.324909 0.374050 0.128275
22 [1.226, 1.287) 1.256030 0.179100 0.228531 0.269188 0.317348 0.356733 0.125110
23 [1.287, 1.347) 1.316700 0.184083 0.229390 0.271408 0.324651 0.369775 0.128810
24 [1.347, 1.407) 1.376290 0.192343 0.237683 0.275558 0.337192 0.369280 0.131952
25 [1.407, 1.468) 1.437290 0.193035 0.244625 0.285832 0.336465 0.377465 0.133709
26 [1.468, 1.528) 1.497320 0.199676 0.241012 0.285629 0.345064 0.388863 0.136678
27 [1.528, 1.588) 1.557600 0.197001 0.245495 0.291895 0.348678 0.381236 0.134634
28 [1.588, 1.649) 1.618450 0.202120 0.252202 0.299193 0.359296 0.400384 0.138595
29 [1.649, 1.709) 1.678350 0.198996 0.242366 0.282109 0.342629 0.387303 0.140573
30 [1.709, oo) 2.494600 0.241975 0.296090 0.340766 0.392593 0.431660 0.164883

Source: own

Note: The results were generated for n = 4 on the basis of the presented simulation framework. The outcome is based on 
100,000 perturbed reciprocal PCMs. The simulation scenario assumed LLSM as the PT and Saaty’s preference scale.

Tab. 3: Distribution of MaxAD1 i.e. the maximal absolute deviations for estimated 
priority ratios in relation to performance of the consistency index CILLSM 
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i i th interval
for CILLSM 

Average 
CILLSM

within i th 
interval

p–quantiles of MaxAD2 between w and v
for i th interval of CILLSM 

Average 
MaxAD2 
between
w and vp = 0.8 p = 0.9 p = 0.95 p = 0.98 p = 0.99

1 [0.0, 0.0202) 0.009789 0.038698 0.055876 0.083513 0.133809 0.169246 0.029146
2 [0.0202, 0.081) 0.050333 0.057643 0.088766 0.122063 0.164735 0.193358 0.041093
3 [0.081, 0.141) 0.109736 0.089991 0.119558 0.150579 0.190940 0.218659 0.060380
4 [0.141, 0.201) 0.170316 0.095839 0.124312 0.156293 0.196901 0.224054 0.067589
5 [0.201, 0.261) 0.230957 0.097189 0.128856 0.160173 0.198844 0.223367 0.070123
6 [0.261, 0.322) 0.290961 0.102280 0.134651 0.163703 0.197659 0.221966 0.073105
7 [0.322, 0.382) 0.351898 0.107486 0.136816 0.163401 0.195838 0.224857 0.075819
8 [0.382, 0.442) 0.411428 0.109694 0.137829 0.163587 0.199636 0.226573 0.077957
9 [0.442, 0.503) 0.472071 0.107667 0.134538 0.158997 0.196299 0.224823 0.077769
10 [0.503, 0.563) 0.532404 0.107582 0.135338 0.163117 0.205157 0.234390 0.078694
11 [0.563, 0.623) 0.591957 0.107866 0.135928 0.166899 0.206786 0.235808 0.079149
12 [0.623, 0.684) 0.652322 0.108464 0.138907 0.172721 0.214684 0.245777 0.079735
13 [0.684, 0.744) 0.713164 0.111545 0.143986 0.176468 0.223528 0.254954 0.081337
14 [0.744, 0.804) 0.773112 0.114840 0.145797 0.179305 0.225435 0.256358 0.082506
15 [0.804, 0.865) 0.833323 0.115525 0.149092 0.183596 0.226972 0.259410 0.083318
16 [0.865, 0.925) 0.893977 0.116169 0.149262 0.185559 0.229245 0.259710 0.083580
17 [0.925, 0.985) 0.954481 0.120943 0.154683 0.188189 0.229371 0.261401 0.085939
18 [0.985, 1.046) 1.014420 0.123626 0.158677 0.196483 0.240583 0.274190 0.087317
19 [1.046, 1.106) 1.075330 0.127007 0.161803 0.199002 0.242274 0.279624 0.088264
20 [1.106, 1.166) 1.135290 0.128787 0.164871 0.201893 0.241767 0.271120 0.089477
21 [1.166, 1.226) 1.194820 0.131613 0.169470 0.207377 0.248484 0.280735 0.092908
22 [1.226, 1.287) 1.256030 0.130773 0.169210 0.203081 0.254839 0.290318 0.090748
23 [1.287, 1.347) 1.316700 0.134761 0.174324 0.208774 0.259249 0.293702 0.094481
24 [1.347, 1.407) 1.376290 0.140588 0.182656 0.218515 0.262003 0.296059 0.097091
25 [1.407, 1.468) 1.437290 0.139425 0.180701 0.218145 0.266967 0.305932 0.096661
26 [1.468, 1.528) 1.497320 0.143491 0.183022 0.220029 0.266648 0.313635 0.099192
27 [1.528, 1.588) 1.557600 0.141067 0.183644 0.222224 0.274634 0.306337 0.098174
28 [1.588, 1.649) 1.618450 0.146120 0.191419 0.232781 0.279342 0.307745 0.101508
29 [1.649, 1.709) 1.678350 0.148991 0.187539 0.221236 0.266810 0.290851 0.102900
30 [1.709, oo) 2.494600 0.180353 0.228782 0.271082 0.321884 0.359723 0.122037

Source: own

Note: The results were generated for n = 4 on the basis of the presented simulation framework. The outcome is based on 
100,000 perturbed reciprocal PCMs. The simulation scenario assumed LLSM as the PT and Saaty’s preference scale.

Tab. 4: Distribution of MaxAD2 i.e. the second maximal absolute deviations for estimated 
priority ratios in relation to performance of the consistency index CILLSM
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(and that difference is 0.62 - 0.24 = 0.38) then 
with 95% certainty it can be assumed that 
the highly ranked option is the most preferred 
option despite the judgment inconsistency and 
errors it entails for the vectors of priority ratios 
estimates.

However, assuming the same level of PCM 
consistency but a higher level of certainty e.g. 
98%, a decision maker cannot assume that the 
fi rst alternative will remain the highly ranked 
option despite the judgments inconsistency. 
It is so because the 0.98-quantile of the 
maximum absolute deviation distribution for 
CI(LLSM) = 0.109736 equals 0.257923 (Tab. 3) and 
0.98-quantile of the second maximal absolute 
deviation distribution equals 0.19094. In this 
case 0.19094 + 0.257923 = 0.448863 what 
is more than 0.38 and that means a decision 
maker cannot assume with 98% certainty 
that the two highly ranked alternatives cannot 
change their rankings.

Concluding, for the fi rst time ever, it 
becomes possible to credibly and accurately 
relate a level of PCM consistency with priority 
vector credibility derived from inconsistent 
pairwise judgments, especially from the 
viewpoint of potential rank reversal of the fi rst 
two highest ranked alternatives. For similar 
calculations but concerning a different number 
of alternatives, similar data can be elaborated 
and utilized. Exemplary data for three, fi ve and 
six alternatives is presented in the appendix to 
this research paper.

3.3 Examination Breakthrough
Having in mind that a consistency index for 
the PCM denoting group preferences cannot 
be greater than the consistency index of the 
most inconsistent individual PCM (see e.g. Liu, 
Zhang, & Wang, 2012; Grošelj & Stirn, 2012; 
Escobar, Aguarón, & Moreno-Jimenez, 2004; 
Xu, 2000), it fi nally also becomes possible to 
designate priority vector credibility for the group 
on the basis of the most inconsistent individual 
PCM.

In this case it is simply suggested to take 
the most inconsistent individual PCM and 
designate on its basis (its consistency index) 
the possible priority ratios deviations. Then, the 
following steps are recommended: (a) calculate 
the PCM for the group on the basis of individual 
PCMs with application of the weighted 
geometric mean procedure presented earlier 
in this paper (individual judgments of decision 

makers are raised to their voting power and 
the group outcome is established on the basis 
of the weighted geometric mean for individual 
judgments); (b) compute a group priority vector, 
on the basis of the PCM established for the 
group, with application of e.g. LLSM; (c) apply 
earlier established priority ratios deviations 
of the most inconsistent individual PCM to 
the vector of priority ratios established for the 
group. In the case of the entire AHP framework, 
proceed similarly as during standard AHP 
weighing and adding procedure – weigh (by 
criteria and sub-criteria) and add either priority 
vectors and consistency indices of the most 
inconsistent individual PCMs and transfer 
designated deviations to the fi nal priority vector 
in the way described above.

Now, why is the application of maximum 
absolute deviations among priority ratios 
suggested instead of average deviations? In the 
subsection entitled ‘Examination methodology’, 
it was emphasized that only a few papers 
dealt in depth with the problem concerning 
the relation between the level of pairwise 
judgments (in)consistency and the degree 
of possible estimation errors for established 
priority vector. As mentioned then, that research 
examined only average estimation errors within 
particular priority vectors which makes those 
results questionable, especially when relative 
measures for estimation errors are considered. 
These issues will be scrutinized briefl y now.

The simulation framework presented in 
subsection ‘Examination methodology’ was 
applied to evaluate if average measures for 
estimation errors can be used. Instead of 
maximal absolute deviations calculated in Step 
6, the average absolute deviations among 
absolute deviations and the mean absolute 
deviations – AD(MAD) (Formula 12), and the 
average absolute deviations among relative 
deviations and the mean relative deviations – 
AD(MRD) (Formula 13) were computed.
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An examination of the above deviations 
designated by Formulae 12 and 13 within the 
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simulation framework presented in subsection 
‘Examination methodology’ enables discovery 
whether single deviations between estimated 
and ‘true’ specifi c priority ratios are close to 
the average deviation between estimated and 
‘true’ vector of priority ratios. If that was the 
case, both examined measures i.e. AD(MAD) 
and AD(MRD) should be close to zero and their 
performance should not depend on values of 
the examined consistency index. Fig. 3 and 
4, which present selected relations between 
AD(MAD) or AD(MRD) and CI(LLSM) clearly 
contradict the above assumption about single 
deviations between estimated and ‘true’ specifi c 
priority ratios i.e. single deviations are not close 
to the average deviation between estimated 
and ‘true’ priority vector but they fl uctuate.

It means that one can expect strong 
variability among single priority ratios deviations 
within a given priority vector. Thus, a mean 
deviation between the ‘true’ and the estimated 
priority vector should not be considered as 
a good indicator of possible estimation errors, 
because the single deviations are not close 

to the mean deviation calculated for the entire 
priority vector.

To illustrate, the following hypothetic 
situation is presented as an example. Let 
PV(w) = [0.2262, 0.2729, 0.1390, 0.3619] 
denotes the ‘true’ vector of the priority ratios 
and PV(v) = [0.2143, 0.3571, 0.1429, 0.2857] 
denotes the estimated vector of priority ratios. 
Mean relative and absolute deviations for those 
vectors equal MRD = 0.15 and MAD = 0.0441, 
respectively. At the same time single relative 
and absolute deviations among specifi c priority 
ratios fl uctuate from 0.028 to 0.3087 in the case 
of MRD, and from 0.0039 to 0.0842 in the case 
of MAD. Thus, taking the MRD as the example, 
one could expect the average relative deviation 
at the level of 15% while its single value can 
fl uctuate from around 3% to around 31%. This 
is why mean deviations (especially relative 
ones) are not good indicators of possible 
estimation errors for priority vectors and should 
not be taken into consideration during further 
research.

Fig. 3: Performance of CI(LLSM) in relation to AD(MAD) and AD(MRD)

Source: own

Note: Plots are based on 18,000 random reciprocal PCMs for n = 3. The results are generated with application of LLSM 
as the PT and Saaty’s preference scale. Plot |A| presents the relation among CI(LLSM) and 0.95-quantile of AD(MAD). Plot 
|B| presents the relation between CI(LLSM) and a mean AD(MRD).
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Fig. 4: Performance of CI(LLSM) in relation to AD(MAD) and AD(MRD)

Source: own

Note: Plots are based on 18.000 random reciprocal PCMs for n = 6. The results are generated with application of LLSM 
as the PT and Saaty’s preference scale. Plot |A| presents the relation between CI(LLSM) and 0.95-quantile of AD(MAD). 
Plot |B| presents the relation among CI(LLSM) and a mean AD(MRD).

Conclusions
The scope of the research concerns issues 
associated with group decision making 
(GDM) as the most challenging process which 
entails various viewpoints and preferences of 
individuals that must be taken into consideration 
and somehow combined into one meaningful 
outcome.

When group decision making process was 
taken into consideration, the AHP seemed 
a particularly attractive methodology to examine 
the process. Although the methodology has 
been evaluated numerous times from the 
perspective of its effectiveness and applicability 
in GDM processes, a research gap has been 
identifi ed and examined in this research paper. 
The impact of which inconsistency of judgments 
makes on confi dence about priority ratios 
(PRs) of the priority vector (PV) established for 
a group of decision makers (DMs) has been 
studied. Although individual relations have 
been studied, examination results generalize 
to the synthesized pairwise comparison 
matrix (SPCM) that is obtained on the basis of 
individual pairwise comparison matrices for all 
group members.

The relation between the consistency 
of PCM and the PV estimate credibility has 
been thoroughly examined. The examination 
process has proceeded with the application of 
Monte Carlo simulations coded and executed 
in Wolfram Mathematica Software. To properly 
examine the problem, a sophisticated 
simulation algorithm has been elaborated and 
applied.

Having in mind that a consistency index for 
the PCM denoting group preferences cannot be 
greater than the consistency index of the most 
inconsistent individual PCM, it became possible 
to designate the credibility of the preference 
vector for the group on the basis of the most 
inconsistent individual PCM. The examination’s 
conclusion is based on the fundamental 
assumption that individual judgments of 
decision makers are raised to their voting 
power and the group outcome is established on 
the basis of their individual judgments i.e. the 
weighted geometric mean is formed. Then, and 
only then, the credibility of the group outcome 
can be designated with the application of the 
consistency index of the most inconsistent 
individual PCM.
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It is emphasized that thus far only few 
papers have dealt with the problem concerning 
the relation between the level of the pairwise 
judgments (in)consistency and the size of 
possible estimation errors for established vector 
of priority ratios. However, the outcome of 
those papers is limited because those research 
efforts examined only average estimation errors 
within particular priority vectors which made 
those results less accurate as compared to 
this research paper, especially when relative 
measures for estimation errors were applied. 
This research paper overcomes limitations of 
those other examinations which distinguishes it 
from other papers and emphasizes its novelty.

Certainly, there is a place for further 
examinations in the research area e.g. other 
consistency indices and other prioritization 
techniques can be studied from the perspective 
of this research effort’s objectives to enhance 
its fi ndings and broaden its methodological 
implications.
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Abstract

PAIRWISE JUDGMENTS CONSISTENCY IMPACT ON QUALITY 
OF MULTI-CRITERIA GROUP DECISION-MAKING WITH AHP
Pawel Tadeusz Kazibudzki, Jiří Křupka 

The scope of this research encompasses issues associated with group decision making (GDM) as 
the most challenging process which entails various viewpoints and preferences of individuals that 
must be taken into consideration and somehow combined into one meaningful outcome. When 
GDM is taken into consideration, the AHP seems to be a particularly attractive methodology. From 
the perspective of its applications, an existing research gap has been identifi ed and examined in 
this research paper. Thus, the inconsistency of judgments impact on priority vector quality has 
been examined from the perspective of group decision making. Examination results generalize 
to the synthesized pairwise comparison matrix that is obtained on the basis of individual pairwise 
comparison matrices for all group members. The examination process has proceeded with the 
application of Monte Carlo simulations coded and executed in Wolfram Mathematica Software. 
Having in mind that a consistency index for the PCM denoting group preferences cannot be greater 
than the consistency index of the most inconsistent individual PCM it became possible to designate 
the credibility of the priority vector for the group on the basis of the most inconsistent individual 
PCM. It is emphasized that thus far only a few papers have dealt with the problem concerning 
the relation between a level of the pairwise judgments inconsistency and the degree of possible 
estimation errors for established vector of priority ratios. This research paper overcomes limitations 
of other examinations which distinguishes it from other papers and emphasizes its novelty.
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