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Abstract – The paper deals with a problem of modeling 
of dynamic systems. The proposed approach to the 
problem solution is based on modified Tellegen’s 
theorem well known from electrical engineering. The 
novelty of this approach is that it is based on the 
instantaneous power calculation for real linear and 
nonlinear systems e.g. electrical circuits, mechanical 
systems, heat transfer etc. Consequently, 
mathematically as well as physically correct results are 
obtained. Some known and often used system 
representation structures are discussed from the 
developed point of view as an addition. The examples 
are also included.  The mathematical derivation and 
results of simulations are presented in this paper.   
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I.  INTRODUCTION 

It is familiar that there are two basic approaches to 
system modeling. The first one consists in using 
mathematical formulas and physical tools (a causality 
principle, different forms of conservation laws, power 
balance relations, etc.) in order to describe 
appropriate system behavior. It has successfully been 
used in many fields of science and engineering so far. 
However, there are also situations where physical 
laws are not known or cannot be expressed in a proper 
mathematically exact form. In that case the second 
basic approach to system modeling can be used. It is 
based on identification methods working in terms of 
experimentally gained data. The main aim of this 
contribution is to formulate power and energetic 
approach which can be used for different types of 
system. The method starts from the assumption that 
any physically correct system representation holds 
power conservation principle. Such approach can be 
used for different type of systems. 

II. MODIFIED TELLEGEN PRINCIPLE 

Let N be a physically correct electrical circuit with 

the k lumped parameters. Parameters of N can be 
linear or nonlinear, hysteresis or non-hysteresis, time-
constant or variable. The currents in the branches are 
ik(t) and the voltage on these branches are vk( ). 
Theorem 1. (Classic Tellegen´s theorem [1]). For 
branch currents ik(t) and branch voltages vk(t)  holds 
true: 

b
T

k k
k=1

i(t) , v(t) = i (t)v (t)= 0∑                 (1) 

It is worth noticing a close relation between first 
and second Kirchhoff´s laws (ensuring physical 
correctness of N) and Tellegen´s theorem. It is also 
important to note that inner product according (1) 
include instantaneous power dissipated on resistors 
and instantaneous power on inductors and capacitors. 
Finally, let's note that Tellegen's theorem applies not 
only to electrical circuits but to any model of a 
physical correct system with lumped parameters, for 
example mechanical, thermal, etc [2 - 4]. Therefore if 
the system is described appropriately by state space 
equations, voltages and currents are substituted by 
state space variables and it's derivations. 

T
1 1 2 2x(t) , x(t) = x (t)x (t)+ x (t)x (t)....= 0   (2) 

It is worth noticing a close relation between 
physical correctness and Tellegen’s theorem. It is 
possible describe power or energy in some system by 
means of Tellegen‘s theorem. It is shown in first 
simple example.  
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Figure 1.  Simple circuit used for example 1 

Example1: The state space equations of Fig. 1 are 
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diL R i v
dt
dv VC i v
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= − +

= − − +
            (3) 

The system according by eq. (3) can be described 
in state space as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( );  x t A t x t B t u t y t C t x t= + =     (4) 

therefore  

1 2
1 2

2 1
1 2

1 1

1

1 1

dx R x x
dt L L
dx Vx x
dt C CR CR

= − +

= − − +
             (5) 

in matrix forms 

21

1
1

22
1

1

1 0
11 1

B
A

Rdx
xL Ldt V
xdx

CRC CRdt

   −         = ⋅ + ⋅          − −        

  (6) 

The system according (6) can be transformed by 
state-space similarity transformation 

1 1
1 1 1;   ;   A T A T B T B C C T− −= ⋅ ⋅ = ⋅ = ⋅     (7) 

The transformation matrices are 

10 1/ 0
;   

0 0 1/

L L
T T

C C
−

   
= =   
      

  (8) 

Matrices A and B after transformation (marked as 
A1 and B1) creates generalized system 

11 2
1 1

2 22 2

0
;   A B

α α
α α β

−   
= =   − −   

         (9) 

where 

2
11 2 22 2

1 1

1 1 1; ; ;R
L CRCL CR

α α α β= = = =  (10) 

where relations between x1 ⇔ iL and x2 ⇔ vC are 

1 2;   L Cx L i x C v= ⋅ = ⋅                 (11) 

Power is given as inner product  

[ ] 1
1 2 1 1 1

2

2 2
11 1 2 1 2 2 1 2 22 2 2 1 2

0

( )( ) ( ) ,T xdx tP t x t x x A BV
xdt

x x x x x x V xα α α α β

  
= = +  

  
= − + − − + ⋅

   (12) 

After substitution P(t) is 

2
22 1 2 1 2 2 1 2

1
1 1

0

( ) R x x x x x V xP t x
L CRLC LC C R

⋅
= − + − − +

⋅
 (13) 

Using (11) and (13) for powers evaluation 

( ) ( ) ( )

2
22 2 1 2

1
1 1

2

2 12

1 1

( )

C C

L

R x V xP t x
L CR C R

C v V C vR L i
L CR C R

⋅
= − − +

⋅

⋅ ⋅ ⋅
= − ⋅ − +

⋅

  (14) 

After some manipulations 

( )2
121

1 2
1 1

( ) 0

i

CC
L

DPP

V vV v
P t V R i

R R
−−

= − − =          (15) 

The power P(t) described by (15) consists from 
input power Pi and two dissipations powers PD 
(dissipation on R1 and R2).  

The real RLC system (see Fig. 1) after similarity 
transformation is artificial. Moreover the 
transformation is complicated for high order systems 
or nonlinear systems. Therefore the new approach 
(generalized and modified Tellegen’s theorem) based 
was derived. The main difference is that matrix Q 
contains of energy storage elements is used  

( ) ( )( ) ( ) ,T
M

dx tP t Q x t
dt

= ⋅                      (16) 

where PM(t) is dissipated power. The matrix Q is 
square diagonal matrix size of n. For example 1, the 
matrix Q is  

0
0
L

Q
C

 
=  
 

                           (17) 

Therefore PM(t) is 

( )

[ ]

1 1

2 2

2
1 2

1 2
1

1 2
1 1

( )( ) ( ) ,

0
,

0

1

,
1 1

T
M

T

dx tP t Q x t
dt

x xL
x xC

R x x
L LLx Cx Vx x

C CR CR

= ⋅ =

     
⋅ =     

      

 − + 
 
 − − +  

     (18) 

result of the scalar product is 

2 2 1
2 1 1 2 1 2 2 2

1 10

( )( ) ( ),

1

M
dx tP t Qx t

dt
VR x x x x x x x

R R

= =

− + − − +
           (19) 



 

where x1=iL and x2=vC  and therefore result is the 
same as eq. (15) without unpleasant transformation. 
For system modelling it is possible use 2 types of 
models: M1-RLC for systems with complex conjugate 
poles and also for systems with only real poles, M2 
for systems with real poles (RC or RL models), circuit 
diagram of the models are shown in Fig. 2, 3 and 4. 
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Figure 2.  The ladder structure  of RLC model with complex 
conjugate and also real poles. Model M1-RLC 
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Figure 3.  The ladder structure of  RC model with real poles. 
Model M2-RC 
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Figure 4.  The ladder structure of  RL model with real poles. 
Model M2-RL 

The state space equation for model M1-RLC is eq. 
(20), for model M2-RC it is eq. (29) – only matrix A 
is presented. Eq. for model M2-RL is similar (not 
shown here). Equations are for 4th orders models only.  

1
1

1 1

11
1

1 1 2 1 1
1

22 3

2 2 2 2

2

2 2 4

1 0 0
1

1 1 1 0
0

1 10 0
0

1 10 0

L

LC

C

LL

C

C

Rdi
L Ldt

idu L
C C R C udt V

idi R
dt L L L u

du
dt C C R

   − −              − −         = +         − −                  −      

 (20) 

with property (for linear systems) 

    
n

ij
j=1

a = 0; i = 2,3...n - 1; i j≠∑     (21) 

where matrix Q  for M1-RLC - i.e. eq. (20) is  

1

2

2

0
0 0 0
0 0 0
0 0 0

1L 0 0
C

Q =
L

C

 
 
 
 
 
  

                       (22) 

Power PM for M1-RLC is calculated as 

( ) 1 1 2 1
1 1

1 1 1

3 3 31 2 2 4
1 2 2 3

1 1 2 1 2 2 2

3 4
2 4

2 2 4

,T
M

dx R x x VP Qx L x
dt L L L

x R xx x x xC x L x
C C R C L L L

x xC x
C C R

 
= = − − + + 

 
   

− − + − + +   
   
 

− 
 

(23) 

and result after some manipulation is 
2 2

2 22 4
1 1 1 1 3 3

2 4
2 2

2 22 4
1 1 1 1 3 3

2 4

M

Pi
Pd

x xP R x V x R x
R R

x xV x R x R x
R R

= − + − − −

= − − − −
          (24) 

Example2: Differential equation which represents 
some dynamical system is 

(4) (3) (2)x  + x + 3x  +0.8x + x = 0            (25) 

From eq. (20) and generalized eq. (26) (M1-RLC) 
it is possible find many solutions of eq. (25) in state 
space representations. The energy storage elements 
are 4 and dissipation elements can be from 1 to 4. 

1
1

1 1

122
1

2 2 2 2
1

333

3 3 3 4

4 4

4 4

1 0 0
1

1 1 0
0

1 10 0
0

10 0

ddx
q qdt

xddx q
q q q xdt V

xddx
q q qdt x

dx d
dt q q

   − −              − −         = +          − −                  −      

   (26) 

  di – dissipation, qi – energy storage element. One of 
many possible solutions is (matrix has the same 
eigenvalues): d1=1; d2=0; d3=0; d4=0; q1=1; 
q2=0.4545; q3=6.37; q4=0.346. The system with one 
dissipation is given in eq. (27)  

1 1

2 2
1

3 3

4 4

1 1 0 0 1
2.2 0 2.2 0 0
0 0.157 0 0.157 0
0 0 2.89 0 0

x x
x x

V
x x
x x

− −      
      −      = +
      −
      
         

     (27) 

or C2=parameter and L1=1/(2.89·C2); C1=C2/0.76; 
L2=1/(0.4545*C2); R1=L1; see eq. (19). Other solution, 
i.e. system with 2 dissipations is 



 

1 1

2 2
1

3 3

4 4

0.85 2.35 0 0 2.35
1 0 1 0 0
0 0.08 0 0.08 0
0 0 5.13 0.154 0

x x
x x

V
x x
x x

− −      
      −      = +
      −
      −         

   (28) 

The systems according eq. (27) and (28) (M1-
RLC) are real systems with RLC components, e.g. for 
eq. (28) and according eq. (20): R1=0.362; L1=0.43; 
C1=1; L2=12.5; C2=0.195; R4=33.3. 

For M2-RC (only matrix A is presented) matrix is 

1 1 2 1 2

2 2 2 2 3 2 3

3 3 3 3 4 3 4

4 4 4 4 5

1 1 1 1 0 0

1 1 1 1 1 0
  

1 1 1 1 10

1 1 1 10 0

C R R CR

C R C R R C R
A

C R C R R C R

C R C R R

  −
+  

  
  − +   = 

 − +    
  −

+  
   

(29) 

with property  (for linear systems) 

  
n

ij
j=1

a = 0; i = 2,3...n - 1∑              (30) 

Example 3: Differential equation for M2-RC is given 
in eq. (31) 

(4) (3) (2)x  +10x + 35x  + 50x + 24x = 0   (31) 

Equation (31) can be converted to system  

1 1

2 2
1

3 3

4 4

2.82 0.62 0 0 0.62
1.84 2.16 0.32 0 0

0 2.73 2.85 0.12 0
0 0 2.17 2.17 0

x x
x x

V
x x
x x

−      
      −      = + ⋅
      −
      −         

  (32) 

It is possible calculate values of resistors and 
capacitors from (29) and (32) for chosen C1=1 (as 
parameter). Other values are: R1=0.45; C2=0.33; 
R2=1.62; C3=0.039; R3=9.29; C4=0.0022; R4=211 and 
matrix Q for M2-RC is 

2

3

4

0 0
0 0 0 0 0.33 0 0
0 0 0 0 0 0.039 0
0 0 0 0 0 0 0.0022

1C 0 0 1 0 0
C

Q =
C

C

   
   
   =
   
   
    

 (33) 

therefore according M2-RC (28), (32) and (15) PM is 

( ) 1
1 1

32 4
2 2 3 3 4 4

,T
M

dx dxP Qx C x
dt dt

dxdx dxC x C x C x
dt dt dt

= = ⋅ ⋅ +

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

    (34) 

after adjustments (34) according to the equation (23) 

( ) ( )

( ) ( )

2 2
1 1 1 21 1

1
1 1 2

2 2
2 3 3 4

3 4

      

C C CC
M

C C C C

V v v vV vP V
R R R

v v v v
R R

− −−
= − −

− −
− −

 (35) 

Energy of the system is calculated according 

0

( ) ( )ME t P t dt
∞

= ∫                      (36) 

where qii are diagonal elements of Q. 

Example 4: Nonlinear autonomous dissipative Duffing 
system differential equation is 

3x +bx - x + x = 0                        (37) 

where dissipative parameter b=0.1. In state space 

3

x y
y by x x
=

= − + −
                         (38) 

Previous equations can be rewritten as nonlinear 
electrical system 

( )3

1

1

C
L

L
L C C

dv i
dt C

di R i v v
dt L

=

= − ⋅ + −

          (39) 

Power PM given by scalar product is 

3 2

0
,

0

   

T
C C

M
L L

C L L C L C L

v vC
P

i iL

v i i v i v R i

     
= ⋅     

      

= ⋅ + ⋅ − ⋅ − ⋅

     (40) 

The simulation results are shown in Fig. 5 to Fig. 6 
which presents time evolution of signals, Fig. 7 and 8 
concerning power PM and only dissipated power 

2
LR i− ⋅ , Fig, 9 and 10 which displays energy of the 

system and dissipated energy respective. It should be 
noticed that energy is calculated by integration of 
power. 

 

Figure 5.  Dissipative Duffing system. Time evolution of vC and 
iL signals  



 

 

Figure 6.  Dissipative Duffing system. Phase space evolution of 
vC and iL signals  

 

Figure 7.  Dissipative Duffing system. Time evolution of power 
PM  according (40) 

 

Figure 8.  Dissipative Duffing system. Time evolution of 
dissipative power given by 2

LR i− ⋅  

 

Figure 9.  Dissipative Duffing system. Time evolution of 
energy given by integration of PM 

 

Figure 10.  Dissipative Duffing system. Time evolution of 
dissipative energy given by integration 2

LR i− ⋅  

III. CONCLUSION 
In this paper the power and energy approach based 

on generalized Tellegen principle was used for linear 
and nonlinear dynamical systems. The theory was 
confirmed by simulation on several examples. 
Presented practice can be used for different types of 
systems which can be described by ordinary 
differential equation or set of differential equations.  
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