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1. Introduction

The dynamic network model by Naumann and Ihlemann [4] is considered in order to capture
mechanical behavior of rubber subjected to mechanical and thermal loading. The model has
been adapted to account for fatigue damage instead of Mullins effect [3].

The model is based on a kinematic split such that the deformation gradient

F=FF, ey

where F; corresponds to a stress-free state of deformation and F is the elastic deformation. In
its simplest form (neo-hookean), the strain energy density is

W:Cm(l—D),ul/(CQZI—B), (2)

where C, = FI F, is the right Cauchy-Green deformation tensor corresponding to the elastic
part of deformation. The internal variables y and v reflect increase and decrease in material
stiffness due to chemical ageing respectively and under the assumption of homogeneous oxygen
distribution, valid, e.g., in thin rubber samples, are driven by the following evolution equations:

/:L:kR,uv D:_kSV7 M(O):V(O):]-v (3)

where the coefficients are usually assumed to behave according to the Arrhenius law

E
kirsy = kr,sy, €Xp [—%] : 4)

k(rsy, and Eqr sy being material parameters, R = 8.314J mol~!kg~! the gas constant, and
T absolute temperature. In the case of thick samples, the diffusion equation with an added
reaction term would be used to model oxygen transport and both kg and kg would depend on
oxygen concentration.

Fatigue damage is described by a power law [1]

. o ow
D= (—-AY)", Y:a—D, )

A and a being its parameters.
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Fig. 1. Single block of prescribed strain and temperature

2. Experimental procedure

The test sequence, used for calibration of the model, consists of repeated cyclic loading and an
ageing period of constant deformation at elevated temperature, see Fig. 1. The measured data
contain both stress-strain curves from the cyclic loading and permanent set measured before
and after each ageing period. All cycles were performed up to 35 % nominal deformation in
compression whereas the constant deformation during the ageing periods was one of 0, 15 % or
25 %. The ageing temperature was either 23 +2°C or 70 £+ 2°C.

3. Numerical modeling and model calibration

The numerical simulations were implemented with the assumption of uniaxial stress and homo-
geneous distribution of oxygen and temperature. The system of partial differential equations
therefore changes into ordinary differential equations. Moreover, the ageing variables ;o and v
become independent of strain history.

The calibration procedure was formulated as a nonlinear least squares problem with the
objective function to be minimized

f(x) = Z > (0%'—;:(%)) | ©)

i

where ¢ denotes different experiments (e.g., cyclic stretch, permanent set, different stretch val-
ues), ¢, are values of the independent variable (i.e., time), 0;; are measured values, and o;(-)
is the numerical simulation of the i-th experiment, and the vector x = [C, kg, ER, ks, . - .]T
contains the unknown parameters of the model.

It is known that calibration of the Arrhenius-type relation might lead to multicollinearity, but
several techniques exist that overcome this issue [5]. However, in the case of the experimental
data considered here, the principal obstacle is insufficient data regarding temperature, i.e. only
two temperature values being measured. The solution to this problem is to discard relation (4)
completely and consider separate reaction rates for each temperature: kros, kr7o, ks23, and kgz.
Should sufficient temperature-data be available, the parameters of (4) may be fitted to the values
of the independent reaction rates.

Based on numerical examples [2], a combination of relaxation and permanent-set measure-
ments is suggested in order to identify the time- and history-related parameters of the dynamic
network model under constant temperature. The data available here (Section 2) contain cyclic
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Fig. 2. Comparison of measured and predicted permanent-set

stretch instead of relaxation. Similar numerical examples with these data used here suggest that
the reaction rates are identifiable in the absence of damage. The effects of damage compete
with those of network-scission, which might lead to non-uniqueness of model calibration.

Nevertheless, an attempt to calibrate the model to real-world data was made. The identified
parameters are:

Cio = 6.69 MPa , kros = 6.36- 107 "s !, krro = 1.12-107%s71 |
kgos = 5.90- 1077571, kgro =8.32-107"s7 1, A=1.18-10""pa!,
a=225.

A comparison of measured and predicted permanent-set is shown in Fig. 2. Comparison of
stress-strain curves is shown in Fig. 3.

4. Summary and conclusions

Results of the calibration clearly show several discrepancies between the model and real-world
data. The simplifications considered of lesser importance are uniaxial stress assumption and
neglecting of oxygen diffusion.

One of the most obvious (and expected) source of disagreement is that only the simplest
form of the dynamic network model was used, i.e., only the neo-hookean term with the coeffi-
cient C'g. Should other terms be included, better description of the stress-strain curves would
be expected.

Another shortcoming of the model, when compared to the real-world data, is probably
omission of mechanisms other than chemical ageing. This can be shown from the histories
of permanent-set, where the blocks of cyclic stretch induce some permanent deformation in
the experimental data, as opposed to the numerical model where the impact of cyclic stretch
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Fig. 3. Stress-strain curves at 0 % (left) and 25 % (right) strain during the ageing blocks

blocks on permanent-set seems to be negligible. This behavior might be corrected by adding
mechanisms such as plasticity, viscoelasticity or physical ageing to the model.

Finally there is the issue of sufficient data and proper selection of loading histories that
would enable the identification of a unique combination of parameters. This is already subject
of an ongoing research [2], however, the results of this work are essential regarding further
modifications of the material model, as discussed above.
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