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bFaculty of Engineering, University of Mons, Rue de Houdain 9, 7000 Mons, Belgium

Suspensions (for example, see Fig. 1 on the left) are usually 1 DOF systems. The expression
of the position of the wheel support in terms of some parameter can be obtained by solving the
constraints imposed by the joints present in the system. But this is not efficient as the same
equations are solved several times. This paper explains another strategy consisting in solving
the kinematic problem (at position and velocity level) for particular points and using these points
to calculate all other positions by interpolation. The proposed interpolation is C1 continuous in
translation and rotation.

Figure 1. Double wishbone suspension (left) and main coordinate system, principal frames of the bodies
and secondary frames of the bodies (right) [2]

The homogeneous transformation matrix giving the situation of the principal frame of body i
can be written as

T0,i =

(
R0,i {ei}0

0 0 0 1

)
, (1)

where the columns of R0,i = [xi yi zi] give the orientation of the axes of the principal frame of
body i in the main coordinate system and {ei}0 gives the position of the principal frame of the
body i in the main coordinate system {}0 (see Fig. 1 on the right) .

The transformation matrix between the main coordinate system and the secondary coordi-
nate system of body i is given by the dot product

T0,i.a = T0,i ·Ti,i.a =

(
xi.a yi.a zi.a ei.a
0 0 0 1

)
, (2)
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where xi.a, yi.a and zi.a are the unit vectors of the axes of secondary frame and ei.a is the
position of the secondary frame. All vectors are considered with respect to the main coordinate
system.

Constraint equations allow to set joints between two arbitrary bodies (body i and body j) of
the mechanical system. The joints are defined between the frames of two different bodies. The
main frame of the body is usually placed into the mass center of the body so there is the need
to define secondary frames on the bodies (frame a of body i = i.a and frame b of body j = j.b)
between which are defined the joints.

Set of constraint equations 1b, 2b ... 6b is defined as

1b ≡ xi.a · (ei.a − ej.b) = 0, (3)
2b ≡ yi.a · (ei.a − ej.b) = 0, (4)
3b ≡ zi.a · (ei.a − ej.b) = 0, (5)

4b ≡ yi.a · zj.b = 0, (6)
5b ≡ zi.a · xj.b = 0, (7)
6b ≡ xi.a · yj.b = 0. (8)

The constraint equations relative to each classical joint can be presented as a subset of the six
previous generic equations (e.g., spherical joint is represented by 1b, 2b and 3b).

The system of the constraint (non-linear) equations could be expressed as

F(q) =
(
b1, b2, . . . , bnC

)T
= 0, (9)

where nC is the number of constraints (jb 6= bj). The vector of unknown variables is defined as

q =
(
x1, y1, z1, φ1, . . . , ψnB

)T
=
(
q1, q2, q3, q4, . . . , q6nB

)T
, (10)

where nB is number of all bodies.
All types of suspensions correspond to a one degree of freedom mechanism (assuming the

rotation and the steering of the wheel are locked), so one variable in the system of equations
has to be given (e.g., the vertical coordinate of a wheel support denoted as u). For a given value
of u, the equations are solved in terms of q by the Newton-Raphson method.

For the interpolation it is important to define velocity vi and angular velocity ωi of body i.
Motion of body 1 depends on q1 to q6, so motion of body i depends on q6i−5 to q6i. Then it is
possible to consider

T0,i(qi) =




q6i−5
R(q6i−2, q6i−1, q6i) q6i−4

q6i−3
0 0 0 1


 . (11)

For the velocity of principal frame of body i is possible to write

{vi}0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0︸︷︷︸

di,6i−4

1 0 0 0


 ·




q̇6i−5
q̇6i−4
q̇6i−3
q̇6i−2
q̇6i−1
q̇6i



, (12)
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where di,k can be written as di,k =
∂vi

∂q̇k
. It is also possible to write [2]

ωi =



0 0 0 cos q6 cos q5 − sin q6 0
0 0 0 sin q6 cos q5 cos q6 0
0 0 0 − sin q5︸ ︷︷ ︸

δi,6i−2

0 1


 ·




q̇6i−5
q̇6i−4
q̇6i−3
q̇6i−2
q̇6i−1
q̇6i



, (13)

where δi,k can be written as δi,k = ∂ωi

∂q̇k
.

Kinematic quantities, which are calculated using presented approach, are important for the
interpolation. The interpolation assumes that the evolution of a homogeneous transformation
matrix T0,A of an arbitrary body A and derivatives dA,u and δA,u (obtained from the constraints
at the velocity level) have been calculated for particular values of parameter u, where vectors
dA,u and δA,u are defined as [2]

dA,u =
∂eA
∂u

=
∂vA

∂u̇
, δA,u =

∂ωA

∂u̇
. (14)

It is useful to store the data into the table in terms of a series of values u (u0, u1, u2, ..., uN )

u0 T0,A(u0) {dA,u(u0)}0 {δA,u(u0)}0
u1 T0,A(u1) {dA,u(u1)}0 {δA,u(u1)}0
u2 T0,A(u2) {dA,u(u2)}0 {δA,u(u2)}0
...

...
...

...
uN T0,A(uN) {dA,u(uN)}0 {δA,u(uN)}0,

where T0,A consists of R0,A and e0,A. The interpolation is now a matter of finding continuous
functions between each row of previous table. For this Cubic Hermite splines are typically used.
The functions are

h00(ξ) = 2ξ3 − 3ξ2 + 1, h01(ξ) = −2ξ3 + 3ξ2, (15)
h10(ξ) = ξ3 − 2ξ2 + ξ, h11(ξ) = ξ3 − ξ2. (16)

With respect to boundary conditions (f(x0) = f0, f(x1) = f1, f
′(x0) = m0, f

′(x1) = m1) is
the interpolation of an arbirary function given by

f(x) = f0h00

(
x− x0
x1 − x0

)
+ f1h01

(
x− x0
x1 − x0

)
+

+m0h10

(
x− x0
x1 − x0

)
· (x1 − x0) +m1h11

(
x− x0
x1 − x0

)
· (x1 − x0),

(17)

which can be used in a straightforward way to interpolate the position as

eA(u) = eA(ui)h00(ξ) + eA(ui+1)h01(ξ) + dA,u(ui)h10(ξ) · (ui+1 − ui)
+ dA,u(ui+1)h11(ξ) · (ui+1 − ui),

(18)

where ξ = u−ui

ui+1−ui
and ui (i = 1, . . . , N ) are chosen values of independent suspension param-

eter u from the table. The velocity and the acceleration can be found in the same way. For the
interpolation of rotation it is important to obtain relative rotation matrix Ri,i+1

0,A which is given
by

Ri,i+1
0,A = R−10,A(ui) ·R0,A(ui+1) = RT

0,A(ui) ·R0,A(ui+1). (19)
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It is possible to express every spatial rotation as the rotation of the angle θ around the unit vector
n which define Rra(n, θ) that is given by

Rra(n, θ) =




n2
xV + C nxnyV − nzS NxnzV + nyS

nxnyV + nzS n2
yV + C nynzV − nxS

nxnzV − nyS nynzV + nxS n2
zV + C


 , (20)

where C = cos(θ), S = sin(θ) and V = 1−cos(θ). It is possible for any rotation matrix Ri,i+1
0,A

to determine the axis and the angle to which it corresponds. The angle is given directly by

θi,i+1 = arccos

(
r11 + r22 + r33 − 1

2

)
, (21)

where r11, r12, r13, r21, r22, r23, r31, r32, r33 are elements of matrix Ri,i+1
0,A and it is assumed

that 0 < θ < π.
The unit vector parallel to the axis can then be obtained by (if sin θ 6= 0)

{ni,i+1}i =
1

2 sin θ
·




r32 − r23
r13 − r31
r21 − r12



 . (22)

The full orientation matrix will then be calculated from

R0,A(u) = R0,A(ui) ·Rint
0,A(u) = R0,A(ui) ·R1(u) ·R2(u) ·R3(u), (23)

where matrices R1(u), R2(u) and R3(u) correspond to

R1(u) = Rra(
{δA,u(ui)}i
‖δA,u(ui)‖

, ‖δA,u(ui)‖ · h10(ξ(u)) · (ui+1 − ui)), (24)

R2(u) = Rra({ni,i+1
A,u )}i, θi,i+1 · h01(ξ(u))), (25)

R3(u) = Rra(
{δA,u(ui+1)}i+1

‖δA,u(ui+1)‖
, ‖δA,u(ui+1)‖ · h11(ξ(u)) · (ui+1 − ui)). (26)

The proposed methodology was implemented in MATLAB and tested on the double wish-
bone suspension (Fig. 1 on the left). The exact position and orientation (of a wheel or a sample
for verifying the interpolation method) were compared with the calculated values obtained from
the interpolation. It applies Ri,e = RT

i ·Re, for the error in rotation, where Ri,e is the relative
rotation matrix between interpolated and exact position, Ri and Re are interpolated and exact
rotation matrices. Error in rotation is then given by formula (21), applied to Ri,e. The error in
translation was evaluated as norm of the distance vector between the two versions (exact and
interpolated). For the position the highest norm is smaller than 4×10−3 mm and for the rotation
the biggest difference is smaller than 4× 10−3 rad (0.03◦).
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