
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s thesis

Electronic Gatekeeper
using ETHERNET

Plzeň 2019 Hamza Elghoul

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 2 May 2018

Hamza Elghoul

Abstract

The aim of this thesis is the analysis and the realization of a budget
2-way communication system using ETHERNET connection, more specific-
ally a door intercom station (hereinafter ”Bouncer” or "Gatekeeper"), where
it is possible to make voice calls between two CLIENTS, a CALLER and a
CALLEE with an acceptable to minimal delay.

There are many alternative methods available for implementing such sys-
tems, this project will try to compare some of these solutions and choose the
most convenient platform according to a number of factors, such as band-
width, processing power needed and communication protocols in question.

Keywords: VoIP, SIP,SDP, server, client, LAN, ethernet, embedded,
audio, raspberry pi

Contents

Page

List of Figures 7

1 Preface 10

2 Analysis 11
2.1 Objectives and Requirements 11
2.2 Hardware . 12

2.2.1 Arduino . 12
2.2.2 RaspberryPi 3 Model B 13
2.2.3 Banana Pi . 14
2.2.4 Orange Pi . 15
2.2.5 CubieBoard 2 . 16
2.2.6 Beagle Bone Black 16

2.3 Application . 18
2.4 Audio capture and digitalisation 19

2.4.1 Signaling Protocols 20
2.5 Communication Protocol . 23

2.5.1 Session Initiation Protocol 23
2.5.2 Real Time Protocol 28

3 Implementation 29
3.1 Available tools and solutions 29
3.2 Comunication Server . 29

3.2.1 Structure of Asterisk 30
3.2.2 Asterisk on Raspberry Pi 31
3.2.3 Configuration and installation of RasPBX server . . 31
3.2.4 Native implementation of SIP protocol 32
3.2.5 PJSIP STACK . 33
3.2.6 PJSIP Architecture 34

3.3 Client . 35

4 SIP Intercom User Quickstart Guide 42
4.0.1 Installing RasPBX 42

5 System optimisations and possible upgrades 49

5

6 Conclusion 55

Bibliography 56

6

List of Figures

2.1 Arduino UNO board . 13
2.2 Raspberry Pi3 Model B+ 13
2.3 Banana Pi BPI-M1+ [8] . 14
2.4 Orange Pi PC Board [9] . 15
2.5 CubieBoard 2 system-on-chip [10] 16
2.6 Beagle Bone Black board [11] 17
2.7 VOIP LAN/NETWORK diagram 18
2.8 SIP vs h.323 [1] . 22
2.9 SIP message exchange - PROXY 26
2.10 SIP message exchange - B2BUA 27
2.11 RTP Packet Structure[12] 28

3.1 Asterisk architecture . 30
3.2 RasPBX user web interface 32
3.3 PJSIP architecture [15] . 34
3.4 SIP SIMPLE client SDK[18] 39

4.1 Setting Timezone for RasPBX 43
4.2 Asterisk Version is 13.22.0 After Upgrade 43
4.3 Creating New Account for Web Administration 44
4.4 Login to Web Interface PBX with New Password 44
4.5 Selecting System Language and Timezone 45
4.6 Adding Chan_Sip Extension 1010 45
4.7 Chan_SIP Extensions 1010 and 1020 46
4.8 Registering a new account against RasPBX 46
4.9 Failed Attempt to Register Extension 1010WhenWrong Pass-

word is Provided . 47
4.10 Dialing extension 1010 from the python GUI 47
4.11 Checking Active Calls Using Asterisk Console 48

5.1 Using https for FreePBX Administration 49
5.2 Two-way Video streaming using Raspberry Pi 50
5.3 Camera module connected to a Raspberry Pi 51
5.4 Raspberry Pi as a surveillance camera 52
5.5 Antivandal outdoor keypad 52
5.6 SRTP Packet structure vs RTP 53

7

5.7 RC522 RFID Tag Reading with the Raspberry Pi [19] . . . 54
5.8 Core Module Board by Big Clown 54

8

Acronyms

BBB Beagle Bone Black. 17

IP Internet Protocol. 11

LAN Local Area Network. 11

PBX Private Branch Exchange. 27

SIP Session Initiation Protocol. 21

UI User Interface. 12

VOIP Voice Over IP. 19

VPN Virtual Private Network. 13

9

1 Preface

Considering the high rate of crime and insecurity, there is an urgent need
to design a home security system that takes proper measures to prevent
intrusion, unwanted and unauthorized user(s). To solve these problems,
knowing the person at one’s doorstep is a key. This project aims to make
this process smoother and more reliable and most importantly expandable.

The doorkeeper must be IP-compatible in order to take advantage of the
addressing scheme provided by Internet protocol and network architecture
available. Added to that, the solution shall be an IP network-compatible
intercom system that employs packet audio technology. It shall be capable
of connecting the main station, located at the gate, and the different Internet
Protocol (IP) stations - clients, that are part of the local area network Local
Area Network (LAN). The system shall feature an echo cancelling function
that prevents acoustic feedback and echo in order to make possible full-
duplex hands-free conversations between stations. Additionally, the use of IP
stations shall allow the construction of systems that can operate without an
exchange. Centralized control of the system shall be possible using a PC or
similar dedicated server, running a manager software, which will control the
communication session parameters and allow management and expansion.

10

2 Analysis

2.1 Objectives and Requirements
The real-time voice transmission over Ethernet medium is being exploited

by various types of applications to abate the growing need of a secured, low-
cost and compact embedded device. Real time Audio & Video conferencing
is nothing but performing live chat with two or more hosts in real time over
wired or wireless network. In this project a new fully-functional embedded
system has been proposed according to a number of factors, in order to be
able to transmit voice in real-time over Ethernet with an acceptable audio
quality.

Developing an embedded product requires three main steps: selection of
the proper hardware platform, operating system, and User Interface (UI)
development, if applicable. All three of these steps are very closely tied
together and have a significant impact on time-to-market, project costs, and
the overall quality of the project. It is critical to select the proper hardware
platform that also has excellent operating system support as well as the
proper UI tools.

With a variety of different single board computers, it can be difficult
to choose which is right for one’s project. This section will look at the
parameters of the most popular single board computers available on the
market and choose the adequate one according to the requirement of the the
gatekeeper.

11

2.2 Hardware
Embedded systems, or single board computers, are now manufactured in

large quantities and are widely and commercially available. There is a huge
range of such devices on the market, each with different parameters and
primarily produced for a particular segment of use. Almost every embedded
system now has support across many operating systems, even tailor-made
platforms are being developed for them. Most of these created operating
systems are based on the Linux kernel, bringing in a lot of capabilities such
as web-server, Virtual Private Network (VPN), media center and even in
home automation.

Embedded systems are primarily developed for specific applications and
then deployed in difficult conditions such as high temperatures, humidity,
vibration and more. Virtually in every home appliance, we can find a unique
purpose-made embedded system. In this chapter, a couple of theses systems
will be tested for a specific type of application, which is audio and voice
communication. Among these systems are: RaspberryPi, BeagleBone Black,
Cubieboard, UP, BananaPi, Arduino, and others.

2.2.1 Arduino
I’m sure everybody heard about the Arduino, Raspberry Pi and Beagle-

Bone boards among other types of boards.

The Arduino is a microcontroller. A microcontroller is just one tiny part
of a computer. The arduino can be programmed in C, but can’t run an
operating system. On the other hand, the Rasperry Pi and Orange Pi are
computers, which means they can run an operating system by their own.

The Arduino is simply perfect for electronics projects and prototyping. It
is really easy to connect some LED’s, sensors, motors into the board directly.
To program the Arduino, their official software is needed (can be download
for free). Basically with that software it is possible to upload source code
directly into the Arduino through USB, unplug the USB cable, attach a
battery to the Board and It will run our program forever.

12

Figure 2.1: Arduino UNO board

Despite having an ETHERNET port, 14 Digital I/O Pins and being
very easy to use, an Arduino is a micro-controller motherboard. A micro-
controller is a simple computer that can run one program at a time, over and
over again, which ,in our case, is not convenient. Added to that the small
memory on-board (just 32 KB of which 0.5 KB used by bootloader) and the
low clock Speed of just 16 MHz, makes Arduino a platform not suitable for
the project.

2.2.2 RaspberryPi 3 Model B

Figure 2.2: Raspberry Pi3 Model B+

The Raspberry Pi 3 Model B is already the third generation of single
board systems, compared to the first and second generations, the third
brings an easier way to install any operating system supported, which can
be handled by inexperienced users, as well as a more powerful 1.2 GHz ARM
Cortex-A53 processor. It has 1GB of on-board RAM, includes a 100 Mbit/s
Ethernet interface for network connectivity. HDMI port and four USB 2.0
ports for peripheral connection, populated 40 GPIO pins, audio output jack
and a microSD card slot for data storage.

13

Power is supplied via microUSB connector. The device is powered by 5V
with a recommended supply current of at least 1A. The indisputable advant-
age of RaspberryPi is the ability to power this device with a conventional
mobile phone charging adapter.

2.2.3 Banana Pi
Banana Pi is called obviously after the Raspberry Pi board and is really

similar to it to some extent.
It comes in different versions, all open source and freely available for use

and modification. Its advantages over Raspberry Pi include built-in buttons
on the motherboard (On / Off, reset), compatibility with Raspberry Pi
accessories (displays, cameras modules). Banana Pi is released in several
versions depending on equipment and performance.

•Banana Pi BPI-M1+
The improved version of the original Banana Pi is called BPI-M1 + and

comes with a more powerful processor,the A20 ARM Cortex A7, a two core
processor with 1 GHz clock. 1GB of DDR3 memory, Gigabit Ethernet,
HDMI video output, Audio Jack, GPIO ports and 2x USB. It also has an
integrated Wi-Fi wireless chip with antenna, system control buttons and a
MicroSD card slot. The power supply is guaranteed in the same way, ie via
a microUSB.

Figure 2.3: Banana Pi BPI-M1+ [8]

14

2.2.4 Orange Pi

Following the great success of Raspberry Pi,a number of other "fruit"
embedded systems competitors are being developed. As these systems are
created after the success of their predecessor, they eliminate some of the de-
ficiencies of the original systems and come in improved variants with greater
performance. Orange Pi system on board has ARM Series A7 processor
from AllWinner. This platform is established and manufactured in China,
specifically by Shenzhen Xunlong Software CO., Limited.

•Orange Pi PC

This board offers a 1.6 GHz quad-core H3 Cortex-A7 processor, 1 GB
DDR3 RAM, 100 MBit / s Ethernet, a MicroSD card slot, an HDMI con-
nector, and the same interface as Raspberry Pi. An indisputable advantage
over Raspberry Pi is greater processor performance, an on / off button and,
of course, a price that is around US $ 15. The entire device is powered by a
5V / 2A source.

Figure 2.4: Orange Pi PC Board [9]

15

2.2.5 CubieBoard 2
Among the less-known single board computers is the open source plat-

form CubieBoard. CubieBoard is one of the few development groups ded-
icated to the ability to concatenate multiple embedded systems to create
a more powerful platform for more demanding applications such as Web
Cloud, WebServer and many more. The device has a 912 MHz AllWinner
A20 processor, 1 GB DDR3 RAM and has 3.4 GB of internal flash memory.
For additional memory expansion, there, a microSD card slot and a SATA
connector for hard drive connection. Network connectivity is provided by
100 MBit / s Ethernet, USB and Wi-Fi support. CubieBoard also has HDMI
and can be powered from USB or use a standard 5V / 2A DC power interface.

Figure 2.5: CubieBoard 2 system-on-chip [10]

2.2.6 Beagle Bone Black
Another alternative to consider is Beagle Bone Black (BBB), a low-cost,

community-supported development platform for developers and hobbyists
that can Boot Linux in under 10 seconds and get started on development in
less than 5 minutes with just a single USB cable.

16

Figure 2.6: Beagle Bone Black board [11]

BBB is well equipped, with 512MB DDR3 RAM, 4GB 8-bit eMMC on-
board flash storage, 3D graphics accelerator, 1 USB client for power & com-
munications and 1 USB host and of course Ethernet port. But the lack of
any AUDIO/VIDEO input device is a weakness, which can be overcame by
using extension boards called "Hats" or even by USB compatible devices,
but the BBB has only 1 USB port, and usb hubs are known to cause issues
as they overload the one port they are connected to and may damage the
devices connected to them.

Added to that, as the previously stated boards, the BeagleBone Black is
a newcomer, which means it lacks in experience and support.

In a nuttshell, this will leave us with the first alternative, the Raspberry
Pi 3 board, the ultimate single-board, low-cost, high-performance computer.

The Raspberry Pi Foundation even builds its own Distro of Linux –
Raspbian – that comes with all the tools we could ever need on the Raspberry
Pi preinstalled, and is also able to run software packages a lot better than
the Beaglebone.

With the incredible amount of documentation and support available on-
line, it can be quite easy to do whatever needed with a Raspberry Pi.

The multiple USB ports available in the RPi, the audio output, the
Linux based OS and the enough good computing power to do audio and
network processing makes it the most convincing platform for implementing
this project, while most of the Chinese clones (Banana and Orange Pi) use

17

different System on chip (from ALLWINNER) which can contribute to a
number of compatibility problems, the Raspberry uses a reliable high quality
SoC from Broadcom, added to the huge lack of support and documentation
available.

2.3 Application
In this section, the Raspberry Pi is intended to have capability of gath-

ering audio from a USB microphone. As the system is IP based, and in
order to make implementation more convenient and portable, a Voice Over
IP (VOIP) protocol is to be used to assure the transmission of audio packets
between the different clients in the system.

VOIP is the method for delivering phone calls “over IP.” VOIP uses the
Internet Protocol (IP) to transmit voice as packets over an IP network. So
VOIP can be achieved on any data network that uses IP, like Internet, In-
tranets and Local Area Networks (LAN). Here the voice signal is digitized,
compressed and converted to packets and then transmitted over the IP net-
work. In order to to set up and tear down calls, carry information required
to locate users and negotiate capabilities, a signalling protocol is needed.

In general, this is how a typical VOIP setup looks like:

Figure 2.7: VOIP LAN/NETWORK diagram

The idea, is to have a server who would manage the backend/structure of
the whole system, and a number of clients, all interconnected by the means
of IP capable network, for example a LAN. Since our usage is limited to a
simple voice call between the clients in the system, so there no need of any

18

internet access for this type of gatekeeper project, where the communication
between different elements is purely internal.

The next challenge is the design of such system using the capabilities
offered by the system on chip chosen for this purpose.

Added to that, the voice communication needs to be somehow processed
in a timely manner, in order to make the whole system suitable for use in
production-like environment with little to no support, and overall reliable
and ready for future upgrades or extension, for example, adding a client or
otherwise deleting/modifying him.

2.4 Audio capture and digitalisation
Audio transmission and codecs

Voice Over internet Protocol uses computer algorithms called “codecs”
to convert the voice signal from your telephone into a digital signal that is
then transmitted over the internet. If you are calling a regular telephone
number, the signal is then converted back on the other end by switches that
are near your terminating phone. This is why every call is a local call with
VoIP.

G.711
This is the basic PSTN codec (public telephone network). If someone

talks about PCM (Pulse Code Modulation) along with a telephone network,
he certainly means G.711. It uses two encoding methods. ulaw in North
America and alaw in the rest of the world . It transmits 8 bits 8,000 times
per second, or 64,000 bits per second . Compared to a CD quality that
encodes 16 bits with a sampling rate of 44,100 Hz, it is indeed a great
compromise in quality requirements.

Many people say that G.711 is a non-compression codec. It’s not entirely
true if we consider coding to be a form of compression. This codec has
become the basis for further codecs developed by it. It has minimal CPU
requirements.

G.726
This codec has been in the world for some time (we don’t see it much

anymore) and it belongs to the original compression codecs. It is known
as Adaptive Differential Pulse Width Modulation. (ADPCM). It works at
several sampling rates from 16Kbps to 32 Kbps.

G.726 provides almost identical quality to G.711, but only with half the
bandwidth. This is because instead of sending the result of the quantization
measurement, it only sends information about the description of the differ-

19

ence between the previous and the current sample. G.726 was unsuccessful
in not supporting modem and fax signals in the 1990s, but is experiencing
a comeback due to low CPU usage.

G.729A
G.729A delivers surprisingly high-quality sound , given how much band-

width it consumes . This is due to the use of Conjugate-Structure Algebraic-
Code-Excited Linear Predictions (CS-ACELP).

CELP is a popular voice compression method. A codebook of sounds is
built by mathematically modeling various human voices. Instead of sending
the current voice sample, it sends the code of the corresponding voice sample.
However, due to patents, we cannot freely use the codec, but we have to pay
for its license. Yet it is very popular and very well supported by various
phones and systems. To achieve an impressive compression ratio, the codec
uses relatively much CPU processing power. Uses 8 Kbps bandwidth.

GSM
It provides similar parameters to G.729A except that it is available and

usable from darma. Operates at 13 Kbps.
iLBC
The Internet Low Bitrate Codec provides an attractive mix of quality

and bandwidth usage. Very well suited to use on lossy network lines. Since
iLBC uses a complex of algorithms to achieve a high degree of compression,
it puts a lot of strain on the CPU . It is a patent of Global IP Sound, it is
enough to register.

Speex
Speex is a codec that can change the sampling rate according to network

conditions. This is a GNU-licensed product . Speex operates somewhere at
a transfer rate of 2.15 to 22.4 Kbps .

MP3
Moving Picture Experts Group Audio Layer 3 Encoding Standard. This

codec is typically used for Music on Hold . Not directly a phone codec, it is
optimized for music.[16]

2.4.1 Signaling Protocols
There are different signaling protocols used in the VOIP environment,

such as IAX (The “Inter-Asterisk eXchange” Protocol), Session Initiation
Protocol (SIP), H.323 and MGCP. The most popular and supported proto-
cols are SIP and H.323.

The H.323 protocol SIP, both support voice over IP and multimedia
communications, but the standards were developed by different standards-

20

setting bodies and have developed in different ways. As a result, both target
multimedia transmitted over IP networks, but have different capabilities,
which can be a strength or a weakness, depending on network operator or
enterprise needs.

While both protocols were developed starting in 1996, SIP has become
the VoIP and multimedia standard of choice over time and is being used by
large hardware and software vendors, including Microsoft and Cisco. While
few manufacturers are working on new H.323 implementations, it is still in
use in many legacy systems, and some standards work continues.

H.323 protocol overview
H.323 is a binary-based standard developed by the International Tele-

communication Union to support rich-media communications over IP net-
works that was initially focused on video conferencing, but now includes
audio and video conferencing. H.323 is a well-defined and well-structured
protocol, with specific definitions for establishing sessions, which can be
loosely compared to calls, services and session components. Because of its
rigid services definition that comes out of the telecom-based standards body,
all H.323 implementations are generally interoperable.

While H.323’s rigid definition is an advantage in terms of interoperability,
that rigidity can be its greatest challenge, because vendors are limited in
their ability to layer additional features or services not supported by the
protocol.

SIP overview
SIP was developed by the Internet Engineering Task Force. It was de-

signed to set up a session between two points and to be a flexible com-
ponent of the internet architecture. Unlike H.323, SIP’s initial focus was
voice communications, rather than video, but it was expanded to include
video, application sharing, presence, instant messaging and other common
communications applications.

SIP is an ASCII text-based standard leveraging much of the existing
design of HTTP. SIP’s text format, however, can result in large messages
that aren’t as suitable for networks that may have bandwidth, delay and
processing issues. SIP is highly extensible, which allows developers to ex-
pand or add to its capabilities, and it supports rich-media communications,

21

as well as data transfer. SIP uses the Session Description Protocol (SDP) to
define the characteristics of a session, which enables the use of encryption,
transport protocol, the selection of voice and video codecs, and compression.

Figure 2.8: SIP vs h.323 [1]

H.323 vs SIP
Unlike H.323, SIP leaves the specifics of feature implementations to de-

velopers, which gives them a great deal of flexibility when designing or using
the protocol. SIP is also a simpler protocol than H.323, and it requires fewer
messages to establish a session. H.323 requires a relatively large number of
message exchanges to establish and manage sessions, but it is also highly
reliable. Because of SIP’s flexibility and extensibility, it quickly gained mo-
mentum among early vendors of IP telephony systems – particularly those
offering platforms for hosted telephony services.

22

2.5 Communication Protocol

VoIP technology

This part introduces the basics of VoIP, a rundown on essential terms
and the general workings of the technology. This part describes the basics
of IP telephony and how VoIP calls get packetized and carried over external
networks.

VoIP Voice over IP (Internet Protocols) allows to transfer multimedia
data over IP networks using a set of protocols. These protocols include
signaling protocols and multimedia data transfer protocols. Signaling pro-
tocols ensure registration, creation and termination of calls. The most widely
used signaling protocols are SIP (Session Initiation Protocol), H.323, IAX2
(Inter-Asterisk eXchange). For multimedia data transfer, the RTP (Real
Time Protocol) or its secure version of SRTP are the way to go. Usually
UDP protocol is used on the transport layer. For connection to the PSTN
legacy network, a so-called Getaway is used, which provides signaling and
data conversion [2].

2.5.1 Session Initiation Protocol
Session Initiation Protocol (SIP) is a signaling protocol designed in 2002

by RFC 3261 [3]. This signaling protocol allows to build, modify, and end a
session with one or more participants.

Features and characteristics

Nowadays, there are hundreds of other RFCs that either directly address
or follow up SIP. As a rule, the Real-Time Protocol (RTP) is used for the
transmission of multimedia data; Two basic SIP entities are defined for SIP
functionality:

SIP is UTF-8 encoded client/server oriented text protocol. Nowadays,
there are hundreds of other RFCs that either directly address or follow up
SIP. As a rule, the Real-Time Protocol (RTP) is used for the transmission
of multimedia data; Two basic SIP entities are defined for SIP functionality:

• SIP User agent (UA) - represents signaling end point.
• SIP server - contains SIP proxy, registrar, redirect server.

23

(A) SIP entity

(i) SIP User agent (UA)
A user agent is a signaling endpoint in SIP networks. The UA can
be a hardware phone, a software client, a B2BUA, a PSTN gate,
etc. The task of UA is to create a multimedia stream. User agent
client (UAC) generates requests and receives responses, user agent
server (UAS) receives requests and generates responses. UAS and
UAC are logical entities only, and each terminal has both parts

(ii) SIP Proxy Server.
The task of the SIP proxy server is to redirect requests from the
UA closer to the called party, usually to another proxy server.
Proxy Server never generates SIP requests, only forwarding them
to the called party.

(iii) Registrar server
The server receives SIP REGISTER messages from the UA, thus
registering and updating the localization database.

(iv) Redirect server
Used to redirect. Receives search requests in the localization data-
base and sends the user localization response back to the inquirer.
[4]

(B) SIP messages

The communication between UA and SIP Servers is provided by SIP
messages. They are divided into SIP REQUESTS, sometimes referred
to as SIP METHODS, and SIP ANSWERS. Sip messages contain
header and a payload. The first line of the header shows the mes-
sage type, the header is separated by a free line from the message
body. Below is the INVITE SIP request header:

Request-Line:INVITE sip:200@192.168.20.23;transport=UDP SIP/2.0

Via:SIP/2.0/UDP192.168.20.120:5060;branch=z9hG4bK-524287-1—3abf760e20a8cc74

Max-Forwards: 70

Contact: <sip:100@192.168.20.120:5060;transport=UDP>

To: <sip:200@192.168.20.23;transport=UDP>

From: <sip:100@192.168.20.23;transport=UDP>;tag=817a2873

Call-ID: ZA1hDnv44N7u6vpTR1QwDg..

CSeq: 2 INVITE

24

Allow: INVITE, ACK, CANCEL, BYE, NOTIFY, REFER, MESSAGE, OPTIONS, INFO, SUB-

SCRIBE

Content-Type: application/sdp

Supported: replaces, norefersub, extended-refer, timer, outbound, path, X-cisco-serviceuri

User-Agent: Z 3.9.32144 r32121

Allow-Events: presence, kpml

Content-Length:243

SIP methods

UAC generates SIP methods - requests, they ask for UAS a certain
action. Six basic applications were defined in the original RFC 3261.

• INVITE - request to join or modify an existing connection
• ACK - final confirmation of the last response to the INVITE request
• BYE - request to terminate the connection
• REGISTER - register or unregister request
• CANCEL - request for termination during connection setup
• OPTIONS - Determine the counterparty properties

With the gradual development of VoIP, other SIP methods that bring
new features have been introduced:
• PRACK - performs the same function as the ACK, except that it
confirms temporary responses. This ensures reliable delivery.
• UPDATE - Allows you to change session parameters (stream co-
decs) without having to wait for the INVITE and re-INVITE methods
to complete.
• REFER - call transfer request. The REFER method assures that
the recipient will contact the next UA with the request to establish a
connection.
• MESSAGE - sending short messages
• SUBSCRIBE, NOTIFY - logging and reporting node change statuses
• INFO - transmit signaling information during a call. [5]

SIP response codes

Each method must be answered. The only exception is the ACK
method, which confirms the delivery of the last response to the IN-
VITE request. The answers are divided into 6 groups and are marked
with a three-digit code[6]:

25

• 1xx - temporary informative answers (for requests that have been
received but not yet known) eg 100 (Trying) • 2xx - positive final an-
swer (200 OK)
• 3xx - Redirect
• 4xx - negative response 401 (Unauthorized)
• 5xx - Server Side Error 503 (Service Unavaiable)
• 6xx - global error

(C) SIP communication

In the simplest configuration, it is possible to use two SIP entities, they
communicate with each other by means of SIP messages, but usually
the Private Branch Exchange (PBX) is also present in the SIP net-
work. Usually, the control panel works in a proxy mode, forwarding
the sip request closer to the client and passing the multimedia data
directly between the end entities. A special case of communication
is B2BUA. When two connections are always established between the
client and the PBX and the multimedia data passes through the PBX.

SIP Proxy Server

An example of proxy server communication is shown in Figure below.

Figure 2.9: SIP message exchange - PROXY

26

In the domain managed by one SIP Proxy server, there are 2 clients,
Alice and Bob. If Alice wants to contact Bob, she must send an IN-
VITE request to the proxy server with a URI of bob@domain.com.
The Sip server responds with a 100 Trying message and searches the
localization database for Boba’s IP address and forwards the INVITE
request to it. Bob confirms the message by sending a 180 Ringing
reply. If the call is accepted, a 200 OK Alert message is sent. Alice
also responds with a 200 OK message to establish a connection and
send RTP data. If Alice wants to end the call, she sends an BYE
message, Bob confirms the call with 200 OK [7] .

B2BUA communication

Another way to communicate is by using B2BUA, a special case of
UA that is inserted between AUs. This special UA is the signaling
endpoint. Where one connection is created between Alice and B2BUA
and the other between Bob and B2BUA, unlike the Proxy server, which
only forwards the communication. Usually, RTP data passes through
B2BUA (PBX) and thus has full control over the ongoing call. How-
ever, the performance of the PBX using this mode is worse than the
proxy mode, due to the need of forwarding RTP packets. This solution
is used by Asterisk. However, this PBX offers the ability to send RTP
data directly between end points.

Figure 2.10: SIP message exchange - B2BUA

27

2.5.2 Real Time Protocol
In packet networks, Real-Time Transport Protocol (RTP) is most com-

monly used for voice transmission, allowing media to be transmitted through
packet networks. The protocol is designed to minimize the delays and down-
time of the transmitted audio or video signal. This protocol was issued in
1996 as RFC 1889 and was later replaced by RFC 3550.

The transmission of media over packet networks is very problematic and
must take into account any possible packet delay, transmission delay over
the IP network, and a delay in the buffer used by RTP.

By definition, RTP uses a so-called jitter buffer, which collects packets
with transmitted media and plays them back in time to compensate for pos-
sible delays due to different transmission paths across the IP network. The
total transmission delay includes network propagation time, buffer delay, and
packet packet time. According to the ITU (International Telecommunication
Union), the delay time should not exceed 150 ms, otherwise the conversation
between the users won’t be understandable, due to an important delay.

The RTP stream packet is supplemented with the RTP header and RTP
data. The header includes information about the data type, the sequence
number sent, the data timeline, and more. RTP is always transmitted on an
even port and is transmitted by UDP. It is recommended to use Real-time
Transport Control Protocol(RTCP), which broadcasts on the next port that
RTP uses. During transmission, stream quality information is transmitted
every 5 to 10 seconds via RTCP.

Figure 2.11: RTP Packet Structure[12]

28

3 Implementation

3.1 Available tools and solutions
As explained before, there is a number of requirements to satisfy in order

to be a as reliable as it could be. One interesting approach is to use a
soft Private Branch Exchange, that will act as a SIP server for the clients
connected to it, and will act as the brains that will contain the necessary
information for the deployet of the whole system, such as the number of
clients available, the protocol used as so on.

There is a number of such solution available for use , such as 3CX, which
is popular among small businesses, but it is not free, and obliges the user
to choose between a fully featured version, or a free licence with a lot of
limitations.

Another possible solution worth mentioning is Mumble, a private soft-
ware turned public and free as part of a new community driven project.
This project is implemented according to a server/client architecture but
it is more of a push-to-talk solution. Even though during testing, it has
been configured to auto-start and , it still pops up a dialogue box asking
for confirmation before connecting to server, which is inconvenient and and
complicated for average user.

A software package called OpenOB 3.0 is also available for testing pur-
poses, as it is still in alpha2 stage, which means that it is still full of bugs
and is not 100% compatible with all of the platforms, mainly issues around
bus speeds for embedded and single-board computers. This library offers a
number of codecs such as Opus and relies on GStreamer media framework
for the underlying audio transport.

I would opt for FreePBX, because of the cost (Free) and it can be cus-
tomised to suit any needs that might crop up.

3.2 Comunication Server
In this project, Asterisk has been selected among a couple of available

IP/PBX solutions, Asterisk is an open source framework for building com-
munications applications. Asterisk turns an ordinary computer into a com-
munications server. Asterisk powers IP PBX systems, VoIP gateways, con-
ference servers and other custom solutions. It is used by small businesses,

29

large businesses, call centers, carriers and government agencies, worldwide.
Asterisk is free and open source.

Asterisk supports a variety of modes such as :

• VoIP getaway
• PBX
• IVR interactive voice guide
• Conference server
• Encryption medium
• Number translator
• And more..

3.2.1 Structure of Asterisk
The Asterisk system is designed to create an interface between a tele-

phone application and a telephone interface (VoIP, TDM). With the SIP,
IAX, H323 protocols, Asterisk works like channels associated with the ker-
nel. A powerful tool for controlling Asterisk is the CLI command line as well
as the Interface Manager. The cornerstone is Dialplan, which takes care of
transferring incoming and outgoing calls or service call requests,see fig. 3.1
[6].

Figure 3.1: Asterisk architecture

30

The correct function of each protocol is assured by the so-called channel
driver (STACK driver). There are several stacks in Asterisk, the name of
the driver is associated with a protocol name such as chan_sip for SIP or
chan_iax2 for IAX2. From Asterisk version 12, it is possible to use the
two channel drivers for the SIP protocol, the original chan_sip and the new
res_pjsip using the PJSIP library. In the following chapters both stacks are
going to be described.

3.2.2 Asterisk on Raspberry Pi
RaspPBX is a project which brings the free and open source Asterisk and

FreePBX into Raspberry Pi board. RaspPBX turns Pi into a communica-
tions server which can be used by small businesses with up to 12 extensions.
FreePBX is a web-based open source GUI that controls and manages Aster-
isk. Our goal is to show installation of the latest RaspPBX into Raspberry
Pi 3 Model B Rev 1.2.

The latest image available for download includes Asterisk 13.20.0 and
FreePBX 14.0.2.10.

3.2.3 Configuration and installation of RasPBX server
The installation is easy and doesn’t require an advanced user, most im-

portant steps are the following:

1. Flashing the SD Card with the downloaded ISO image

2. Boot the system and configure hostname / IP address

3. Choose your timezone,configure locale settings

4. Changing passwords using the passwd command

31

Figure 3.2: RasPBX user web interface

The most important is probably to go to Module Admin, checking online
for module updates and apply them all by marking the necessary changes
and hitting Process. It will take a few goes to fulfill all dependencies.

3.2.4 Native implementation of SIP protocol
The original sip channel driver was created in 2002. At that time, the SIP

protocol was a relatively young standard, RFC 3261 was released and it was
not clear what position the new protocol would build in the VoIP field. The
original SIP stack was designed as a single channel and monolithic named
chan_sip.

The chan_sip configuration is done in the sip.conf text file, which con-
tains the global SIP settings section. This section is preceded by [general].
Furthermore, the name or account number in square brackets begins with
the setting section for individual accounts, for example: [100]. Below is a ba-
sic example. All parameters that can be set for the sip protocol or individual
accounts are listed in the literature [13].

32

General Settings:

[general]
context=all ;context to which users belong
bindaddr=0.0.0.0:5060 ;The IP address and port on which Asterisk listens
srvlookup=yes ;DNS permission
transport=udp ;enable transmission protocol
disallow=all ;disables all codecs
allow=alaw ;allow only ALAW codec
language=en ;default language

Client Settings:

[100] ;account name
type=friend :account type
context=kontext1 ;to which context the client belongs
secret=password ;password
host=dynamic ;enable registration on all IP addresses
disallow=all ;disabling all codecs
allow=alaw ;allow only ALAW codec

3.2.5 PJSIP STACK
With the development of VoIP over time, SIP has also evolved , and a

number of new enhancements have been made in the form of new RFCs.
Thus, modifying the original chan_sip driver was increasingly challenging,
and for this reason, the AstriDevCon 2012 development community decided
to implement a new stack. The challenge was not only to design a new set
of modules for the SIP protocol for today’s needs, but there was also an
effort to make it flexible for future adjustments. After analyzing various
sip libraries, it was decided to implement a new stack based on the PJSIP
libraries sponsored by Teluu. The PJSIP stack is implemented in Asterisk
since version 12 in 2014 [14]

Reasons for selecting PJSIP:

• Written in C ++ which made it easier to implement it into Asterisk
• It is widely used and is used by many applications, test proved
• It is still maintained
• Developers previous experience with PJSIP from the Asterisk SCF project

33

The development of PJSIP is mainly focused on having small footprint,
modular, and very portable SIP stack for embedded development purpose
(although it’s perfectly good for Win32/Linux/MacOS as well). Some of the
characteristics of PJSIP:

it is built on top of PJLIB, and since PJLIB is a very very portable
library, basically PJSIP can run on any platforms where PJLIB are por-
ted (including platforms where normally it would be hard to port existing
programs to, such as Symbian and some custom OSes). it has quite small
footprint, although probably it’s not the smallest SIP stack on the planet,
it is quite customizable and modular, meaning that features that are not
needed won’t get linked into the executable, it has pretty good performance
(thousands of calls per second), and it has quite a lot of SIP features. A
high level SIP multimedia user agent API is available for both C and Python
language.

3.2.6 PJSIP Architecture
A PJSIP project consists of several separate libraries which are respons-

ible for different features. Basic PJSIP architecture for the client application
can be seen on the figure below.

Figure 3.3: PJSIP architecture [15]

34

3.3 Client
Operating system Installation

There are several operating systems optimized for RPi. Raspbian - Based
on Debian distribution, is the recommended option as this is the most pop-
ular OS for RPi. An operating system is going to be installed on the cli-
ents boards, however, as explained before, the server unit will be running
RasPBX operating system instead, which is a complete OS package, based
on Raspian, and contains the needed libraries and packages needed for the
server to work as expected, added to that, it comes pre-configured and run-
ning a web-server, that acts as the configuration tool for the server, and
makes the clients management easier to full fill.

Client interface

The client will be implemented in Python language, using SIP SIMPLE
client SDK [17] , by AG-PROJECTS based on the PJSIP project version 2.8.
PJSIP is a free and open source multimedia communication library written
in C language implementing standard based protocols such as SIP, SDP,
RTP, STUN, TURN, and ICE. It combines signaling protocol (SIP) with
rich multimedia framework and NAT traversal functionality into high level
API that is portable and suitable for almost any type of systems ranging
from desktops, embedded systems, to mobile handsets.

PJSIP is both compact and feature rich. It supports audio, video, pres-
ence, and instant messaging, and has extensive documentation. PJSIP is
very portable. On mobile devices, it abstracts system dependent features
and in many cases is able to utilize the native multimedia capabilities of the
device.

The idea is to implement a system made of a number of clients, that
are raspberry pi based, and a server RasPBX that will have the role of the
central point where clients must connect to in order to communicate to each
other throught a switch or a router.

Every client in the system will be equipped with a usb microphone as
an input and as an output a headset or small speaker, connected via audio
JACK slot. This will act as ring notifier too.

The client is implemented in PYTHON programming language using the
use of the SIP SIMPLE library from AG-PROJECTS.

The client is a script in python that will be running in the background
waiting for call request from other client registered against the RasPBX
registrar.

35

SIP proocol is the signaling protocol that is going to be used to exchange
the request and reply messages explained above, and RTP protocol is the
protocol used for voice packet transfert between the users.

The user interface are implemented using the tkinter module in Python.
Here is a code snippets of the client in both states, incoming and outgoing

session:
Incoming session

adigeo@ag−b l ink :~ $s ip−audio−s e s s i o n
Using account 31208005169@ag−p r o j e c t s . com
Logging SIP t ra c e to f i l e "/ Users / adigeo / Library /Appl i ca t ion
Support/Bl ink / l o g s / s ip_trace . txt "
Logging PJSIP t ra c e to f i l e "/ Users / adigeo / Library /Appl i ca t ion
Support/Bl ink / l o g s / p j s ip_t race . txt "
Ava i l ab l e audio input dev i c e s : None ,
system_default ,
Bui l t−in Input ,

Bui l t−in Microphone
Ava i l ab l e audio output dev i c e s : None ,
system_default , Bui l t−in Output
Using audio input dev i c e : Bui l t−in Microphone
Using audio output dev i c e : Bui l t−in Output
Using audio a l e r t dev i ce : Bui l t−in Output
Ava i l ab l e c on t r o l keys :
s : t o gg l e SIP t ra c e on the conso l e
j : t o gg l e PJSIP t ra c e on the conso l e
n : t o gg l e n o t i f i c a t i o n s t r a c e on the conso l e
p : t o gg l e p r i n t i n g RTP s t a t i s t i c s on the conso l e
h : hang−up the a c t i v e s e s s i o n
r : t o gg l e audio r e co rd ing
m: mute the microphone
i : change audio input dev i c e
o : change audio output dev i c e
a : change audio a l e r t dev i c e
<>: ad jus t echo c a n c e l l a t i o n
SPACE: hold /unhold
Ctrl−d : qu i t the program
? : d i sp l ay t h i s he lp message

2009−08−25 16 : 37 : 12 Reg i s t e r ed contact
" s i p : hxsyungk@192 . 1 6 8 . 1 . 1 2 4 : 5 9 1 6 4 " f o r

36

s i p :31208005169@ag−p r o j e c t s . com
at 8 1 . 2 3 . 2 2 8 . 1 5 0 : 5 0 6 0 ; t r anspo r t=udp (exp i r e s in 600 seconds) .
Other r e g i s t e r e d contac t s :
s i p :31208005169@192 . 1 6 8 . 1 . 1 2 3 : 5 0 6 0 (e xp i r e s in 274 seconds)
s i p : kwbfxyvl@192 . 1 68 . 1 . 1 2 4 : 5 9 116 (e xp i r e s in 522 seconds)
s i p : ilmegvkp@192 . 1 68 . 1 . 1 2 4 : 5 9 003 (exp i r e s in 339 seconds)
s i p :31208005169@192 . 1 6 8 . 1 . 1 ; uniq=5B2860C44383A3D6705629A7E1FB8

(exp i r e s in 1162 seconds)
Detected NAT type : Port Re s t r i c t ed
Incoming audio s e s s i o n from ’ s i p : adi@umts . ro ’ ,
do you want to accept ?

(y/n)
Audio s e s s i o n e s t ab l i s h ed us ing " speex " codec at 16000Hz
Audio RTP endpoints 192 . 168 . 1 . 1 24 : 50378 <−> 85 . 17 . 1 86 . 6 : 5 8868
RTP audio stream i s encrypted
Remote SIP User Agent i s " Blink −0 .9 .0 "
Remote party has put the audio s e s s i o n on hold
Audio s e s s i o n i s put on hold
Audio s e s s i o n ended by remote party
Se s s i on durat ion was 6 seconds
2009−08−25 16 : 37 : 44 Reg i s t r a t i on ended .

Outgoing session

adigeo@ag−b l ink :~ $s ip−audio−s e s s i o n −a umts ag@ag−p r o j e c t s . com
Using account adi@umts . ro
Logging SIP t ra c e to f i l e "/ Users / adigeo / Library /Appl i ca t ion
Support/Bl ink / l o g s / s ip_trace . txt "
Logging PJSIP t ra c e to f i l e "/ Users / adigeo / Library /Appl i ca t ion
Support/Bl ink / l o g s / p j s ip_t race . txt "
Ava i l ab l e audio input dev i c e s : None , system_default ,
Bui l t−in Input ,

Bui l t−in Microphone
Ava i l ab l e audio output dev i c e s : None , system_default ,
Bui l t−in Output

Using audio input dev i c e : Bui l t−in Microphone
Using audio output dev i c e : Bui l t−in Output
Using audio a l e r t dev i ce : Bui l t−in Output
Ava i l ab l e c on t r o l keys :
s : t o gg l e SIP t ra c e on the conso l e
j : t o gg l e PJSIP t ra c e on the conso l e

37

n : t ogg l e n o t i f i c a t i o n s t r a c e on the conso l e
p : t o gg l e p r i n t i n g RTP s t a t i s t i c s on the conso l e
h : hang−up the a c t i v e s e s s i o n
r : t o gg l e audio r e co rd ing
m: mute the microphone
i : change audio input dev i c e
o : change audio output dev i c e
a : change audio a l e r t dev i c e
<>: ad jus t echo c a n c e l l a t i o n
SPACE: hold /unhold
Ctrl−d : qu i t the program
? : d i sp l ay t h i s he lp message

I n i t i a t i n g SIP audio s e s s i o n from ’ s i p : adi@umts . ro ’
to ’ s i p : ag@agprojects . com ’ v ia s i p : 8 5 . 1 7 . 1 8 6 . 7 : 5 0 6 0 ; t r anspo r t=udp . . .
Audio s e s s i o n e s t ab l i s h ed us ing " speex " codec at 16000Hz
ICE nego t i a t i on succeeded in 1 s :412
Audio RTP endpoints 192 . 168 . 1 . 1 24 : 50852 (ICE type host) <−>
192 . 168 . 1 . 1 24 : 50871 (ICE type host)
RTP audio stream i s encrypted
Audio s e s s i o n i s put on hold
Remote party has put the audio s e s s i o n on hold
Detected NAT type : Port Re s t r i c t ed
Ending audio s e s s i o n . . .
Audio s e s s i o n ended by l o c a l party
44
Se s s i on durat ion was 7 seconds

Configuration

Sip Simple middleware uses command line tools for configurating the sip
clients and managing functions such as Register againt the sip server, but
in order to work as intented, it is critical to make sure all dependencies are
installed correctly as well as the needed SDK:

SIP SIMPLE Client SDK
darcs get –set-scripts-executable http://devel.ag-projects.com/repositories/python-
sipsimple

Dependencies

Several dependencies provided by AG Projects can be accessed in the

38

same way:

darcs get http://devel.ag-projects.com/repositories/python-xcaplib darcs get
http://devel.ag-projects.com/repositories/python-msrplib
darcs get http://devel.ag-projects.com/repositories/python-application
darcs get http://devel.ag-projects.com/repositories/python-backports
darcs get http://devel.ag-projects.com/repositories/python-gnutls
darcs get http://devel.ag-projects.com/repositories/python-cjson
darcs get http://devel.ag-projects.com/repositories/python-greenlet
darcs get http://devel.ag-projects.com/repositories/python-eventlib
darcs get http://devel.ag-projects.com/repositories/python-otr

Middleware API
This section describes the Middleware API for SIP SIMPLE client SDK

that can be used for developing a user interface (e.g. Graphical User In-
terface). The Middleware provides a non-blocking API that communicates
with the user interface asynchronously by using Notifications.

For its configuration, the Middleware uses the Configuration API.

Figure 3.4: SIP SIMPLE client SDK[18]

39

Middleware Methods

sip-register
Implemented in sipclients/sip-register
This script is used to Register a SIP end-point with a SIP Registrar or
broadcast the local SIP URI using Bonjour mDNS.

Description
SIP protocol offers a discovery capability. If a user wants to initiate a session
with another user, he must discover the current host(s) at which the destina-
tion user is reachable. To do this, SIP network elements consult an abstract
service known as a location service, which provides address bindings for a
particular domain. Registration entails sending a REGISTER request to a
special type of UAS known as a registrar. A registrar acts as the front end
to the location service for a domain, reading and writing mappings based on
the contents of REGISTER requests. This location service is then typically
consulted by a proxy server that is responsible for routing requests for that
domain. This script implements REGISTER method, which registers the
contact (ip, port and transport) for a given address of record (SIP address).

sip-audio-session
Implemented in sipclients/sip-audio-session Setup a single SIP audio session
using RTP/sRTP media. Description This script can be used for interactive
audio session or for scripting alarms. The script returns appropriate shell
response codes for failed or successful sessions. The script can be setup
to auto answer and auto hangup after predefined number of seconds, de-
tects SIP negative response codes, missing ACK and the lack of RTP media
after a session has been established. Once the media stream is connected,
the outcome of the ICE negotiation and the selected RTP candidates are
displayed.

sip-session
Implemented in sipclients/sip-session
Setup one or more SIP sessions with Audio (RTP/sRTP

Description
sip-session command line script is a show-case for the powerful features of

40

SIP SIMPLE development kit related to establishing, modifying and ter-
minating SIP sessions with multiple media types like VoIP, Instant Mes-
saging and File Transfer. The script has the following features:

1. Registers with a SIP registrar and is available for incoming sessions
2. Switches between multiple sessions and provides in-call controls like Hold
and Mute
3. Handles outgoing SIP sessions with combinations of media types based
on RTP and MSRP protocols
4. Performs NAT traversal using ICE and MSRP relay extension
5. Provides control for the input, output and alert audio devices
6. Records the RTP audio streams (input, output or combined)
7. Enable text input and output for Instant Messaging sessions
8. Provides File Transfer capability with progress indicator
9. Gives access to real-time traces of involved protocols (DNS, SIP and
MSRP)

GUI

Based on the previously explained methods and function, the GUI applic-
ation is to be implemented in Python language, using the tKinter package.

Tkinter is Python’s de-facto standard GUI package. It is a thin object-
oriented layer on top of Tcl/Tk. Tkinter is not the only GuiProgramming
tool-kit for Python. It is however the most commonly used one.

The GUI is just a simple user interface designed to dial an extension
number using numbered button from 0 to 9, initiate a call, hang-up, finish
a call and cancel the dialled number in case of a mistake.

41

4 SIP Intercom User
Quickstart Guide

4.0.1 Installing RasPBX
This guide provide a simple setup sample for getting started using RasPBX

SIP Server

1. Download, Extract and Copy RaspPBX Image to SD Card

$ wget http://download.raspberry-asterisk.org/raspbx-04-04-2018.zip
$ sudo dd bs=4M if=raspbx-04-04-2018.img of=/dev/mmcblk0
status=progressconv=fsync
$ unzip raspbx-04-04-2018.zip

2. Expanding filesystem on SD card

By default the image utilizes only 4GB of your SD card space. Login
to the console with username root and password raspberry and issue
the command below.

Navigate to Advanced Options-> A1 Expand Filesystem Ensures that
all of the SD card storage is available to the OS. The filesystem will
be enlarged upon the next reboot.

3. Configure Static IP Address Set static IP address for interface
eth0.

echo "interface eth0" » /etc/dhcpcd.conf
echo "static ip_address=172.17.100.50/16" » /etc/dhcpcd.conf
echo "static routers=172.17.100.1" » /etc/dhcpcd.conf
echo "static domain_name_servers=172.17.100.1 8.8.8.8" » /etc/d-
hcpcd.conf

4. Set timezone We need to configure the correct timezone # dpkg-
reconfigure tzdata

42

Figure 4.1: Setting Timezone for RasPBX

5. Upgrade RasPBX

Asterisk is supplied by RasPBX repositories, use raspbx-upgrade to get
updates. The upgrade process takes more than 1 hour. You can use
ssh to login to RasPBX with the default username root and password
raspberry.

raspbx-upgrade

After the upgrade, check the version of Asterisk with the command
below.

asterisk -rx ’core show version´

Figure 4.2: Asterisk Version is 13.22.0 After Upgrade

6. FreePBX Initial Setup

Create Account for FreePBX Administration

Enter address http://172.17.100.50 into your web browser. Fill the
password and click Create Account.

43

Figure 4.3: Creating New Account for Web Administration

Once account is created, click FreePBX Administration. Login window
will appear.

Figure 4.4: Login to Web Interface PBX with New Password

Select Default Locales
After login, initial configuration wizard starts. We need to configure
system language and timezone for FreePBX.

44

Figure 4.5: Selecting System Language and Timezone

Adding SIP Extensions to FreePBX We are going to create two
chan_sip extensions 1010 and 1020 in order to test local call between
phones registered to RasPBX. Our dial plan consists of the pattern
1XXX that we will assign to the extensions registered to our RaspPBX.
Navigate to Applications-> Extensions. Click Add Extension and se-
lect Add New Chan_SIP Extension

Figure 4.6: Adding Chan_Sip Extension 1010

Create the second extension 1020

45

Figure 4.7: Chan_SIP Extensions 1010 and 1020

Configure Client/Softphone
Using command line interface, register the accounts on the different
clients platforms (Raspberry Pi compute units)
pi@raspberrypi:$̃ sip-register -a -j 1010@172.17.100.50:5160

Figure 4.8: Registering a new account against RasPBX

If you fail to register the client , you can troubleshoot registration by
connecting to Asterisk console with the command.
asterisk -r
The Picture 4.9 shows the unsuccessful attempt to register SIP client
configured as the extension 1010 when wrong password is entered.

46

Figure 4.9: Failed Attempt to Register Extension 1010 When Wrong Pass-
word is Provided

Testing Local Calls between Registered clients

Once we finished configuration of the both clients , we will try to
establish call between extensions 1010 and 1020.

Figure 4.10: Dialing extension 1010 from the python GUI

Active calls can be found with the command below (Picture 4.10).

/usr/sbin/asterisk -rx ’core show channels’

47

Figure 4.11: Checking Active Calls Using Asterisk Console

They are 22 calls placed at all with one active call from extension 1010
to 1020.

48

5 System optimisations and
possible upgrades

Force RasPBX to Use Https for Secure FreePBX Adminis-
tration

We will use the self-signed certificate. First, enable ssl mode.

a2enmod ssl

The file /etc/apache2/sites-available/default-ssl has the configuration
for an http server. To enable ssl site default-ssl issue the command
below.

a2ensite default-ssl

Restart apache server.

systemctl restart apache2

Secure login to FreePBX using https.

Figure 5.1: Using https for FreePBX Administration

Real time Video monitoring with motion detection

49

The raspberry pi is capable of video streaming to a web browser, and that
is possible thanks to the camera module unit and a Real-time HTTP/HT-
TPS Streaming Server with the native uv4l-server module streaming server.

Among the other things, it offers a Web interface from which it’s pos-
sible to see the video stream in various ways and a Control Page allowing
to fully control the camera settings while streaming with any Video4Linux
application. Other than secure HTTPS protocol, basic authentication for
both the normal and admin users is also supported.

Figure 5.2: Two-way Video streaming using Raspberry Pi

50

Figure 5.3: Camera module connected to a Raspberry Pi

Another interesting application is the motion detection capability of the
openCV library, which can turn the system to a home security device capable
of image processing and alerting the owner of any suspicious behavior in the
field of view of the camera while he is outside.

Alerting the user can be by sending email alerts, if the raspberry pi is
connected to the internet and configured to send emails, or using a GSM
module expansion hat, that enables the intercom to send sms notification
or even call the owner and establish a live streaming session between both
parties.

51

Figure 5.4: Raspberry Pi as a surveillance camera

Button/Keypad upgrade
The touchscreen used in this project can fail from time to time due to

vandalism or severe outdoor climate, or even for hackers who can try to
gain access to the brains of the system, so in order to make it more secure,
a metal keypad can be a reasonable solution to secure the whole intercom
system, which starts at the door step outside the residance od the user.

Figure 5.5: Antivandal outdoor keypad

52

SRTP instead of RTP
SRTP is not a transport, it is simply the encryption of the RTP to secure
it, hence the S before RTP. The RTP is still transported in UDP but both
parties to the call have exchanged keys in the SIP to enable encryption.
You can use SRTP regardless of the transport used for the SIP as they are
unrelated

Figure 5.6: SRTP Packet structure vs RTP

RFID capability and access control

In order to implement this feature, a pretty simple setup composed of an
RFID reader,the Rasperry Pi and a RFID tag is more than enought. When
someone places an RFID card against the reader hidden behind a poster by
their front door, the reader grabs the code and the Pi compares it with a list
of authorized users. If the card is on the list, the Pi triggers the door lock
using a signal line originally designed to work with an intercom system. If
the user isn’t on the list, access won’t be granted.

53

Figure 5.7: RC522 RFID Tag Reading with the Raspberry Pi [19]

Expand the boards with temperature sensor
An intersting module made by the company BigClown called CORE

MODULE - NR, is a small board with a 32-bit ARM microcontroller, 192
kB of flash memor and 20 kB of RAM. Also, it has an integrated digital
temperature sensor, and 3D accelerometer that can be a tool to know the
outdoor temperature. This module is 100% comatible with the raspberry pi
microcomputer, and can be directly connected via usb or GPIO pins, which
means that it can get ower from the raspberry pi itself without the need for
a separate energy source.

Figure 5.8: Core Module Board by Big Clown

54

6 Conclusion

PJSIP libraries is an ideal solution for the development of SIP client ap-
plications and don’t bother about the SIP Background implementation. It
doesn’t contain full SIP server realization, but Server Application could be
also built based on the PJSIP library API and all low layer possibilities it
references. Such a way of development will avoid implementation of basic
SIP features, and will require only creation of server specific functionality.
That will save a lot of time and money. As a result, it will give an oppor-
tunity to develop a fully functioning, stable and secure application that will
support the majority of usable platforms with relatively low efforts.

55

Bibliography

[1] I. Lazar . H.323 vs. SIP: What’s the difference? [online] [cit.
2019-04-05] Available from: https://searchunifiedcommunications.
techtarget.com/answer/Differences-between-H323-and-SIP

[2] P. HAGENDORF. XML Schema for Media Control: RFC 5168. 2008.
[online] [cit. 2019-04-05] Available from: https://tools.ietf.org/
html/rfc5168

[3] SIP: Session Initiation Protocol.[online][cit. 2019-04-05] Available online
at: https://www.ietf.org/rfc/rfc3261.txt

[4] VOZŇÁK, Miroslav. Technologie a protokoly multimediálních
komunikací pro integrovanou výuku VUT a VŠB-TUO. Ostrava:
Vysoká škola báňská - Technická univerzita Ostrava, 2014.[cit. 2019-04-
05] ISBN 978-80-248-3326-2.

[5] ČERVENKA, Marek. Asterisk 12 – New Age ROOT.cz [on-
line]. 2014, , 1 . Available from: https://www.root.cz/clanky/
asterisk-12-new-age/

[6] ŠILHAVÝ, PH.D, Ing. Pavel. Telekomunikační a informační systémy.
BRNO, 2014. Vysoké učení technické v Brně Fakulta elektrotechniky a
komunikačních technologií Ústav telekomunikací Technická 12, 616 00
Brno.

[7] The Session Initiation Protocol - The Internet Protocol Journal
- Volume 6, Number 1. CISCO [online]. [cit. 2019-04-05]. Avail-
able here: http://www.cisco.com/c/en/us/about/press/
internet-protocol-journal/back-issues/table-contents-23/
sip.html

[8] Banana Pi official website [cit. 2019-04-05] [online] http://www.
banana-pi.org/m1plus.html

[9] Orange Pi official website [cit. 2019-04-05] [online] http://www.
orangepi.org/orangepipc/

[10] CubieBoardA series of open source hardware [cit. 2019-04-05] [online]
http://cubieboard.org/2013/06/19/cubieboard2-is-here/

56

https://searchunifiedcommunications.techtarget.com/answer/Differences-between-H323-and-SIP
https://searchunifiedcommunications.techtarget.com/answer/Differences-between-H323-and-SIP
https://tools.ietf.org/html/rfc5168
https://tools.ietf.org/html/rfc5168
https://www.ietf.org/rfc/rfc3261.txt
https://www.root.cz/clanky/asterisk-12-new-age/
https://www.root.cz/clanky/asterisk-12-new-age/
 http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-23/sip.html
 http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-23/sip.html
 http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-23/sip.html
http://www.banana-pi.org/m1plus.html
http://www.banana-pi.org/m1plus.html
http://www.orangepi.org/orangepipc/
http://www.orangepi.org/orangepipc/
http://cubieboard.org/2013/06/19/cubieboard2-is-here/

[11] MakeZine.com - One BeagleBone Black for All Kinds of Weekend Pro-
jects! [cit. 2019-04-05] [online] https://makezine.com/2014/12/06/
one-beaglebone-black-for-all-kinds-of-weekend-projects/

[12] Chet Hosmer, Protocol Data Hiding ,March 06, 2012 [online]. [cit.
2019-04-05]. Available here: https://www.allencorporation.com/
pdf/nm030612.pdf

[13] STELIOS ANTONIOU. VoIP Signaling Protocols: RFC 5168 [on-
line]. 2010 [cit. 2019-04-05][online]. available here: https://www.
pluralsight.com/blog/it-ops/voip-signaling-protocols

[14] Asterisk Versions. Asterisk.org [online]. Russell Bryant, 2016 [cit.
2019-04-05][online].available from: https://wiki.asterisk.org/wiki/
display/AST/Asterisk+Versions

[15] ASTAPCHIK MARINA - USING PJSIP LIBRARY IN
SERVER AND CLIENT APPLICATIONS 27-12-2012[online]
[cit. 2019-04-05].available from: https://www.elinext.com/blog/
using-pjsip-library-in-server-and-client-applications/

[16] Asterisk : The Future of Telephony by Jared Smith ; Jim Van Meggelen
; Leif Madsen, September 26, 2005 [cit. 2019-04-05] ISBN 978-05-960-
0962-5

[17] SIP SIMPLE Client SDK by AG- PROJECTS 2018 [cit. 2019-04-05]
[online] https://sipsimpleclient.org/developer-guide/

[18] SIP SIMPLE Client SDK by AG- PROJECTS 2018 [cit. 2019-
04-05][online] available here: http://download.ag-projects.com/
SipClient/SIPSIMPLE-Manual.pdf

[19] Matt, 25 February 25. RC522 RFID Tag Reading
with the Raspberry Pi[cit. 2019-04-05][online] available
here: https://www.raspberrypi-spy.co.uk/2018/02/
rc522-rfid-tag-read-raspberry-pi/

57

https://makezine.com/2014/12/06/one-beaglebone-black-for-all-kinds-of-weekend-projects/
https://makezine.com/2014/12/06/one-beaglebone-black-for-all-kinds-of-weekend-projects/
 https://www.allencorporation.com/pdf/nm030612.pdf
 https://www.allencorporation.com/pdf/nm030612.pdf
https://www.pluralsight.com/blog/it-ops/ voip-signaling-protocols
https://www.pluralsight.com/blog/it-ops/ voip-signaling-protocols
https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions
https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions
https://www.elinext.com/blog/using-pjsip-library-in-server-and-client-applications/
https://www.elinext.com/blog/using-pjsip-library-in-server-and-client-applications/
https://sipsimpleclient.org/developer-guide/
http://download.ag-projects.com/SipClient/SIPSIMPLE-Manual.pdf
http://download.ag-projects.com/SipClient/SIPSIMPLE-Manual.pdf
https://www.raspberrypi-spy.co.uk/2018/02/rc522-rfid-tag-read-raspberry-pi/
https://www.raspberrypi-spy.co.uk/2018/02/rc522-rfid-tag-read-raspberry-pi/

	List of Figures
	Preface
	Analysis
	Objectives and Requirements
	Hardware
	Arduino
	RaspberryPi 3 Model B
	Banana Pi
	Orange Pi
	CubieBoard 2
	Beagle Bone Black

	Application
	Audio capture and digitalisation
	Signaling Protocols

	Communication Protocol
	Session Initiation Protocol
	Real Time Protocol

	Implementation
	Available tools and solutions
	Comunication Server
	Structure of Asterisk
	Asterisk on Raspberry Pi
	Configuration and installation of RasPBX server
	Native implementation of SIP protocol
	PJSIP STACK
	PJSIP Architecture

	Client

	SIP Intercom User Quickstart Guide
	Installing RasPBX

	System optimisations and possible upgrades
	Conclusion
	Bibliography

