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Abstract

This diploma thesis is divided into three parts. In the first part we review some
basic facts of the computational complexity theory, present a standard model of
computation called Turing machine and use it to define some complexity classes.
In the next part we take a closer look at the logarithmic space complexity classes
and especially the classes NL and UL. It is believed that these classes are equal
but the problem remains open. At the end of this part we recall some techniques
for working with classes using logarithmic space.
In the last part we prove the main result of this thesis: the directed connectivity
problem on a restricted subclass of grid graphs belongs to UL.
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Abstrakt

Tato diplomová práce je rozdělena do tří částí. V první části připomeneme několik
základních faktů z teorie výpočetní složitosti, zavedeme standardní výpočetní model
zvaný Turingův stroj a pomocí něho definujeme několik složitostních tříd.
V další části se budeme podrobněji zabývat problémy s logaritmickou prostorovou
složitostí a obzvlášť třídami NL a UL. Panuje obecné přesvědčení o tom, že se tyto
třídy sobě rovnají, ale problém zůstává otevřeným. Na konci této části připome-
neme některé techniky, které se využívají při práci s třídami problémů řešitelných v
logaritmickém prostoru.
V poslední části dokážeme hlavní výsledek této práce: tvrzení, že problém souvislosti
orientovaného grafu na podmnožině třídy mřížkových grafů patří do UL.

Klíčová slova

Teorie výpočetní složitosti, prostorová složitost, logaritmický prostor, log-space, jed-
noznačný log-space, mřížkové grafy, min-unique grafy, problém souvislosti oriento-
vaného grafu
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1 Introduction

The topic of this thesis is computational complexity theory. Our main topic of
interest will be complexity classes using logarithmic space. In Chapter 2 we pro-
vide an overview of some elementary concepts and results in this field. Namely, in
Section 2.1.2 we introduce Turing machines as a computational model and use them
to define time and space complexity of computations in Section 2.2 and Section 2.3.
By considering restrictions on these two computational resources we define several
complexity classes in Section 2.4. Basic results regarding these complexity classes
are recalled in Section 2.4.1.
In Chapter 3 we take a closer look at the complexity classes using the logarithmic
amount of space. First we introduce two types of the composition of Turing machines
that preserve logarithmic space complexity. In Section 3.1 and in Section 3.2 we
recall some basic facts about log-space reductions. Section 3.3 serves as a overview
of classes using logarithmic space. In this section we mention two important com-
putational problems in space complexity theory namely deciding connectivity of a
directed and undirected graphs.
Chapter 4 is devoted to the long standing open problem whether NL = UL. In
Section 4.1 we cover a recent result on the directed planar reachability problem
belonging to UL. Finally, we mention two possible approaches to this problem in
Section 4.2.
Chapter 5 contains a proof of the main result of this thesis, namely that the di-
rected connectivity problem on the class of 3D monotone grid graphs with bounded
height belongs to UL. We also mention some further restrictions of the connectivity
problem worth investigating.

1.1 Motivation

Non-determinism in the space complexity theory has interesting properties that
are in many ways different than in the time complexity setting. It is a common
conjecture that NP 6= co-NP , but for space complexity classes, Immerman and
Szelepcsényi proved that for S(n) being a computable real function lower bounded
by log2 n it holds that NSpace(S(n)) = co-NSpace(S(n)). Another important result
that has currently no equivalent in time complexity is Savitch’s theorem that states
NSpace(S(n)) ⊆ DSpace(S(n)2).
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1.2 Definitions and notation

These results bring about a number of questions about other space complexity
classes. Our interest was devoted to an open problem about two space complex-
ity classes called NL and UL. Most of the researchers believe that NL = UL.
There are several results to support this conjecture but a proof is still missing.
In this thesis we did not try to solve this, probably very hard, problem, but rather
give an overview of related results and methods that were developed regarding this
problem. Particularly interesting is a recently proved result that states that a di-
rected reachability problem remains NL-complete when we restrict to class of 3D
monotone grid graphs. Thus to prove the conjecture about NL = UL it is enough
to show that this problem is in UL.
There are no problems known to be in the class UL that are complete for UL under
log-space reductions. Furthermore there are not many problems known to be in UL
at all except problems that are known to be in L because for trivial reasons L ⊆ UL.

1.2 Definitions and notation

In this section we introduce some basic graph theory terms. Most of them are
taken over from a standard graph theory textbook [Die06] or from [Gol08], [BTV07],
[Ryj11] and [Ryj09]. The interested reader is referred to these sources for further
details.
An undirected graph G is a pair G = (V,E) where V is a finite set and E ⊂

(
V
2

)
.

A directed graph G is a pair G = (V,E) where V is a finite set and E ⊂ V × V .
Elements of V (G) are called the vertices and elements of E(G) are called the edges.
For two vertices x, y ∈ V (G) connected by an edge we will usually denote this edge
xy or {x, y} for undirected graphs and (x, y) for directed graphs.
We say that a graph H is a subgraph of a graph G if V (H) ⊂ V (G) and E(H) ⊂
E(G).
A path in a graph G is a non-empty graph P = (V,E) of the form

V = {x0,x1, ..., xk}, E = {x0x1, x1x2, ..., xk−1xk},

where the xi are all distinct. Vertices x0 and xk are the end vertices of P . We
call |E(P )| the length of P . If P = x0...xk−1 is a path and k ≥ 3, then the graph
C := P + xk−1x0 is called a cycle. A Hamiltonian cycle is a cycle in a graph G that
contains all its vertices.
A graph G is connected, if for every two vertices x, y there exist a path from x to y
in G. G is disconnected otherwise.
A tree T = (V,E) is a connected graph with |V (G)| − 1 edges, or equivalently a
connected graph without cycles. A forest is a disjoint union of trees.
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1.2 Definitions and notation

A planar graph is a graph that can be embedded in the plane such that none of its
edges intersect.
Later in the thesis we will also use an example about graph coloring. A chromatic
number of a graph G, denoted by χ(G), is the minimum number of colors required
for a proper coloring of G. For details see [Die06] Chapter 5.
We are mainly interested in the asymptotic behavior of functions considered in the
text. For this we use the Bachmann–Landau notation (or Big O notation).

Definition 1.1 ([AB09]). If f ,g are two functions from N to N, then we say that
• f = O(g) if there exists a constant c such that f(n) ≤ c · g(n) for every

sufficiently large n.
• f = Ω(g) if g = O(f),
• f = Θ(g) if f = O(g) and g = O(f),
• f = o(g) if for every ε > 0, f(n) ≤ ε · g(n) for every sufficiently large n.

Unless stated otherwise all the logarithms mentioned in the text are binary loga-
rithms, so log n = log2 n.
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2 Computational Complexity

Computational complexity focuses mainly on two closely related topics. The first
of them is the notion of complexity of a “well defined” problem and the second is
the ensuing hierarchy of such problems. By “well defined” problem we mean that
all the data required for the computation are part of the input. If the input is of
such a form we can talk about the complexity of a problem which is a measure of
how much resources we need to do the computation.
What do we mean by relationship between problems? An important technique in
the computational complexity is a reduction of one problem to another. Such a
reduction establish that the first problem is at least as difficult to solve as the
second one. Thus, these reductions form a hierarchy of problems. We will cover this
technique in Section 2.1.3.

2.1 Introduction

Before we start, we will have to establish all the basic definitions, which are necessary
for further chapters.
In this section we will follow the description given in [Gol08], Section 1.2 and [Koz06]
Chapters 1, 2, 4, 5 and 6.

2.1.1 Representation

In mathematics one usually works with mathematical objects as with abstract en-
tities. This is not the case of computational complexity. For our purposes we have
to define how data will be represented to be able to find a feasible computational
model that will handle them.

Definition 2.1. A string is a finite binary sequence. For n ∈ N, we denote by {0, 1}n

the set of all strings of length n and call its elements the n− bit strings. The set of
all strings is denoted by

{0, 1}∗ :=
⋃

n∈N
{0, 1}n.

For x ∈ {0, 1}∗, we denote the length of x by |x|.
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2.1 Introduction

Now we are able to define two most important kinds of computational tasks that we
deal with. They differ in the type of the solution.

Definition 2.2 (Search problem). LetR ⊆ {0, 1}∗×{0, 1}∗ andR(x) := {y : (x, y) ∈ R}
denote the set of solutions1 for the instance x. A function f : {0, 1}∗ −→ {0, 1}∗ ∪
{⊥} solves the search problem of R if for every x the following holds: if R(x) 6= ∅
then f(x) ∈ R(x) and otherwise f(x) =⊥.

It is required, that f never outputs a wrong solution.
A special case of search problems is a class of problems having a unique solution
(i.e. |R(x)| = 1 for all x). We will be interested in this particular case in Chapter 4
because it is closely related to our main result.
The definition of decision problems follows.

Definition 2.3 (Decision problem). Let S ⊆ {0, 1}∗. A function g : {0, 1}∗ −→
{0, 1} solves the decision problem of S if for every x it holds that g(x) = 1 if and only
if x ∈ S.

From the definition of decision problem it is clear that the function g is actually the
characteristic function of set S.
One should further notice, that f solves the search problem of R when the Boolean
function g : {0, 1}∗ −→ {0, 1} defined by g(x) = 1 ⇐⇒ f(x) 6=⊥ solves the decision
problem of {x : R(x) 6= ∅}.
Closely related to a decision problem is a notion of a language.

Definition 2.4. A language is a set (possibly infinite) of strings.

Definition 2.5. Let M be a Turing machine (see Section 2.1.2). The language
L(M) is a subset of {0, 1}∗ such that
• for all x ∈ L(M), M halts in the accept state s.
• for all x /∈ L(M), M halts in the reject state r.

It is easy to see that languages and decision problems are essentially interchangeable.

2.1.2 Turing Machine

Before we give a detailed definition it might be useful to take a look at a brief
overview. For that we will consider only deterministic Turing machines (TM). Our
TM will act as acceptor, which means that it will accept, reject or loop on every
input. In general TMs may have several read/write work tapes or dedicated in-
put read-only and output write-only tapes but it can be proven that they all have
equivalent computational capabilities as one-tape TM.

1We can look at R(x) as on a set of strings that are also outputs of function f on input x.
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2.1 Introduction

We will define a one-tape deterministic TM as a 9-tuple

M = (Q,Σ,Γ,`,t, δ, s, t, r),

where
• Q is a finite set of states;
• Σ is a finite input alphabet (in our case Σ = {0, 1});
• Γ is a finite tape alphabet and Σ ⊂ Γ;
• `∈ Γ− Σ is the left end-marker ;
• t ∈ Γ− Σ is the blank symbol;
• δ : Q× Γ −→ Q× Γ× {−1, 0, 1} is the transition function;
• s ∈ Q is the start state;
• t ∈ Q is the accept state;
• r ∈ Q is the reject state (r 6= t).

` 0 1 1

Q

. . .1 1 10 0 t
Input / output tape (read/write)

Figure 2.1.1: Schema of a one-tape Turing machine.

The most important of these is the transition function which describes how the TM
processes the input. Formally it is defined as follows. For p, q ∈ Q, a, b ∈ Σ and
d ∈ {−1, 0, 1} we have δ(p, a) = (q, b, d). This says that if the state is p and head
is scanning symbol a then TM writes b, moves the head in direction d, and enters
state q. There are two more criteria we require from the transition function. First
the TM should never leave its work tape so for all p ∈ Q there exist q ∈ Q such
that δ(p,`) = (q,`, 1). A second requirement is that whenever a TM enters an
accept or a reject state it never leaves it so for all b ∈ Γ there exist c, c′ ∈ Γ and
d, d′ ∈ {−1, 0, 1} such that δ(t, b) = (t, c, d) and δ(r, b) = (r, c′, d′). At the beginning
of every computation a TM is in state s (a start state). Then it may either enter
an infinite loop or end in one of the states t or r that stand for accept and reject,
respectively. By entering these two states a TM halts the computation.
We are now going to describe what are deterministic and non-deterministic com-
putational models. The difference between the former and the latter is in the
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2.1 Introduction

transition function. The description above is of a deterministic TM. For a non-
deterministic model the transition function δ is no longer a function but a relation
∆ ⊆ (Q\{t, r}× Γ)× (Q× Γ×{−1, 0, 1}). This means that there is not a uniquely
determined consecutive state but a finite set of possible next states. These choices
create a rooted directed tree structure where root is a start state s (compare with
an oriented path structure for a deterministic case). An accepting (resp. rejecting)
computation of a non-deterministic TM is a path in the tree structure that starts
in the root s and ends in one of the leafs of the tree that corresponds to the state t
(resp. r). An input x (a finite string) is accepted by TM if there exists an accepting
computation (TM halts when in state t).
As mentioned above a TM M is a 9-tuple consisting of finite objects. This means
thatM is a finite object and can be encoded into a finite sequence of zeros and ones.
It follows that such a finite sequence describing a TM can be used as an input for
another TM which leads to the notion of universal TM.

Definition 2.6 (Universal Turing machine). A universal Turing machine is a Turing
machine that receives as an input a description of a machine M and an input for
M denoted by xM and returns the value of M(xM) if M halts on xM and otherwise
does not halt.

Theorem 2.7. There exists a universal Turing machine.

This is a fundamental fact underlying the paradigm of general-purpose computers.
The universal TM can be viewed as a virtual machine that executes source code
representing a specific TM.

2.1.3 Oracle Machine

Another important type of TM is the Oracle Machine (see Figure 2.1.2). The oracle
serves as an advice giving tool that is not accounted for time or space usage and the
superior TM has control over it.
Oracle machine is a TM defined as in Section 2.1.2 with an additional oracle input
tape and oracle output tape. A string written by a TM onto an oracle input tape
is called a query for which oracle outputs an answer onto an oracle output tape.
This process takes O(1) time and space so the work performed by an oracle is not
counted to the time and space complexity of TM.
We now present a brief example of the functionality of an oracle TM. Let M be an
oracle deterministic TM working in polynomial time with oracle O that solves prob-
lems from NP (see Section 2.2.1). We are given a graph G and we are supposed to
determine the chromatic number χ(G). This is a well-known optimization problem,
which is hard for NP so we do not expect that there is a deterministic polynomial
time TM that solves it. By using an oracle O the situation will change. We can use
binary search to find an optimal k and hence χ(G). Instead of doing all the work,M

7



2.1 Introduction

` 0 1 1

Q

` 0 1 1

` 0 1

O

. . .

. . .

. . .

1 1 10 0 t

t t t t t t

t t t t t00

Input / output tape (read/write)

Oracle input tape (write only)

Oracle output tape (read only)

Figure 2.1.2: Schema of an oracle one-tape Turing Machine.

will use queries to O asking whether there exists a proper k-coloring for k being the
value currently found by binary search. The number of calls of O is upper bounded
by log |V (G)| and because oracle O works in time O(1), our problem now has time
complexity O(log |V (G)|) instead of O(n!) for a brute force approach.
From the foregoing example we see that by using such oracle machines, we are
able to separate certain parts (or subroutines) of “efficiently unsolvable” problems
and classify their complexity. This approach seems to be very useful when solving
a variety of problems in complexity theory. One may imagine this as a kind of
reduction that on input x TM M transforms x into x′ that is written on oracle
query (input) device, oracle answers with y′ and M transforms y′ into output y
which is the solution for input x. In the example above we reduced the problem
of finding the chromatic number of a graph to the problem of determining whether
there exists a k-coloring of a graph. By a similar technique it can be shown that
these tasks are computationally equivalent. By taking an oracle TM M with oracle
O that solves a problem of finding the chromatic number of a graph G, it is easy to
decide if G has a k-coloring for some k ≥ 2.
By using oracle machines we can define new complexity classes. Given a class C of
problems accepted by some TM M with access to an oracle O solving problems in
a class D we say that M accepts problems from a class CD. In the example above,
an oracle TM accepted problems from PNP .

2.1.4 Non-uniform Models

In previous sections we discussed uniform models represented mainly by Turing
machines. We saw that a TM is able to handle an input of any (finite) size and
either give a corresponding answer or enter an infinite loop. In contrast, non-uniform
models depend on the size of an input. Instead of having one TM for solving some
problem P we now have a possibly infinite family of models C = ∪n∈NCn for every
input size (Cn is a model for handling all inputs of size n). Such classes might

8



2.2 Time Complexity

not even have a finite description. It is possible that one is required to give an
explicit description to every Cn ∈ C and since C is infinite we cannot hope for a
finite description of such class.
There are two important non-uniform models of computation: Boolean circuits and
“machine that takes advice”. For our purposes we will need only Boolean circuits as
they play a key role in P-completeness under log-space reductions (Section 3.2).

Definition 2.8 (Boolean circuit). A Boolean circuit is an acyclic directed graph
with labeled vertices that are of three kinds2: sources, sinks and internal vertices.
• Sources (or input terminals) are vertices with in-degree 0 that are labeled with

natural numbers. For input x = x1x2...xn, a labeling of input terminals repre-
sents an index of input variables. Input terminals do not need to have pairwise
distinct labellings.
• Internal vertices (or gates) have in-degree and out-degree at least 1. They are

labeled by Boolean operations ∧, ∨ and ¬, where gates labeled with ¬ have
in degree exactly 1.
• Sinks (or output terminals) are vertices with in-degree 1 and out-degree 0.

Output terminals are uniquely labeled by numbers 1, 2, ...,m where m is the
number of output terminals. We also say that such a circuit produces output
of length m.

Proposition 2.9. There exist a polynomial-time algorithm that, given a circuit C
and a corresponding input x, outputs the value of C on input x.

To prove Proposition 2.9 consider the following recursive procedure. If there is a
non-evaluated gate g with labeling ∧ in circuit C with child vertices v1, v2, ..., vn

then value of g is ∧n
i=1vi. A value of a gate labeled with ∨ would be ∨n

i=1vi and since
we allow gates labeled with ¬ to have in-degree only 1 such a gate would get a value
¬v, where v is its child in circuit C.
For every Boolean function f : {0, 1}∗ −→ {0, 1} there exists a family of circuits
that compute f . Given an input x of length n, f(x) can be computed by a circuit
of size O(n2n). They are often used to prove lower bounds on complexity of some
problems. For further details we refer to [Koz06], Lecture 30.

2.2 Time Complexity

When using Turing machines as a model of computation we are able to measure the
number of steps taken by the algorithm on each possible input. Such a function,
denote it tA : {0, 1}∗ −→ N, is called the time complexity of algorithm A. To make

2We do not allow isolated vertices.
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2.2 Time Complexity

x1 x2 x3 x4 x5 x6

y

Input terminals

Output terminal

x2

x1

x3

x5

x4

x6

G
∨

∧

∨ ∨ ∨

¬

Figure 2.1.3: A Boolean circuit for solving 3-IND (a problem of deciding if a graph
contains independent 3 vertices - vertices that are pairwise non-adjacent) on span-
ning subgraphs G′ of the graph G. The variables xi represent edges of a graph
G′ (xi = 1 ⇔ xi ∈ E(G′)). The first level of gates serves to decide if the edges
of G′ form a desired subgraph by evaluation of all possibilities. If there are 3
independent vertices then y = 1.

this definition reasonable we will focus only on algorithms that halt on every input
(i.e. for every input x ∈ {0, 1}∗, tA(x) is finite number).
For our purposes we will be mainly interested in a dependence between the size of
the input and number of steps of algorithm A. Thus, we will consider TA : N −→ N
defined by TA(n) := maxx∈{0,1}n {tA(x)}. Notice that TA represents time complexity
of worst case input of length n ∈ N for algorithm A.
So far we defined the time complexity of an algorithm. The time complexity of
a problem is time complexity of “the fastest” algorithm that solves it. For two
algorithms A and B, the functions TA and TB does not have to be comparable so
we actually compare O(TA) and O(TB). It is obvious that the time complexity of
a problem may depend on a model of computation (TM, RAM, ...). The following
thesis asserts that the variation is not too significant.

The Cobham-Edmonds Thesis. A problem has time complexity t in some “reasonable
and general” model of computation if and only if it has time complexity poly(t) in
the model of single-tape Turing machines.
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2.2 Time Complexity

The Cobham-Edmonds Thesis is stronger than the Church-Turing Thesis because
it does not only say that class of solvable problems is invariant when one uses
a “reasonable and general” model of computation but it also says that the time
complexity does not change much (is polynomially related) in either way.
This immediately leads us to the notion of efficient algorithm. We say that an
algorithm is efficient when for all inputs of size n it halts after P (n) steps, where
P (n) is a polynomial in n. Most of the time we will be interested in an asymptotic
behavior of algorithms and not about the exact values of constants. From empirical
experience when there is an efficient algorithm for a problem, than there is an
efficient algorithm with number of steps bounded by polynomial with a reasonable
degree.

2.2.1 P, NP and completeness

Two well known time complexity classes are P and NP where the latter can be
defined as a class of decision problems that can be solved in polynomial time by
non-deterministic TMs. P is defined the same way as NP but one restricts to
deterministic TMs only, hence P ⊆ NP . Whether the opposite inclusion holds is
the most famous open question in the complexity theory.
We have already mentioned reductions of problems in Section 2.1.3. We say that
a problem P is hard for a class C if for all problems Q ∈ C there exist an oracle
machine3 MP with oracle solving P such that MP solves Q. Furthermore we say
that P is complete for a class C if it is hard for C and P ∈ C.
The concept of completeness is useful when showing that one class is contained in
another. If P is C-complete problem then any problem in C can be solved using P ,
thus by showing that P ∈ C ′ implies C ⊆ C ′.
There are several known problems complete for NP but the one that played a major
role in development of complexity theory is the Boolean formula satisfiability (SAT).

Theorem 2.10 ([Coo71]). SAT is complete for NP.

It is easy to see that SAT is in NP . What Cook showed was that it is possible
to describe polynomially bounded non-deterministic TMs only by using Boolean
formulas so any problem that can be solved by such TMs (all problems in NP) are
also solvable by using an oracle TM with oracle that solves SAT.
Problems hard for NP but but not contained in NP are usually optimization vari-
ants of NP-complete problems. A problem worth mentioning is the Travelling sales-
man problem. It is a problem of finding a Hamiltonian cycle of minimum weight in
weighted graph. It can be shown that this problem is NP-hard but not complete
because it is not a decision problem. The best known algorithms for this problem

3This oracle machine has the same time (resp. space) bounds as problems in a class C.
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have at least exponential time complexity in the size of an input so in practice one
usually uses approximation or heuristic algorithms. The former algorithms always
produce a solution to the problem but it does not have to be the optimal one. The
latter algorithms find an optimal solution but only for some instances. The reason
why such an approach is used is because both approximation and heuristic algo-
rithms are usually very fast (polynomial in time complexity) and can be used to
find a “good” solution even for very large instances.

2.3 Space Complexity

Another measure of efficiency is the use of space (or memory). A natural lower
bound for time complexity is a linear function in size of the input (to process each
element of the input at least once) but space can be reused during the computation
so some of the most interesting space complexity classes are actually those using
only a logarithmic amount of work space. Time and space efficiency measure is in
conflict so one usually has to sacrifice4 time when enhancing space complexity and
the other way around.
The importance of space complexity is especially in the theoretical realm but we
should note that there are several results which show a close connection between
both criteria of complexity.
In Section 2.1.2 we defined a TM as a model of computation and used it to measure
the time complexity of an algorithm. To measure space complexity we will have
to use a slightly more complicated computational model. This is mainly because
we want to separate the sizes of input and output data from intermediate storage
required by the computation. To do so we will use a 3-tape TM with one input tape
which is read only, one output tape which is write only and a work tape which is
read/write (see Figure 2.3.1). We define the space complexity of a machine M on
input {0, 1}n, denoted as sM(n), as a maximum of number of cells on a work tape
used during a computation. Similarly the space complexity of an algorithm A will
be defined as SA(n) := maxx∈{0,1}n {sA(n)} and the space complexity of a problem
will be again defined as a space complexity of the most space-efficient algorithm
that solves it. Notice that as in case of time complexity a function in n which can
be even a constant function.
We will further assume, when considering space complexity, that a TM in Figure 2.3.1
never scans the input tape beyond the given input (i.e. there is a special symbol at
the end of every input) and it also writes into each output tape cell at most once
(this can be assured for a small additive penalty to the space complexity of a TM).

4In the sense of substituting one resource for the other.
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Figure 2.3.1: Schema of a Turing Machine used to measure space complexity.

2.4 Complexity Classes

We have already mentioned complexity classes P and NP in Section 2.2.1. In this
section we will extend this concept into more general perspective. To do that we
introduce complexity classes as a tool for ordering problems due to their actual
resource demand. It is obvious that a problem may lie in more than one class.
A complexity class is defined by three main criteria: model of computation (uniform
or non-uniform), type of computational problem (decision, search, promise5, etc.)
and resource bound (function of input length). Most of the time we will consider
Turing machines as a model of computation and we will work with decision problems.
The resource bound criterion will be more interesting.
We recognize four general complexity classes. Denote by T : N −→ N and S : N −→
N two integer functions that we will use as a time and space complexity bound,
respectively, and let L(M) be the language accepted by TM M . We can now define

DTime(T (n)) := {L(M)|M is a deterministic TM running in timeT (n)} ,
NTime(T (n)) := {L(M)|M is a non-deterministic TM running in timeT (n)} ,
DSpace(S(n)) := {L(M)|M is a deterministic TM running in spaceS(n)} ,
NSpace(S(n)) := {L(M)|M is a non-deterministic TM running in spaceS(n)} .

For DSpace and NSpace classes, the TM considered is defined as in Section 2.3.

2.4.1 Properties

In this subsection, we discuss the relations between these general complexity classes.
5A promise problem is a decision problem where the input is promised to belong to a subset of

all possible inputs.
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The inclusions DTime(T (n)) ⊆ NTime(T (n)) and DSpace(S(n)) ⊆ NSpace(S(n))
are trivial and follow from the fact that a deterministic TM is a special case of a
non-deterministic one.
The next property is called linear speedup and it shows that multiplying T (n), resp.
S(n) by a constant does not provide any additional computational power.

Theorem 2.11. Let T (n) ≥ n+ 1 and S(n) ≥ Ω(log n). For any constant c ≥ 1,

DTime(cT (n)) ⊆ DTime(T (n)),
NTime(cT (n)) ⊆ NTime(T (n)),
DSpace(cS(n)) ⊆ DSpace(S(n)),
NSpace(cS(n)) ⊆ NSpace(S(n)).

Proof sketch. For proving the last two inclusions, the idea is to expand the working
alphabet so that c tape cells can be stored in one tape cell of a new machine and
modify the transition function δ. For time bounds we require an extra tape to
compress the input.

The following theorem points out some basic relations between time and space com-
plexity classes.

Theorem 2.12. Let T (n) ≥ n and S(n) ≥ log n. Then

DTime(T (n)) ⊆ DSpace(T (n)),
NTime(T (n)) ⊆ NSpace(T (n)),
DSpace(S(n)) ⊆ DTime(2O(S(n))),
NSpace(S(n)) ⊆ NTime(2O(S(n))).

Proof sketch. The first two inclusions are simple consequences of the fact that in
each state a TM can only use one additional work tape cell and hence we get a
trivial bound on the space complexity.
The idea behind the two latter inclusions is that there is a finite set of all possible
configurations of a TM and each of them can be entered only once (otherwise a TM
loops forever). Thus the number of steps is 2O(S(n)).

Surprisingly Theorem 2.12 can be strengthened so as to compare a non-deterministic
time (resp. space) complexity class with a deterministic space (resp. time) com-
plexity class. It holds that

NTime(T (n)) ⊆ DSpace(T (n))
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and

NSpace(S(n)) ⊆ DTime(2O(S(n)));

the reasons are similar as in proof of Theorem 2.12 but slightly more technical.
In the following text we will mainly focus on the space complexity classes as they
are the main topic of the thesis. One of the most interesting space complexity
classes is the class DSpace(O(log n)), usually denoted as LOGSPACE (or L). It
contains a variety of natural computational problems that we will mention in the
following chapter. When considering space complexity, one should also mention class
PSPACE = ∪c∈NDSpace(nc) and its non-deterministic variant is calledNPSPACE .
From the previously mentioned results follows that NP ⊆ PSPACE .
In 1970, a breakthrough in the study of space complexity was achieved by Walter
Savitch [Sav70].

Theorem 2.13 (Savitch, 1970). Let S(n) ≥ log n. Then

NSpace(S(n)) ⊆ DSpace(S(n)2).

Before we sketch the proof we define a problem of deciding the connectivity of a
directed graph that we will make use of.

STCONN
Input: oriented graph G and two vertices s, t ∈ V (G)
Question: Is there a path from s to t in G?

Proof sketch. We show the key ideas of the proof for the special case NL ⊆
DSpace(O(log2 n)). Such an inclusion can be proved by solving STCONN in DSpace(O(log2 n)).
To do that we will use a recursive procedure that has at most logarithmic recursion
depth and remembers O(log n) bits on each level of recursion hence we get desired
O(log2 n) space complexity.
For a directed graph G and two vertices u and v define a function φG(u, v, `) := 1 if
there exists a path of length ` from u to v in G, and φG(u, v, `) := 0 otherwise. It
is obvious that recursion step

φG(u, v, 2`) =
∨

w∈V (G)
(φG(u,w, `) ∧ φG(w, v, `))

computes φG. In each recursion level, ` is divided by two and thus there are up to
log ` levels where at the base level, φG(u′, v′, 1) can be evaluated in log-space just
by searching all neighbors of u′. To solve STCONN in DSpace(S(n)2) one can use
φG(u, v, |V (G)|) and the theorem follows.
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2.4 Complexity Classes

From Savitch’s result it immediately follows that PSPACE = NPSPACE . Proving
the similar equivalence for time complexity classes seems to be significantly more
difficult. The Clay Mathematics Institute actually listed the P versus NP problem
as one of the Millennium Prize Problems [Cla12].
Before we continue with the next result we define classes of complement problems.

Definition 2.14. Let C be a class of decision problems. The complement class
denoted by co-C is a class of decision problems such that S ∈ C if and only if
{0, 1}∗\S ∈ co-C.

Another important and more recent result was proven independently by Immerman
and Szelepcsényi in 1987 [Imm88, Sze88]. It states the following.

Theorem 2.15 (Immerman, Szelepcsényi, 1987). For S(n) ≥ log n, NSpace(S(n)) =
co-NSpace(S(n)).

Immerman and Szelepcsényi actually proved that NL = co-NL but by using a
“padding argument”6 the result can be extended to any other space complexity
non-deterministic class above NL.

6Padding is a technique for showing that if some complexity classes are equal, then some other
classes possessing more computational resource are also equal by extending accepting language
with new symbols. For details see [AB09].
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3 Logarithmic Space

Complexity classes using only logarithmic work space to process an input became
a subject of interest because the space of size log n is just enough to maintain a
counter that may store a number from 0 to n and hence it is possible to remember
position of head on input and output tape. We actually allow usage of O(log n)
space which means that the computational model may have a constant number of
counters counting from 0 to a polynomial in n. This is enough to solve a variety of
natural problems such as adding and multiplying natural numbers. It also gives rise
to a widely used reduction called a log-space reduction that is helpful when working
with classes below P .
Are there any problems that might be solved using sub-logarithmic amount of work
space? A simple problem that requires only constant space is deciding if an integer
in binary encoding is even or odd. It is quite surprising that there are problems
that require sub-logarithmic space but will not do with constant space [LR97]. The
hierarchy of classes is as follows:

DSpace(O(1)) ( DSpace(O(log log n)) ( L ⊆ P .

The last inclusion follows from the fact that from Theorem 2.12 it holds that

DSpace(S(n)) ⊆ DTime(2O(n))

and thus we have

L = DSpace(O(log n)) ⊆ DTime(2O(log n)) = DTime(nO(1)) = P .

A similar relation holds also for the non-deterministic case (i.e., NL ⊆ NP). The
question whether L is a proper subset of P or the equality holds is one of the most
important open questions in complexity theory1.
In the first two sections of this chapter we adopted the description from [Gol08],
Chapter 5. For the following section we used information presented in [AKG12].

3.1 Composition Lemmas

There are two important composition lemmas that show how to compose Turing
machines preserving the space bound restriction. For now assume we compose only

1The same question for non-deterministic classes (i.e., NL ( NP) is also unresolved.
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Figure 3.1.1: Naive composition. Tapes shown in bold are relevant for space
complexity.

two TMs where the second one uses the original input together with the output of
the first TM as its input. An easy case is when output of first TM has length at
most log n, because we can emulate its output tape by additional work tape and
this will still fulfill the space bound requirement. We call such composition a naive
composition.

Lemma 3.1 (Naive composition). Let f1 : {0, 1}∗ −→ {0, 1}∗ and f2 : {0, 1}∗ ×
{0, 1}∗ −→ {0, 1}∗be computable in space s1 and s2, respectively. Then the function
f defined by f(x) := f2(x, f1(x)) is computable in space s such that

s(n) = s1(n) + s2(n+ l(n)) + l(n), (3.1.1)

where l(n) = maxx∈{0,1}n {|f1(x)|}.

Lemma 3.1 defines composition where no space optimization is used. The first term
in (3.1.1) stands for the space required by the first TM that on input of size n
uses s1(n) work space and produces output of size at most l(n). The second TM has
access to the original input as well as to the output produced by the first TM (which
is also included into the space complexity of the composition) so the whole input for
f2 has size n + l(n), thus the overall space required to compute f2 is s2(n + l(n)).
One can achieve a simple improvement by reusing the work space of f1. The space
complexity of such a composition would be s(n) = max(s1(n), s2(n + l(n))) + l(n).
For our purposes such an improvement would only decrease a constant in (3.1.1)
and so we do not distinguish between these two approaches. In Figure 3.1.1 s1(n)
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Figure 3.1.2: Emulative composition. Tapes shown in bold are considered when
determining the space complexity of the composition. The virtual tape does not
store any data, thus it does not occur in (3.1.2).

is the number of cells used on the P -work tape, s2(n) represents the number of cells
used on the Q-work tape and l(n) is the size of the output on the P -output tape.
The second composition lemma is of major importance for us because it is one of
the main tools for designing space bounded algorithms.

Lemma 3.2 (Emulative composition). Let f1, f2, s1, s2, l and f be as in Lemma 3.1.
Then f is computable in space s such that

s(n) = s1(n) + s2(n+ l(n)) +O(log(n+ l(n))). (3.1.2)

As an illustration of emulative composition consider a simple example. Let f(e)
be a function that assigns weights to the edges of a graph G that is acyclic with
bounded degree and let s, t be vertices of G. Our task is to find a path of minimum
weight between s and t. We obviously cannot remember values of function f for
each edge of G because that would require space at least linear in the size of the
input. So whenever an algorithm for finding a minimal path needs the weight of
an edge e, the function f(e) has to be invoked to provide such information. The
function f is computed by P in Figure 3.1.2 and the weights of the edges are exactly
the information “stored” on the virtual device that together with the original input
forms the input for Q.
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Lemma 3.2 is described by Figure 3.1.2. The terms s1(n) and s2(n) in (3.1.2) have
exactly the same meaning as in Lemma 3.1. The last term is more interesting. It
is the size of a constant number of auxiliary counters that store positions on the
virtual tape. Each of the counters store a number from 0 to n+ l(n) so in the binary
encoding one requires log(n+ l(n)) bits to store such a number and that is where the
last term in (3.1.2) comes from. If Q requests a bit in a cell at position ≤ n, it reads
it from original input; otherwise, it asks P to recompute the requested bit. Hence
we do not have to remember the output of P but every time Q asks for a part of
its output, it is recomputed and we only need an auxiliary counter (of logarithmic
size) to remember a position on the output tape of P . Such a virtual tape does
not contain any data on its own so it is not included in the space complexity of the
composition.
The main difference when applying such an approach is that we first call Q that
itself makes calls to P whenever it requires additional information other than that in
original input. It is an essence of most algorithms using logarithmic space because
it removes the need to remember anything that can be computed from the original
input. Even though it provides a very useful tool for log-space computations it has
its limits. It is possible to do only a constant number of such compositions. For
every emulative composition one has to add a constant number of counters and
by performing, say, log n emulative compositions we end up with space complexity
log2 n.

3.2 Log-space Reductions

Reductions of one problem to another are a useful tool for establishing membership
in a complexity class. A widely used reduction is called many-one log-space reduction.
It is defined as a reduction of a decision problem to another decision problem solved
by an oracle where the oracle call can be used only once at the end of the computation
and the result cannot be further modified.
We now define a problem of Boolean circuit evaluation and then we mention a
theorem that shows the importance of circuits in computational complexity.

CEVL
Input: Boolean circuit Cn for n input variables and a string α of length n.
Output: The value of Cn on input α.

Theorem 3.3. CEVL is in P and every problem in P is log-space many-one reducible
to CEVL.

In other words Theorem 3.3 states that CEVL is P-complete under log-space many-
one reductions. This also implies that L 6= P if and only if CEVL /∈ L. It has a
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close connection to parallel computations because circuits are used as their model
and unless P = L no P-complete problem can be solved by the parallel computation
[Rei85].

3.3 Classes Using Logarithmic Space

3.3.1 L (and Undirected connectivity)

In Section 2.4.1 we already defined the complexity class DSpace(O(log n)), denoted
as LOGSPACE or L. It is the class of decision problems accepted by a deterministic
logarithmic space-bounded Turing machine with one read-only input tape, a read-
write work tape whose size is bounded by O(log n), and write only output tape.
Since L is a class of decision problems, an output tape will contain only 0 or 1 when
a TM terminates.
There are several natural problems in L. We will first introduce some simple ones.

PATH
Input: Directed graph G.
Question: Is G a directed path?

Lemma 3.4. PATH ∈ L.

Proof. G is a directed path if it is connected, acyclic and has either a single vertex or
all but the start and end vertices have in and out degree 1. Denote start vertex as s
and end vertex as t. Clearly s has in-degree 0 and t has out degree 0. If |V (G)| = 1
then G is a path so let |V (G)| ≥ 2. We start by finding a vertex s with in-degree
0. If such vertex does not exist then return 0. We set a counter i := 1, set v := s
and find a neighbor v′ of v in G. By repeating this step while incrementing i we
either reach t (vertex with out-degree 0) in |V (G)| steps and return 1 or we stop
when i = |V (G)| and v 6= t or v = t and i < |V (G)| and return 0.

CYCLE
Input: Directed graph G.
Question: Is G a directed cycle?

Lemma 3.5. CYCLE ∈ L.

Proof. We will use Lemma 3.4. Choose an arbitrary edge e = (u, v) ∈ G. Set
G′ := G\{e} and solve PATH(G′). If the result is 1 and the vertex with in-degree 0
in G′ is v then return 1, else return 0.
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TREE_REACH
Input: Directed tree T and vertices s, t ∈ V (T ).
Question: Is there a directed path from s to t in T?

Lemma 3.6. TREE_REACH ∈ L.

Proof. Denote the root of the tree T by r. Notice that if a directed path from s
to t exists s has to be on a directed path from r to t and such path is uniquely
determined. It is enough to invert all edges and check if s lies on directed path from
t to the r.

More problems in L can be found in [CM87].
The problem that will concern us now is about deciding connectivity of undirected
graph.

USTCONN
Input: Undirected graph G and vertices s, t ∈ V (G).
Question: Is there a path from s to t in G?

The most important result in space complexity theory in the past decades is a recent
result of Reingold [Rei08] that states that USTCONN ∈ L.

Theorem 3.7 (Reingold, 2005). USTCONN ∈ L.

In the rest of this section we will show the main idea of the proof.
A key observation is that solving USTCONN in L is easy if the input graph has con-
stant degree and logarithmic diameter. Let G be a d-regular graph with logarithmic
diameter. We can label the edges at any vertex by numbers from [d]. For any pair
of vertices u, v in one component of G there is a path P from u to v of length
≤ log |V (G)|. We can represent P by a sequence s such that for φ : P −→ [d]|V (G)|,
s = φ(P ). Elements of s are the indices of edges used at the visited vertices. The
space needed to store such a sequence is d per coordinate times number of coordi-
nates, thus d log |V (G)| = O(log n).
First we define expander graphs (for details see [HLWO06]) because such graphs ful-
fill the previously mentioned requirements and we will use them in the construction
later.

Definition 3.8 (Combinatorial definition). A graph G = (V,E) is c-expanding if,
for every set S ⊂ V (G) of cardinality at most |V (G)|/2, it holds that

ΓG(S) := {v : ∃u ∈ S s.t. {u, v} ∈ E(G)}

has cardinality at least (1 + c) · |S|.
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Next we define an expansion parameter as a measure of quality of expansion of G.

Definition 3.9. Let G be a graph. The edge boundary of a set S ⊂ V (G), denoted
∂S, is ∂S = E(S, S̄), where E(S, S̄) is the set of outgoing edges from S. The
expansion parameter of G, denoted λ̄(G), is defined as:

λ̄(G) = min
{S:|S|≤n

2 }

|∂S|
|S|

.

Reingold showed a method for transforming a graph into a collection of constant
degree expanders (with logarithmic diameter) in log-space so by using Lemma 3.2
it is possible to apply the previously mentioned idea. The actual implementation of
the method is highly non-trivial so we will only mention some key ideas.
To proceed we have to define a Zig-Zag product which is a product of two graphs
defined by Reingold et al. [RVW00]. For simplicity, we assume that the edges in our
d-regular graphs are actually partitioned to d perfect matchings (or color classes).
For a color i ∈ [d] and a vertex v let v[i] be the neighbor of v along the edge colored
i. Since it is easy into turn a graph G into a 3-regular graph and by adding d − 3
self loops into d-regular graph, the assumption that the input graph G is d-regular
is justifiable.

Definition 3.10 (Zig-Zag product). Let G1 be a d1-regular graph on [n1] and G2
be a d2-regular graph on [d1]. Then the Zig-Zag product of G1 and G2 denoted by
G1 z©G2 is a d2

2-regular graph on [n1]×[d1] defined as follows: For all v ∈ [n1], k ∈ [d1],
i, j ∈ [d2], the edge (i, j) connects the vertex (v, k) to the vertex (v[k[i]], (k[i])[j]).

The vertex (v[k[i]], k[i][j]) in the resulting graph can be described as: vertex k[i] is
the neighbor of the vertex k along the edge i, thus v[k[i]] is the neighbor of v along
the edge k[i]. Similarly, (k[i])[j] is the neighbor of k[i] along the edge j.
Now to build a good expander we begin with an input graph G and turn it into
a d2-regular graph G0 by adding self-loops. Then we find (by exhaustive search) a
fixed d-regular graph H with good expansion properties and with d2c vertices where
c and d are positive integers. In t = O(log |V (G1)|) iterations we build the desired
expander letting Gi+1 = Gc

i z©H for i = 1, ..., t− 1 where Gc
i is the c-th power of the

graph Gi.
Reingold et al. [RVW00] proved that if a suitable graph H is chosen (with λ̄(H) <
1/2) then in the logarithmic number of iterations we obtain an expander graph
because during every iteration the expansion parameter improves, the degree of the
graph is preserved (by the definition of Zig-Zag product) and the size increases only
by a constant factor.
The question is whether we can perform such transformation in logarithmic space.
By using Lemma 3.2 it is possible to show that Gi+1 can be obtained in log-space
when given Gi. The problem is that we actually want to perform a logarithmic
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number of such transformations. The key to this problem is, as Reingold showed
in [Rei08], that to obtain Gi+1 when given Gi one requires logarithmic space but
it can be reused in every iteration. Hence after the logarithmic number of these
transformations we end up with the space complexity being O(log n).

3.3.2 NL (and Directed connectivity)

NL is a class of problems accepted by non-deterministic logarithmic space bounded
TMs. Non-determinism in space complexity has several features. First, the class
NL is closed under complement as states Theorem 2.15. It is widely believed that
no such property holds for time complexity classes (especially NP). Second, it is
known that the whole NL is contained in DSpace(O(log2(n))) by Theorem 2.13.
For our further considerations we will be mainly interested in the following open
problem.

Conjecture 3.11. NL = UL.

A fundamental problem contained in NL is the connectivity problem in general
directed graphs denoted STCONN (see Section 2.4.1 for definition).

Theorem 3.12. STCONN is complete for NL under many-to-one log-space reduc-
tions.

Proof sketch. A computation of a non-deterministic TM can be expressed as a di-
rected graph G with vertices being configurations (states of TM together with work
tape content) of TM and edges representing possible transitions between configura-
tions. It is obvious that G is a directed tree with a unique root r ∈ V (G) that stands
for the initial state of the TM. If on input x the TM halts in state t then there is
a path in G from r to a leaf of G representing the state t and vice versa. Using
emulative composition, G can be created in log-space and the adequate STCONN
problem solved on it.

With this result in hand, to show that NL is contained in another complexity class,
it is enough to show that STCONN can be solved in it. This is obviously true for P
using a backtracking algorithm, hence NL ⊆ P .

3.3.3 UL

The unambiguous logarithmic space complexity class (denoted UL) is a class of
decision problems solvable by a non-deterministic TM M such that

1. if an input x ∈ L(M), exactly one computation path accepts,
2. if an input x /∈ L(M), all computation paths reject.
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Unambiguity is a natural restriction of non-deterministic power. It was first intro-
duces in the context of time complexity by Valiant in 1976 [Val76]. The logarithmic
space version was introduced in 1991 by Buntrock et al. [BJLR91] and two years
later by Àlvarez and Jenner [AJ93].
By the definition, UL is a restricted version ofNL so a trivial inclusion is UL ⊆ NL.
It is widely believed that whole non-determinism in logarithmic space is captured
in UL and hence UL = NL. An important result to support the conjecture that
NL = UL was proved in 1998 by Reinhardt and Allender [RA98].

Definition 3.13. UL/poly is a class of decision problems solvable by a family of
polynomial-size Boolean circuits. The family can be nonuniform.

Theorem 3.14 (Reinhardt, Allender, 1998). NL ⊆ UL/poly.

Making this relation uniform would prove the conjecture. We will study this problem
more closely in Chapter 4.
Another important inclusion is L ⊆ UL. The reason why it holds is that a deter-
ministic TM has exactly one computational path that either ends state t or r, so
the definition of UL is fulfilled. Hence UL contains all problems that are in L. The
question is whether there are problems that are in UL but not in L. Some recent
results related to this question may be found in [BTV07, LMN09, TW10].

3.3.4 SL

This complexity class denoted as SL was defined by Lewis and Papadimitriou in
[LP82] as a class of problems accepted by a non-deterministic Turing machine M
running in logarithmic space such that

1. if an input x ∈ L(M), one or more computation paths accept,
2. if an input x /∈ L(M), all paths reject,
3. if M can make a non-deterministic transition from configuration A to con-

figuration B, than it can also make a non-deterministic transition from B to
A.

They showed that L ⊆ SL ⊆ NL. A reason for the interest in this class is that
it captures the complexity of USTCONN (see Section 3.3.1). Many graph theory
problems can be solved by using reduction to USTCONN, which yields a rich set of
problems in SL. Some of these may be found in [AG00].
Nisan and Ta-Shma showed in [NTS95] that SL = co-SL by reducing USTCONN
to its complement.

Theorem 3.15 (Nisan, Ta-Shma, 1995). SL = co-SL.

A major breakthrough was made by Reingold [Rei08] who proved Theorem 3.7 im-
plying SL = L.
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3.3 Classes Using Logarithmic Space

3.3.5 FL

Function log-space (FL) can be defined as the set of functions f : Σ∗ −→ Σ∗ such
that there exist a deterministic logarithmic space bounded TM that for every input
x outputs f(x). The difference between L and FL is that L contains only decision
problems while FL contains also search problems (see Definition 2.2). The word
“Function” is slightly misleading because search problems may have a set of correct
outputs for one input.
Many subroutines used for solving problems in L are actually FL problems, but
since both classes are restricted to logarithmic space, such a composition is possible.
Important problems contained in FL are ADD, SUM and MULTIPLY.

ADD
Input: Two integers a, b in binary encoding.
Output: Sum of a and b.

SUM
Input: n integers a1, a2, ..., an in binary encoding.
Output: ∑n

i=1 ai.

MULTIPLY
Input: Two integers a, b in binary encoding.
Output: Product of a and b.

We cannot perform multiplying directly but rather in an elementary school manner.
For example MULTIPLY(10111, 101) is equivalent to ADD(10111, 1011100).

3.3.6 RL

RL (Randomized log-space) is a class of problems accepted by a probabilistic TM
with one-sided error. A probabilistic TM is a deterministic TM with additional tape
called the random tape that contains only random bits and the TM can read them in
any step of the computation. A probabilistic TM with one-sided error is not allowed
to accepts an input incorrectly but it may reject it incorrectly with a probability
less than 1/3. Because of the probability setting we usually add a polynomial time
restriction. Otherwise it can be shown that RL without time a bound is as powerful
as NL2. A relation between other logarithmic space classes is L ⊆ RL ⊆ NL but
there is a common conjecture that RL = L and Reingold et al. [RTV05] provided
the strong evidence to support it.

2We refer to [Gol08] Section 6.1.5 for further details.
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4 NL vs. UL

We have already given a brief introduction to NL and UL in Section 3.3. Here we
will study them in more detail.

4.1 Problems in UL

As we have already mentioned in Section 3.3.3 that all the problems in L are trivially
contained in UL. Moreover from Theorems 3.7 and 3.15 it follows that L = co-L,
so the inclusion is actually L ⊆ UL ∩ co-UL. It is not known if UL = co-UL, but if
NL = UL is true then the equality follows from Theorem 2.15.
Other problems that are known to be in UL are those concerning STCONN. We
will be particularly interested in the result of Burke et al. [BTV07] about planar
reachability because it is closely related to our result. We will start by defining grid
graphs.

Definition 4.1 (Grid graph). A n × n grid graph is a directed graph whose ver-
tices are pairs of numbers from [n] × [n] = {1, 2, ..., n} × {1, 2, ..., n}, and if e =
((i1, j1), (i2, j2)) is an edge then |i1 − i2|+ |j1 − j2| = 1.

Pairs of numbers assigned to every vertex of a grid graph can be viewed as a co-
ordinates and hence they represent a natural planar embedding of a graph. The
condition on the edges in Definition 4.1 allows existence of only four kinds of edges.
We say that for a vertex (i, j)
• the edge ((i, j), (i, j + 1)) is a north edge,
• the edge ((i, j), (i, j − 1)) is a south edge,
• the edge ((i, j), (i+ 1, j)) is an east edge and
• the edge ((i, j), (i− 1, j)) is a west edge.

We will be concerned with some planar properties of grid graphs. We recall a result
of Allender and Mahajan [AM04] that puts planarity testing in SL.

Theorem 4.2 (Allender, Mahajan, 2004). Problem of deciding if a graph G is planar
is in SL.
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4.2 Possible Approaches

Since SL = L, there is a log-space algorithm for testing whether a given graph G is
planar, and if so, it outputs a planar embedding of G.
Before we mention another important result of Allender et al. [ADR05] we will
define two versions of STCONN for special classes of graphs, namely planar and grid
graphs.

PlanarReach
Input: Directed planar graph G and two vertices s, t ∈ V (G).
Question: Is there a directed path from s to t in G?

Similarly define GGR as PlanarReach restricted to the class of grid graphs.
Theorem 4.3 ([ADR05]). The PlanarReach problem is log-space many-one reducible
to GGR.

Before we continue with proving that PlanarReach is in UL ∩ co-UL we introduce a
technique from [RA98] for showing membership in UL ∩ co-UL.

4.2 Possible Approaches to NL = UL Problem

We saw in Section 3.3.2 that the directed connectivity problem is complete for NL.
To prove equality between NL and UL it is reasonable to make use of this property
of STCONN. In general digraphs there might be several possible paths between two
vertices (not necessarily disjoint) and hence there could be more than one accepting
computation path of a corresponding TM. To deal with this issue Reinhardt and
Allender [RA98] introduced a general technique for showing membership in UL by
transforming a graph into a min-unique graph.
Definition 4.4 (Min-unique graph). A min-unique graph is a directed graph with
positive weights associated with each edge such that for every two vertices u, v there
is a unique path of minimal weight (if one exist) from u to v.

The following theorem of Reinhardt and Allender [RA98] shows it is possible to find
a minimum weight path in min-unique graphs in log-space.
Theorem 4.5 (Reinhardt and Allender, 1998). Let G be a class of graphs and let
H = (V,E) ∈ G. If there is a polynomially bounded log-space computable function f
that on input H outputs a weighted graph f(H) so that

1. f(H) is min-unique and
2. H has a path from s to t if and only if f(H) has a path from s to t

then the STCONN restricted to G is in UL ∩ co-UL.

In the statement of Theorem 4.5, an arbitrary class of graphs was used. We will
now discuss two naturally defined classes studied in [BTV07].

28



4.2 Possible Approaches

4.2.1 Grid Graphs

By using Theorems 4.3 and 4.5 we will present a proof given in [BTV07] that
PlanarReach ∈ UL ∩ co-UL.

Theorem 4.6 (Bourke et al., 2007). PlanarReach ∈ UL ∩ co-UL.

Proof. For a grid graph G of size n×n we define a weight function w : E(G) −→ N
as follows:

w(e) =


n4 if e is an east or west edge,
i+ n4 if e is a north edge in column i,
−i+ n4 if e is a south edge in column i.

(4.2.1)

We will now prove that the weight function w turns G into min-unique graph and
hence from Theorem 4.5 GGR ∈ UL∩ co-UL. Let P be a path in G from s to t and
denote w(P ) the sum of the weights of the edges of the path P . By a(P ) denote the
sum of column indexes of north and south (by the definition of w south edges have
negative values) edges and and by b(P ) the total length of P . Thus, the weight of
P is of the form w(P ) = a+ bn4. It is clear that both |a(P )| and b(P ) are less than
n3 (there are fewer than n2 edges in P ) and so for two paths P1 and P2 such that
w(P1) = w(P2) we have a(P1) + b(P1)n4 = a(P2) + b(P2)n4, thus a(P1) = a(P2) and
b(P1) = b(P2).
The “a” component of the weight function w can be used to count the number of
unit squares enclosed by a cycle C in G. Denote this number by A(C). A cycle
C can be viewed as a path that starts and ends at the same vertex so by a(C) we
mean the “a” component of such a path.
Claim 4.7. Let C be a simple cycle in G. Then a(C) = +A(C) if C is a counter-
clockwise cycle and a(C) = −A(C) if C is a clockwise cycle.

Proof. Without loss of generality assume that C is a counter-clockwise simple cycle
in G (for a clockwise cycle we have a(C) = −a(−C) where −C denote counter-
clockwise cycle obtained by reversing the edges of C). We want to show that for
any two rows j and j + 1 of G
• the south and north edges between them alternate when ordered by their

column index,
• the westmost edge being south edge,
• the eastmost edge being north edge.

Denote by (Sj, <) the ordered set of north and south edges of C between the j-th
and the (j + 1)-th row where the set of edges is ordered by the column index. For
contradiction suppose that there exist two consecutive edges e1 = (u1, v1), e2 =
(u2, v2) from Sj with the same direction. A simple path from v1 to u2 has to use
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4.2 Possible Approaches

an edge e′ ∈ Sj such that e′ > e2 or e′ < e1. By symmetry this holds for a simple
path from v2 to u1 so there is an edge e′′ ∈ Sj such that e′′ < e1 or e′′ > e2. In both
cases such paths have to cross each other which implies that C is not a simple cycle.
That is a contradiction with the assumption. Since C is a counter-clockwise cycle,
the westmost edge is a south edge and the eastmost edges is a north edge.
Now for all j ∈ {0, 1, ..., n − 1}, if Sj 6= ∅, the westmost edge is a south edge with
weight −i1 + n4 followed by a north edge with weight i2 + n4 where i1 < i2. From
the definition of the weight function it follows that i2 − i1 equals to the number of
columns between those two edges. This holds for all consecutive pairs of south-north
edges (unit squares in the interior of C are squares between the south edges ek and
the north edges el, where k < l for every such a pair) in Sj so we can sum all the unit
squares inside the cycle C in row (j, j+ 1). By summing over all j ∈ {0, 1, ..., n− 1}
we obtain the area of C. For a clockwise cycle the area of C will be −A(C).

We will use this property to prove the following claim and the theorem.
Claim 4.8. Let G be a grid graph. With respect to the weight function w, for any
two vertices u and v, the minimum weight path from u to v, if one exists, is unique.

Proof. For contradiction assume that there are two paths P1 and P2 from u to v such
that they are both minimal with respect to the weight function w, so w(P1) = w(P2).
To fulfill this condition P1 and P2 there exist the point u′ where they diverge for
the first time and the point v′ where they again meet. Consider a cycle C obtained
by concatenating a subpath P ′1 of P1 from u′ to v′ and the subpath P ′2 of P2 from
v′ to u′. A(C) must be nonzero by Claim 4.7 so w(P ′1) 6= w(P ′2). Without loss of
generality suppose that w(P ′1) < w(P ′2). Since the weights of both P1 and P2 are
equal, the weight of the subpath of P2 from v′ to v must be smaller than the weight
of the subpath of P1 from v′ to v. Consider the path Q obtained by merging the
subpath of P1 from u to u′, P ′1 from u′ to v′ and then the subpath of P2 from v′

to v. w(Q) is clearly smaller than w(P1) = w(P2) so neither of them is a path of
minimum weight, which is a contradiction.

By using Claim 4.8 and Theorems 4.3 and 4.5 it follows that PlanarReach ∈ UL∩co-
UL.

4.2.2 3D monotone Grid Graphs

3D grid graphs are a natural extension of grid graphs (Definition 4.1) obtained by
adding a third coordinate. The vertices are then labeled by [n] × [n] × [n]. For
every edge e = ((i1, j1, k1), (i2, j2, k2)) of a 3D grid graph it holds (similarly as in
the 2D case) that |i1 − i2| + |j1 − j2| + |k1 − k2| = 1. A layer of a 3D grid graph is
a subgraph induced by vertices with the same third coordinate. In addition to the
edges in a 2D case we have two new kinds of edges that lead between layers. We
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4.2 Possible Approaches

denote edge ((i, j, k), (i, j, k + 1)) as an inward edge and edge ((i, j, k), (i, j, k − 1))
as an outward edge.

Definition 4.9 (3D monotone grid graph). A graph G is a 3D monotone grid graph
if it is a 3D grid graph that has only north, east and inward edges.

In further text we will denote this restriction of STCONN by 3DmGGR.

Theorem 4.10 ([BTV07]). 3DmGGR is complete for NL.

In the proof of Theorem 4.6 we presented a weight function that makes a planar
graph min-unique. It is not clear how to define a weight function for 3D monotone
grid graphs though. The problem is that paths with the same weights do not have
to cross each other any longer, and hence we are unable to use the same argument
as in proof of Theorem 4.6. It is an open problem whether an appropriate weight
function for 3D monotone grid graphs exist.

4.2.3 Thickness-two Graphs

The other class of graphs mentioned above is the class of thickness-two graphs. A
graph G has thickness k if the minimum number of planar subgraphs of G whose
union is G equals k. From the definition it follows that planar graphs are exactly
thickness-one graphs. One should also notice that 3D monotone grid graphs are a
subset of thickness-two graphs. To see this, embed all the layers in a plane, which
can be easily done by placing the i-th layer above the (i − 1)-th layer so they do
not intersect. Then join the vertices of embedded layers with (inward) edges that
lead between the layers. Such an embedding is a union of two planar graphs. One
planar graph is created by the embedded layers and the second one by the inward
edges, hence we obtain thickness-two graph.

Theorem 4.11 ([BTV07]). STCONN for thickness-two graphs is complete for NL.

Showing that STCONN for thickness-two graphs is in UL would imply UL = NL
but finding an appropriate weight function to make such graphs min-unique seems
to be hard.
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5 Main result

In this chapter we will present a result on the min-uniqueness of the restricted class
consisting of 3D monotone grid graphs with bounded height.
In the rest of this chapter, a 3D monotone grid graph G will be of size n×n×k where
k is a constant parameter. The vertices are triplets of numbers from [n]× [n]× [k]
and G has only east, north and inward edges.

Theorem 5.1. STCONN for 3D monotone grid graphs with bounded height is in
UL ∩ co-UL.

Proof. First we define a weight function that is an extension of the weight function
used in the proof of Theorem 4.6. For all edges e = ((x, y, z), (x′, y′, z′)) ∈ E(G),

w(e) =


n4n7z if e is an east edge,
(n4 + y)n7z if e is a north edge,
1 if e is an inward edge.

We will be using Theorem 4.5 later on so we have to make sure that w fulfills all the
assumptions. Thus we will show that w is log-space computable and polynomially
bounded. To see that w is polynomially bounded we can upper-bound n4n7z by
n4+7k and (n4 + y)n7z by (n4 + y)n7k. Since k is a fixed constant, w is polynomially
bounded and because of its form it is clearly log-space computable.
We can imagine the edge weights as vectors (denote them v(e)) of length k (the
height of G) where for an edge e ∈ E(G), all but the z-th coordinate of v(e) are
equal to 0. This unique nonzero coordinate in the vector v(e) has value n4 if e is
an east edge and n4 + y if e is a north edge. Denote the i-th coordinate of v(e) by
vi(e).

w(e) =

vi(e)n7i if e is an east or north edge in i-th layer of G,
1 otherwise.

For any path P from s to t in G we can define a vector v(P ) = ∑
e∈E(P ) v(e). Its

i-th coordinate vi(P ) is the sum of the weights of the east and north edges used by
P in the i-th layer of G. From the definition of the weight function w, vi(P ) is of
the form a+ bn4.
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Main result

Notice that the sum of the weights of east and north edges of P in the i-th layer of
G equals vi(P )n7i. There may be at most n east edges with weight n4 and at most
n north edges with weights less or equal to n4 + n so the sum of the weights of P
in the i-th layer of G is no more than (2n5 + n2)n7i ≤ 3n7i+5 and this is strictly less
than n7(i+1) = n7i+7 for n > 1. Furthermore it holds that

i∑
j=0

vj(P )n7j < n7(i+1). (5.0.1)

Thus, we can calculate the weight of P by ∑k
i=1(vi(P )n7i + sgn(vi(P )))− 1.

Claim 5.2. The weight function w makes the graph G min-unique.

Proof. We proceed by induction on k. For k = 1 the statement follows from
Theorem 4.6 because all the edges in G are of form ((x, y, 0), (x′, y′, 0)). Thus,
their weights are n4 for east edges and n4 + y for north edges so w is identical to
the weight function (4.2.1).
To prove the induction step assume that claim holds for some k ≥ 2. We want to
show that it also holds for k + 1. Let s = (xs, ys, zs), t = (xt, yt, zt) ∈ V (G) be two
vertices. If zs ≤ k and zt ≤ k then from the induction hypothesis, there is either a
unique path of minimal weight from s to t or there is no path from s to t.
Another trivial case is when zs = zt = k + 1, that is zs and zt are both in the
same layer. Since G is a monotone grid graph, all the possible paths from s to t use
only the edges in the (k + 1)-th layer. We may then remove all vertices v ∈ V (G)
with the z coordinate smaller than k + 1 because they appear in no solution of the
problem. By doing so we end up with the grid graph G′ that is acyclic and has only
east and north edges with weights n4n7(k+1) and (n4 + y)n7(k+1), respectively. The
term “n7(k+1)” is the same for all edges in G′ so it has no effect on the structure
of minimal weight path from s to t. By omitting it we obtain exactly the weight
function (4.2.1) on grid graph G′. Thus by applying Theorem 4.6 the statement
follows.
The last case we have to verify is when zs ≤ k and zt = k + 1. Let P be a path of
minimal weight from s to t and let ek = ((x, y, k), (x, y, k + 1)) be an inward edge
contained in a minimal path from s to t with following properties.
(P1) xt − x+ yt − y is minimal,
(P2) with respect to (P1), y is maximal.
Let vk and vk+1 be the end vertices of the edge ek. Because vk is a vertex in k-th
layer by the induction hypothesis there is a unique minimal path from s to vk and
by Theorem 4.6 there is a unique minimal path from vk+1 to t. Hence to prove the
theorem it remains to show that ek lies on every path of minimum weight from s to
t.
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For contradiction suppose that e′k = ((x′, y′, k), (x′, y′, k + 1)) does not satisfy (P1)
and is an edge of P ′ (path of minimum weight from s to t). Thus

xt − x′ + yt − y′ > xt − x+ yt − y. (5.0.2)

Clearly xt − x′ is the number of east edges that a path from v′k+1 to t has to use.
Similarly yt − y′ is the number of north edges that a path from v′k+1 to t contains.
So the term xt − x′ + yt − y′ represents the number of edges used by the path P ′

in the (k + 1)-th layer. From (5.0.2) we get that vk+1(P ′) > vk+1(P ) and by using
(5.0.1) it follows that P ′ is not a path of minimum weight, a contradiction.
By (P1) all the possible candidates for the edge ek (their end vertices) have the same
distance from t. We will show that condition (P2) serves to pick the right candidate.
Suppose for contradiction that P ′ is again a path of minimum weight containing an
edge e′k that fulfills (P1) but does not fulfill (P2). Hence e′k has the same distance
from t as ek and y′ < y. It means that a path from the end vertex of ek uses
more east edges than a path from the end vertex of e′k. So vk+1(P ) = a + bn4 and
vk+1(P ′) = a′ + b′n4 where b = b′ = xt − x + yt − y and because G is acyclic, P
(resp. P ′) contains yt− y (resp. yt− y′) north edges whose “y” coordinates form an
arithmetic sequence, hence a = yt+y

2 (yt − y) and a′ = yt+y′

2 (yt − y′). Let c = y − y′.
From the assumption that y′ < y, it follows that

a′ = yt + y′

2 (yt − y′) = y2
t − y′2

2 >

>
y2

t − y′2 − 2cy′ − c2

2 = yt + y′ + c

2 (yt − y′ − c)

=yt + y

2 (yt − y) = a,

hence vk+1(P ) < vk+1(P ′) and from (5.0.1) we get a contradiction with the mini-
mality of P ′.

This shows that the weight function w makes G a min-unique graph. The proof is
completed by applying Theorem 4.5.

By restricting to a subclass of 3D monotone grid graphs we managed to prove that
the reachability problem for these graphs is in UL∩ co-UL. Note that the extension
of the weight function to the general 3D monotone grid graphs is not possible because
due to the term exponential in the height of the graph the weight function w will
no longer be polynomially bounded.
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6 Conclusion
In the first part of the thesis we gave an overview of some basic facts from com-
putational complexity theory followed by further details about logarithmic space
complexity classes.
The next part was devoted to an open problem whether NL = UL. We summarized
some known results and mentioned several important techniques.
In the last part we presented a proof that the directed connectivity problem on 3D
monotone grid graphs with bounded height is in UL adding another problem into
this class.
Many open problems remain in this field and it would be interesting to investigate
them further.
A major question is, of course, whether NL = UL. To approach this problem it
might be useful to consider some restricted classes of graphs and prove that the
directed connectivity problem remains NL-complete for such classes. One might
consider following classes such as:
• 3D monotone grid graphs that are union of k forests,
• 3D monotone grid graphs with no two consecutive edges of same kind (if a

vertex v is an end vertex of a north edge then it cannot be a start vertex of
another north edge and similarly for east and inward edges),
• 3D monotone grid graphs with out-degree of vertices smaller or equal 2.

All these classes are restriction of the general 3D monotone grid graphs. It might
be easier to find a weight function that would make such graphs min-unique and by
Theorem 4.5 prove that NL = UL.
Another problem known to be NL-complete is 2-SAT ([Pap94] Theorem 16.3).
2-SAT is a problem of satisfiability of Boolean formula in conjunctive normal form
with two variables per clause. Is it possible to use 2-SAT for solving NL = UL?
Bourke et al. [BTV07] noted that there are no problems known to be complete for
UL ∩ co-UL. Do any such problems even exist?
We saw that directed planar reachability is in UL (Theorem 4.6). Limaye et al.
[LMN09] presented a result about a problem of the longest path in planar directed
acyclic graph and showed that it is also in UL. Even more recent result comes
from Thierauf and Wagner [TW10]. They showed that the isomorphism problem
for planar 3-connected graphs is in UL. Are there any other problems contained in
UL?
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