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1. Introduction
The transmission of energy from active fluid elements in the hydraulic systems leads to pres-
sure and flow pulsations. If the excitation frequency coincides with natural fluid frequency
of the system, resonance occurs similar to the mechanical systems, which can reduce the sys-
tem life, affect the control and monitoring elements, increase the noise and possibility system
crashes.This study explores the possibilities of using a dynamic damper to suppress pulsations
and stabilize the system.

2. Computation of pulsation in tube
Continuity and equilibrium equations for flexible tube were used to calculate pressure and flow
pulsations [2]

∂w

∂t
+ Bw + K

∂w

∂x
= 0 , (1)

B =

[
b
ρ

0

0 0

]
, K =

[
0 S

ρ
K
S

0

]
, w =

[
q
σ

]
.

Eq. (1) is solved by transfer matrices method in state space using Laplace transformation, where
ρ – the fluid density, b – the fluid internal attenuation, K – the bulk modulus elasticity, S – the
flow cross-section area, q – the unsteady flow and σ – the unsteady pressure.

The finite difference method is used to find eigenvalues [1, 3]. Label ∆(s) the function
of a complex variable and whose zero values are the searched eigenvalues. Let the field O of
complex numbers s = a + iω be given in the Gaussian plane. If every s is assigned to exactly
one complex number ∆(s), we can say that in O the function of two variables α, ω is defined
as

∆(s) = u(α, ω) + i v(α, ω), u, v ∈ R. (2)

This function is based on relation ∆(s) = det(A+λE), where A is the system’s transfer matrix
and E is the identity matrix.

The theory of the function of complex variable states that the real and imaginary part
u(α, ω), v(α, ω) of each holomorphic function is a harmonic function and therefore satisfies
the Laplace equation (3) for boundary conditions (4)
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u(α, ω) = uΓ

v(α, ω) = vΓ

∀α, ω ∈ Γ. (4)

The result is determined by the set of points obtained by solving the Laplace equation, for which
u = 0, v = 0. In the geometric representation, the solution is a surface (see Fig. 1) that creates
the isocurves at the point where it intersects the plane u = 0 or v = 0. The roots sk are located
at the intersections of these isocurves (see Fig. 2).
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Fig. 1. Example of surface u(α, ω)
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Fig. 2. Plot of isocurves

3. 1–D hydrodynamic system with dynamic damper
The influence of the damper on pressure and flow pulsations is assessed on a one-dimensional
system consisting of a pulsator, two local resistors and the dynamic damper (see Fig. 3) with
parameters listed in Table 1. Dynamic instability is created by a negative value of dynamic
resistance b1. The location of the damper affects its function in the system (see Fig. 4).

Table 1. Input parameters

branch length L 50 [m]
tube diameter φd 80 [mm]

speed of sound in fluid a 1000 [m s−1]
fluid density ρ 1000 [kg m−3]

fluid internal attenuation b 12.8 [kg s−1 m−3]
flow amplitude Q0 0.01 [m3 s−1]

excitation frequency ω 63 [m3 s−1]

b1 b2

L

x

Fig. 3. Scheme of hydrodynamic system
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Fig. 4. Modes of 2nd eigenfrequency if damper is placed in: (a) flow node, (b) pressure node

System’s boundary conditions are q(0, t) = Q0 · cos(ωt) and q(L, t) = 0. Local resistance
values are b1(x = 1 m) = −9.8 × 108 and b2(x = 40 m) = 9.0 × 106. The 1-DOF dynamic
damper is described by mass m and stiffness k. Its natural frequency and location have impact
on system stability (see Figs. 5 and 6).
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Fig. 5. α – damper location dependence
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Fig. 6. α – damper eigenfrequency dependence

In order to dampen the system, it is advisable to place the damper at the point of the flow
node. If the dynamic stability problem is examined, it is advisable to place the damper in the
pressure node position. However, the damper does not perform the damping function at this
point (see Fig. 7). The influence of the dynamic damper on the stability of the system can be
best seen from the plot of the time response to the excitation of the resonant frequency (see
Fig. 8). All results have been published in [4].
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Fig. 7. Eigenmodes the damper is located: (a) close to the flow node (x = 5 m), (b) in the pressure node
(x = 25 m)

4. Conclusion
In this study, the possibility of use of the dynamic damper to stabilize the dynamic system was
investigated. The aim was to use a mathematical model describing dynamic behaviour in a
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Fig. 8. Response to excitation in resonance (a) without damper and (c) with damper; and dynamic
amplification of system (b) without damper and (d) with damper

flexible tube to solve a system with the dynamic damper. Using this model it was possible to
assess the impact of the damper on the system.

It has been found that the damper can be used to stabilize the dynamic system. It depends
on the damper tuning and its location in the tube. The damper should be placed in the node
location of pressure eigenmode of given resonant frequency. In this case, the damper does not
perform the damping function of the system.
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