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Abstract

We consider a general reaction-di�usion system exhibiting Turing's di�usion-driven instability. In
the �rst part of the paper, we supplement the activator equation by unilateral integral sources

and sinks of the type
(∫

K
u(x)
|K| dK

)−
and

(∫
K
u(x)
|K| dK

)+

. These terms measure an average of the

concentration over the set K and are active only when this average decreases bellow or increases
above the value of the reference spatially homogeneous steady state, which is shifted to the origin.
We show that the set of di�usion parameters in which spatially heterogeneous stationary solutions
can bifurcate from the reference state is smaller than in the classical case without any unilateral
integral terms. This problem is studied for the case of mixed, pure Neumann and periodic boundary
conditions. In the second part of the paper, we investigate the e�ect of both unilateral terms of the
type u−, u+ and unilateral integral terms on the pattern formation using numerical experiments
on the system with well-known Schnakenberg kinetics.

Keywords: reaction-di�usion systems, pattern formation, Turing's instability, unilateral integral
terms, numerical experiments
MSC: 35B32, 35B36, 35J57, 35K57, 65M99

1. Introduction

In 1952 Alan M. Turing wrote his paper \The Chemical Basis of Morphogenesis" [1] on bi-
ological pattern formation, in which he described that a reaction of two chemicals and di�usion
in the space can lead to the production of a spatially heterogeneous structure. That means,
the spatially homogeneous steady state of the system, that is stable in the absence of di�usion,
could be destabilized by di�usion and produce a spatially heterogeneous state, in other words
a \pattern". This behaviour is quite counter-intuitive since di�usion is usually perceived as a
stabilization e�ect. Twenty years later, Gierer and Meinhardt published their paper [2], in which
they analysed this problem in more detail and introduced so called "short range activation-long
range inhibition" mechanism. Their research was completely independent, because they did not
know about Turing's paper. A lot of work has been done in this area in past few decades. This
e�ect is usually called Turing's instability, Turing's e�ect or di�usion-driven instability (di�usion
\drives" stable homogeneous state unstable). The theory is very thoroughly summarized e.g., in
the second instalment of J. D. Murray's \Mathematical biology" [3].

A pattern formation is not a process exclusive to reaction-di�usion equations, but they are one
of the most common models for pattern formation problems. We consider a classical system of
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two reaction-di�usion equations
∂u

∂t
= d1∆u+ f(u, v),

∂v

∂t
= d2∆v + g(u, v),

(1)

with functions u = u(x, t), v = v(x, t) describing concentrations of some chemicals and f, g being
reaction kinetics as our starting point.

The idea of Turing's instability is not perfect and one of problems it su�ers is the strict
requirement that di�usion coe�cients must be di�erent. Actually, for the most usual reaction
kinetics this di�erence must be signi�cant. The fact that one chemical di�uses with very di�erent
intensity than the other is not very realistic in many problems. There were e�orts to modify
or generalize the idea of Turing's instability. For example Rovinsky and Menzinger presented so
called di�erential-
ow-induced chemical instability [4] in the system, in which one of the chemicals
is immobilized and the other di�uses and 
ows. This idea leads to a similar destabilization as by
Turing's DDI. This mechanism was experimentally veri�ed on Belousov-Zhabotinsky reaction (see
[5]). Their work later inspired Klika et al. [6] to add advection to the complete reaction-di�usion
system (no immobilized chemical). They were able to show that, even if di�usion coe�cients
are equal, the homogeneous steady state can be destabilized utilizing relatively small amount of
advection.

Several authors focused on the analysis of the bifurcation during the destabilization of the
spatially homogeneous steady state and bifurcating patterns. The set of couples of di�usion
parameters, such that the reference steady state is stable or unstable, is usually denoted DS

or DU , respectively, in following papers. Kuèera et al. studied unilateral conditions related
to the inhibitor equation (the equation for the chemical that is inhibiting its production) and
some of these results were �rst mentioned in [7]. The abstract result for variational inequalities
concerning destabilization of the reference spatially homogeneous steady state was showed in [8]
and the in
uence of unilateral conditions on bifurcation of patterns was revealed in [9]. There
were also other papers concerning similar problems e.g., [10], [11], [12], [13]. It is known that in
the classical case the bifurcation from the reference steady state is excluded in DS . However, if
unilateral conditions are present in boundary conditions for the inhibitor equation, this bifurcation
exists under some conditions. Hence, the set of couples of di�usion parameters, for which the
bifurcation occurs and a bifurcating pattern exists, is larger than in the classical case without
unilateral conditions. It was natural to ask, what e�ect will have unilateral conditions related
to the activator equation (the equation for the chemical that is activating its production). The
problem was explored in [14] and it was shown that the e�ect is exactly opposite, i.e., the set of
couples of di�usion parameters, for which the bifurcation occurs and a bifurcating pattern exists,
is smaller than in the classical case without unilateral conditions.

Later, the idea of unilateral conditions and variational inequalities was replaced by the idea
of adding unilateral sources and sinks to the activator equation (see [15]) or to the inhibitor
equation (see [16]), respectively. The unilateral source or sink is based on the negative part ψ− =
max{−ψ, 0} or the positive part −ψ+ = −max{ψ, 0} of the function ψ, respectively (ψ represents
the variable of an activator or an inhibitor). These terms act in the interior of the domain and they
seem to be more natural than unilateral conditions given by variational inequalities. Unilateral
terms cannot be linearized and the study of the stability is di�cult and so far an open problem.
Therefore only bifurcations were studied in these papers. It was again showed that if there are
unilateral terms in the inhibitor equation, then the set of couples of di�usion parameters, for which
the bifurcation occurs and a bifurcating pattern exists, is larger than in the classical case without
unilateral terms. The case with unilateral terms in the activator equation again brings opposite
results. There were performed many numerical experiments in [17] and [18] for the case of the
unilateral source τv− (and its modi�cations) in the inhibitor equation for the speci�c reaction
kinetics.

In our paper we will investigate the impact of unilateral terms involving the integral average
over some subset of the domain Ω, where we will work. To put it in the context with the previous

2
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work mentioned above, for example we had the unilateral source s−(x) ψ−

1+ψ− in our paper [15].
This term measures exactly the value of ψ in each point x of Ω and if the value drops under certain
threshold (in this case the zero), then the production of ψ is switched on locally on the support
of s−(x). One simple example of unilateral terms we introduce in this paper is

χK(x)

(∫
K

ψ(x)

|K|
dK

)−
,

where K is a subset of the domain Ω and χK(x) is the characteristic function of the set K. We
denote by |K| the Lebesgue measure of the set K. This term measures the average of ψ over the
set K and if this average drops bellow the threshold (again in this case the zero), then the source
is switched on and is acting again on the set K.

We will work with more general terms e.g., several sources (and sinks) and we will correctly
describe properties of K, Ω etc. later. Our inspiration are partially papers about unilateral
terms mentioned above and also [19], in which integral terms are used in some sense in boundary
conditions.

We consider the reaction-di�usion system

∂u

∂t
= d1∆u+ f(u, v) +

n∑
i=1

χM−
i (x)f i

−

((∫
K−

i

u− u
|K−

i |
dK−

i

)−)
−

m∑
j=1

χM+
j (x)f j

+

((∫
K+

j

u− u
|K+

j |
dK+

j

)+)
,

∂v

∂t
= d2∆v + g(u, v) in Ω× [0,+∞)

(2)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, d1 and d2 are positive di�usion
parameters, f, g : R × R → R are real di�erentiable functions and there exist constants u, v > 0
such that

f(u, v) = g(u, v) = 0, (3)

i.e., [u, v] is a spatially homogeneous steady state. Furthermore we assume that f i−, f
j
+ : R → R

are real functions such that

f i−(0) = f j+(0) = 0 for every i = 1, . . . n, j = 1, . . . ,m, (4)

and there exist

τ i− :=
∂f i−
∂ξ

(ξ)|ξ=0 ∈ R+
0 , τ j+ :=

∂f j+
∂ξ

(ξ)|ξ=0 ∈ R+
0 for all i = 1, . . . , n, j = 1, . . . ,m. (5)

We suppose that K−i ,K
+
j ⊆ Ω and functions χK

−
i (x) and χK

+
j (x) are characteristic functions of

sets K−i and K+
j , respectively. We will assume that sets K−i are connected and disjoint. The

same is assumed for sets K+
j .

The system (2) will be completed by boundary conditions

u = u, v = v on ΓD,

∂u

∂n
=
∂v

∂n
= 0 on ΓN ,

(6)

where n is a unit out-ward pointing normal vector of the boundary ∂Ω and ΓD, ΓN are open
disjoint subsets of ∂Ω such that ∂Ω = ΓD ∪ΓN . We will distinguish two cases ΓD 6= ∅, i.e., mixed
boundary conditions, and ΓD = ∅, i.e., pure Neumann boundary conditions. The case of pure
Dirichlet boundary conditions is included in the case ΓD 6= ∅ and we do not treat it separately,
because the analysis and the results are the same. We will also discuss problems with unilateral
integral terms in boundary conditions as well as the case of periodic boundary conditions

u(x) = u(xP ),

−∂u
∂n

(x) =
∂u

∂n
(xP ),

(7)

3
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on special domains. We will describe this case in more detail in the next section.
Our goal is to show that we can get similar results concerning bifurcations for reaction-

di�usion systems with unilateral integral terms as we did for unilateral terms without integral in
the activator equation in [15]. Hence, the set of couples of di�usion parameters, for which the
bifurcation occurs and a bifurcating pattern exists, is smaller than in the classical case. In the
second part of the paper we use numerical experiments to investigate the in
uence of unilateral
terms from [15] and unilateral integral terms presented in this paper on the pattern formation. We
study the case of Neumann and periodic boundary conditions on the square domain Ω and we use
well-known Schnakenberg kinetics as functions f and g. The goal is to study the shape of patterns,
to compare Neumann and periodic boundary conditions and to show that with increasing strength
of unilateral (integral) terms the set of [d1, d2] such that patterns are produced and the spatially
homogeneous steady state seems to be unstable is getting smaller.

Main ideas are in some sense similar to those in [15] and [14]. We will take the stationary
problem of the reaction-di�usion system (2), (6) and rewrite it into the weak formulation in Sobolev
space and further to the system of operator equations. Then we will extract the variable v
from the second equation and substitute it to the �rst one. This way the system of operator
equation will be reduced to a single operator equation. In the paper [15] we used a variational
characterization of the maximal eigenvalue. However, in this case it is not possible. Therefore, we
will use di�erent, maybe more simple, approach to get our results, similar to the one in [14]. The
numerical experiments are inspired by analytical results from [15] and this paper in some sense
follows the paper [17].

The text is divided in the following manner. Section 2 consists of essential de�nitions, general
assumptions and the summary of important known facts. We formulate our main results in
Section 3. In Section 4 we de�ne operators and prove their properties and in Section 5 we reduce
our system to a single operator equation and present proofs of theorems from Section 3. Section 6
concerns numerical experiments.

2. Turing's instability, basic assumptions and periodic boundary conditions

It is possible without the loss of generality to shift the reference spatially homogeneous steady
state [u, v] to the origin for the sake of simpler analysis. Therefore we will assume from the start
that [u, v] = [0, 0]. In such case, functions u and v do not describe concentrations of the chemicals,
but rather the di�erence of these concentrations from the original positive reference steady state
[u, v]. Hence, our boundary conditions (6) are transformed to

u = v = 0 on ΓD,

∂u

∂n
=
∂v

∂n
= 0 on ΓN .

(8)

Remark 2.1. By solutions we will mean weak solutions usually in the space

H1
D(Ω) := {φ ∈W 1,2(Ω) : φ = 0 on ΓD in the sense of traces}. (9)

If ΓD = ∅, then the space H1
D is actually the whole Sobolev space W 1,2 equipped with the standard

inner product

(u, ϕ)H1
D

= (u, ϕ)W 1,2 =

∫
Ω

(∇u∇ϕ+ uϕ) dΩ (10)

and the Sobolev norm ‖u‖W 1,2 =
(∫

Ω
(∇u)2 + u2 dΩ

) 1
2 . If ΓD 6= ∅, then we will use the inner

product

(u, ϕ)H1
D

=

∫
Ω

∇u∇ϕ dΩ (11)

and the norm ‖u‖H1
D

=
(∫

Ω
(∇u)2 dΩ

) 1
2 equivalent to the classical Sobolev norm.

4
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We will now de�ne the functional T∓X : H1
D → R+

0 by

T∓X (ψ) =

(∫
X

ψ

|X|
dX

)∓
, (12)

where X is some subset of Ω. It will allow us to write many upcoming formulas in more compact
way.

We can write stationary system corresponding to the system (2) and to the classical system
without unilateral integral terms (1) as

0 = d1∆u+ b1,1u+ b1,2v + n1(u, v) +

n∑
i=1

χK−
i (x)f i

−

(
T−
K−

i

(u)
)
−

m∑
j=1

χK+
j (x)f j

+

(
T+

K+
j

(u)

)
,

0 = d2∆v + b2,1u+ b2,2v + n2(u, v),

(13)

and
0 = d1∆u+ b1,1u+ b1,2v + n1(u, v),

0 = d2∆v + b2,1u+ b2,2v + n2(u, v),
(14)

respectively, where bi,j , i, j = 1, 2 are elements of Jacobi matrix of mappings f, g at [0, 0] and
n1, n2 are higher order terms, i.e.,

n1,2(u, v) = o(|u|+ |v|) as |u|+ |v| → 0. (15)

We will always assume that the following set of inequalities is satis�ed:

b1,1 + b2,2 < 0, b1,1b2,2 − b1,2b2,1 > 0, b1,1 > 0, b2,2 < 0, b1,2b2,1 < 0. (16)

The �rst two conditions of (16) guarantee that the reference steady state is stable as a solution
of the classical system in the absence of di�usion. The third and fourth condition correspond to
the fact that we expect that the �rst equation of the system (2) is the activator equation while
the second one is the inhibitor equation. The last condition decides whether the system is in
activator-inhibitor form (for b1,2 < 0, b2,1 > 0) or substrate-depletion form (for b1,2 > 0, b2,1 < 0)
as was speci�ed in [2].

Further we will suppose that there exists c ∈ R such that

|nj(χ, ξ)| ≤ c(1 + |χ|q−1 + |ξ|q−1) for all χ, ξ ∈ R, j = 1, 2, (17)

with some q > 2 if N = 2 or 2 < q < 2N
N−2 if N > 2. In the dimension N = 1 no growth

assumptions are necessary.
We can homogenize the system (13) and linearize the classical system (14) to get

0 = d1∆u+ b1,1u+ b1,2v +

n∑
i=1

χK−
i (x)τ i−T

−
K−

i

(u)−
m∑

j=1

χK+
j (x)τ j+T

+

K+
j

(u),

0 = d2∆v + b2,1u+ b2,2v,

(18)

and
0 = d1∆u+ b1,1u+ b1,2v,

0 = d2∆v + b2,1u+ b2,2v.
(19)

De�nition 2.1 (Critical point).
A parameter d = [d1, d2] ∈ R2

+ will be called a critical point of (19), (8) or (18), (8) if there exists
a non-trivial (weak) solution of (19), (8) or (18), (8), respectively.

De�nition 2.2 (Bifurcation point).
A parameter d0 = [d0

1, d
0
2] ∈ R2

+ will be called a bifurcation point of (14), (8) or (13), (8) if in any
neighbourhood of [d0, 0, 0] ∈ R2

+ × H1
D × H1

D there exists [d,W ] = [d, u, v], ‖W‖ 6= 0 satisfying
(14), (8) or (13), (8), respectively.

5
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Remark 2.2. Let us consider the problem

−∆u = κu,

u = 0 on ΓD,

∂u

∂n
= 0 on ΓN .

(20)

The eigenvalues of (20) form a non-negative non-decreasing sequence κk with k = 1, 2, . . . (for
ΓD 6= ∅) or k = 0, 1, 2, . . . (for ΓD = ∅). The �rst eigenvalue is always simple. In the case
ΓD 6= ∅, the eigenfunction e1 corresponding to the �rst eigenvalue κ1 does not change the sign
on the domain Ω. In the case ΓD = ∅, the eigenfunction e0 corresponding to the �rst eigenvalue
κ0 = 0 is constant. Other eigenfunctions change the sign in both cases. We can choose an
orthonormal basis ek in H1

D, k = 1, 2, . . . (for ΓD 6= ∅) or k = 0, 1, 2, . . . (for ΓD = ∅) composed
of the eigenfunctions of (20).

The eigenvalue problem
λu = d1∆u+ b1,1u+ b1,2v,

λv = d2∆v + b2,1u+ b2,2v.
(21)

with boundary conditions (8) determines the stability of the reference stationary solution [0, 0] of
the evolutionary problem corresponding to (14), (8). From the dispersion relation

b1,1b2,2 − b1,2b2,1 + κ2d1d2 − κ(b1,1d2 + b2,2d1) = 0 (22)

we can derive sets of points [d1, d2] for which λ from the system (21) is zero. These sets can be
written with respect to d1 as

Ck :=

{
[d1, d2] ∈ R2

+ : d1 =
1

κk

(
b1,2b2,1

d2κk − b2,2
+ b1,1

)}
, k = 1, 2, . . . (23)

where κk are the eigenvalues of the problem (20). These sets are actually hyperbolas, but since
we consider only positive d1, d2, we have only parts of these hyperbolas (see Figure 1). There is
no hyperbola for the zero eigenvalue κ0 (see (22) and (16)). Let us de�ne the envelope

CE :=

{
d = [d1, d2] ∈ R2

+ : d1 = max
d̃1∈R+

{
d̃1 : [d̃1, d2] ∈

∞⋃
k=1

Ck

}}
, (24)

which divides the positive quadrant R2
+ on two sets DU and DS (see Figure 1). Moreover, we

de�ne two sets, which will be important in the formulation of our main results. Let r,R, ε ∈ R+

and r < R. We de�ne

CRr := {d = [d1, d2] ∈ CE : d2 ∈ [r,R]}, (25)

CRr (ε) := {d = [d1, d2] ∈ CE ∪DU : d2 ∈ [r,R] ∧ dist(d,CE) < ε}. (26)

Remark 2.3. If all eigenvalues of (20) are simple, i.e., κk < κk+1 for all k ∈ N, then Ck 6= Ck+1

for all k ∈ N. If an eigenvalue κk has a multiplicity l, then κk−1 < κk = . . . = κk+l−1 < κk+l and
Ck−1 6= Ck = . . . = Ck+l−1 6= Ck+l. The sets

DU := {d = [d1, d2] ∈ R2
+ : d is on the left of CE},

DS := {d = [d1, d2] ∈ R2
+ : d is on the right of CE}

are called the domain of instability and the domain of stability. It is known that if [d1, d2] ∈ DS,
then all eigenvalues λ of the problem (21), (8) have negative real parts and if [d1, d2] ∈ DU , then
there is a positive eigenvalue λ (for the particular case see [20],[21] and for the general case [10]).
In particular, the trivial solution of (14), (8) is linearly stable for [d1, d2] ∈ DS and unstable for
[d1, d2] ∈ DU (see e.g., Chapter 11 in [22]).

6
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C1C2C3C4C5

CE

DS

DU

d1

d2

Figure 1: The illustration of hyperbolas Ck and the envelope CE . The case when all eigenvalues κk are simple.
The hatched region is the domain of instability DU .

Remark 2.4. The following properties of the curves Ck are known, see e.g., [21],[20] for the
particular case, or [10] for the general case.

• A point d = [d1, d2] is a critical point of (19), (8) if and only if there exists k such that
d ∈ Ck. In particular, the domain of stability DS does not contain any critical point of
(19), (8) or bifurcation point of (14), (8). Under some additional assumptions, e.g., if the
eigenvalue κk is simple or of odd multiplicity, the points on Ck are simultaneously bifurcation
points (see e.g., [21]).

• If d ∈ Cn for n = k, . . . , k + l − 1 (either l is the multiplicity of the eigenvalue κk or d is
in the intersection of two hyperbolas Ck,Cm and l is the sum of multiplicities of κk, κm, see

Remark 2.3), then span

([
d2κk−b2,2

b2,1
ek, ek

]k+l−1

n=k

)
is the set of the solutions of (19), (8).

Now let us assume thatK−i ,K
+
j ⊆ ΓN . We will also consider a problem with unilateral integral

terms in boundary conditions, i.e., systems (14) and (19) with boundary conditions

u = v = 0 on ΓD,

∂u

∂n
=

n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(u)−
m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(u) on ΓN ,

∂v

∂n
= 0 on ΓN .

(27)

2.1. Periodic boundary conditions

Probably the most common boundary conditions considered in the theory of Turing's DDI and
pattern formation are homogeneous Neumann boundary conditions. While they are more natural
for these kind of problems than Dirichlet boundary conditions, they are not always the best option.
Let us for example study the pattern formation on the skin of some animal (e.g., cheetah). We
would like to assume that our domain Ω is actually a cut out part of its fur and we could construct
his fur by repeating this domain Ω. For such case periodic boundary conditions are better option
than Neumann.

7
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The basic idea of periodic boundary conditions is that in paired points the solution has the
same value and the same derivative in the corresponding direction (see bellow). The de�nition
is simple in dimension N = 1, let us assume i.e., Ω = (a, b) with a < b. In this case periodic
boundary conditions are

u(a) = u(b),

−∂u
∂n

(a) =
∂u

∂n
(b),

(28)

and the same for v.
The setting of periodic boundary conditions in the higher dimension is not so easy. We will

suppose here that the domain Ω satis�es the following properties:

for N = 2 : Ω is convex and its boundary is composed of n pairs of edges Γi and ΓiP

with i = 1, . . . n, which are parallel and of the same length.

for N 6= 2 : Ω is a hypercube with N pairs of parallel facets Γi and ΓiP with i = 1, . . . N.

(29)

The dimensionN = 2 is the most interesting for us, because patterns are often studied by numerical
experiments in this dimension and it is probably the most important one for applications. That
is why we assume more general Ω in (29) despite the fact that we could just settle here with a
hypercube (square) too. We mention that periodic boundary conditions could be de�ned on even
more general domains.

Now in general, we denote −→pi the vector of the line connecting the center of Γi and the center
of ΓiP . For every point x ∈ Γi there exists a point xP ∈ ΓiP such that xP lies in the intersection
of ΓiP and the line given by −→pi and x. By periodic boundary conditions we will mean boundary
conditions of the type

u(x) = u(xP ), (30a)

−∂u
∂n

(x) =
∂u

∂n
(xP ), (30b)

for every pair of x ∈ Γi,xP ∈ ΓiP (and the same for v). The illustration of periodic boundary
conditions on hexagon and rhomboid are on Figure 2.

In the following remark, we discuss a special type of the shape of Ω in the dimension N = 2
suitable for construction of the animal skin.

Remark 2.5. As we mentioned above, the motivation for periodic boundary conditions is to
simulate pattern formation on Ω and we aim to construct something larger by repeatedly folding Ω
("as a puzzle"). This leads to the tesselation (or tilling) of the plane, in particular the tesselation
by a single geometrical object, i.e., we cannot combine e.g., squares and octagons. The plane can
be tesselated by equilateral triangles, squares and hexagons (and their distorted variants). Since
triangles do not satisfy the condition (29), we exclude them. Hence, we can use only convex
parallelogons (e.g., square, rhomboid, hexagon etc.) for these purposes.

Remark 2.6. When we consider reaction-di�usion system with periodic boundary conditions
described in Remark 2.5, by solution we will always mean weak solution in the space of periodic
functions

H1
per(Ω) :=

{
ϕ ∈W 1,2(Ω) : ϕ satis�es (30a)

}
. (31)

The space is equipped with the same norm and inner product as W 1,2 (see Remark 2.1).
The Laplace eigenvalue problem

−∆u = κu (32)

with periodic boundary conditions has similar structure of eigenvalues and eigenfunctions as if
pure Neumann boundary conditions were considered. Hence, there is the eigenvalue κ0 = 0 and
the corresponding eigenfunction e0 is constant. Other eigenvalues are positive. Let us note that
hyperbolas and their properties are the same.
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xp

x

n


n


(a) Hexagon

x

xp

n
 n



(b) Rhomboid

Figure 2: Illustration of periodic boundary conditions. Every two edges, where we de�ne periodic boundary
conditions, have the same color.

3. Main results

We will use notation from previous sections and we assume that conditions (4), (5), (15), (16), (17)
are satis�ed. Proofs of results presented here are postponed to the end of Section 5.

Theorem 3.1.

(i) The domain of stability DS contains neither critical points of (18), (8) nor bifurcation points
of (13), (8).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersec-
tion with CRr . Let any linear combination e of the eigenfunctions of (20) corresponding to
κk, . . . , κk+l−1 satisfy

n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(e)−
m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(e) 6≡ 0. (33)

Then there exists ε > 0 such that there are neither critical points of (18), (8) nor bifurcation
points of (13), (8) in CRr (ε).

Remark 3.1. If the condition (33) is not satis�ed, then (18) becomes (19) and every point
[d1, d2] ∈ CRr is a critical point of (18), (8) due to Remark 2.4. Let e.g., CRr has non-empty
intersection with exactly two non-coinciding hyperbolas C1 and C2. Now it is possible that both e1

and e2 satisfy the condition (33), hence there are no critical points on C1 and C2 excluding their
intersection. In the same time this intersection can be a critical point due to the fact that a linear
combination of e1 and e2 does not have to satisfy this condition. However, the opposite case that
there would be critical points on C1 and C2, but not in their intersection, is not possible. In the
scenario in which C1 = C2 all linear combinations of e1 and e2 must satisfy (33) so that there
would not be any critical points on C1 or C2.
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C1C2C3C4C5

Cr
R(ε)

CE

DS

DU

R

r

d1

d2

Figure 3: The illustration of the main result and CR
r (ε) neighbourhood. The case when all eigenvalues κk are

simple.

For the case of unilateral terms of the type u−, u+, if only sources or sinks were present in the
system, it was possible to show the existence of the ε-neighbourhood along the whole envelope CE
(excluding C1 in the mixed boundary conditions case) free of critical points of (18), (8) without
satisfying the condition similar to (33) (see [15, Theorems 3.2, 3.3]). It was based on the fact that
the eigenfunctions ek of (20) for k > 1 change the sign. This is not enough in the case of unilateral
integral terms and it is necessary to satisfy condition (33).

Theorem 3.2. Let ΓD 6= ∅. Let either τ i− = 0 and τ j+ > 0 or τ i− > 0 and τ j+ = 0 for all
i = 1, . . . , n and j = 1, . . . ,m (that means we have either sources or sinks in the system). Let dI2
be the second coordinate of the intersection point of C1 and C2. Any d ∈ C1, in particular any
d ∈ CRr with dI2 ≤ r < R, is a critical point of (18),(8).

Theorem 3.3. Let ΓD = ∅ and K−i = K+
j = Ω for all i = 1, . . . , n and j = 1, . . . ,m. The

condition (33) from Theorem 3.1 can never be satis�ed and any point [d1, d2] ∈ CE is a critical
point of (18), (8).

Remark 3.2. The same formulation of Theorem 3.3 holds in the case that we consider Ω with
property (29) and systems with periodic boundary conditions instead of Neumann.

Theorem 3.4. Let K−i ,K
+
j ⊆ ΓN for all i = 1, . . . , n and j = 1, . . . ,m.

(i) The domain of stability DS contains neither critical points of (19), (27) nor bifurcation points
of (14), (27).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersec-
tion with CRr . Let any linear combination e of the eigenfunctions of (20) corresponding to
κk, . . . , κk+l−1 satisfy

n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(e)−
m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(e) 6≡ 0 on ΓN . (34)

10
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Then there exists ε > 0 such that there are neither critical points of (19), (27) nor bifurcation
points of (14), (27) in CRr (ε).

Remark 3.3. The fact that there are no bifurcation points in DS or even in CRr (ε)∪DS implies
that for any compact part M of DS or CRr (ε) ∪DS, respectively, there exists δ > 0 such that for
any [d1, d2] ∈ M there are no non-trivial solution of (18), (8) (or (19), (27)) with 0 < ‖u‖H1

D
+

‖v‖H1
D
< δ.

Theorem 3.5. Let us suppose that the domain Ω satis�es (29).

(i) The domain of stability DS contains neither critical points of (18), (30) nor bifurcation points
of (13), (30).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection
with CRr . Let any linear combination e of the eigenfunctions of (32), (30) corresponding to
κk, . . . , κk+l−1 satisfy (33). Then there exists ε > 0 such that there are neither critical points
of (18), (30) nor bifurcation points of (13), (30) in CRr (ε).

Remark 3.4. The same assertion considering periodic boundary conditions as in Theorem 3.5
could be stated for the case of unilateral sources and sinks studied in [15]. Also one could assume
a combination of periodic and Neumann boundary conditions, e.g., periodic boundary conditions
on two parallel edges of the square and Neumann boundary conditions on the rest of the boundary.

4. Abstract setting

We de�ne the operator A : H1
D → H1

D as

(Aψ,ϕ) =

∫
Ω

ψϕ dΩ for all ψ,ϕ ∈ H1
D(Ω). (35)

Remark 4.1. The operator A de�ned by (35) is linear, bounded, symmetric and compact due to
compact embedding W 1,2 ↪→↪→ L2. Simple calculation gives that the eigenvalues of the operator
A are µk = 1

κk
, k = 1, 2, . . . for ΓD 6= ∅ and µk = 1

κk+1 , k = 0, 1, 2, . . . for ΓD = ∅, and the

corresponding eigenvectors of A coincide with the eigenfunctions of (20). Also in the case ΓD = ∅
we have ((I −A)u, u) ≥ 0 for all u and the equality holds only for u ∈ span{e0}, i.e., u constant.

We de�ne operators β−, β+ : H1
D → H1

D by

(β−(ψ), ϕ) = −
∫

Ω

(
n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(ψ)

)
ϕ dΩ for all ψ, ϕ ∈ H1

D,

(β+(ψ), ϕ) =

∫
Ω

 m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(ψ)

ϕ dΩ for all ψ, ϕ ∈ H1
D

(36)

and the operator β : H1
D → H1

D as
β = β− + β+. (37)

We also de�ne operators F−, F+ : H1
D → H1

D by

(F−(ψ), ϕ) = −
∫

Ω

(
n∑
i=1

χK
−
i (x)f i−

(
T−
K−

i

(ψ)
))

ϕ dΩ for all ψ,ϕ ∈ H1
D,

(F+(ψ), ϕ) =

∫
Ω

 m∑
j=1

χK
+
j (x)f j+

(
T+

K+
j

(ψ)

)ϕ dΩ for all ψ,ϕ ∈ H1
D

(38)

and F : H1
D → H1

D as
F := F− + F+. (39)
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Lemma 4.1. Functionals T∓X and operators β, F have the following properties:

(i) β(tψ) = tβ(ψ) for all t > 0, ψ ∈ H1
D, (40)

(ii) (β(ψ), ψ) ≥ 0, (41)

(iii) ψk ⇀ ψ =⇒ T∓X (ψk)→ T∓X (ψ), (42)

(iv) ψk ⇀ ψ =⇒ β(ψk)→ β(ψ), (43)

(v) ψk → 0,
ψk

‖ψk‖H1
D

⇀ w =⇒ F (ψk)

‖ψk‖H1
D

→ β(w). (44)

Proof.

(i) The property described in (i) is positive homogeneity and it is apparent.

(ii) For any ψ ∈ H1
D we have

(β(ψ), ψ) = −
∫

Ω

(
n∑
i=1

χK
i
−(x)τ i−T

−
K−

i

(ψ)

)
ψ dΩ +

∫
Ω

 m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(ψ)

ψ dΩ =

= −
n∑
i=1

τ i−T
−
K−

i

(ψ)

∫
K−

i

ψ dK−i +

m∑
j=1

τ j+T
+

K+
j

(ψ)

∫
K+

j

ψ dK+
j =

=

n∑
i=1

τ i−

(
T−
K−

i

(ψ)
)2

|K−i |+
m∑
j=1

τ j+

(
T+

K+
j

(ψ)

)2

|K+
j | ≥ 0.

(iii) We will prove the assertion for T−X , the proof for T+
X is the same. Let us have a sequence

(ψk) ⊂ H1
D such that ψk ⇀ ψ ∈ H1

D. Then by the compact embedding W 1,2 ↪→↪→ L2, we
get ψk → ψ in L2. One can see that

∣∣T−X (ψk)− T−X (ψ)
∣∣ =

∣∣∣∣∣
(∫

X

ψk
|X|

dX

)−
−
(∫

X

ψ

|X|
dX

)−∣∣∣∣∣ ≤ 1

|X|

∫
X

|ψk − ψ| dX ≤

≤ 1

|X|

∫
Ω

|ψk − ψ| dΩ ≤ c

|X|
‖ψk − ψ‖L2 → 0.

(iv) We will show this property for β−. Let us have a sequence (ψk) ⊂ H1
D such that ψk ⇀ ψ ∈

H1
D. Then by the compact embedding W 1,2 ↪→↪→ L2, we get ψk → ψ in L2. We use the

property (ii) of this lemma, the continuous embedding W 1,2 ↪→ L2 and Hölder's inequality
to get

‖β−(ψk)− β−(ψ)‖H1
D

= sup
‖ϕ‖

H1
D
≤1

|(β−(ψk)− β−(ψ), ϕ)| ≤

≤ sup
‖ϕ‖

H1
D
≤1

∫
Ω

|ϕ| ·
n∑
i=1

χK
−
i (x)τ−i

∣∣∣T−
K−

i

(ψk)− T−
K−

i

(ψ)
∣∣∣ dΩ ≤

≤ C‖ψk − ψ‖L2 → 0.

The same can be shown for β+ and the assertion follows.

(v) We will prove this property for F− and β−. We again use the continuous embeddingW 1,2 ↪→

12
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L2 with some embedding constant cemb and Hölder's inequality to get∥∥∥∥∥F−(ψk)

‖ψk‖H1
D

− β−(w)

∥∥∥∥∥
H1

D

≤ sup
‖ϕ‖

H1
D
≤1

n∑
i=1

∣∣∣∣∣∣
f i−

(
T−
K−

i

(ψk)
)

‖ψk‖H1
D

− τ i−T−K−
i

(w)

∣∣∣∣∣∣ ·
∫

Ω

∣∣∣χK−
i (x) · ϕ

∣∣∣ dΩ ≤

≤ cemb
n∑
i=1

∣∣∣∣∣∣
f i−

(
T−
K−

i

(ψk)
)

T−
K−

i

(ψk)
·
T−
K−

i

(ψk)

‖ψk‖H1
D

− τ i−T−K−
i

(w)

∣∣∣∣∣∣ ·
∥∥∥χK−

i (x)
∥∥∥
L2

Since ψk

‖ψk‖H1
D

⇀ w, we get
T−
K

−
i

(ψk)

‖ψk‖H1
D

→ T−
K−

i

(w) by properties (i) and (iii). From the

assumption (5) we have

lim
ξ→0

f i− (ξ)

ξ
= τ i−, (45)

and due to the fact that ψk → 0 =⇒ T−
K−

i

(ψk)→ 0 we have

f i−

(
T−
K−

i

(ψk)
)

T−
K−

i

(ψk)
→ τ i− for every i = 1, . . . , n. (46)

All this together yields∣∣∣∣∣∣
f i−

(
T−
K−

i

(ψk)
)

T−
K−

i

(ψk)
·
T−
K−

i

(ψk)

‖ψk‖H1
D

− τ i−T−K−
i

(w)

∣∣∣∣∣∣→ 0, for every i = 1, . . . , n, (47)

which means F−(ψk)
‖ψk‖H1

D

→ β−(w). The proof for F+ and β+ is analogous and the assertion is

proved.

Remark 4.2.

One could consider more general type of unilateral integral terms, e.g., χM (x)
(∫

K
u(x)
|K| dK

)−
with M 6= K. While these terms could be interesting for applications, the crucial non-negativity
condition (41) is not satis�ed in such cases and therefore we exclude them.

5. Reduction to a single operator equation and proofs of main results

Let us remind that we have two di�erent inner products in two di�erent cases ΓD = ∅ and
ΓD 6= ∅. The system of operator equations is slightly di�erent in these two cases, but the approach
is the same. We will focus here on technically more di�cult case ΓD = ∅, i.e., pure zero Neumann
boundary conditions. Hence, the space H1

D is the identical with the space W 1,2 and we use the
inner product (u, ϕ) =

∫
Ω

(∇u∇ϕ+ uϕ) dΩ. Now, a weak solution of the problem (18), (8) or
(19), (8) is a pair of functions u, v ∈ H1

D satisfying

d1(I −A)u− b1,1Au− b1,2Av + β(u) = 0,

d2(I −A)v − b2,1Au− b2,2Av = 0
(48)

or
d1(I −A)u− b1,1Au− b1,2Av = 0,

d2(I −A)v − b2,1Au− b2,2Av = 0,
(49)

respectively.
Let us suppose d2 > 0 �xed. Now we can reduce each of these systems of operator equations

13
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to one operator equation by expressing the variable v from the second equation and substituting
it to the �rst one. This way we can transform systems (48) and (49) to

d1(I −A)u− Sd2u+ β(u) = 0, (50a)

v = (d2I − d2A− b2,2A)−1b2,1Au (50b)

and

d1(I −A)u− Sd2u = 0, (51a)

v = (d2I − d2A− b2,2A)−1b2,1Au (51b)

with the new operator

Sd2 := b1,1A+ b1,2A(d2I − d2A− b2,2A)−1b2,1A. (52)

The inverse in equations above always exists and the reduction is very similar in the case ΓD 6= ∅
(see Section 5.1 and 5.2 in [15]). This idea of reduction can be found e.g., in [15] or [14]. In the
next remark we will summarize known properties of Sd2 , present the form of eigenvalues d1 of the
problem (51a) and the connection of hyperbolas, critical points of (19), (8) and bifurcation points
of (14), (8).

Remark 5.1. The operator Sd2 de�ned by (52) is linear, continuous, symmetric and compact.
The eigenvalues of the operator Sd2 are

λk =
1

κk + 1

(
b1,2b2,1

d2κk − b2,2
+ b1,1

)
, k = 0, 1, 2, . . . (53)

and the eigenvectors of Sd2 corresponding to λk coincide with those of A corresponding to µk, i.e.,
with the eigenfunctions of (20) corresponding to κk. Also for u0 constant we have

(Sd2u0, u0) = (λ0u0, u0) =

(
b1,1 +

b1,2b2,1
−b2,2

)
‖u0‖2H1

D
=
−det(B)

−b2,2
‖u0‖2H1

D
< 0. (54)

The eigenvalues dk1 of the problem (51a) are given by

dk1 =
1

κk

(
b1,2b2,1

d2κk − b2,2
+ b1,1

)
, k = 1, 2, . . . (55)

There is no eigenvalue with k = 0 (c.f. (22)).
We will denote by dMAX

1 the maximal eigenvalue of the problem (51a). It is well know that we
can characterize this maximal eigenvalue of (51a) as

dMAX
1 = max

u/∈Ker(I−A)

u∈H1
D

(Sd2u, u)

((I −A)u, u)
. (56)

We can see from the form of eigenvalues dk1 that [dk1 , d2] ∈ Ck, [dMAX
1 , d2] ∈ CE and there is

in�nitely many positive eigenvalues dk1 and only �nite number of negative ones.
It can be shown that d1 is an eigenvalue of (51a) or (50a) if and only if [d1, d2] is a critical

point of (19), (8) or (18), (8), respectively (see Remark 2.4 for the classical case or Lemma 5.1 of
[15]). Also every bifurcation point [d1, d2] of (14), (8) or (13), (8) is a critical point of (19), (8) or
(18), (8), respectively. To prove this implication, one needs properties of β and F we proved in
Lemma 4.1 and de�nition of nonlinear operators corresponding to higher order terms n1, n2 for
which the growth conditions (17) are necessary. The proof is the same as the proof in the case of
problems with unilateral terms and it can be found in appendix of [15] (see Lemma A.2).
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In our previous paper [15], we used the variational characterization of the maximal eigenvalue
d1 of problems (50a) (with di�erent β) and (51a) and compared them. The eigenvalue problem
(50a) is non-linear, therefore we used [15, Theorem 5.1] (originally from [16]) to get the existence
of the maximal eigenvalue and its variational characterization. In the case of unilateral integral
terms this is not possible, because we are not able to verify the crucial potentiality condition (51)
of [15, Theorem 5.1]. Hence, we use a di�erent approach that does not guarantee the existence
of critical points of (18), (8), but considering the fact that we aim to prove the non-existence of
critical points on CE , this is not an issue.

Theorem 5.1. Let d2 > 0 be arbitrary �xed. If [d1, d2] is a critical point of (18), (8), then we
always have d1 ≤ dMAX

1 . If [dMAX
1 , d2] ∈ Cn exactly for n = k, . . . , k+l−1, all linear combinations

e of ek, . . . , ek+l−1 satisfy (33) and [d1, d2] is a critical point of (18), (8), then d1 < dMAX
1 .

Proof.
Let [d1, d2] be a critical point of (18), (8), i.e., d1 is an eigenvalue of the problem (50a) with some
eigenfunction u0. The eigenfunction u0 cannot be constant, i.e., it cannot be u0 ∈ Ker(I −A). If
it were, we would have −(Sd2u0, u0) + (β(u0), u0) > 0 due to (41) and (54). However, this is not
possible, because an eigenfunction u0 satis�es

((I −A)u0, u0)− (Sd2u0, u0) + (β(u0), u0) = 0.

For any eigenfunction u0 /∈ Ker(I −A) corresponding to the eigenvalue d1 we have

d1 =
(Sd2u0, u0)− (β(u0), u0)

((I −A)u0, u0)
≤ (Sd2u0, u0)

((I −A)u0, u0)
≤ max
u/∈Ker(I−A)

u∈H1
D

(Sd2u, u)

((I −A)u, u)
= dMAX

1

due to non-negativity of (β(u), u) (see Lemma 4.1). Hence, the �rst assertion is proved.
Let e be as in the assumptions of the theorem and let us suppose that [dMAX

1 , d2] ∈ CE is a
critical point of (18), (8), i.e., dMAX

1 is an eigenvalue of (50a) with corresponding eigenfunction
u0. It means that

dMAX
1 =

(Sd2u0, u0)− (β(u0), u0)

((I −A)u0, u0)
≤ (Sd2u0, u0)

((I −A)u0, u0)
≤ dMAX

1

due to (41) and the fact that dMAX
1 is the maximal eigenvalue of (51a). Hence, the inequality

is not possible, but in the same moment e is an eigenfunction corresponding to the maximal
eigenvalue dMAX

1 too and (β(e), e) > 0 because of (33), which leads to the contradiction. Hence,
[dMAX

1 , d2] ∈ CE cannot be a critical point of (18), (8) and together with already proven �rst
assertion of the theorem we get that every critical point [d1, d2] of (18), (8) satis�es d1 < dMAX

1 .

Proof of Theorem 3.1

(i) By Theorem 5.1, any critical point [d1, d2] of (18), (8) satis�es d1 ≤ dMAX
1 for a �xed d2 > 0.

By Remark 5.1 there is [dMAX
1 , d2] ∈ CE . Hence, there are no critical points in DS (see

Figure 1 and Remark 2.4). Since any bifurcation point of (13), (8) is also a critical point of
(18), (8) (see Remark 5.1), there are no bifurcation points of (13), (8) in DS .

(ii) The idea of the following proof is the same as in our paper [15]. We will make the proof for
the case ΓD = ∅. The case ΓD 6= ∅ is analogous.
Let us suppose the opposite, i.e., the assumptions of the second part of Theorem 3.1 are
satis�ed and there are critical points of (13), (8) in CRr (ε) for every ε > 0. We can choose a
sequence dn = [dn1 , d

n
2 ] ∈ DU and Wn = [un, vn] such that dn → d0 ∈ CRr , ‖Wn‖ = ‖u‖H1

D
+

‖v‖H1
D
6= 0 and dn,Wn satisfy (48). We can assume that Wn

‖Wn‖ ⇀W = [w, z]. Let us divide

(48) by ‖Wn‖ to get

dn1 (I −A)
un
‖Wn‖

− b1,1A
un
‖Wn‖

− b1,2A
vn
‖Wn‖

+ β

(
un
‖Wn‖

)
= 0,

dn2 (I −A)
vn
‖Wn‖

− b2,1A
un
‖Wn‖

− b2,2A
vn
‖Wn‖

= 0.
(57)
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By the compactness of A and (43), we get A un

‖Wn‖ → Aw and β
(

un

‖Wn‖

)
→ β(w), analogously

for vn and z. Hence, it follows easily from (57) that un

‖Wn‖ → w, vn
‖Wn‖ → z and

d0
1(I −A)w − b1,1Aw − b1,2Az − β(w) = 0,

d0
2(I −A)z − b2,1Aw − b2,2Az = 0.

Therefore the point d0 = [d0
1, d

0
2] ∈ CRr is a critical point of the problem (18), (8), which

contradicts Theorem 5.1 for d2 = d0
2. Hence, there exists ε > 0 such that there are no critical

points of (18), (8) and consequently no bifurcation points of (13), (8) in CRr (ε), because every
bifurcation point is also a critical point (see Remark 5.1).

Proof of Theorem 3.2

Since we assume ΓD 6= ∅, the �rst eigenfunction e1 of (20) does not change the sign by Re-

mark 2.2. Hence, for either e = e1 or e = −e1 we have
∑n
i=1 χ

K−
i (x)τ i−T

−
K−

i

(e)−
∑m
j=1 χ

K+
j (x)τ j+T

+

K+
j

(e) =

0. Since any point [d1, d2] ∈ C1 is a critical point of (19), (8) with the solution
[
d2κ1−b2,2

b2,1
e1, e1

]
(see Remark 2.4), it is also a critical point of (18), (8).

Proof of Theorem 3.3

In the case ΓD = ∅ any linear combination e of eigenfunctions ek for k > 0 satis�es
∫

Ω
e dΩ = 0.

Indeed, using Green's formula and zero Neumann boundary conditions we have

κk

∫
Ω

ek dΩ =

∫
Ω

−∆ek dΩ = −
∫
∂Ω

∂ek
∂n

d∂Ω = 0 for every k > 0.

Since all κk for k > 0 are positive, we immediately get
∫

Ω
e dΩ = 0. This means that T∓Ω (e) = 0

and by the similar argumentation as in the proof of Theorem 3.2 the assertion follows.

Proof of Theorem 3.4

First let us de�ne operators β−N , β
+
N : H1

D → H1
D as

(β−N (ψ), ϕ) = −
∫

ΓN

(
n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(ψ)

)
ϕ dΓN for all ψ, ϕ ∈ H1

D,

(β+
N (ψ), ϕ) =

∫
ΓN

 m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(ψ)

ϕ dΓN for all ψ, ϕ ∈ H1
D

(58)

and then the operator βN : H1
D → H1

D as

βN = β+
N + β−N . (59)

The operator βN has the same properties as β (see Lemma 4.1). Now we can rewrite problem
(19), (27) as

d1(I −A)u− b1,1Au− b1,2Av + βN (u) = 0,

d2(I −A)v − b2,1Au− b2,2Av = 0.
(60)

Then it is necessary to repeat the process of the reduction to one operator equation from the
beginning of this section. Theorem 5.1 applies to this problem as well and the rest of the proof of
Theorem 3.4 is the same as the proof of Theorem 3.1 presented above.
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Proof of Theorem 3.5

In the case of periodic boundary conditions, we use the function space H1
per from Remark 2.6

and by solution we mean a weak solution from this space. We can de�ne the same operators
A, β etc. from Section 4 using the inner product of H1

per (let us remind that it is the same inner
product as the inner product of W 1,2). These operators have again the properties described in
Lemma 4.1. Eventually, we get the same systems of operator equations (48), (49) as we had in the
case of Neumann boundary conditions. Then we can apply again the reduction to one operator
equation. Theorem 5.1 still applies in this case and the proof of Theorem 3.5 is then exactly the
same as the proof of Theorem 3.1.

6. Numerical experiments

In this section we will present a collection of results of our numerical experiments with speci�c
reaction kinetics. In some sense we take inspiration in the paper [17], where Vejchodský et al.
investigated the in
uence of unilateral sources of the type τv− (and its modi�cations) in the
inhibitor equation of the reaction-di�usion system on pattern formation. Analytical results for
systems with unilateral terms suggest that the domain of instability could be bigger than in the
classical case. Vejchodský et al. were looking for a critical value of the portion of di�usion
parameters D = d1

d2
where Turing's instability occurs. Of course, one cannot talk here about true

stability (or instability), because everything is just based on numerical experiments and one can
only observe whether the solution evolving from initial perturbations of the homogeneous steady
state converges to this state or not (i.e., it is evolving into something signi�cantly bigger). We are
investigating here the dual problem, i.e., unilateral terms in the activator equation. We focus both
on numerical experiments considering unilateral terms of the type u−, u+ (analytical results were
presented in [15]) and also unilateral integral terms presented in the analytic part of this paper.
One goal is to investigate the in
uence of these terms on the \change of stability" of the reference
steady state in the similar way as Vejchodský et al. did. Also we are interested in the shape of
resulting patterns in di�erent scenarios. We use here two types of boundary conditions, i.e., pure
Neumann boundary conditions and periodic boundary conditions. Since we most commonly used
Neumann boundary conditions before and we deem periodic boundary conditions more realistic,
we want to compare results and shapes of patterns for these two types of boundary conditions and
conclude that periodic boundary conditions are the better option for future experiments.

We use the well-known Schnakenberg reaction kinetics (see [23])

f(u, v) = a− u+ u2v,

g(u, v) = b− u2v,
(61)

where a, b are positive coe�cients. The reaction-di�usion system with this kinetics and either Neu-

mann or periodic boundary conditions has only one constant steady state [u, v] =
[
a+ b, b

(a+b)2

]
.

We will assume values of coe�cients

a = 0.2, b = 2. (62)

One can easily verify in such case that conditions (16) are satis�ed and the kinetics is of the

substrate-depletion type. The spatial domain is always the square Ω = [−25, 25]
2
.

The overall approach of numerical solving of our reaction-di�usion system is made in the sense
of the method of lines. We use �nite di�erence method for the spatial approximation, in particular
the �ve-point scheme to approximate the Laplace operator. The evolution in time is managed by
ode15s solver in the software MATLAB. We should mention that we use the idea of the ghost-
point and the central di�erence to deal with Neumann boundary condition and periodic boundary
conditions (see e.g., [24]). We adopt the trapezoidal rule to compute integral terms in the activator
equation.
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We use the random noise around [u, v] as an initial condition with range [−10−2, 10−2]. We
label the solution stationary, when it does not change too much, i.e., the di�erence of solutions in
the maximum norm in two consecutive times is smaller than 10−3. We say that [u, v] is unstable
if the solution u(x) that evolved from perturbations of the reference homogeneous steady state
satisfy

max
x∈Ω
|u(x)− u|

u
> 0.1. (63)

The value 0.1 is ten times bigger than the range of initial perturbation, hence we assume that the
solution has evolved enough and it suggests instability of [u, v]. We use the relative di�erence from
u here, because the constant u is quite bigger that v and the stationary solution u is in general
much bigger than v. It does not seem to be the best idea to look for some exact value of d1,
where the stability changes. We will rather look for a critical interval Icrit := (dU1 , d

S
1 ) such that

|dU1 − dS1 | < 0.01 and [u, v] is unstable for [dU1 , d2] and stable for [dS1 , d2] (in the sense of (63)).
The typical patterns produced by reaction-di�usion system with Schnakenberg kinetics and

either periodic of Neumann boundary conditions can be seen on Figure 4. The pattern with spots
typically appears for some [d1, d2] deep in the domain of instability, while stripe patterns are
produced for [d1, d2] close to the envelope CE (the eigenfunctions corresponding to the smaller
eigenvalues have probably bigger in
uence here). One can see that the shape of patterns in solution

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Examples of typical patterns in the classical case without unilateral terms. (a) sol. u, spots, Neumann
b.c. (b) sol. u, stripes, Neumann b.c. (c) sol. u, spots, periodic b.c. (d) sol. u, stripes, periodic b.c. (e) sol. v,
spots, Neumann b.c. (f) sol. v, stripes, Neumann b.c. (g) sol. v, spots, periodic b.c. (h) sol. v, stripes, periodic
b.c.

u and v are the same, there is just inverted coloring (maximums and minimums). In [17], Vejch-
odský et al. always showed the solution u, but they also used inverted colormap in Matlab. Since
we use standard colormap (grey), we will always show the solution u so that spots are always black.

6.1. Experiments with unilateral terms

We will consider the unilateral source

τ(x)(u− u)− (64)

in the activator equation with τ(x) ≥ 0 for every x ∈ Ω. We chose this simple unilateral source,
because we can expect the existence of CRr (ε) along the whole envelope CE according to analytical
results from [15] (for τ > 0).

First, let us focus on the case of Neumann boundary conditions and τ constant on the whole

18
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domain Ω. We experimentally found the critical interval Icrit for several values of d2 and three
values of τ . A sample of these experiments for d2 = 600 can be found in Table 1, the full table
for several values of d2 is Table 7 in the appendix. One can see that as we increase τ , the critical
interval shifts to zero. It would be interesting to �nd large enough value of τ , such that the critical
interval reaches zero, but the numerical methods we used are not very reliable for d1 close to zero.
Hence, this remains open problem. The case τ = 0 corresponds to the classical case without
unilateral sources. Of course, we could just use d1 computed analytically using the de�nition
of CE (in the second column). However, since everything is just approximate here, we should
compare Icrit for positive τ with Icrit for τ = 0. The patterns have usually the same shape when
we use τu− on the whole domain Ω as in the classical case (meaning in the problem without any
unilateral terms).

d2 d1 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 14.73 (14.6149,14.6221) (12.8456,12.8528) (9.8967,9.9039) (8.6452,8.6524)

Table 1: Critical intervals Icrit for di�erent values of τ . The case of the unilateral source τ(u− u)− and Neumann
boundary conditions. The value of d1 in the second column is analytically computed value of d1 such that [d1, d2] ∈
CE .

In the next series of experiments we investigate the in
uence of the unilateral source acting
only on some subset of the domain Ω. We assume

τ(x) =

 0.5 . . . x ∈ ΩS ,

0 . . . otherwise,
(65)

where ΩS is a square with center in the center of the square Ω. The goal is once again to �nd
the critical interval for di�erent sizes of ΩS . We can see in the sample in Table 2, that as we
increase the size of ΩS , the unilateral term has bigger in
uence and the critical interval is closer
to zero (see full table in appendix). This is the expected result, but it is interesting that even for
|ΩS | = 302, which is quite large square, the shift is very small. This suggests that using unilateral
terms on small subset is not very e�ective in this sense.

d2 Icrit for |ΩS | = 502 Icrit for |ΩS | = 402 Icrit for |ΩS | = 302 Icrit for |ΩS | = 102

600 (9.8967,9.9039) (12.637,12.6442) (14.1258,14.133) (14.6005,14.6077)

Table 2: Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u− u)− and Neumann boundary conditions.

The shape of patterns is more interesting in the case that the unilateral source is acting only
on the part of the domain Ω. In Figure 5 we illustrate the dependence of the shape of patterns on
the size of ΩS and the value of d1. One can see that for the higher value of d1 or the larger ΩS
the pattern is not produced.

In the case of periodic boundary conditions, the situation considering the critical interval and
the shape of patterns is very similar to the case of Neumann boundary conditions. The shift of
the critical interval Icrit for d2 = 600 and three values of τ is in Table 3, for the several values of
d2 see full Table 9. The patterns are more of less the same as typical patterns in Figure 4g, 4h.

d2 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 (14.1258,14.133) (12.6946,12.7017) (9.7169,9.7241) (8.6596,8.6668)

Table 3: Critical intervals Icrit for di�erent values of τ . The case of the unilateral source τ(u− u)− and periodic
boundary conditions.
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|ΩS |\d1 2 2.4 2.47 2.49

102

202

302

402

Figure 5: The dependence of the shape of patterns on the size of ΩS and the di�usion parameter d1- the case of
Neumann boundary conditions and �xed d2 = 100.

In the case that the unilateral source is active only on ΩS the shift of the critical interval Icrit
for d2 = 600 and four sizes of ΩS is in Table 4, for the several values of d2 see full Table 10. The
shape of patterns is again in this case more interesting than in the case that the unilateral source
is active on the whole domain Ω (see Figure 6).

d2 Icrit for |ΩS | = 402 Icrit for |ΩS | = 302 Icrit for |ΩS | = 202 Icrit for |ΩS | = 102

600 (12.1881,12.1934) (14.0108,14.018) (14.1412,14.148) (14.1345,14.1412)

Table 4: Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u− u)− and periodic boundary conditions.

The unilateral source τ(u − u)− can be of course replaced with more complicated sources or
we could use both the source and the sink. We repeated some of experiments for the unilateral

source with saturation τ(u−u)−

1+(u−u)− and we got similar results. We should mention that this term is

more natural due to the fact that it is bounded, while τ(u− u)− is not.

6.2. Experiments with unilateral integral terms

We consider one unilateral integral source and one sink

τχM (x)

(∫
K

u− u
|K|

dK

)−
− εχM (x)

(∫
K

u− u
|K|

dK

)+

(66)

with τ, ε > 0. In the analytical part of the paper we always suppose K = M . Here, we will make
some experiments even in the case that K 6= M . The convergence to the stationary solution takes
much more time for unilateral integral terms. Hence, we look for Icrit for fewer values of d2. Also
we discovered that the shift of Icrit to the left is much smaller than in the case of unilateral terms,
therefore we require that |dU1 − dS1 | < 0.001 in the de�nition of the critical interval Icrit instead of
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|ΩS |\d1 2 2.4 2.45 2.47

102

202

302

402

Figure 6: The dependence of the shape of patterns on the size of ΩS and the di�usion parameter d1- the case of
periodic boundary conditions and �xed d2 = 100.

the value 0.01 we used before.
In the case of Neumann boundary conditions, we tested several settings of parameters τ, ε and

sets K,M . In Tables 5 and 6 we summarize computed critical intervals Icrit for two di�erent
values of d2. One can see here that the shift of the critical interval is very small. We note here
that columns (v) and (vi) are in Table 6. Looking at the case (ii) (only source) and (iii) (both
source and sink), we can see that the shift is bigger, when we use both source and sink, not just
the source. On the other hand taking small sets K,M does not necessarily result in smaller shift
(compare (iii) and (iv)). This make sense, because the integral does not need to be larger if we
take larger sets K,M . The same apparently is true, when we increase values of τ and ε (compare
(iii) and (v)). The last case (vi) is the case, where the sets K and M are di�erent, which is the
case excluded in the analytic part this paper. We can observe here the shift to the right, which is
something new.
The shape of patterns does not seem to be very in
uenced by unilateral integral terms. One

d2 (i) (ii) (iii) (iv)

600 (14.6218,14.6224) (14.6166,14.6172) (14.6218,14.6224) (14.6189,14.6195)

500 (12.3099,12.3109) (12.213,12.214) (12.246,12.2469) (11.9368,11.9377)

Table 5: Critical intervals Icrit in di�erent cases for two values of d2. (i)- the classical case (no unilateral integral
terms), (ii)- the case τ = 0.8, ε = 0, K = M = [−20, 20]2, (iii)- the case τ = 0.8, ε = 0.7, K = M = [−20, 20]2,
(iv)- the case τ = 0.8, ε = 0.7, K = M = [−10, 10]2.

could say that patterns are in some cases more blurry than in the classical case, but the di�erence
is quite small. Also the case of periodic boundary conditions gives the same results as the case of
Neumann boundary conditions.
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d2 (i) (v) (vi)

600 (14.6218,14.6224) (14.6103,14.6109) (15.5855,15.5862)

500 (12.3099,12.3109) (12.0921,12.0931) (13.6883,13.6891)

Table 6: Critical intervals Icrit in di�erent cases for two values of d2 (extension of Table 5). (i)- the classical case
(no unilateral integral terms), (v)- the case τ = 1.5, ε = 1.2, K = M = [−20, 20]2 (vi)- the case τ = 0.8, ε = 0.7,
K = [0, 20]2, M = [−20, 0]2 (i.e., the case K 6= M).

6.3. Conclusion

The numerical investigation of unilateral and unilateral integral terms yielded several observa-
tions. Should we compare the in
uence of unilateral terms and unilateral integral terms, former
ones have much bigger impact on the pattern formation. First we have seen that with the increas-
ing strength of unilateral terms, the shift of the critical interval Icrit to the left is getting bigger
and the same is true, when we increase the set, where these terms are active. We have observed
that the pattern formation can be locally broken on the set, where unilateral terms are active and
it leads to quite interesting patterns. This behaviour can be detected for the case of Neumann
boundary conditions and also periodic boundary conditions. Hence, we conclude that we should
focus more on periodic boundary conditions in the future, because they give qualitatively similar
results as Neumann boundary conditions and we deem them more natural. On the other hand, in
the case of unilateral integral terms, we observed that the shift of Icrit is small in several scenarios.
The shift is especially small in comparison to the shift in the case of unilateral terms. Also the
shape of patterns usually remains unchanged. The most interesting observation here is the fact
that when K 6= M (the set where we compute integral and the set where these terms are active is
di�erent), the critical interval can truly shift to the right. This is something new, which was not
possible in the case of unilateral terms.
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A. Appendix

A.1. Tables

d2 d1 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 14.73 (14.6149,14.6221) (12.8456,12.8528) (9.8967,9.9039) (8.6452,8.6524)

400 9.96 (9.9503,9.96) (8.8706,8.8804) (6.7211,6.7308) (5.7776,5.7873)

300 7.47 (7.4262,7.4335) (6.6821,6.6894) (5.0919,5.0992) (4.3332,4.3405)

200 5.01 (4.9904,5.0002) (4.4718,4.4816) (3.3661,3.3759) (2.8866,2.8964)

150 3.75 (3.7207,3.728) (3.3398,3.3472) (2.5342,2.5415) (2.168,2.1753)

100 2.51 (2.4806,2.4904) (2.2257,2.2355) (1.6962,1.706) (1.4511,1.4609)

70 1.76 (1.7462,1.7531) (1.5675,1.5744) (1.1894,1.1963) (1.0106,1.0175)

80 2.01 (1.9943,2.0021) (1.798,1.8059) (1.3583,1.3662) (1.1542,1.162)

60 1.5 (1.4941,1.5) (1.3359,1.3418) (1.0195,1.0254) (0.86719,0.87305)

50 1.25 (1.2402,1.25) (1.1133,1.123) (0.83984,0.84961) (0.72266,0.73242)

Table 7: Critical intervals Icrit for several values of d2. The case of the unilateral source τ(u− u)− and Neumann
boundary conditions.

d2 Icrit for |ΩS | = 502 Icrit for |ΩS | = 402 Icrit for |ΩS | = 302 Icrit for |ΩS | = 102

600 (9.8967,9.9039) (12.637,12.6442) (14.1258,14.133) (14.6005,14.6077)

400 (6.7211,6.7308) (8.7053,8.715) (9.7266,9.7363) (9.9308,9.9405)

300 (5.0919,5.0992) (6.6092,6.6165) (7.2074,7.2147) (7.3606,7.3679)

200 (3.3661,3.3759) (4.6088,4.6186) (4.9121,4.9219) (4.9806,4.9904)

150 (2.5342,2.5415) (3.457,3.4644) (3.6401,3.6475) (3.728,3.7354)

100 (1.6962,1.706) (2.3727,2.3825) (2.4512,2.461) (2.4904,2.5002)

80 (1.3583,1.3662) (1.9079,1.9158) (1.9629,1.9707) (1.9864,1.9943)

70 (1.1894,1.1963) (1.7325,1.7394) (1.7462,1.7531) (1.6775,1.6844)

60 (1.0195,1.0254) (1.4473,1.4531) (1.4766,1.4824) (1.4941,1.5)

50 (0.83984,0.84961) (1.2109,1.2207) (1.2305,1.2402) (1.2402,1.25)

Table 8: Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u− u)− and Neumann boundary conditions.

23



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

d2 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 (14.1258,14.133) (12.6946,12.7017) (9.7169,9.7241) (8.6596,8.6668)

400 (9.8919,9.9016) (8.608,8.6177) (6.6432,6.653) (5.7484,5.7581)

300 (7.0615,7.0688) (6.3466,6.3539) (4.8949,4.9022) (4.3259,4.3332)

200 (4.9415,4.9513) (4.4718,4.4816) (3.3661,3.3759) (2.8866,2.8964)

150 (3.6548,3.6621) (3.2153,3.2227) (2.4829,2.4902) (2.168,2.1753)

100 (2.4806,2.4904) (2.2355,2.2453) (1.6864,1.6962) (1.4413,1.4511)

80 (1.9786,1.9864) (1.7745,1.7823) (1.3583,1.3662) (1.1542,1.162)

70 (1.7394,1.7462) (1.5675,1.5744) (1.1825,1.1894) (1.0106,1.0175)

60 (1.4824,1.4883) (1.3184,1.3242) (1.0195,1.0254) (0.86719,0.87305)

50 (1.2402,1.25) (1.1133,1.123) (0.83984,0.84961) (0.72266,0.73242)

Table 9: Critical intervals Icrit for several values of d2. The case of the unilateral source τ(u − u)− and periodic
boundary conditions.

d2 Icrit for |ΩS | = 402 Icrit for |ΩS | = 302 Icrit for |ΩS | = 202 Icrit for |ΩS | = 102

600 (12.1881,12.1934) (14.0108,14.018) (14.1412,14.148) (14.1345,14.1412)

400 (8.2662,8.2733) (9.7849,9.7946) (9.8978,9.904) (9.8915,9.8978)

300 (6.508,6.5157) (6.9375,6.9448) (6.9626,6.9716) (7.0582,7.065)

200 (4.6114,4.6189) (4.9062,4.9125) (4.9286,4.9348) (4.9411,4.9474)

150 (3.3953,3.401) (3.5375,3.5438) (3.6201,3.6293) (3.6572,3.6665)

100 (2.3624,2.3716) (2.4563,2.4625) (2.4786,2.4849) (2.4849,2.4912)

80 (1.8992,1.9066) (1.9563,1.9625) (1.9698,1.9748) (1.9798,1.9849)

70 (1.6404,1.649) (1.7062,1.7125) (1.7248,1.7336) (1.7424,1.7512)

60 (1.4394,1.4449) (1.4688,1.475) (1.4775,1.485) (1.485,1.4925)

50 (1.2129,1.2191) (1.2375,1.2437) (1.2375,1.2437) (1.2437,1.25)

Table 10: Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u− u)− and periodic boundary conditions.
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