
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s thesis

Creation of Data Sources
for Bibliometric Analysis

Plzeň 2019 Štěpán Baratta

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 12th May 2019

Štěpán Baratta

Abstract
The main purpose of this thesis is to create a large repository concentrat-
ing data from various publicly available databases which store bibliographic
information related to intellectual property rights. One part of this work
focuses on enabling access to the created repository using an application in-
terface, providing methods for querying. In the final solution, non-relational
database MongoDB was used and Java programming language was used
for communication with the database. Over 200 millions of records were
acquired from multiple data sources, mainly from publication database Mi-
crosoft Academic Graph. Over 3 millions of records were acquired from the
United States Patent and Trademark Office. Another part of this work fo-
cused on creating an application for administering the data sources. It also
enables for data preprocessing and loading data to the MongoDB database.
An additional web application was created to demonstrate the functioning
of the application interface, enabling for simple visualization of the results.
An analysis of the main data sources was created.

Abstrakt
Cílem této práce je vytvoření rozsáhlého úložiště obsahujícího data z různých
datových zdrojů, které se zabývají sběrem publikačních a patentových bibli-
ografických dat. Součástí práce je také umožnění přístupu k této vytvořené
databázi pomocí aplikačního rozhraní, které poskytuje metody pro dotazo-
vání. Ve výsledném řešení byla použita nerelační databáze MongoDB a pro
komunikaci s ní byl použit programovací jazyk Java. Podařilo se shromáždit
přes 200 milionů záznamů ze 4 datových zdrojů, zejména z publikační da-
tabáze Microsoft Academic Graph. Z amerického patentového úřadu United
States Patent and Trademark Office bylo získáno přes 3 miliony záznamů.
Další část práce se zabývala vytvořením aplikace pro administraci datových
zdrojů, která také umožňuje předzpracovávání dat a jejich nahrávání do da-
tabáze MongoDB. Jako nadstavba byla vytvořena webová aplikace, demon-
strující fungování aplikačního rozhraní, umožňující jednoduché vizualizace
výsledků. Jako součást měření byla provedena analýza hlavních datových
zdrojů.

Contents

1 Introduction 1
1.1 Outline . 1

2 Database Models 2
2.1 Background . 2
2.2 Relational Models versus Non-Relational Models 2
2.3 Motivations for NoSQL . 3

2.3.1 Scalability . 4
2.3.2 Data Variety . 4
2.3.3 Cost . 5

2.4 Non-Relational Models . 5

3 NoSQL Databases Comparison 7
3.1 MongoDB . 7
3.2 Cassandra . 10
3.3 ElasticSearch . 13
3.4 Graph Database – Neo4J . 15

4 Bibliographic Databases 18
4.1 Background . 18
4.2 Publication databases . 18

4.2.1 Google Scholar . 19
4.2.2 Microsoft Academic 21
4.2.3 Web of Science . 22

4.3 Patent databases . 23
4.3.1 What is a Patent? 23
4.3.2 Patent Types . 23
4.3.3 USPTO Patent Database 24
4.3.4 Espacenet . 24
4.3.5 CIPO . 25
4.3.6 Google Patents . 25
4.3.7 PATSTAT . 25

5 Data Gathering 26
5.1 Selected Approach . 26

5.1.1 Database Requirements 26

vi

5.1.2 Technology . 27
5.1.3 Limitations of MongoDB 27

5.2 Data Sources . 28
5.2.1 Data Structure . 28
5.2.2 USPTO Data . 28
5.2.3 Microsoft Academic Graph Data 29
5.2.4 PATSTAT Data . 30
5.2.5 DBLP Data . 31
5.2.6 Summary . 33

5.3 Data Preprocessing . 34
5.4 Data Conversion . 37

5.4.1 XML Conversion . 37
5.4.2 CSV Conversion . 38

5.5 Column Mapping . 38
5.6 Inserting to the Database 39

5.6.1 Indexing . 41
5.6.2 Searching . 42

6 Software Solution 43
6.1 Sources DB . 44
6.2 Data Sources DB . 44
6.3 Data acquisition . 45
6.4 REST API application . 45
6.5 Web interface . 46

7 Data Acquisition Application 47
7.1 Architecture . 48
7.2 UserInterface package . 49
7.3 Controller package . 50
7.4 DataLoader package . 50

7.4.1 SourceDbConnection 51
7.4.2 MongoDbConnection 52
7.4.3 SourceDbLoader . 52
7.4.4 PatentLoader . 52
7.4.5 JsonMappingTransformer 53
7.4.6 JsonParser . 54

7.5 Model package . 55
7.5.1 DataSource . 56
7.5.2 DAO . 57
7.5.3 IDataSourceDAO . 57

vii

7.5.4 DataSourceDAO . 57
7.5.5 DataSourceModel . 58

7.6 DbAccess package . 58
7.7 Logging . 58
7.8 Testing . 58

7.8.1 Unit Tests . 58
7.8.2 GUI Tests . 59

8 API Server Application 61
8.1 Architecture . 61

8.1.1 Client-Server communication 62
8.1.2 Query . 63
8.1.3 QueryRestService . 64
8.1.4 DataRetriever . 64
8.1.5 DbRecord . 65
8.1.6 Report . 65
8.1.7 StandardResponse 65

8.2 REST API Specification . 66
8.2.1 Query Endpoint . 66
8.2.2 Request Format . 67
8.2.3 Response Format . 67

8.3 Database Testing . 67
8.3.1 RecordService class 69
8.3.2 QueryServlet . 69
8.3.3 VisualizeServlet . 70

8.4 Future work . 70

9 Measurements 73
9.1 Data . 73

9.1.1 Query creation . 73
9.1.2 USPTO Aanalysis 74
9.1.3 MAG Aanalysis . 76

9.2 Performance Measuring . 79
9.2.1 Execution Environment 79
9.2.2 Experiments . 79

10 Conclusion 81

Appendixes 82

Bibliography 100

viii

List of Figures

2.1 Scaling up versus scaling out 4

3.1 A structure of a Mongo Document 8
3.2 Data model of Cassandra database 12
3.3 Relational data model . 16
3.4 Graph data model . 17

4.1 Distribution of data in Google Scholar by document type . . 20

5.1 A common structure of DBLP’s XML file 32
5.2 Statistics of data in DBLP 33
5.3 Unified structure for patent data sources in JSON format . . 36
5.4 Data preprocessing pipeline 37
5.5 A sample mapping file . 39

6.1 A component diagram of the system 44
6.2 ER diagram of the data sources database 45

7.1 A package diagram of the data administration application . 48
7.2 A GUI of the data administration application 49
7.3 A class diagram of the data loader package 51
7.4 Specifying multiple paths in a mapping file 54
7.5 The method for parsing the JSON file using Jackson Stream-

ing API . 55
7.6 A class diagram of the model package 56

8.1 A flow of events for user when querying the database 62
8.2 A class diagram of the REST Server application 63
8.3 The method for construction of a MongoDB query 65
8.5 A screenshot of the REST API demonstration web application 68
8.6 Class diagram of the REST demonstration application . . . 69
8.7 Visualization of years in which patents were published con-

taining query ’electric car’ 70
8.4 The sample response to a query REST request 72

9.1 Document counts according to their field of study 78
9.2 Histogram of years of publications in the MAG 78

10.1 The GUI of the data administration application 92

ix

Acknowledgement

I would like to thank David Budil for helping me with the preparation of
some data sources.

This work was supported by project "KnowING IPR: Fostering Innova-
tion in the Danube Region through Knowledge Engineering and IPR Man-
agement (DTP2-076-1.1) co-funded by the European Union."

x

1 Introduction

The main goal of the work described in this thesis is to create a large col-
lection of data containing bibliographic information related to Intellectual
property right (IPR). These involve various publication data like books,
journals, articles, magazines, newspapers, reports etc. and patent data con-
taining information about granted patents and patent applications issued
around the world. In the end, this work should provide an improved access
to IPR related data.

The acquired collection of data should be stored using a persistent data
storage unit, like a database. Data collection will rely on extracting data
from various publicly available and acquired databases, such as patent of-
fices, publication databases (national and international) and store them in
a database in appropriate format.

The outcome of this work should provide a large database mapping pat-
ent and publication data and should provide access to the acquired data
using a unified API, serving for retrieval of relevant information from the
primary database.

It will also provide an application to administer the data sets using a
stand-alone application, from which it will be possible to manage high-level
metadata of each collected data source and also provide functions to load
new data to the primary database.

1.1 Outline
The thesis is separated into several chapters. The first chapter describes the
background of the topic and provides an overview of the relational and non-
relational data model. The second chapter provides a comparison of several
non-relational databases. The third chapter describes publication and pat-
ent bibliographic databases. The fourth chapter focuses on the chosen tools
and implemented software solution. Firstly, the appropriate data sources
are outlined and the process of acquiring those data is described. Then, the
description of data preprocessing is given. The application for data acquis-
ition and administration is presented as a standalone desktop application.
Its structure and architecture is described in detail. In the next chapter,
the application providing an API to the main database is presented. An
application used for demonstrating basic functioning of the API is shown.
The last chapter discusses the statistics of the acquired data.

1

2 Database Models

2.1 Background
The term database is used to describe a variety of systems employed to
organize information. The data is organized so that it is easily accessible.
There are different types of database models that do this in different ways.

In this section, we will provide a brief description of the most commonly
used database models and a brief comparison among those. First, we will
look at traditional relational model of storing data and then we will compare
it to the models that have emerged from the recent NoSQL movement based
on non-relational storage models.

2.2 Relational Models versus Non-Relational
Models

Relational model was first introduced by Ted Codd of IBM Research in 1970.
It gained immediate attention due to its simplicity and mathematical found-
ation. For several decades, it has been the most common storage model, as
stated by [3]. The software implementing the relational model of data is
called a Relational database management system (RDBMS). The less strict
term "relational database" is often used in its place.

The relational model represents the database as a collection of relations.
When a relation is thought of as a table of values, each row in the table
represents a collection of related data values. A row represents a fact usually
corresponding to a real-world entity or relationship. Formally, a row is called
a tuple, column header is called an attribute and the table is called a relation.
A set of one or more attributes has to be selected to be chosen as the primary
key which must be distinct among all tuples in the relation.

Relations can be manipulated with three basic operations: insert, delete,
update. They can also be queried for data using a querying language. The
most commonly used querying language is the "structured query language",
or SQL.

Relational databases provide various levels of data integrity. The con-
sistency of the database is enforced using constraints.

Relational integrity constraints refer to conditions which must be present
for a valid relation. Constraints on the relational database can be divided

2

into three main categories:

• Domain constraints – Violated if an attribute value is not present in
the corresponding domain or it is not of the appropriate data type.

• Key constraints – An attribute that can uniquely identify a tuple in a
relation is called the primary key of the table [6]

• Referential integrity constraints – Based on the concept of foreign keys.
It is an ‘attribute of a relation which should be referred to from other
relations. Referential integrity constraint happens where relation refers
to a key atttribute of a different or same relation. However, that key
element must exist in the table’ [18].

Advantages of using Relational model

• Simplicity

• ACID transactional consistency – support for joins

• Ensured data integrity

• SQL

Limitations of using Relational model

• Cannot scale out horizontally, only vertically

• Complexity – They can become complex as the amount of data grows.
The performance suffers while using a lot of joins

• Not good for unstructured or semi-structured data

2.3 Motivations for NoSQL
A relational approach to databases was dominant in its field for decades.
Nowadays however, there is a rapid increase in a need to store huge amounts
of data. The relational approach today faces serious challenges to keep up
with the increasing needs in world wide web, clouds or big data applications.
Applications must collect and process ever-growing volumes and varieties of
data. NoSQL technologies were created to address the limitations that were
experienced with regular relational databases [1].

3

Scale Up Scale Out

Figure 2.1: Scaling up versus scaling out

2.3.1 Scalability
It is clear that new applications have different demands than before. The
main requirements on the new applications is the need to store and process
more and more information. This leads to the topic of scalability.

Scalability can be handled in two ways: scaling up and scaling out. Scale-
up architecture or vertical scaling has been a standard for storage for a
long time. It refers to upgrading the resources by means of, adding more
processors, memory, storage disks etc. to a single server. However this is
possible up to a certain limit due to high costs and hardware limits. Scale-
out architecture or horizontal scaling refers to increasing the resources by
means of adding more servers. These can be added and removed dynamically
to meet the needs of varying workloads. With relational databases, it is
often very difficult to scale out and requires additional software to manage
multiple servers. Oracle’s Real Applications Clusters (RAC) is an example
of cluster-based database. (see Figure 2.1).

NoSQL databases are designed to add new servers to a cluster with min-
imal intervention from database administrators [19].

2.3.2 Data Variety
The data that is produced today comes in different forms and varying struc-
tures. In the relational data model, everything follows a fixed, predefined
schema that cannot be easily changed after it is created. This model works
very well for structured data with a fixed, unified format, but does not align
well when working with unstructured or semi-structured data. This is data
that does not have a fixed number of fields. Data can also change struc-
ture over time. Because of these reasons, usage of relational data model for
storing unstructured or semi-structured data becomes rigid and inflexible to
change.

4

Sometimes, data can be structured, but fields for some data records may
be missing. In relational database, it can be solved using "sparse data",
where missing fields are filled with blank values. The disadvantage of this
approach is that we store redundant data, therefore increasing the size of
the database.

2.3.3 Cost
The cost is one of the essential considerations for any business organization.
Commercial RDBMS software provide many licencing options which include
charges for the size of the server running the RDBMS or the number of users
concurrently accessing the database.

Most major NoSQL databases are usually open source and do not charge
fees for running their software, so the software is free to use on as many
servers as needed. Therefore NoSQL have the advantage of avoiding these
issues.

2.4 Non-Relational Models
Due to the described limitations of the relational data model, many com-
panies today are transitioning to a non-relational one. They are collectively
known as a NoSQL databases. The term NoSQL stands for "Not only SQL",
implying that it is an alternative to a traditional relational database.

The main characteristics of NoSQL database are the following:

• High scalability

• High availability

• High performance

• Schema-less

• Free of joins

There are four major types of NoSQL databases:

• Key-value databases – Every item in the database is stored as an attrib-
ute name (key) together with its value. The most prominent examples
are Riak, Voldemort, Redis. [10]

5

• Document databases – Each key is associated with a complex data
structure known as document. Every document can contain vari-
ous fields and can also have nested documents. The most popular
document-based database is MongoDB.

The data in documents are encoded in some standard format. These
formats include JSON or BSON, XML, YAML.

• Column-based databases – Stores data into a collection of columns.
Provide some of the functionality of relational databases, such as the
ability to link or join tables. Offer high performance for queries on
large datasets. The most popular are Cassandra or HBase.

• Graph databases – The data is represented by a graph-like structure,
with the nodes of the graph being the objects and their set of attrib-
utes, and the edges representing the links between those objects [14].

6

3 NoSQL Databases
Comparison

This chapter will give basic overview of some non-relational NoSQL data-
bases and provide a brief comparison among them. It will also discuss the
advantages and disadvantages of each presented database.

3.1 MongoDB
MongoDB is the most popular non-relational database on the market today.
Most prominent customers are Adobe, AstraZeneca, Barclays, eBay, Four-
square, IBM, Under Armour, Verizon Wireless and others. [27]. It is free and
open-source and all versions released after October 16, 2018 are published
under the Server Side Public Licence (SSPL)v1 [25].

Data Model

Mongo stores data in a form of JSON documents (although internally, the
data is stored in a BSON format which is a binary form of JSON). A Mongo
document can be likened to a row in a relational database. The table 3.1
shows the relationships between Mongo and traditional relational database.

MongoDB Relational DB
Database Database
Collection Table

Key Column
Value Value

Document Record

Table 3.1: Relationship of naming common database structures between
MongoDB and traditional relational database

Schema

Whereas every relational database contains a description of the structure
of the data that is stored there. So when we need to modify a column for
example, we need to specify which data type the column is supposed to hold.

7

db.patent.ndOne()
{
 "_id": ObjectId("5c7fb591fa6e5705cc192c64"),
 "country": "US",
 "le": "USD0500396-20050104.XML",
 "date-publ": 20050104,
 "date-produced": 20041221,
 "parties": {
 "applicants": {
 "applicant": {
 "rst-name": "Shigeki",
 "last-name": "Akagi"
 },
 "n "nationality": {
 "country": "JP"
 },
 "designation": "us-only",
 "residence": {
 "country": "JP"
 },
 "ap "app-type": "applicant-inventor"
 }
 }
}

Identier

Database

Collection

}Document
Figure 3.1: A structure of a Mongo Document

Because MongoDB is a document-based database, it does not know the
concept of columns, but is based on documents, therefore the data stored in
there can have varying structure which is called a schema-less structure. All
that this means in the end is that schema is dynamically typed when the
data is inserted to Mongo.

Accessibility

The MongoDB provides a mongo shell to interact with databases. It can be
used to query or update the data or perform some administrative operations
[26].

As well as access through the command line interface provided by mongo
shell, MongoDB adds support for many programming languages through
application drivers. They are available for many popular programming lan-
guages, like C, C++, C#, Java, PHP, Python, etc.

Indexing

Indexing is a way to optimize performance of a database by minimizing the
number of disk accesses required when a query is processed.

8

In MongoDB, indexing is one of the most significant features when it
comes to query optimization and performance tuning. If the index is present
for the query, it limits the number of document that have to be scanned,
therefore increases performance. MongoDB uses B-tree as a data structure
to store the indexes.

There are several types of indexes in MongoDB. The most commonly
used are the following:

• Single field index – A single field from the Mongo document can be
indexed. It can be either ascending, specified by 1 or descending index,
specified by -1.
In mongo shell, the single field index is created using the following
command:

db. collection . createIndex ({ name: 1 })

• Compound index – Multiple fields can be defined for indexing.
For compound indexes, mongo shell uses the following syntax:

db. collection . createIndex ({ name: 1, score: -1})

• Text index – An index that supports searching for string content, thus
providing basic full-text capabilities. The important note is that a
collection can have at most one text index [28].
Text index is created using the following command:

db. collection . createIndex ({ abstract: "text"})

Querying

MongoDB provides its own, fully-featured querying language with syntax
similar to Javascript’s dot notation for arrays. The query content is con-
structed using the JSON format.

For example, the following is an example of a query in MongoDB:

db. publication .find(
{

author: " Tolkien ",
year: {

$gt: 1999
}

})

9

This query searches the publication collections and returns all documents
that contain "Tolkien" in the author field and the year field is greater than
1999. This corresponds to the following SQL query:

SELECT * FROM publication
WHERE author = " Tolkien " AND year > 1999

Summary

MongoDB is the leading document-based NoSQL database on the market
today. It provides a rich support for querying and fast response times. It is
dynamically typed, making it very flexible. MongoDB can be easily scaled
out.

Advantages

• Schema-less – As a schema-less database, every document can have
different structure. This makes it a very flexible database.

• Complex querying support

• Secure

• Scalable – MongoDB is easily horizontally scalable and can be distrib-
uted onto several machines.

• Performance – If indexes are used properly, the query response is very
fast in comparison to relational models.

Disadvantages

• Not intended for full-text searching

• Not suitable for relational modeling

• High memory usage

3.2 Cassandra
Cassandra is the most widely used column-based NoSQL database today. It
is used in many world organizations and companies like Apple, Netflix, Uber,
ING, McDonalds etc. It is licensed under the Apache License. It is known

10

to be very robust, providing very high availability and scalability [22], [9].
The implementation of Cassandra is done in Java programming language.

Data Model

Cassandra was mainly designed to handle huge amounts of unstructured
data. It uses column families which are similar to tables in RDBMS, they
contain rows and columns. The difference is that rows in a table do not
necessarily need to have the same columns. The columns can be added or
removed while the database is running.

As an advantage to relational databases, tables can be created, altered
or dropped while the database is running or processing queries [16].

The table 3.2 shows the relationship between Cassandra and traditional
relational database.

Cassandra Relational DB
Keyspace Database

Table (Column family) Table
Cell Column
Value Value

Record

Table 3.2: Relationship of naming common database structures between
Cassandra and traditional relational database

One of the most important things in Cassandra is the primary key. In
traditional relational database, for an effective model, it is necessary to
have a lot of relationships between tables using foreign keys and relational
constraints. This is not possible in Cassandra, as it is not able to model
relationships and only relies on primary keys. That also means that there is
less complexity in the design of the model. On the other side, it is necessary
to know much more about the queries we want to run ahead of time.

There are several types of keys in Cassandra:

• Primary key – A column uniquely identifying a record in a table.

• Composite key – Primary key which is comprised of multiple columns.

• Partition key – Internally, data are identified using unique keys called
row keys. They are used to partition data, so they are called partition
keys. A table with single column primary key is also a partition key. A
table with multiple column primary key, the first term is the partition
key.

11

• Clustering key – Tells Cassandra, how the data is clustered.

• Composite partition key

The following figure 3.2 shows the data model of Cassandra visually.

Figure 3.2: Data model of Cassandra database

Schema

Cassandra, in contrast to MongoDB for example, is not exactly schema-free,
but under the hood, it contains a lookup key for every data record in the
form of primary key.

Accessibility

Cassandra provides a query language shell called cqlsh that allows users to
communicate with the database using its own query language Cassandra
Query Language (CQL).

Also, there are many client drivers for most popular programming lan-
guages, like Java, Python, Ruby, C#, C++ etc.

Querying

Similarly to MongoDB, Cassandra uses its own querying language. It is
called CQL and its syntax is similar to SQL’s syntax. Using cqlsh, the user
is able to create keyspaces and tables, perform insertions and query tables.

12

3.3 ElasticSearch
ElasticSearch or simply Elastic is described as a ‘real-time distributed search
and analytics engine’. It is built upon Apache Lucene which is a very com-
plex library allowing for full-text searching. [4]. Elastic uses Lucene for
indexing and searching, but tries to hide all the complexities of the library.
It accomplishes that by providing a simple RESTful API, easily accessible
by users.

As well as a search engine, Elastic serves as full scale distributed data-
base able to store documents where every field is indexed and searchable.
Similarly to MongoDB, it uses JSON format to store the documents.

ElasticSearch and Lucene are all written in Java programming language.

Data Model

ElasticSearch is a document-oriented database. That means that it does
not store rows and columns like in a relational database, but stores whole
objects (documents). Elastic is able to store them and index their contents
using indexes to make them searchable.

Instead of a regular index, Elastic uses a structure called inverted index.
It contains a ‘list of all the unique words that appear in the document, and
for each word, a list of the documents in which it appears in’[23].

For example, if we have two documents, each with a field content with
the following texts:

1. doc_1 – The dog was found by the owner.

2. doc_2 – The owner looked for his dogs.

Elastic creates the inverted index by splitting the text into separate words
(terms). For each unique term, it keeps track of the documents it appeared
in. The terms are not in fact stored like this, but rather in their normalized
form. That includes stemming, lemmatization and other techniques that
will not be described here.

The final inverted index can look something like this:

13

Term doc_1 doc_2
the x x
dog x x
was x
found x x
by x
owner x x
looked x
for x
his x

If we want to search for the text dog looked, we need to look for the
documents, in which each term appears:

Term doc_1 doc_2
dog x x
looked x

We can see that the first document matched in more terms from the
query than the second one. Therefore the first document is a better match.

Accessibility

All the functionality is provided using a RESTful API, so it can be accessed
using a web client or a command line. It also provides drivers for most
programming languages.

Comparing to MongoDB

MongoDB and ElasticSearch can seem very similar at first glance, but in fact,
the primary usage of both databases differs quite drastically. MongoDB is
usually best serves as a general purpose database, while ElasticSearch is used
mainly for its full-text searching capabilities as a standalone search engine,
but it is not so good for inserting new data.

Because ElasticSearch is not primarily thought of as a database, but
rather a search engine, it is often used together with other NoSQL or even
SQL databases for persistent storage.

Another difference between MongoDB and Elastic is the way they handle
indexes. While Elastic uses a structure called inverted index, MongoDB’s
indexes are based on traditional B+ tree. Elastic’s default behavior is to
index every field of a document, while in MongoDB, we have to define indexes

14

on specified fields and they are not as complex and the number of indexes
which can be present on the collection is limited.

While MongoDB is implemented in C++, ElasticSearch’s implementa-
tion is in Java.

3.4 Graph Database – Neo4J
Neo4J is an open source, number one rated graph database [36]. It is used to
store, query and analyze highly connected data. Its key customers include
eBay, Walmart, Cisco, Airbus, Verizon, US Army and many others.

The following paragraphs were created with support of [21].
Neo4J is an ACID-compliant database and is intended for an Online

transaction processing (OLTP). However that does not mean that it cannot
be used for analytical tasks, though it is not optimized for them. It is also
designed to be highly scalable.

Data Model

In a graph database, data is modeled differently from a relational database.
Modeling the data in a graph database can be seen as an advantage, as it
is more natural then data modeling in a relational database. It is mainly
because it can be more understandable even for non-technical people.

For example, we can have two entities, a Patent and an Author entity
and we want to create a relationship between these two entities which have
a n:m identifying relationship. An example of an entity relationship model
containing these two entities in a relational database is shown on Figure 3.3.

15

Author

idAuthor INT

name VARCHAR(100)

Indexes

Patent

idPatent INT

title VARCHAR(450)

abstract VARCHAR(2000)

Indexes

Patent_has_Author

Patent_idPatent INT

Author_idAuthor INT

Indexes

Affiliation

idAffiliation INT

name VARCHAR(45)

Indexes

Author_has_Affiliation

Author_idAuthor INT

Affiliation_idAffiliation INT

Indexes

Figure 3.3: Relational data model

In a graph database, the data are modeled as a set of vertices and edges
(in databases usually called nodes and relationships). They represent the
data in a more natural way. The example modeled on Figure 3.3 can be
modeled in a graph database similarly to the model shown on Figure 3.4.
[21]

16

AuthorPatent

Affiliation

Is_Author_Of

Is_Affiliated_In

Figure 3.4: Graph data model

Querying

Neo4J defines its own querying language called Cypher. Cypher is a ‘declar-
ative, pattern-matching query language that makes graph database manage-
ment systems understandable and workable for any database user, even the
less technical ones.’ [21].

Querying is definitely a strength of Neo4J. The join operations are de-
signed to be extremely effective, because they are precalculated even before
running the query.

17

4 Bibliographic Databases

This section provides a general overview of the state of today’s bibliographic
databases and describes different types of bibliographical databases. First,
we take a look at publication databases and show some examples of how they
compare to each other. Next, we describe databases storing bibliographic
information about patent data and provide some concrete examples of these
data sources.

4.1 Background
There is a growing need for services for finding descriptive records of relevant
information sources. These services focus on collecting citation information
and other related research data and attempts to make them searchable. Rise
of the internet in recent decades has provided the opportunity to build an
online, searchable literature databases that are accessible to anyone.

A "bibliographic database" is a database containing bibliographic records.
A bibliographic record is an entry in a library catalog (bibliographic index)
which contains fields necessary to identify a resource. These databases usu-
ally focus on a particular field of knowledge, and contain various types of
bibliographic data (resources): books, magazines, newspapers, reports etc.

Bibliographic descriptions of patents is another big field of focus for sev-
eral bibliographic databases. In this work, there will be a major focus on
bibliographic databases, concentrating on patent data.

This chapter will focus on general descriptions of various, publicly avail-
able publication and patent databases from all over the world.

4.2 Publication databases
Databases containing bibliographic information about publications are called
publication databases. The access to these databases is provided by an aca-
demic search engine. An academic search engine allows users to search
for information related to various publication information. The distinction
between an academic search engine and a simple publication database is not
really clear, often it is used as a synonym those two terms are used inter-
changeably. The authors in [11] state that an academic search engine is a

18

‘free web-based search service that incorporate added-value elements (cita-
tions, indicators and so on) which allow their use for research evaluation.’

This section provides a brief overview of the most popular academic
search engines. It contains summarized information from [11].

4.2.1 Google Scholar
Google Scholar was first started in November 2004. It is considered to be the
first complete search engine specializing in scientific literature. It is capable
of extracting relevant information from various data sources, using many
different crawlers and harvesters to search the web. As well as gathering in-
formation about scientific papers, it also harvests data about court opinions
and patents.

One of the interesting features of Google Scholar is the ranking of the
results which uses a form of its PageRank algorithm. The algorithm assumes
that not every page is equal and assigns an importance score to each web
page based on some calculated weight. In practice, this means that papers
with the most citations and citations from prestigious sources are displayed
first in the results.

Data Distribution

It is not easy to estimate how many papers are covered in Google Scholar,
because Google is very restrictive in providing this kind of information to
the public.

A survey computing the number of hits per year was carried out in 2013
by [11], however the source claims that it is a very broad approximation and
may not be accurate enough. The figure 4.1 shows the distribution of data
in Google Scholar by the type of documents and the table 4.1 shows the
exact numbers for each document type. The presented data were created in
a survey from 2013.

19

Academic papers 44,403,310
Citations 20,394,540
Patents 18,553,865
Books 11,467,605
Total 94,819,320

Table 4.1: The distribution of data by document type (Data from 2013).

Academic
papers

47%

Citations
21%

Patents
20%

Books
12%

Figure 4.1: Distribution of data in Google Scholar by document type

From the Scholar’s data distribution we can see that the majority of
data consists of academic papers with almost 45 million records. They are
followed by citations with more than 20 million records. The third common
type are patents with 18.5 million records.

The recent estimates of researches conducted that Scholar could contain
up to 389 million records [5].

API

Google Scholar is rather secretive when it comes to providing the indexed
data and no API is available for developers to use. Therefore the retrieval

20

Publications 170 811 092
Authors 208 797 189
Affiliations 18 718
Journals 47 916
Conference series 4 025
Fields of study 195 957

Table 4.2: Data composition of Microsoft Academic Graph

of results is limited to using the web interface.

4.2.2 Microsoft Academic
Microsoft Academic Search is a search engine launched in 2009 by Microsoft
Research Asia and was created to compete with Google Scholar [2]. It retired
in 2016 and was replaced by Microsoft Academic.

Its main objective is to provide a platform which will be able to search
through research papers, but also to provide tools for evaluation and analysis
of science. Microsoft Academic puts emphasis on interaction with the user.
The users can manage profiles and can suggest removals or corrections of
existing data.

Data Distribution

A research conducted by [5] showed that Microsoft Academic contains about
170 million records, making it considerably smaller than Google Scholar with
the estimate being around 389 million.

Microsoft Academic is powered by Microsoft Academic Graph which is a
‘heterogeneous graph containing scientific publication records, citation rela-
tionships between those publications, as well as authors, institutions, journ-
als, conferences, and fields of study.’ [24].

The report from 2018 [30] shows the composition of data in Microsoft
Academic Graph. The results of the report are displayed in the table 4.2.2.

API

Microsoft provides access to Microsoft Academic Graph data through Aca-
demic Knowledge API. It consists of four REST endpoints [31]:

• calchistogram – Returns a list of entities that satisfies some expression.
Together with the expression, we can pass a list of attributes for which
we want to generate a histogram.

21

• interpret – Returns a formatted interpretation of a user query using
Academic Grammar.

As an example, if we have a user query: papers by john heynes after
2013. An interpret endpoint will return a formatted representation
using Academic Grammar as:

And(Composite(AAȦuN==’john heynes’),Y>2013)

This formatted query can now be used to call evaluate or calchistogram
endpoints.

• evaluate – Returns a list of results to a query.

• similarity

4.2.3 Web of Science
Web of Science is a web-based scientific citation research platform. It gives
access to multiple databases that reference cross-disciplinary research which
allows for in-depth exploration of specialized sub-fields within an academic
or scientific discipline [12]. WoS contains data about more than 20 thou-
sands leading journals from 256 science disciplines. It also includes over 190
thousands conference proceedings and over 90 thousands books.

WoS makes data available from the following databases: [38].

• Current Contents Connect

• Data Citation Index

• Derwent Innovations Index

• KCI-Korean Journal Database

• MEDLINE

• Russian Science Citation Index

• SciELO Citation Index

• Zoological Record

22

4.3 Patent databases
Patent databases are a type of databases concerned with storing patent
data. There are patent databases which contain full-texts of each patent
along with images and other graphics. In this thesis, we are not interested
in the full text of a patent nor images associated with them. There are
also specific patent databases which collect only bibliographic information
about patent applications as well as granted patents. There are some free,
publicly available databases like USPTO and some which require to pay a
subscription fee like PATSTAT database. There are also those which do not
provide their data to public at all.

In this work, we will only focus on the sources of patent data which are
willing to provide their data in some way.

4.3.1 What is a Patent?
A patent is a type of intellectual property which gives an exclusive right
granted by the government for an invention. It permits the inventor to
claim ownership of the invention and ‘exclude others from making, using
and selling the invention’[13]. A patent is always issued for a limited time.

4.3.2 Patent Types
The patents are classified into three main types: (The following definitions
of patents are cited from [13].)

Utility Patents

Covers inventions that function in a unique manner to produce a
utilitarian result. Examples of utility inventions are Velcro hook-
and-loop fasteners, new drugs, electronic circuits, software that
is tied to some form of hardware, semiconductor manufacturing
processes, new bacteria, newly discovered genes, new animals,
plants, automatic transmissions

Design Patents

A design patent (as opposed to a utility patent) covers the unique,
ornamental, or visible shape or surface ornamentation of an art-
icle or object, even if only on a computer screen. Thus if a lamp,
a building, a computer case, or a desk has a truly unique shape,
its design can be design patented

23

Plant Patents

‘A plant patent covers asexually reproducible plants (that is, through
the use of grafts and cuttings), such as flowers (35 USC 161). Sexually
reproducible plants.’

4.3.3 USPTO Patent Database
The United States Patent and Trademark Office (USPTO) is an agency of
the Department of Commerce in the United States. It issues patents and
registers trademarks to inventors and businesses.

It has its own searchable patent database. It is free to use and provides
bibliographic data, full texts as well as images of patents issued in United
States. The data is collected since 1790.

The searchable fields include:

• patent number

• issue date

• technical features in the patent

• keyword

• inventor’s name

• company’s name

• application date

4.3.4 Espacenet
European Patent Office (EPO) is the European patent database. It contains
patent data on more than 100 million patent documents from 80 different
countries and 100 patent authorities [29].

There are two main databases in Espacenet:

EP Database

Contains the collection of patent applications published in Europe by the
European Patent Office.

24

WIPO Database

World Intellectual Property Organization (WIPO) is an organization gath-
ering global intellectual property services.

4.3.5 CIPO
The web site of the government of Canada [32] describes the Canadian In-
tellectual Property Office (CIPO) as ‘a part of Innovation, Science and Eco-
nomic Development Canada. CIPO is a Special Operating Agency (SOA)
and is responsible for the administration and processing of the greater part
of intellectual property (IP) in Canada.’

Searchable fields include:

• keyword

• patent document number

• patent date

4.3.6 Google Patents
The Google Patents is a web platform which is able to search patents from
around the world. ‘Google Patents includes over 120 million patent pub-
lications from 100+ patent offices around the world, as well as many more
technical documents and books indexed in Google Scholar and Google Books,
and documents from the Prior Art Archive’ [35].

4.3.7 PATSTAT
PATSTAT is a worldwide patents database created by European Patent
Office. It contains data on more than 67 million patent applications and 35
million granted patents from many countries [7].

25

5 Data Gathering

The main part of the work done in this thesis is the process of gathering large
amount of data which will be made accessible in some way. The acquired
data should focus on gathering data describing various patents.

This chapter describes the taken approach, what technologies were chosen
and employed and the reason for the choices. It later showed that those
choices also had some disadvantages and limitations, so they are also listed
and described. Then we list sources of data that were identified and acquired
and the process of the data acquisition is given. Next, we describe the pro-
cess of preparing the data and the process of preprocessing it for insertion to
the main database. Later section will describe how the data is being stored
and how indexes were used to improve the performance of querying.

5.1 Selected Approach
In order to store the acquired data, appropriate database had to be chosen.
The sources of data come in different shapes and structures. We needed
a fast and secure storage that would be able to store semi-structured data
containing tens or hundreds of millions of records. Due to the limitation of
the relational database model (as listed in 2.2), the decision was to look for
solutions in a non-relational approach.

After the database model was decided, it was necessary to chose one from
various non-relational (NoSQL) databases and pick the one that would best
suit our needs. The comparison given in 3 gives an idea of the available
options.

5.1.1 Database Requirements
The requirements for the database were mainly the ability to store large
amounts of data. Another important aspect was the performance of the
database. Because the data would first have to be inserted in the database,
good insertion performance would be essential. It was not excluded that in
the future the database will be accessed in concurrent manner, with many
users querying the database at the same time. So the concurrency of the
database also had to be considered. Another thing was querying perform-
ance. It was necessary for the database to be able to search through the
stored data and respond to queries in a reasonable time. Last requirement

26

on the database was security. The database would have to provide some
security measures to prevent from outside manipulation.

In the end, the decision was between using MongoDB, ElasticSearch or
Solr.

As many public databases can be acquired as a bulk file containing a
set of documents, this was an indicator that it would be appropriate to
chose a document-based NoSQL database. After careful considerations, it
was decided that the most appropriate database for our needs would be
MongoDB.

5.1.2 Technology
Java programming language was used for the applications developed in this
work. One of the reasons for choosing Java was that it is a platform-
independent language. MongoDB provides a support for Java thanks to
its Java API driver. MongoDB’s aggregation pipeline, where operations in
the pipeline can be chained after each other, is very similar to Java Stream
API.

5.1.3 Limitations of MongoDB
MongoDB version 4.0.5 was chosen, because it is fast, secure and provides
schema-less data storage model. This provides an advantage when integrat-
ing multiple sources of data with different structures.

Because it was my first time working with NoSQL, my choice of using
MongoDB as a primary database was mainly based on theoretical inform-
ation and not on experience. This resulted in some inconveniences and
limitations surfacing after some time later in the development stage.

Full-text search

One of these inconveniences was the full-text searching capabilities of Mon-
goDB. From version 3, MongoDB introduced the text index. Text indexes
provide the ability to search on string content [28]. Unfortunately, there
can only be one text index on the entire collection, although a it can be a
‘compound index’ which can textually index multiple fields. The result of
that is the fact that it is not possible to limit search only to specific fields,
because the text index is constructed on the collection level. Therefore it
is not easy to implement searching on specific fields and there needs to be
some workaround in place which is further described in section 5.6.2.

27

Another limitation of MongoDB’s full-text search is the inability to use
complex boolean operators in queries, like in Lucene. MongoDB full-text
query are by default evaluated with OR operators in between tokens or we
can specify the exact term to search for.

5.2 Data Sources
Appropriate data sources had to be identified and studied. There are several
major databases that provide the data for download. Some provide it for
free, others are licensed and require a subscription fee.

5.2.1 Data Structure
Each data source differs in the structure it comes in. Some are in XML
format, some of them are in JSON format and others are in CSV format,
ready to be loaded to an SQL database.

Because of this diversity in the structure of each source, a method to
unify the structure of multiple data sources had to be created.

The descriptions of each identified data source are given in the following
sections. The format, data volume and the structure of each data source is
discussed.

5.2.2 USPTO Data
The Unites States Patent and Trademark Office provide static bulk data of
patents issued in the United States. The data is provided in a set of files
available free for download.

Format

The format of the available data is XML. The USPTO collects bibliographic
data about patent grants issued weekly since the year 1976. Only a subset
of this data was collected. In 2005, the USPTO changed the format of the
provided data to XML.

Structure

Each patent record contains large number of fields and the structure is very
complex with many nested fields of different types. A simplified example of
one of the records from USPTO can be seen in the Appendixes section 10.
Unfortunately it later showed that the structure did not stay the same and

28

some fields were renamed throughout the years. This made data unification
process harder. It will be discussed later in the section 5.5.

Some of the most commonly used fields are described in the table 5.1.

Field Name Field Type Description
id string ID of the USPTO record
title string Title of the patent

applicants array of strings Applicants for the grant
inventors array of strings Inventors of the grant

year int Filing year
abstract string Abstract

Table 5.1: Structure of USPTO data.

Volume

The size of data acquired from USPTO is 107 GB in its extracted form in
XML. The number of patent records contained in the data set is roughly
about 3.6 million records. It contains data since the year 2000. Unfortu-
nately, until the year 2005, different format for storing the data was used,
so data before the year 2005 were scrapped and only data from that year
stayed.

Data Download

The data can be downloaded from their official website1.

5.2.3 Microsoft Academic Graph Data
Data from Microsoft Academic Graph were obtained using the Open Aca-
demic Graph project [17]. It is released under the ODC-BY license. Data is
provided in a set of downloadable bulk files containing publication records
from all over the world [20], [17].

Format

The data from Microsoft Academic Graph is stored in a JSON format with
each publication record separated by a new line.

1The URL addresses are visible in the Appendix section 10

29

https://bulkdata.uspto.gov/

Structure

The most commonly used fields in the data and their description are listed
in the table 5.2.

Field Name Field Type Description
id string Microsoft Academic Graph ID
title string Title of the publication

authors.name string Author’s name
year int Published year

keywords array of strings Keywords for the publication
publisher string Publisher

isbn string ISBN
abstract string Abstract

Table 5.2: Structure of Microsoft Academic Graph data obtained from Open
Academic project.

Volume

The amount of data download from the Open Academic project is the largest
data source identified. It contains bibliographic information about 166 mil-
lions of scientific papers. No full-texts or images are part of the data set.

Data Download

Data from the Open Academic Graph project can be downloaded from the
official website of the project.

5.2.4 PATSTAT Data
Format

The format of PATSTAT data is CSV, separated into files and ready to be
loaded to an SQL database.

In order to convert the data into the required format, the process of
converting the data from CSV to JSON was quite complicated and will be
further discussed in later sections.

Structure

The following table 5.3 shows the native structure of the PATSTAT data,
when converted to JSON format.

30

https://aminer.org/open-academic-graph

Field Name Field Type Description
appln_id integer Application ID
title.title string Title of the patent

appln_filing_date string Date of filing the patent application
authors.party.name string Name of the author

Table 5.3: Structure of PATSTAT patent data.

Volume

The compressed size of the raw data is around 10 GB and once the data is
loaded into the database, it rises up to around 100 GB.

Data Download

The PATSTAT database is available for purchase on their official site and
offers multiple subscription plans containing various data sets.

There are two product lines for PATSTAT data. The PATSTAT Global
containing bibliographic data with ‘more than 100 millions of records’ and
the PATSTAT EP Register containing ‘legal status data on published Euro-
pean and Euro-PCT patent applications.’ [37]

5.2.5 DBLP Data
DBLP provides their data as one big file containing bibliographic records.

Data are available for download from their official site.

Format

The format used for DBLP data is XML. It contains a long list of XML
records. The root element has several million child elements, but usually
no element is deeper than level three. The Figure 5.1 shows the common
structure in the DBLP data.

31

https://www.epo.org/searching-for-patents/business/patstat.html#tab-1
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset

dblp

article

author

title

journal

book

www

...

Figure 5.1: A common structure of DBLP’s XML file

Structure

The record in the DBLP data contains the following fields:

Field Name Field Type Description
author string Author’s name
title string Title of the paper
year integer Year of publication
pages integer Number of pages

publisher string Name of the publisher
school string Name of the school
isbn string ISBN of the paper

Table 5.4: Structure of DBLP data.

Publication records are inspired by the BibTex syntax and can be one of
the following elements. The following list is extracted from [33]:

• article – An article from a journal or magazine.

• inproceedings – A paper in a conference or workshop proceedings.

• proceedings – The proceedings volume of a conference or workshop.

32

• book – An authored monograph or an edited collection of articles.

• incollection – A part or chapter in a monograph.

• phdthesis – A PhD thesis.

• mastersthesis – A Master’s thesis. There are only very few Master’s
theses in dblp.

A sample excerpt from DBLP can be seen in the appendix 10.

Volume

The DBLP database stores around 4.5 million records as of 2019 [34]. Figure
5.2 shows the total numbers for papers of different publication types.

Figure 5.2: Statistics of data in DBLP

5.2.6 Summary
The listed data sources were identified as good candidates to be included
in the main database. Unfortunately, not all data sources were prepare dto
be inserted to the main database. The Springer LOD data source was not
prepared in time, so it is not included in the main database. The data from

33

Czech Trademark Office were acquired, but was not suitable for insertion to
the database.

Before the data sets could be inserted to the main database, it was ne-
cessary to do some preprocessing of the data. The activities of preprocessing
and inserting the data to the main database will be described in the following
sections.

Table 5.5 shows the summary of all the data sources that were acquired
with some additional information about them.

Data Source No. of Records Data Range Extracted Size (GB)
USPTO 3.6M 2005 – 2018 104
M.A.G. 166M 1998 – 2016 103
DBLP 4.5M 1995 – 2018 2.35

PATSTAT > 100M 2005 – 2018 100
Total 274.1M 309.35

Table 5.5: Table summarizing basic information about all the acquired data
sources in their native form.

5.3 Data Preprocessing
Data we obtain from public databases come in various formats, each having
different structure. For example, data from USPTO come in a set of files
in an XML format. The PATSTAT data come in a CSV format logically
separated into several files representing tables in a Relational database. Ob-
viously, these two data sources cannot be left in its original form, because we
need some unified fields that we want to access across all the data sources.
This means that they cannot be immediately inserted into the database.
Apart from different formats, data sources come with varying structures.
That means that each source can have different names for the same fields.
For example, an author of some publication or a patent in one source is
called an inventor and in the other one it is a nested field called party. The
following snippets from two different data sources illustrate the issue:

34

1 ...
2 <parties >
3 <applicants >
4 <applicant >
5 <addressbook >
6 <first -name >Matthew </first -name >
7 <last -name >Kosh </last -name >
8 <address >
9 <city >Seattle </city >

10 <state >WA</state >
11 <country >US</ country >
12 </ address >
13 </ addressbook >
14 </ applicant >
15 </ applicants >
16 </ parties >
17 ...

This is a snippet from USPTO data set, we can see that the name of
the applicant is nested deep inside the structure, so in order to extract it,
we need to traverse the tree from the root 2. In this case, for extracting the
first name of the applicant, the path would look like:

parties.applicants.applicant.addressbook.first-name.
The structure of the record from Microsoft Academic Graph looks much

simpler with the path to the full name being: authors.name. The listing
below shows the structure in JSON format.

1 ...
2 " authors ": [
3 {
4 "name": " jiawei han",
5 "org": " department of computer science university of

illinois at urbana champaign "
6 },
7 {
8 "name": " micheline kamber ",
9 "org": " department of computer science university of

illinois at urbana champaign "
10 }
11]
12 ...

2In XML, it is possible to access nodes directly using relative path in xPath, but we
will be working with JSON format, where this is not easily possible

35

As we can see from the two previous listings, each source can have differ-
ent structure and data may be stored in varying formats. That is a problem
for multiple reasons. First one being that in order for the data to be readable
in a unified manner, we would have to create separate code for extracting
information for every data source. Another problem is that indexes in Mon-
goDB are created on a set of fields specified by their field names. But in
this case, every data source has different field names pointing to the same
information.

Because of these reasons, it is not beneficial to store the data in their
native structure and it is necessary to create a unified structure that all the
data sources would share. Also, it was necessary to differentiate between
publications and patents, because each type of data has its own unique
fields. The listing 5.3 illustrates the unified structure which was used for
patent data sources in JSON format.

1 ...
2 {
3 "title":" string ",
4 " abstract ":" string ",
5 "year":" integer ",
6 " number ":" string ",
7 " authors ":[
8 {
9 "name":" string "

10 }
11],
12 " owners ":[
13 {
14 "name":" string "
15 }
16],
17 " keywords ":[
18 " string ",
19 " string "
20]
21 }
22 ...

Figure 5.3: Unified structure for patent data sources in JSON format

Every data source that is inserted into the sources database, needs to
have this structure in the top level of each document. Figure 5.4 shows the
phases of preparing the data until insertion into the database.

36

Download Extraction Conversion

Structure
Alteration

Insertion

Figure 5.4: Data preprocessing pipeline

Data Download

The process of preparing the data starts with downloading it from the source
website. As different databases are downloaded in different ways, this pro-
cess cannot be easily automated and therefore it needs to be done manually.

Data Extraction

Often, data comes in a compressed form and needs to be extracted. A tool
for bulk extraction was created as a part of the software solution.

5.4 Data Conversion
The next step is the conversion of data. As described in section 3.1, Mon-
goDB accepts only JSON format, so every data source first needs to be
converted to that format.

Depending on the source data format, two approaches were used while
working on this thesis:

5.4.1 XML Conversion
Data coming in an XML format are quite straight forward to convert. A
utility tool was created, able to convert an XML file to JSON format and
saves it to an output directory. It is also possible to provide a path to a
directory and convert all XML files in bulk. If the includeSubdirectories

37

flag is set, all the XML files from sub-directories are processed too. The
outputted JSON files are saved in the target directory while maintaining the
original folder structure of the directories and sub-directories. The ability
to convert in bulk came in handy as it was necessary to convert hundreds
of files at once. The conversion to JSON format was done using a Jackson
library for Java.

5.4.2 CSV Conversion
Data from PATSTAT are delivered as multiple CSV files corresponding to
the tables in a relational database. It was not possible to create the desired
JSON structure from these CSV files, so an alternate approach had to be
used.

The process used to create the JSON was the following: First, relational
database was created using the set of CSV files. Once all the data were
inserted in the database, a query was constructed to extract the data in the
required JSON format. SQL version 12.2 added a function called JSON_-
OBJECT which returns a JSON object from the specified query.

5.5 Column Mapping
Before the process of inserting the data into MongoDB, we needed to alter
the structure of the data into the unified structure shown in Listing 5.3.

For this, a special file was designed which was used to map unified fields
to paths pointing to those unified fields in the original data.

The structure was altered using column mapping. On the following code
listing on Figure 5.5, we can see an example of a mapping file used to asso-
ciate unified fields to their corresponding paths in the original file.

Each field in the mapping, like title on line 3, is assigned a path pointing
to the field in that specific source of data. For example, the listing above
shows the mapping file for the USPTO data (see page 83).

In case of mapping an array, a path to the parent element of the field we
want to map is present, indicated by the name array-root, see line 11. The
key named values then points to the actual value for that element. If each
element of the array contains multiple fields, we can merge them together
by specifying both of them in the mapping. See line 12 in the listing above.

We can also specify multiple paths to the same field. This is especially
useful, when the data source changes structure over time which was not
uncommon to happen.

38

1 {
2 "uspto":{
3 "title":"/us - bibliographic -data -grant/invention -title/

content ",
4 " abstract ":"/ abstract /p/ content ",
5 "year":{
6 "path":"/date -publ",
7 " format ":" YYYYMMDD "
8 },
9 " authors ":[

10 {
11 "array -root":"/us - bibliographic -data -grant/us -

parties / inventors / inventor ",
12 " values ":[
13 "/ addressbook /first -name",
14 "/ addressbook /last -name"
15]
16 }
17],
18 " owners ":[
19 {
20 "array -root":"/us - bibliographic -data -grant/us -

parties /us - applicants /us - applicant ",
21 " values ":[
22 "/ addressbook / orgname "
23]
24 }
25]
26 }
27 }

Figure 5.5: A sample mapping file

The process of how the mapping was used will be shown in a later section
7 describing the process from an implementation perspective.

5.6 Inserting to the Database
Finally at this point, the data should be in a JSON format having correct
structure and ready to be inserted into MongoDB.

The database will hold two major types of data. First type is data from
publication sources holding papers like books, journal, articles, magazines,
newspapers, reports etc. The sources of data containing this type of inform-

39

ation are Microsoft Academic, DBLP, Springer LOD. Another type of data
will come from patent data sources. These include USPTO, PATSTAT.

There were two options to consider. Either create a separate MongoDB
collection for each data source. The second option is to use only one col-
lections for each type of data. Each option has its advantages but also
drawbacks.

The advantages of the first approach, having separate collection for each
data source has the following advantages:

• Smaller size of indexes – This would be beneficial, if we often performed
searches only on one data source. It showed it is not the case and we
usually want to search from all the data sources.

• Readability – Having each data source in a separate collection is def-
initely more readable.

The drawbacks of the first approach are:

• Large number of indexes – Each data source would have to contain its
own set of indexes for its fields. This would be hard to maintain when
the number of data sources grows larger.

• Many queries – If we want to search in every data source, we would have
to run the query multiple times. It showed that we will be searching
through all data sources very often.

The second approach, having only two global collections, has the follow-
ing advantages:

• Easier DB inserts – Everything goes to the same collection.

• Few indexes – As there are only two collections, there will only be two
sets of indexes, one for each collection.

• Single query – Query will be run only once on the global collection.

The drawbacks of the second approach are:

• Large size of collection – The collection can grow quite large.

• Harder to search only one data source – To search a single data source,
we need to add an origin source id to every document.

• Less readable

40

It was decided that the second approach is more appropriate for our
needs, so only two global collections were created, each holding one type of
data. They were named publication for papers and patent for patent data
respectively. The process of inserting the JSON documents into the database
programmatically will be described in later section 7.4.6 using streaming
API.

5.6.1 Indexing
Proper use of indexes is essential for higher performance in MongoDB.

Several indexes were used to increase the performance of queries. As
described in 3.1, MongoDB uses two types of indexes. Regular indexes
and text indexes. The biggest difference between these two is that a text
index can be used for full-text searching. Without these indexes, the whole
collection would have to be scanned for every query which would mean a
decrease in performance.

In contrast to ElasticSearch, collections in MongoDB do not have an
index on its every single field created by default, but have to be created
manually and only specified fields are part of the index. It was necessary for
the index to contain those fields, on which we will perform searches. Each
collection contains a regular single field indexes on fields which do not need
the support of full-text searching capabilities. Fields, for which a single field
index was created are:

• year – Year of publication of a patent or a publication

• keywords – The list of keywords associated with the record

• number – The number of a patent

Fields that will need to be searched using full-text search and thus have
a text index present are:

• title – The title of the patent or a publication

• abstract – The abstract of a patent or a publication

• authors – The list of authors associated with the record

• owners – The list of owners of a patent. Does not exist for publications.

The table 5.6 shows which fields should be present in patents and pub-
lications data sources.

Concrete examples of measurements of the performance while searching
with and without indexes can be seen in the last chapter 9.

41

Field name patents publications
title x x

abstract x x
authors x x
year x x

keywords x x
number x
owners x

Table 5.6: Existence of fields in patents and publications

5.6.2 Searching
As described in the section 5.1.3, it is possible in MongoDB to create a
text index on multiple fields. However, when searching, it is not possible
to specify fields in which the search should be performed. This issue was
discovered later in the development stage. Therefore it was necessary to
create some workaround, to be able to search only in specific fields. The
possibility to use full-text search on specified fields was implemented using
a combination of a regular index and a regular expression search.

The search on the database works in two modes: Selective and non-
selective search. In selective mode, MongoDB will search only in a single
field, specified by the user. The search uses a combination of a regular
index and a regular expression matching. This enables to limit the search
on a single field. The drawback of this approach is primarily performance,
because regular expression matching is much slower than using a text index.
The difference in performance when using a text index is discussed in the
chapter 9. In non-selective mode, text index is used to perform a full-text
search on all fields that are included in the text index. The performance of
this method showed to be much faster than using a regular expression.

42

6 Software Solution

The final solution should create a platform which will be able to search for
IPR-related data. This data mainly includes bibliographical information
about patents and publications. This work focuses on creation of the large
database concentrating data from various data sources and integrating them
together. Additionally, it allows for an access to the database using an API
which enables users to query it. To demonstrate the functioning of the API,
a demonstration web application should be built. It should be a simple web
application that can call the API and display the returned results. Some
basic visualization of the returned data should also be created. Lastly, an
application for high level data administration should be developed.

The following chapter will present a global view of the whole system. It
will give an explanation of the individual components and classes. It will
also describe the provided REST API and locations of external metadata
files about data sources.

The Figure 6.1 shows the component diagram, showing the individual
components of the system and relationships between them.

The solution consists of 5 main components:

• Sources DB

• Data Sources DB

• Data acquisition application

• REST API application

• Web interface

43

REST API

«Application»
REST API Module

REST API

«Application»
Web A pplication

Query Service

Query

«SQL Database»
Data Sources DB

Data Access

«N oSQL Databa...
Sources DB

D ataAccess

Report
Generation

Data Retrieval

D ataAccessP ersistance

«Application»
Data Acquisition

D ataAccessP ersistance

P ersistance

«delegate»

«delegate»

« use»

«delegate»

«delegate»

«delegate»

« use»

«delegate»

Figure 6.1: A component diagram of the system

6.1 Sources DB
The sources database is the main database containing the collected data
from various data sources. The data is stored in a document-based NoSQL
database MongoDB. The process of gathering the data and filling the data-
base was the content of the previous chapter 5.

6.2 Data Sources DB
The Data Sources database is a relational database running on MariaDB. It
is a complementary database to the sources database and contains metadata
about the acquired data sources. On top of that, it is supposed to speed up
the performance of duplicate queries by storing previously run queries along
with the returned results.

44

The Figure 6.2 shows the entity relationship diagram of the data sources
database.

category_type

categoryTypeId INT(10)

name VARCHAR(1000)

Indexes

queries

queryId INT(10)

reportId INT(10)

rawQueryText VARCHAR(10000)

lastSubmittedDate DATETIME

Indexes

reports

reportId INT(10)

reportText VARCHAR(10000)

dateGenerated DATETIME

dateUpdated DATETIME

Indexes

reportsresponses

reportsResponsesId INT(10)

reportId INT(10)

responseId INT(10)

Indexes

responses

responseId INT(10)

recordId VARCHAR(10000)

dateGenerated DATETIME

dateUpdated DATETIME

Indexes

sources

sourceId INT(10)

name VARCHAR(1000)

url VARCHAR(1000)

description VARCHAR(10000)

updateIntervalDays INT(11)

dateLastUpdated DATETIME

schemaPath VARCHAR(1000)

mappingFilePath VARCHAR(1000)

licenceType VARCHAR(1000)

licenceFilePath VARCHAR(1000)

categoryTypeId INT(10)

Indexes

Figure 6.2: ER diagram of the data sources database

6.3 Data acquisition
The data acquisition application is meant to be used primarily by data
administrator/developer to simplify and streamline the process of managing
meta data about data sources and loading new data to the Sources database.
It also provides some basic tools needed for data preprocessing like bulk
extraction of ZIP files or bulk conversion of XML files to JSON format.

6.4 REST API application
The REST API application’s main purpose is to provide an interface which
will be used by clients. The interface should facilitate access to the Sources
database. The client will be able to call the API with a query which will be
run on the Sources database and retrieved results will be returned back to
the client as a JSON response.

45

6.5 Web interface
The web interface is not the main focus of this work so only a simple demon-
stration web application will be created to demonstrate the functioning of
the REST API and simple visualization of returned results.

46

7 Data Acquisition
Application

The data administration application was created mainly to simplify tasks
that are necessary to create and manage data sources. The application is
intended to be used by an administrator/developer.

It’s main use cases are:

• Loading data to the sources database

• Creating metadata for new data sources

• Configuring file locations of files related to data sources – mapping
files, structure files

• Managing the metadata for data sources – creation, deletion, update

• Managing expiration of data sources

The application is written in Java programming language with support
of JavaFx. JavaFx is a software framework used to create mainly desktop
applications in Java. It was first released in 2008 and was intended to replace
Java Swing for creating graphical user interface.

List of all the used libraries in the application can be seen below on table
7.1.

Name Version
MariaDB JDBC 2.4.0
MongoDB Java Driver 3.9.1
Jettison 1.4.0
Apache Commons Lang 3.0
JSON 20180813
Apache Commons DbUtils 1.7
Jackson Core 2.9.8
TestFX 4.0.1
JUnit 4.12
Guava 14.0.1

Table 7.1: Used libraries in the application

47

This chapter will describe the application’s architecture, it’s main pack-
ages and classes within them and also the relationships between the classes.
Then the process of data loading will be described. The last section will
outline the testing of the application’s main functions.

7.1 Architecture
The architecture follows an Model-view-controller (MVC) architectural pat-
tern which separates the application into three logical components: Data
presentation, data logic and data model.

The Figure 7.1 shows the package diagram of the application.

DataLoader Controller

Model DbAccess

UserInterface

Figure 7.1: A package diagram of the data administration application

The application consists of 5 main packages. The controller package is
sitting in the middle and is used to communicate requests from the present-
ation component to the data model. The presentation component consists
of the layout of the user interface and the bindings to the controller’s fields.
The dataLoader package is also used by the controller to execute tasks
which serve the purpose of loading data into the main source database. The
data model is being called from the controller to execute domain specific
tasks. It also contains domain classes and provides access to the storage
unit, in this case, the database.

The following sections will now describe each package in more detail.

48

7.2 UserInterface package
UserInterface package contains files defining the user interface of the ap-
plication. JavaFX uses FXML files to describe the layout of the user in-
terface. FXML is a XML-based language which provides a structure for
building user interfaces. The main advantage of using FXML files is that it
provides a separation of the application logic from the interface.

The application’s graphical interface consists of a single window, logically
separated into multiple FXML files. The Figure 7.2 shows the graphical user
interface and how it is separated into FXML files.

detail.fxml

tools.fxml

statusBar.fxml

list.fxml

Figure 7.2: A GUI of the data administration application

There are 5 FXML files describing the UI:

• list.fxml – Displays a list of items, where each item shows the name of
the data source and the collection. Each item can be selected.

• detail.fxml – Based on the item selected in the list, the appropriate
window is rendered in the details panel.

• tools.fxml – Provides access to some tools useful before loading the
data to the main database.

49

• statusBar.fxml – Displays information about currently running tasks.

7.3 Controller package
For each FXML file, there is one controller class. A controller is bound to
the UI components and is responsible for initializing them. It is instantiated
by the FXML loader.

The controller package contains the following classes:
• ListController – The list controller class contains a ListView control

with a list of data sources. It is populated with records from the data
sources database’s sources table (see 6.2).
It contains a custom ListView cell implementation which allows for
custom formatting of the list items. Each item displays a name of the
data source and a collection in which it is stored.

• DetailController – The detail controller contains a form with the meta-
data for the list item selected in the ListView and dynamically changes
based on the selected list view item. It also initiates tasks for loading
the data to the database. These tasks are run on a separate thread.
In case of the loading process throwing an exception, it is caught by
the task and a message is displayed to the user.

• ToolsController – Tools controller enables running some basic file hand-
ling operations, like extracting a directory containing zip files or con-
verting XML files to JSON files. These tools provide the benefit that
they are able to handle bulk operations. They also maintain the ori-
ginal directory structure after the operation.

• StatusBarController – Controller for displaying information about run-
ning tasks and also displays results of some operations.

• ErrorController – Error controller is bound to a separate window and
displays any run-time exceptions that occurred in the application. The
whole stack trace is displayed.

7.4 DataLoader package
The data loader package contains all the logic for loading data sources to
the main sources database and is the most important part of the data ad-
ministration application. It is also a key part of the whole thesis which is
concerned mainly around creating a large database of IPR-related data.

50

The figure 7.3 shows the class diagram of the data loader package.

dataloader

JsonParser

«enumeration»
MappedFields

MongoDbConnection

MongoDbLoadArgs

PatentLoader PatstatLoader

SourceDbLoader

«interface»
IDbLoadArgs

«interface»
SourceDbConnection

JsonMappingTransformer

MappingException

DirectoryHandler

1

1

«use»

1

1

1

1

Figure 7.3: A class diagram of the data loader package

7.4.1 SourceDbConnection
This interface specifies methods for connecting to the sources database. Con-
crete implementations of database connections will implement this interface
to connect to the target sources database and to insert data. At the time of
writing this thesis, MongoDB NoSQL database was used. If there is a need
to change the database, there will be another concrete class implementing
this interface.

• void connect();

• void insert(IDbLoadArgs args);

51

• void disconnect();

7.4.2 MongoDbConnection
The concrete class implementing the SourceDbConnection interface. It
provides access to the MongoDb database and is able to insert data into
collections.

7.4.3 SourceDbLoader
SourceDbLoader is an abstract class for loading the data to the sources
database.

It has three methods with two of them being abstract. The signatures
of the methods are the following:

void loadFromDirectory (String dirPath ,
String [] extensions)

throws IOException , MappingException

Method loadFromDirectory loads all the files with the specified exten-
sion from the directory (including its subdirectories) to the target database.

abstract void insertFromFile (File file)
throws IOException , MappingException

insertFromFile method inserts a list of documents from a file to the target
database.

abstract void preprocessNode (JsonNode nodeToPreprocess)
throws MappingException , IOException

Does the preprocessing of a json node, so that it follows the defined unified
structure described in 5.3.

7.4.4 PatentLoader
The PatentLoader class extends the SourceDbLoader class. It is respons-
ible for loading data from the USPTO data source (see 5.2.2). The most
interesting part of this class is the preprocessNode method.

It uses the JsonMappingTransformer class to manipulate the JSON doc-
ument, so that it contains the unified structure as described in Figure 5.3.
This is done using the provided mapping file which specifies the paths to each
field in the data source. The path for each field is read from the mapping

52

and extracted from the current document at that path. The value found is
then moved to the top level of the document.

As an example, in USPTO, the title field is located in the following path:
/us-bibliographic-data-grant/invention-title/content. This path is specified
in the mapping file for the USPTO data source. The mapping also specifies
that the target field should be named title. So during preprocessing of the
document, the algorithm looks at the value at that path, moves it to the top
level and names the field title.

In the code, this can be done using the putValueFromPath method of
the JsonMappingTransformer class:

1 JsonMappingTransformer . putValueFromPath (mappingRoot ,
MappedFields .TITLE , nodeToPreprocess);

It is also possible to map arrays in a similar way. An example is the
authors field which is an array, because a record can have multiple authors.

1 List <String > authorsList = JsonMappingTransformer .
getValuesListFromMappingArray (mappingRoot ,

2 MappedFields .AUTHORS ,
3 nodeToPreprocess);
4 JsonMappingTransformer . putArrayToNode (authorsList ,
5 nodeToPreprocess ,
6 MappedFields .AUTHORS , "name");

Another thing to note is that because the structure of the data changes
over time, there is a necessity to handle multiple paths to the same field.
An example is again the USPTO data source. Until 2013, the path to the
authors field was: /us-bibliographic-data-grant/us-parties/us-applicants/us-
applicant, but since then, it changed to /us-bibliographic-data-grant/us-part-
ies/us-applicants/us-applicant. Therefore in the mapping, it is possible to
specify multiple paths pointing to the same field. For the authors field, the
mapping file would look like the one on Figure 7.4:

In the code, all the paths to the same field will be processed one by one
and once we find some value for the particular option, it will take the value
for that option and stop iterating over the others.

7.4.5 JsonMappingTransformer
This class handles manipulation of the JSON files using the provided map-
ping configuration. It loads the mapping file and transforms a JSON node
according to the configuration specified in the mapping file.

53

1 " owners ": [
2 {
3 "array -root": "/us - bibliographic -data -grant/us - parties /us

- applicants /us - applicant ",
4 " values ": [
5 "/ addressbook / orgname "
6]},
7 {
8 "array -root": "/us - bibliographic -data -grant/us - parties /us

- applicants /us - applicant ",
9 " values ": [

10 "/ addressbook /first -name",
11 "/ addressbook /last -name"
12]}
13]

Figure 7.4: Specifying multiple paths in a mapping file

7.4.6 JsonParser
JsonParser class reads an external JSON file, parses it, calls the prepro-
cessing methods and creates a final list of documents which are ready to be
inserted into the target database.

The process of parsing the JSON is done using the Jackson library. Jack-
son provides a streaming API which enables to create very fast JSON parser,
but the disadvantage of this approach is that it can be a little more difficult
to use, because everything in the JSON data has to be handled in the code.

The code listing on figure 7.5 shows the process of parsing the USPTO
data to a list of documents. The Document class is a MongoDB’s represent-
ation of a document.

54

1 /**
2 * Streams the file and from its contents creates a list of

documents to be added to the database .
3 * @param file - File to be parsed
4 * @param loader - The callback loader to call for node

preprocessing
5 * @param arrayName - Name of the array element to search
6 * @return - List of parsed documents to be added to the

database . If there is an error parsing
7 * the file , an empty list is returned
8 */
9 public List <Document > parseFileStreaming (File file ,

10 SourceDbLoader loader ,
11 String arrayName) {
12 List <Document > docs = new ArrayList <>();
13
14 JsonParser parser = new MappingJsonFactory ()
15 . createParser (file);
16 JsonToken current = parser . nextToken ();
17 // read a document at a time
18 while (parser . nextToken () != JsonToken . END_OBJECT) {
19 String fieldName = parser . getCurrentName ();
20 current = parser . nextToken ();
21 if (fieldName . equals (arrayName)) {
22 if (current == JsonToken . START_ARRAY) {
23 while (parser . nextToken () != JsonToken . END_ARRAY)

{
24 JsonNode node = parser . readValueAsTree ();
25 // before adding the document , it needs to be

preprocessed
26 loader . preprocessNode (node);
27 docs.add(Document .parse(node. toString ()));
28 }
29 }
30 }
31 }

Figure 7.5: The method for parsing the JSON file using Jackson Streaming
API

7.5 Model package
The model contains the domain classes and classes providing access to an
SQL database. It also encapsulates all the domain logic in the application.

The model classes are called from the controllers which accept inputs

55

from the user interface. The model classes then do some operations, for
example access the database, and either return results back to the original
controller or set some of its properties which will be observed from the
outside.

The Figure 7.6 shows the class diagram for the model package.

model

DataSource DataSourceModel

DataSourceDAO
«interface»

IDataSourceDAO

«interface»
DAO

1

1

* 1

Figure 7.6: A class diagram of the model package

7.5.1 DataSource
DataSource is the domain object representing one source of data. For ex-
ample PATSTAT database is one of the data sources. It contains various
metadata about the data source.

The following properties are included in the DataSource object:

• id – Id of the data source. Corresponds to the id in the data sources
database.

• name – Name of the data source.

• description – Description of the data source.

• url – URL path, where the data were acquired from.

56

• schemaPath – Path on the filesystem to the file of the schema of the
data source. The schema contains all the fields that can appear in the
particular data source.

• mappingPath – Path to the mapping file.

• licenceType – Type of license for that data source. It can either be
free or it can be a subscription-based data source.

• licencePath – Path to the license file.

• categoryType – Category of data that the data source holds. The
options are publications or patents.

• dataLastUpdated – Date, when the data source entry has been last
updated.

• updateInterval – Interval in which the user should be notified to update
the data source.

7.5.2 DAO
A simple interface which provides methods to setup a connection to the
database, connect to it and close the connection.

7.5.3 IDataSourceDAO
Another interface which inherits the DAO interface and extends it by methods
necessary for manipulating with data sources in the database. It contains
basic CRUD operations with the data sources, like inserting, updating and
deleting. It contains additional methods like fetching all the records or
getting available data category types.

7.5.4 DataSourceDAO
Concrete implementation of the IDataSourceDAO. To access the database,
the Apache Commons DbUtils library was used. It is a small set of classes
designed to make working with JDBC easier [15]. It is able to use para-
metrized prepared statements necessary to ensure security and prevent SQL
injections. They are also faster, because the preparation of the query is done
only once.

57

7.5.5 DataSourceModel
Handles domain logic. Contains methods for loading data from the SQL
database. The currently selected item in the ListView is set to ObjectPro-
perty<DataSource> object. All the data sources are retrieved using the
loadData() method. The returned list is then set to the ObservableL-
ist<DataSource> list. The controllers then add a listener to this observable
list, so that every time the selection changes, the currently selected property
is set to that item. This results in different data being rendered in the user
interface.

7.6 DbAccess package
The DbAccess package contains a single class DbManager which serves a pur-
pose of establishing a connection to the database. The connection properties
are read from a configuration file mydb.cfg which must be present in the
same directory, from where we run the application. The connection is closed
using the closeConnection() method.

7.7 Logging
Various events are logged using a custom logger which is defined in the class
MyLogger. It sets up the logger and configures it. The logging is done to
both to console and to the file, so previous logs are stored on the file system.

7.8 Testing
The testing of the data administration application was performed with unit
tests and automated tests of the GUI. Basic operations on the SQL database
were tested as well.

All the tests are present in the MainTest class.

7.8.1 Unit Tests
Firstly, some unit tests were created for testing basic functions. For the
database, it was also appropriate to test the correctness of operations on the
database. Series of test cases were created to test the common operations:

• testDatabaseInsertRecord() – Adds a new data source to the data-
base.

58

• testDatabaseRemoveRecord() – Removing a data source from the
database.

• testDatabaseUpdateRecord() – Updating an existing data source in
the database.

7.8.2 GUI Tests
For testing the user interface, I used a library called TestFX which is de-
signed to test JavaFX applications. It is supported since Java version 1.8
and provides a clean and fluent API for manipulating the user interface. The
tests can then be viewed in real time and see exactly what is happening.

Before the start of the tests, all the JavaFX controllers are instantiated
and all FXML files are added to the FXML loader. The main layout is
created as well. Finally the JavaFX scene is created.

The tests are created in the class MainTest and some helper methods
are in the class TestHelper.

The following tables 7.2, 7.3 and 7.3 show some of the test cases for
testing the graphical user interface.

Test case ID TC_01
Test name testFieldsEditableAfterEditButtonClicked

Description Tests if the fields are editable after clicking the edit button.
Also checks if the appropriate buttons are enabled and visible.

Pre-conditions Some item in the list view is selected.
Nothing in the GUI has been done since the start.

Step Action Expected result
1 Assert that delete button is enabled

2 Click on edit button
Save button and discard button
should become enabled and all
the text fields editable.

3

Assert that all the fields are editable,
delete button is enabled and visible,
save button is visible and disabled,
discard button is visible and
disabled and edit button is disabled.

4 Click on discard button See post-condition.
Post-condition The state should be the same as in the beginning.

Table 7.2: Test case 1

59

Test case ID TC_02
Test name testFormValidatesUpdateIntervalIsNotNumber

Description Tests if the validation of the update interval field
fails if the value is not a number.

Pre-conditions Some item in the list view is selected.
Nothing in the GUI has been done since the start.

Step Action Expected result
1 Click on ’Add new button’ An empty form appears in the details panel

2 Fill all the fields, type text into
update interval field. All the fields are filled.

3 Click on ’Save’ button An error dialog appears.

4 Assert that the alert text contains:
’The update interval is not a number.’ See post-condition

Post-condition Validation fails and nothing is saved to the database

Table 7.3: Test case 2

Test case ID TC_03
Test name testFormValidatesSourceNameTextFieldEmpty

Description Tests if the validation of the ’sourceNameTextField’
field fails if the value is not a number.

Pre-conditions Some item in the list view is selected.
Nothing in the GUI has been done since the start.

Step Action Expected result
1 Click on ’Add new button’ An empty form appears in the details panel

2 Fill all the fields, leave empty field
’sourceNameTextField’.

All the fields are filled except from
’sourceNameTextField’.

3 Click on ’Save’ button An error alert appears.

4 Assert that the alert text contains:
’Source name cannot be empty.’ See post-condition

Post-condition Validation fails and nothing is saved to the database

Table 7.4: Test case 3

60

8 API Server Application

This application’s purpose is to create an access point to the database by
providing a simple and unified API. The API will be used by clients, who
will be able to send various queries and receive results back. The commu-
nication between the application and the client should work using a REST
architecture.

This chapter will first outline the architecture of the REST API server
application and then describe each class in more detail. To demonstrate
the functioning of the API, a separate application was created. It is a web
application built with JavaEE and will provide some simple user interface
to display the results, received from the database. It will also allow for
simple visualization of these results. The description of the demonstration
application will be given at the end of this chapter.

8.1 Architecture
The architecture follows practices for creating RESTful APIs. A RESTful
API is a technology based on REST architectural style which is often used
for communication over the internet. It uses HTTP requests GET, PUT,
POST and DELETE. It is a more lightweight technology in comparison to
SOAP for example.

The advantage of REST is that it is stateless, therefore it can be freely
redeployed if something fails and can scale to accommodate load changes
[8].

The application is deployed to Tomcat server and uses a RESTEasy
framework. RESTEasy is a JBoss implementation of Java API for RESTful
Web Services (JAX-RS).

List of all the libraries used in the application can be seen below on table
8.1.

Name Version
RestEasy JAX-RS 3.6.3
Gson 2.8.5
Mongo Java Driver 3.9.1

Table 8.1: Used libraries in the application

The Figure 8.2 shows the class diagram of the RESTful API application.

61

It consists of two main packages, rest package which contains service class
for creating the definitions of the API methods. These methods communic-
ate with the core package which handles the database querying and other
logic.

8.1.1 Client-Server communication
The scenario of the flow of events during the communication between the
client and the server can be seen on Figure 8.1.

User submits a
query

Query is received by the
query service

Sources database is
queried

Pass query for processing

Sources database returns
a set of response

documents

R eport generation is
invoked

A report is generated from
the list of documents

The report is serialized and
sent back to the user

Figure 8.1: A flow of events for user when querying the database

The communication is initiated by the user, who submits a query and
sends an HTTP request to the server. The query is deserialized on the
server side in the QueryRestService class. The Query object is passed to
the DataRetrieval class, where a MongoDB query is constructed and the
sources database is queried. After the results are collected, ReportCreator
class wraps the results set into a Report model class, where additional in-
formation is appended to the report. The report is then passed back to
the QueryRestService class which serializes the results to JSON and sends
them back to the client as a HTTP response body.

62

core

rest

Query

DbRecord

StatusResponse

ResponseField

StandardResponse

DataRetriever

ReportManager

Report

ApiException

ApiExceptionHandler

QueryRestService

ReportCreator

«use»

1

11

1

* 1

11

1

1

Figure 8.2: A class diagram of the REST Server application

8.1.2 Query
The query class represents a single query, received as body of a request.
Each time a query is called on the API, new query object is constructed by
deserializing the data content of the request from JSON format.

It contains the following fields:

• String dataSouce – Source of data we want to search in. Possibilities
are patents and publications.

63

• String filter – Specifies fields, in which we want to search.

• String query – The actual text representation of the query.

8.1.3 QueryRestService
This is the main API service class. It contains definition of methods of the
API. It accepts incoming requests and routes them forward to the classes
in the core package. The concrete specifications of the methods will be
described in the next section 8.2.

8.1.4 DataRetriever
The DataTertiever is responsible for communication with the sources data-
base. It conststructs queries to MongoDB by utilizing the provided API of
the MongoDB Java driver and returns a set of results.

Method doSearch() constructs a MongoDB query and runs it on a Mon-
goDB collection. There are two types of searches: Full-text search which will
return results from all the fields which are included in the text index. The
second search option is a regular expression search which will search in spe-
cified fields, with the cost of slower performance. (see 5.6.2).

The query is constructed using a filter which determines if we are going
to search textually or using a regular expression.

On line 5, the pagination is implemented using the skip method of
MongoDB, where the range of results is calculated using the passed page
parameter. We limit the returned results using the limit method. Next,
we specify a projection which will ensure only the necessary fields will be
present in the final result set. Finally the results are sorted according to
their text score.

The code listing 8.3 below shows the construction of a query which will
be passed to MongoDB collection.

64

1 private List <DbRecord > doSearch (Bson filter ,
MongoCollection <Document > collection , int limit , int
page){

2 List <DbRecord > dbRecords = new ArrayList <>();
3 MongoCursor <Document > cursor ;
4 cursor = collection .find(filter)
5 .skip(page > 0 ? ((page -1) * limit) : 0)
6 .limit(limit)
7 . projection (fields (Projections . metaTextScore (

"score"), include (
8 ResponseField .TITLE. toString (),
9 ResponseField .YEAR. toString (),

10 ResponseField . ABSTRACT . toString (),
11 ResponseField . AUTHORS . toString (),
12 ResponseField . OWNERS . toString (),
13 ResponseField . DOCUMENT_ID . toString (),
14 ResponseField . DATA_SOURCE . toString ())

))
15 .sort(Sorts. metaTextScore ("score"))
16 . iterator ();
17 }

Figure 8.3: The method for construction of a MongoDB query

8.1.5 DbRecord
The results from the Mongo database are wrapped in a DbRecord class.

8.1.6 Report
Contains the returned data ready to be sent to the client. It provides a
getAsJson() method which is used to serialize the Report object into JSON
(see 8.2.3).

8.1.7 StandardResponse
This class holds all the data for a response. That includes the whole report
plus some additional fields, like number of searched records or number of
returned results.

65

8.2 REST API Specification
As was already described, the application will provide a REST API which
will be used by the clients. The primary use of the REST API will be to
consume queries submitted by the users on the client side and provide a
response to that query back to the client.

8.2.1 Query Endpoint
The main method of the API is the query endpoint:

• Description Provides method to call a query and get a result set as
a response.

• URL

/query /: page

• Method

POST

• URL Params

Required:

page =[integer]

• Data Params

1 {
2 " sourceType ": " patent ",
3 " filter ": "",
4 "query": " electric car"
5 }

• Success Response The success response can be seen in the Listing
8.4.

• Error Response

– Code: 404 NOT FOUND

66

8.2.2 Request Format
The request format holds the serialized Query class in JSON format:

1 {
2 " sourceType ": " patent ",
3 " filter ": "",
4 "query": " electric car"
5 }

8.2.3 Response Format
The format of the response can be seen below.

The fields in the response have the following meaning:

• msg – The message associated with the response

• status – Status of the response. Can be either SUCCESS or ERROR.
In case of an error status field, the msg field will contain information
about the error.

• searchedCount – The number of searched documents.

• returnedCount – Number of returned documents.

• reportJson – Contains a list of documents relevant to the query (Re-
port).

8.3 Database Testing
To demonstrate the created REST API and to test the database, a separate
web application was created. It is built using Java servlets in Java EE 7 and
JavaServer Pages (JSP) technology. The communication with the server is
assured using a REST framework Jersey which simplifies the development of
the RESTful clients in Java and provides some additional API functions on
top of the JAX-RS framework. The demonstration application also allows
for simple visualization of query results.

The web interface, seen on Figure 8.5, provides a simple layout with the
ability to perform queries and display the results in a clear way. An HTML,
CSS and JavaScript library Bootstrap was used to create the interface.

67

Figure 8.5: A screenshot of the REST API demonstration web application

List of all the libraries used in the application can be seen below on table
8.2.

Name Version
Java servlet API 3.1.0
JSTL 1.2
Jersey Client 2.28
Tablesaw 0.32.6
JSoup 1.11.3

Table 8.2: Used libraries in the application

The class diagram on Figure 8.6 shows created classes and their relation-
ships. There are two servlets, QueryServlet for handling requests from the
query.jsp page and VisualizeServlet from the visualize.jsp page.

68

QueryRecord

Report TypeOfDataRecordService

QueryServlet VisualizeServlet

«create»

*

1

«create»

«create»

Figure 8.6: Class diagram of the REST demonstration application

8.3.1 RecordService class
The RecordService encapsulates the REST client. It contains a fet-
chReports() method which creates a REST request from the user query
with the required format and sends it to the REST server. The report re-
turned as a response from the server is manually deserialized into the Report
class and it is returned back to the servlet to be visualized in the jsp page.

8.3.2 QueryServlet
The query servlet receives requests from the query.jsp web page’s form and
extracts the necessary information about the query. The fetchReport()
method of the RecordService class is called to fetch the report.

69

8.3.3 VisualizeServlet
The servlet uses tablesaw Java visualization library which supports visual-
ization of data by providing a wrapper to the Plot.ly javascript library.

It also uses the fetchReport() method of the RecordService class to
fetch the report, but just for visualization purposes, another REST method
was created which has almost the same signature as the query endpoint,
but has one more parameter which is the number of documents we want to
return. Therefore to visualize the report, we chose to return 1000 documents.
For that we construct a graph showing how many documents were published
each year. An example graph can be seen below on Figure 8.7.

Distribution of years for documetns containing query ‘electric car’

Figure 8.7: Visualization of years in which patents were published containing
query ’electric car’

8.4 Future work
The development will grow beyond the scope of this thesis. The created
solution is working, but can be much improved in the future.

Firstly, it will be necessary to identify and acquire additional data sources.
Every data source will then have to be loaded to the sources database. Data

70

sources like Springer LOD or PATSTAT have been chosen to be the next
sources of data and will be included in the main database as well. It is
possible that some data from different sources can overlap, therefore it will
be necessary to identify duplicates.

The deployment of the application will have to be considered in the future
as well. The final solution should run on a production server, accessible over
the internet.

So far, the REST API contains only a single method, query. In the near
future, it will be necessary to expand it to provide additional functionalities,
like returning a list of authors or owners which are present in the data.

71

1 {
2 "msg":" Everything OK",
3 " status ":" SUCCESS ",
4 " searchedCount ":3645421,
5 " returnedCount ":30,
6 " reportJson ":{
7 " summary ":"Test summary ",
8 " documents ":[
9 {

10 "_id":{
11 "$oid":"5c8e7d9cfa6e572f9cecea94"
12 },
13 " abstract ":"A railroad tank car may have external

fittings , such as a bottom opening valve,
that protrude from the bottom of the tank car
tank. In a derailment the tank car tank may
meet the ground . A tank skid plate assembly
has an ...",

14 " number ":"US9738292",
15 " authors ":[
16 {
17 "name":"Sina Moloodi "
18 }
19],
20 " owners ":[
21 {
22 "name":" NATIONAL STEEL CAR LIMITED "
23 }
24],
25 "title":"Tank car apparatus ",
26 "year":"2017",
27 " dataSource ":"uspto"
28 }
29]
30 }
31 }

Figure 8.4: The sample response to a query REST request

72

9 Measurements

An analysis of each data source was created, gathering various statistical
data from the data sets. The approach for acquiring the statistical data
was to create specific queries to the MongoDB database which return the
relevant data in a suitable format for visualization.

This chapter will focus on the acquired data sets as well as their stat-
istical data. It will also compare the performance of different queries to the
MongoDB database.

9.1 Data
Table 9.1 shows the acquired data sources, their size and time range:

Source Extracted size (GB) Count Time Range (years)
MAG 249 166m 1998 – 2017

USPTO 75.7 3.7m 2005 – 2018
DBLP 2.24 4.5m 1995 – 2018

PATSTAT 1 120 -
Total 327.94 174m

Table 9.1: Acquired data

One of the biggest patent databases available today is the PATSTAT and
therefore it would be beneficial to include it in the main database. However,
to get data from PATSTAT database, it is necessary to pay a subscription
fee. Unfortunately, at the time of writing this thesis, it was not yet purchased
and only a sample files were available for download. However, the process
of loading the data to the main database was prepared in advance, so in the
future it will be faster and easier to load the PATSTAT data to the main
database as well.

9.1.1 Query creation
Multiple MongoDB queries were created to extract relevant information
about each data source. The queries were created using MongoDB’s ag-
gregation framework which were optimized for performance. The following
code listing illustrates a sample MongoDB query:

73

The example query below searches for the most active authors of patents.

1 db. patent . aggregate ([
2 { $project : { _id: 0, " authors .name": 1 } },
3 { $unwind : " $authors " },
4 { $group : { _id: { $toLower : " $authors .name" }, count: {

$sum: 1 } }},
5 { $project : { _id: 0," authors .name": "$_id", count: 1 } },
6 {$sort: { count: -1 } }
7], { allowDiskUse : true })

This MongoDB query uses its aggregation pipeline and comprises of the
following stages:

• Project the fields we want

• Unwind the authors array so we now have a record for every array
element in every document

• Group on the author’s name from the expanded documents

• Project into a document format you can use as group messed around
with _id

• Sort the results in reverse order to see the the most active authors first

9.1.2 USPTO Aanalysis
The United States Patent and Trademark Office gathers huge amount of
data about patents issued in the United States.

The global statistics of the USPTO data set can be seen below on table
9.1.2.

Patents 3 727 260
Authors 771 764
Owners 990 969

Table 9.2: Global statistics of the USPTO data

It is interesting to see who are the authors holding the most patents. Each
patent can specify multiple inventors. An inventor is the individual, who
created the patent. Then there are owners/assignees of patents. These are
typically inventors’ employer company which hold the rights to the patent.
There can be one or more owners of a patent.

74

The following table 9.1.2 shows the 20 most active patent authors in the
USPTO data.

Position Author’s name Count
1 Shunpei Yamazaki 2333
2 Kangguo Cheng 1373
3 Roderick A. Hyde 1311
4 Lowell L. Wood, Jr. 1281
5 Jonathan P. Ive 962
6 Clarence T. Tegreene 785
7 Bartley K. Andre 758
8 Jordin T. Kare 752
9 Duncan Robert Kerr 740
10 Christopher J. Stringer 738
11 Richard P. Howarth 728
12 Daniele De Iuliis 704
13 Daniel J. Coster 701
14 Eugene Antony Whang 694
15 Matthew Dean Rohrbach 694
16 Peter Russell-Clarke 679
17 Hanbyul Seo 675
18 Ali Khakifirooz 658
19 Jody Akana 658
20 Alexander Reznicek 657

Table 9.3: List of the most active patent authors

From the acquired USPTO data, we can see that the most productive
author of patents is a Japanese inventor in computer science field Shunpei
Yamazaki with 2 333 patents. He is followed by Chinese inventor from IBM
Kangguo Cheng, who claimed 1 373 patents since 2005. The close third
place is held by Roderick A. Hyde with 1311 patents.

Another interesting data to see is the distribution of institutions accord-
ing to the number of patents ownership. The concrete numbers are seen on
the table 9.4.

75

Position Patents owner Count
1 International Business Machines Corporation 29033
2 Samsung Electronics Co., Ltd. 21164
3 CANON KABUSHIKI KAISHA 10781
4 Apple Inc. 7781
5 QUALCOMM Incorporated 7771
6 Google Inc. 7447
7 LG ELECTRONICS INC. 7092
9 Intel Corporation 6389
11 Amazon Technologies, Inc. 5269
12 Ford Global Technologies, LLC 4885
13 Sony Corporation 4715
14 General Electric Company 4696
15 FUJITSU LIMITED 4378
16 Kia Silverbrook 4153
17 Huawei Technologies Co., Ltd. 3998
18 Samsung Display Co., Ltd. 3974
19 Taiwan Semiconductor Manufacturing C., Ltd. 3722
20 Hyundai Motor Company 3540

Table 9.4: List of the most active patent owners

The list of companies with the most patents is not surprising. The top
institution which gained the most patents ownership, was IBM with 29 033
received patents. IBM holds the top position in the number of received
patents for 25th consecutive time, when only in 2017 they received more than
9043 patents. Samsung Electronics Co. comes in second place with 21 164
received patents. In third place comes Canon which gained 10781 patents
followed by Apple Inc. with 7781. The data contains patent information
since from the year 2005 since the data were collected.

9.1.3 MAG Aanalysis
MAG is a graph comprising of more than 120 million publication entries.
The data set contains fields like author names, institutions, fields of study
etc. The global statistical information are seen on the table below.

76

Papers 123 000 000
Authors 25 828 122

Fields of study 47 989

Table 9.5: Global statistics of the MAG data source

The following table shows the most active authors of publications 9.6 in
the MAG data:

Position Author Count
1 佐藤 49891
2 木 47973
3 田中 41891
4 高 38172
5 小林 33668
6 Helmut Herrmann 33231
7 Herbert Bucksch 33183
8 中村 33183
9 伊藤 32362
10 山本 30781
11 加藤 27854
12 渡 26314
13 吉田 26003
14 山田 25434
15 Wei Wang 24225
16 Jornal da Manhã 24073
17 Richard J. Lewis 22917
18 井上 22102
19 Cristiano da Silva Teixeira 20415
20 Wei Zhang 19972

Table 9.6: List of the most active publication authors

The publication’s fields of study are an important information. MAG
provides a set of study fields as a part of every publication. The Figure 9.1
illustrates the distribution of papers according to the field(s) of study they
belong to.

77

0 4 8 12

 Medicine

 Biology

 Physics

 Computer Science

 Materials Science

 Cartography

 Psychology

 Immunology

 Engineering drawing

 Geography

Document count

Millions
Fi

el
f

o
f

st
u

d
y

Figure 9.1: Document counts according to their field of study

We can see that the most prominent fields of study in the acquired data
set from MAG are medicine, biology and physics, followed by computer
science.

Then there is the year of a publication, another very important field.
Histogram of years of publication provided in the MAG can be seen below
on 9.2:

0

1

2

3

4

5

6

7

8

1998 2001 2004 2007 2010 2013 2016

N
u

m
b

er
 o

f
p

u
b

lic
at

io
n

s M
ill

io
n

s

Year

Figure 9.2: Histogram of years of publications in the MAG

78

9.2 Performance Measuring

9.2.1 Execution Environment
All the described applications and databases were created and run on the
computer with the following hardware and software specifications (9.7).

Processor Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
Video Card Intel(R) HD Graphics 630
Video Card #2 NVIDIA GeForce GTX 1050 Ti
RAM 64 GB
Operating System Windows 10
MongoDB db version v4.0.5
Java 1.8

Table 9.7: HW and SW Specification of the computer

9.2.2 Experiments
One of the most important features of a database is the speed with which it
can search for data. To get the best performance in the MongoDB database,
it was necessary to create appropriate indexes on the fields on which the
searches will be performed. As described in 3.1, Mongo provides two types of
indexes: standard indexes and text indexes. The text indexes are specifically
used for full-text searching.

A series of test queries were performed to compare the performance of
full-text searching in MongoDB. An example query searches for the phrase
"electric car". MongoDB looks for all the documents which contain the term
"electric" OR "car" in the fields contained in the text index. The first page
of 10 results is returned after 4.5 seconds. After the second try when the
results are loaded in the RAM, the time was 0.11 seconds. However, when
performing a count query on the same phrase, MongoDB took considerably
longer, 1438 seconds, because the entire collection has to be scanned to fetch
all the satisfying results.

It is evident that the creation of appropriate indexes was essential for
getting a reasonable performance on the MongoDB database.

Another important aspect of the database is the performance of inserting
new data to the database. In case of USPTO, the average size of a file is
148 MB. There are 5119 records on average in each file. That means that
an average space occupied by a document approximately 28.9 kB.

79

Because each document is being parsed from the file system to the
memory and then preprocessed. The average time to parse the JSON file
from the file system was 2.45 seconds, and the preprocessing took 0.12
seconds on average. MongoDB was able to insert 3230 documents to the
collection per second. This means that an average speed of insertion was 94
MB per second.

MongoDB supports aggregation pipeline, the example query below counts
all the authors in a collection. The test was run on two collections with dra-
matically different sizes. The results of the tests are visible on table 9.2.2:

1 db. patent . aggregate ([
2 { $project : { _id: 0, " authors .name": 1 } },
3 { $unwind : " $authors " },
4 { $group : { _id: " $authors .name", count: { $sum: 1 } }},
5 { $match : {count: { $gt: 1 } } },
6 { $count : "count"}
7], { allowDiskUse : true })

Documents count Time(seconds)
3.7 m 57.911
107 m 2586.587

Table 9.8:

To run this query on the first collection, MongoDB took 57.911 seconds.
After that, the query was run once again, when the previous results were
saved to RAM. The second time it took 48 seconds. The second, larger col-
lection took considerably longer to execute. In the first try, it took 2586.587
seconds.

80

10 Conclusion

The NoSQL approach was chosen for storage of tens of millions of docu-
ments. MongoDB database was selected as a primary database for storing
the acquired data.

To summarize the work done in this thesis, the first part of this paper
outlined main differences between relational and non-relational databases,
several NoSQL databases were described. The second part was concerned
with the actual implementation. Firstly the process of gathering and ac-
quiring data from various data sources was described. Then the steps for
preprocessing the data were presented. These steps included conversion of
data to JSON format, a necessary step because MongoDB stores data in
JSON(internally BSON). Another key part of the data preprocessing was
the creation of a method to unify the structure of various data sources by
designing and creating mapping files. This enabled altering the structure
of the source JSON documents. Finally the process of loading the data to
the primary database was presented. The database was then tested using
a demonstration web application. It later showed that there were multiple
inconveniences while working with MongoDB. These included especially lack
of better full-text searching capabilities, like support for conditional queries
and the ability to perform searches only in specified fields. In the last part
of the thesis, a simple analysis of some data sources was done to give more
insight about the type of data being stored.

Over 200 millions of records were acquired from multiple publicly avail-
able data sources, with Microsoft Academic Graph and United States Patent
and Trademark Office being the most dominant. The created software solu-
tion consists of several components: The NoSQL MongoDB database, the
SQL database for storing meta-data about data sources, data administration
application, REST API server application and web client application. The
whole system enables storing large amounts of data from various sources,
administering the data sources and testing the created REST API.

Even though the main focus of this work was mainly data gathering, it
later turned out that the spectrum of things needed to do was much more
diverse than initially thought. That also resulted in the final implementation
being more broad rather than in depth and some of the planned features
were not implemented in the final solution. However, the development of
this project will continue further in the future beyond the scope of this thesis
with more features planned to be implemented.

81

Appendixes

Sample MongoDB Queries
The following are some of the queries used to create the statistics of data
sets.

Searches for the most active authors of patents.

1 db. patent . aggregate ([
2 { $project : { _id: 0, " authors .name": 1 } },
3 { $unwind : " $authors " },
4 { $group : { _id: { $toLower : " $authors .name" }, count: {

$sum: 1 } }},
5 { $project : { _id: 0," authors .name": "$_id", count: 1 } },
6 {$sort: { count: -1 } }
7], { allowDiskUse : true })

Count of authors in the collection:
1 db. patent . aggregate ([
2 { $project : { _id: 0, " authors .name": 1 } },
3 { $unwind : " $authors " },
4 { $group : { _id: " $authors .name", count: { $sum: 1 } }},
5 { $match : {count: { $gt: 1 } } },
6 { $count : "count"}
7], { allowDiskUse : true })

Data Download URLs
The following list of URLs, from where the data sources were acquired:

• PATSTAT –

https://www.epo.org/searching-for-patents/business/patstat.
html#tab-1

• DBLP – https://dblp.uni-trier.de/faq/How+can+I+download+
the+whole+dblp+dataset

• USPTO – https://bulkdata.uspto.gov/

• MAG – https://aminer.org/open-academic-graph

82

https://www.epo.org/searching-for-patents/business/patstat.html#tab-1
https://www.epo.org/searching-for-patents/business/patstat.html#tab-1
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset
https://bulkdata.uspto.gov/
https://aminer.org/open-academic-graph

USPTO Sample Data

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <! DOCTYPE us -patent -grant SYSTEM "us -patent -grant -v42

-2006 -08 -23. dtd" []>
3 <us -patent -grant lang="EN" dtd - version ="v4.2 2006 -08 -23" file

="USD0673346 -20130101. XML" status =" PRODUCTION " id="us -
patent -grant" country ="US" date - produced =" 20121217 " date -
publ=" 20130101 ">

4 <us - bibliographic -data -grant >
5 <publication - reference >
6 <document -id>
7 <country >US</ country >
8 <doc - number >D0673346 </doc - number >
9 <kind >S1</kind >

10 <date >20130101 </date >
11 </document -id>
12 </ publication - reference >
13 <application - reference appl -type=" design ">
14 <document -id>
15 <country >US</ country >
16 <doc - number >29408358 </doc - number >
17 <date >20111212 </date >
18 </document -id>
19 </ application - reference >
20 <us - application -series -code >29</us - application -series

-code >
21 <us -term -of -grant >
22 <length -of -grant >14</length -of -grant >
23 </us -term -of -grant >
24 <classification - locarno >
25 <edition >9</ edition >
26 <main - classification >0207 </main - classification >
27 </ classification - locarno >
28 <classification - national >
29 <country >US</ country >
30 <main - classification >D 2639 </main - classification >
31 </ classification - national >
32 <invention -title id="d2e53">Belt end strap </invention

-title >
33 <references -cited >
34 <citation >
35 <patcit num="00001">
36 <document -id>
37 <country >US</ country >
38 <doc - number >594201 </doc - number >
39 <kind >A</kind >
40 <name >Prothingham </name >

83

41 <date >18971100 </date >
42 </document -id>
43 </ patcit >
44 <category >cited by examiner </ category >
45 <classification - national >
46 <country >US</ country >
47 <main - classification > 2322 </main -

classification >
48 </ classification - national >
49 </ citation >
50 </references -cited >
51 <number -of - claims >1</number -of - claims >
52 <us -exemplary -claim >1</us -exemplary -claim >
53 <us -field -of - classification - search >
54 <classification - national >
55 <country >US</ country >
56 <main - classification >D 2624 -640 </main -

classification >
57 <additional -info >unstructured </additional -

info >
58 </ classification - national >
59 </us -field -of - classification - search >
60 <figures >
61 <number -of -drawing - sheets >3</number -of -drawing -

sheets >
62 <number -of - figures >9</number -of - figures >
63 </ figures >
64 <parties >
65 <applicants >
66 <applicant sequence ="001" app -type="applicant

- inventor " designation ="us -only">
67 <addressbook >
68 <last -name >Kosh </last -name >
69 <first -name >Matthew </first -name >
70 <address >
71 <city >Seattle </city >
72 <state >WA</state >
73 <country >US</ country >
74 </ address >
75 </ addressbook >
76 <nationality >
77 <country >omitted </ country >
78 </ nationality >
79 <residence >
80 <country >US</ country >
81 </ residence >
82 </ applicant >
83 </ applicants >

84

84 <agents >
85 <agent sequence ="01" rep -type=" attorney ">
86 <addressbook >
87 <orgname >Kilpatrick Townsend &# x26;

Stockton LLP </ orgname >
88 <address >
89 <country >unknown </ country >
90 </ address >
91 </ addressbook >
92 </agent >
93 </ agents >
94 </ parties >
95 <assignees >
96 <assignee >
97 <addressbook >
98 <orgname >Bodypoint , Inc.</ orgname >
99 <role >02</role >

100 <address >
101 <city >Seattle </city >
102 <state >WA</state >
103 <country >US</ country >
104 </ address >
105 </ addressbook >
106 </ assignee >
107 </ assignees >
108 <examiners >
109 <primary - examiner >
110 <last -name >Nelson </last -name >
111 <first -name >T. Chase </first -name >
112 <department >2914 </ department >
113 </primary - examiner >
114 <assistant - examiner >
115 <last -name >Sims </last -name >
116 <first -name >Kathleen M</first -name >
117 </assistant - examiner >
118 </ examiners >
119 </us - bibliographic -data -grant >
120 </us -patent -grant >

Microsoft Academic Graph Sample Data

1 {
2 "id": "53e9ab9eb7602d970354a97e",
3 "title": "Data mining : concepts and techniques ",
4 " authors ": [
5 {

85

6 "name": " jiawei han",
7 "org": " department of computer science university of

illinois at urbana champaign "
8 },
9 {

10 "name": " micheline kamber ",
11 "org": " department of computer science university of

illinois at urbana champaign "
12 },
13 {
14 "name": "jian pei",
15 "org": " department of computer science university of

illinois at urbana champaign "
16 }
17],
18 "year": 2000,
19 " keywords ": [
20 "data mining ",
21 " structured data",
22 "world wide web",
23 " social network ",
24 " relational data"
25],
26 "fos": [
27 " relational database ",
28 "data model",
29 " social network "
30],
31 " n_citation ": 29790,
32 " references ": [
33 "53e99ef4b7602d97027c2346",
34 "53e9aa23b7602d970338fb5e",
35 "53e99cf5b7602d97025aac75"
36],
37 " doc_type ": "book",
38 "lang": "en",
39 " publisher ": " Elsevier ",
40 "isbn": "1-55860-489-8",
41 "doi": "10.4114/ia.v10i29.873",
42 "pdf": "// static . aminer .org/ upload /pdf/1254/370/239/53e9ab9

eb7602d970354a97e.pdf",
43 "url": [
44 "http://dx.doi.org/10.4114/ia.v10i29.873",
45 "http:// polar.lsi.uned.es/ revista /index.php/ia/ article /

view/479"
46],
47 " abstract ": "Our ability to generate and collect data has

been increasing rapidly . Not only are all of our

86

business , scientific , and government transactions now
computerized , but the widespread use of digital cameras ,

publication tools, and bar codes also generate data. On
the collection side, scanned text and image platforms ,

satellite remote sensing systems , and the World Wide Web
have flooded us with a tremendous amount of data. This

explosive growth has generated an even more urgent need
for new techniques and automated tools that can help us
transform this data into useful information and
knowledge . Like the first edition , voted the most
popular data mining book by KD Nuggets readers , this
book explores concepts and techniques for the discovery
of patterns hidden in large data sets, focusing on
issues relating to their feasibility , usefulness ,
effectiveness , and scalability . However , since the
publication of the first edition , great progress has
been made in the development of new data mining methods ,

systems , and applications . This new edition
substantially enhances the first edition , and new
chapters have been added to address recent developments
on mining complex types of data? including stream data,
sequence data, graph structured data, social network
data, and multi - relational data ."

48 }

PATSTAT Sample Data

1 " application ": {
2 " application_id ": 100008,
3 " appln_id ": 15706408,
4 " appln_auth ": "EP",
5 " appln_nr ": "00100008",
6 " appln_filing_date ": "2000-01-03",
7 " filing_lg ": "en",
8 " status ": 9,
9 " internat_appln_id ": 0,

10 " internat_appln_nr ": "",
11 " status_text ": "The application has been withdrawn "
12 },
13 " authors ": [
14 {
15 "party": {
16 "name": " Hitachi , Ltd .",
17 " set_seq_nr ": 1,
18 " is_latest ": "N",
19 " change_date ": "2000-06-09",

87

20 " bulletin_year ": 2000,
21 " bulletin_nr ": 30,
22 "type": "A",
23 " wishes_to_be_published ": " ",
24 " seq_nr ": 1,
25 " designation ": "all",
26 " customer_id ": "0100140063",
27 " address_ 1": "",
28 " address_ 2": "",
29 " address_ 3": "",
30 " address_ 4": "",
31 " address_ 5": "",
32 " country ": "JP"
33 }
34 },
35 {
36 "party": {
37 "name": " Hitachi Engineering & Services Co., Ltd

.",
38 " set_seq_nr ": 1,
39 " is_latest ": "N",
40 " change_date ": "2000-06-09",
41 " bulletin_year ": 2000,
42 " bulletin_nr ": 30,
43 "type": "A",
44 " wishes_to_be_published ": " ",
45 " seq_nr ": 2,
46 " designation ": "all",
47 " customer_id ": "0100139895",
48 " address_ 1": "",
49 " address_ 2": "",
50 " address_ 3": "",
51 " address_ 4": "",
52 " address_ 5": "",
53 " country ": "JP"
54 }
55 }
56],
57 "title": [
58 {
59 "title": {
60 "title": " Electric power variation compensating

device ",
61 " change_date ": "2000-06-09",
62 " bulletin_year ": 2000,
63 " bulletin_nr ": 30,
64 " title_lg ": "en"
65 }

88

66 }
67],
68 " abstract ": [
69 {
70 " abstract ": {
71 " bulletin_year ": 2000,
72 " bulletin_nr ": 30,
73 " publn_auth ": "EP",
74 " publn_nr ": "1022838",
75 " publn_kind ": "A2",
76 " publn_date ": "2000-07-26",
77 " publn_lg ": "en"
78 }
79 }
80],
81 "ipc": [
82 {
83 "ipc": {
84 " ipc_text ": "H02J3/38",
85 " change_date ": "2000-06-09",
86 " bulletin_year ": 2000,
87 " bulletin_nr ": 30
88 }
89 }
90],
91 "prior": [
92 {
93 "prior": {
94 " change_date ": "2000-06-09",
95 " bulletin_year ": 2000,
96 " bulletin_nr ": 30,
97 " prior_seq_nr ": 1,
98 " prior_kind ": "al",
99 " prior_auth ": "JP",

100 " prior_nr ": "19990014268",
101 " prior_date ": "1999-01-22"
102 }
103 }
104],
105 " designated_states ": [
106 {
107 " designated_states ": {
108 " state_type ": "EXT",
109 " change_date ": "9999-12-31",
110 " bulletin_year ": 0,
111 " bulletin_nr ": 0,
112 " designated_states ": "AL,LT,LV,MK,RO,SI"
113 }

89

114 },
115 {
116 " designated_states ": {
117 " state_type ": "MEM",
118 " change_date ": "2000-06-09",
119 " bulletin_year ": 2000,
120 " bulletin_nr ": 30,
121 " designated_states ": "AT,BE,CH,CY,DE,DK,ES,FI,FR,

GB,GR,IE,IT,LI,LU,MC,NL,PT,SE"
122 }
123 }
124],
125 "dates": [
126 {
127 "dates": {
128 " bulletin_year ": 2004,
129 " bulletin_nr ": 36,
130 " date_type ": " WDRWNA ",
131 " event_date ": "2004-04-28",
132 " cause_interruption ": "NA",
133 " converted_to_country ": " "
134 }
135 }
136]

DBLP Sample Data
A sample document in DBLP looks like this:

1
2 <?xml version ="1.0" encoding ="ISO -8859 -1"?>
3 <! DOCTYPE dblp SYSTEM "dblp.dtd">
4 <dblp >
5
6 [...]
7
8 <article key=" journals /cacm/ Gentry10 " mdate="2010 -04 -26">
9 <author >Craig Gentry </ author >

10 <title >Computing arbitrary functions of encrypted data.</
title >

11 <pages >97 -105 </pages >
12 <year >2010 </year >
13 <volume >53</ volume >
14 <journal >Commun . ACM </ journal >
15 <number >3</ number >

90

16 <ee>http :// doi.acm.org /10.1145/1666420.1666444 </ee>
17 <url >db/ journals /cacm/ cacm53 .html# Gentry10 </url >
18 </ article >
19
20 [...]
21
22 <inproceedings key="conf/focs/ Yao82a " mdate="2011 -10 -19">
23 <title >Theory and Applications of Trapdoor Functions (

Extended Abstract)</title >
24 <author >Andrew Chi -Chih Yao </ author >
25 <pages >80 -91 </pages >
26 <crossref >conf/focs/ FOCS23 </ crossref >
27 <year >1982 </year >
28 <booktitle >FOCS </ booktitle >
29 <url >db/conf/focs/ focs82 .html# Yao82a </url >
30 <ee>http :// doi. ieeecomputersociety .org /10.1109/ SFCS .1982.45 </

ee>
31 </ inproceedings >
32
33 [...]
34
35 <www mdate="2004 -03 -23" key=" homepages /g/ OdedGoldreich ">
36 <author >Oded Goldreich </ author >
37 <title >Home Page </title >
38 <url >http :// www. wisdom . weizmann .ac.il/~ oded/</url >
39 </www >
40
41 [...]
42 </dblp >

91

User Manual

Data Administration Application
The application for administering data sources and loading new data sources
into the main sources database. The image 10.1 bellow shows the GUI of
the application.

Figure 10.1: The GUI of the data administration application

The interface consists of a list view, containing a list of data sources
metadata present in the Data Sources DB. On top of the list view, there is
a refresh button which refreshes the list of data sources from the database.
On the right side, there is the detail view for the selected item in the list
view. It contains all the metadata stored for each data source. The details
information about a data source can be edited using the Edit button and
deleted using the Delete button. If the selected data source contains the
implementation of loading it to the database, the Load to collection button
attempts to load files from the file system path and insert it to the collection,

92

specified in the category type field. Each data field also contains information
about its validity, specified by the update interval field. The update date
can be updated using the reset interval button.

The bottom of the page contains utility tools for bulk zip extraction of
files from a directory and bulk conversion of files from a source directory to
the target directory.

At the very bottom, there is a label indicating the status of current
operation.

Loading to the Database

For example, if we want to load data from the USPTO data source. We
select the uspto list item from the list view on the left. We fill the path to
the uspto JSON files to the text field next to the Load to collection button
and finally press that button. The directory should be scanned and every
JSON document should be loaded to the database.

Compilation

The compilation of the application is done using Maven’s assembly:single
goal1. To compile the project, navigate to the root directory of the project
(data-admin folder) and double click on the build.xmland run the following
command:

mvn clean compile assembly :single

This command cleans all the files from previous compilations, starts a
new compilation and then assembles the packaged executable. A target
directory is created with the jar data-admin.jar inside.

For ease of use, a build script build.bat is present in the directory as
well. Running it as an administrator will run the compilation process.

Execution Prerequisites

In order for the application to run, the following files need to be present in
the directory with the JAR file or the application won’t execute:

1In order for the compilation to run, Maven has to be present on the system and added
to the system Path

93

ROOT

data-admin.jar

data

mongo-config.cfg

mydb.cfg

Executable application

Meta data about data sources.

MongoDB connection configuration.

Configuration of the connection to the SQL database.

The data folder contains mapping files necessary for loading the data
sources to the sources database. mongo-config.cfg file specifies the Mon-
goDB database, to which we want to connect. mydb.cfg contains configur-
ation of the connection to the SQL database. The SQL database has to be
created on the system and the database service needs to be running 2.

Execution

If all the prerequisites are met, the application can be started by double
clicking the created JAR file or by running the following command from the
command line in the directory with the JAR file:

java -jar data -admin.jar

2 Script for the creation of the database is present on the attached CD.

94

CD Contents
The attached CD disk contains all the applications created along with an
SQL database script and a sample dump of the Sources database. It also
contains the text of the thesis in a pdf format and created poster. The
image below shows the directory structure of the attached CD along with
comments for each folder/file.

ROOT

sample-data

dump

data-admin

data

doc

exe

src

build.bat

db

rest-client

doc

exe

project

src

build.bat

readme.txt

rest-server
...

text

thesis.pdf

poster

build-all.bat

Sample data and metadata for several data sources.

MongoDB sample database dump.

Data Administration application

Meta data about data sources

JavaDoc

Executable

Source files

Build script

SQL script for creation of MariaDB data sources database

REST client application

JavaDoc

Deployable war archive

IntelliJ IDEA project

Source files

Build script

Same structure as rest-client.

Text of master thesis

Posters in Czech and English

Build script for building the all the applications

The dump folder contains dumped MongoDB sample database, containing

95

7000 patent documents and 150 000 publication documents 3. To restore the
database, use the following command:

mongorestore --db sources dump/

REST Client Deployment

The REST client application can be deployed to Tomcat server using the
following steps:

• Compile and package the REST client using the provided build script
in the rest-client folder4 or use the already packaged file in the
rest-client/exe folder.

• Move the created packaged war file into the webapps directory of the
Tomcat installation.

• Run the startup.bat script file from the directory "Tomcat install-
ation directory"/bin.

• In the browser, navigate to address localhost:port/restTest, where
restTest is the name of the deployed war file.5

3The attached CD contains only the sample database, because of the CD’s size limit-
ation. The full database is present on a local machine on the Department of Computer
Science and Engineering in University of West Bohemia.

4In order for the build scripts to work, maven has to be installed on the system and
must be set in the system path.

5The REST client application expects that the REST server runs on address:
localhost:8080/.

96

Glossary

BSON

A binary-encoded serialization of JSON-like documents. 6

FXML

A human-readable data serialization language, usually used for config-
uration files. 49

Intellectual property right

A right that is had by a person or by a company to have exclusive
rights to use its own plans, ideas, or other intangible assets without
the worry of competition, at least for a specific period of time. 1

NoSQL database

NoSQL is a non-relational database that stores and accesses data us-
ing key-values. Instead of storing data in rows and columns like a
traditional database. 44

Relational database

A collection of data items with pre-defined relationships between them.
These items are organized as a set of tables with columns and rows.
34

REST

An architectural style for developing web services. 43

RESTful API

Web service APIs that adhere to the REST architectural constraints.
13

XML

A markup language much like HTML. XML was designed to store and
transport data and to be self-descriptive and readable by machine and
human. 28

97

YAML

A human-readable data serialization language, usually used for config-
uration files. 6

98

Acronyms

ACID Atomicity, consistency, isolation, durability 3
API Application programming interface 61

CQL Cassandra Query Language 12
CSV Comma-separated values 28

DAO Data access object vii, 57

GUI Graphical user interface ix, 49

HTTP Hypertext Transfer Protocol 61

JAX-RS Java API for RESTful Web Services 61, 67
JDBC Java Database Connectivity 57
JSON Javascript object notation 6
JSP JavaServer Pages 67

MVC Model-view-controller 48

NoSQL Not only SQL 3

OLTP Online transaction processing 15

RDBMS Relational database management system 2
REST Representational state transfer 61

SOAP Simple Object Access Protocol 61
SQL Standard query language 3

USPTO United States Patent and Trademark Office
24, 34

XML eXtensible Markup Language 6

99

Bibliography

[1] Kavita Bhamra. A Comparative Analysis of MongoDB and Cassandra.
PhD thesis, Department of Informatics University of Bergen, 2017.

[2] Scott Carlson. Challenging google, microsoft unveils a search tool for
scholarly articles. The Chronicle of higher education, 52(33), 2006.

[3] Ramez Elmasri and Sham Navathe. Fundamentals of database systems.
Pearson, 2014.

[4] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide.
2015.

[5] Michael Gusenbauer. Google scholar to overshadow them all? comparing
the sizes of 12 academic search engines and bibliographic databases.
Scientometrics, 118(1):177–214, Jan 2019. ISSN 1588-2861. doi:
10.1007/s11192-018-2958-5. URL
https://doi.org/10.1007/s11192-018-2958-5.

[6] Guy Harrison. Fundamentals of database systems. Apress, 2015. ISBN
9781484213292 1484213297. URL https://www.amazon.com/
Next-Generation-Databases-NoSQLand-Data/dp/1484213300.

[7] Hugh MacMullan. Worldwide patents database: Patstat.
https://research-it.wharton.upenn.edu/news/
worldwide-patents-database-patstat/, 2016. Accessed 26.03.2019.

[8] Ed Hannan Margaret Rouse and Sarah Wilson. Restful api. https:
//searchmicroservices.techtarget.com/definition/RESTful-API,
2014. Accessed 04.04.2019.

[9] Nishant Neeraj. Mastering Apache Cassandra. Packt Publishing, 2nd
edition, 2015. ISBN 1784392618, 9781784392611.

[10] NoSQL. Types of noSQL databases, 2017. URL
https://www.mongodb.com/scale/types-of-nosql-databases.

[11] José Luis Ortega. Academic search engines: A quantitative outlook.
Elsevier, 1 edition, 2014. ISBN 9781843347910.

[12] A. Poulter and M. Drake. Encyclopedia of library and information science.
Marcel Dekker, (1):389–396, 2003.

100

https://doi.org/10.1007/s11192-018-2958-5
https://www.amazon.com/Next-Generation-Databases-NoSQLand-Data/dp/1484213300
https://www.amazon.com/Next-Generation-Databases-NoSQLand-Data/dp/1484213300
https://research-it.wharton.upenn.edu/news/worldwide-patents-database-patstat/
https://research-it.wharton.upenn.edu/news/worldwide-patents-database-patstat/
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://www.mongodb.com/scale/types-of-nosql-databases

[13] David Pressman and Thomas Tuytschaevers. Patent it yourself: your
step-by-step guide to filing at the US Patent Office. Nolo, 14 edition, 2016.
ISBN 978-1413310580.

[14] Mitko Radoev. A comparison between characteristics of nosql databases
and traditional databases. Technical report, Department of Information
Technologies and Communications, Faculty of Applied Informatics and
Statistics, University of National and World Economy, Sofia, Bulgaria, 2017.

[15] Matan Sarig. Commons dbutils: Jdbc utility component.
https://commons.apache.org/proper/commons-dbutils/, 2017.
Accessed 26.03.2019.

[16] Matan Sarig. Cassandra vs mongodb in 2018.
https://blog.panoply.io/cassandra-vs-mongodb, 2018. Accessed
26.03.2019.

[17] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide,
Bo-June Paul Hsu, and Kuansan Wang. An overview of microsoft academic
service (mas) and applications. In Proceedings of the 24th International
Conference on World Wide Web, pages 243–246, 2015. doi:
10.1145/2740908.2742839. URL
http://dx.doi.org/10.1145/2740908.2742839.

[18] SQL. Relational data model in dbms: Concepts, constraints, example. URL
https://www.guru99.com/relational-data-model-dbms.html.

[19] Dan Sullivan. NoSQL for mere mortals. Addison-Wesley, 2015.

[20] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
Arnetminer: extraction and mining of academic social networks. In
Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 990–998, 2008.

[21] Rik Van Bruggen. Learning Neo4j. Packt Publishing, Birmingham, 2014.
ISBN 978-1-84951-716-4.

[22] Website without author. What is cassandra?
http://cassandra.apache.org/, . Accessed 26.03.2019.

[23] Website without author. Inverted index. https://www.elastic.co/
guide/en/elasticsearch/guide/current/inverted-index.html, .
Accessed 11.04.2019.

[24] Website without author. Microsoft academic graph. https://www.
microsoft.com/en-us/research/project/microsoft-academic-graph/,
. Accessed 26.03.2019.

101

https://commons.apache.org/proper/commons-dbutils/
https://blog.panoply.io/cassandra-vs-mongodb
http://dx.doi.org/10.1145/2740908.2742839
https://www.guru99.com/relational-data-model-dbms.html
http://cassandra.apache.org/
https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

[25] Website without author. What is mongodb?
https://www.mongodb.com/what-is-mongodb, . Accessed 26.03.2019.

[26] Website without author. The mongo shell.
https://docs.mongodb.com/manual/mongo/, . Accessed 26.03.2019.

[27] Website without author. Mongodb system properties.
https://db-engines.com/en/system/MongoDB, . Accessed 26.03.2019.

[28] Website without author. Text indexes.
https://docs.mongodb.com/manual/core/index-text/, . Accessed
26.03.2019.

[29] Website without author. Espacenet patent search.
https://worldwide.espacenet.com/, 2017. Accessed 26.03.2019.

[30] Website without author. January 2018 graph update.
https://www.microsoft.com/en-us/research/project/academic/
articles/january-2018-graph-update/, 2018. Accessed 26.03.2019.

[31] Website without author. Academic knowledge api.
https://docs.microsoft.com/en-us/azure/cognitive-services/
academic-knowledge/home, 2018. Accessed 26.03.2019.

[32] Website without author. Canadian intellectual property office. http:
//www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/Home,
2019. Accessed 26.03.2019.

[33] Website without author. What do i find in dblp.xml?
https://dblp.uni-trier.de/faq/16154937, 2019. Accessed 06.05.2019.

[34] Website without author. Statistics - records in dblp.
https://dblp.org/statistics/recordsindblp, 2019. Accessed
26.03.2019.

[35] Website without author. About google patents.
https://support.google.com/faqs/answer/7049585, 2019. Accessed
26.03.2019.

[36] Website without author. Neo4j system properties.
https://db-engines.com/en/system/Neo4j, 2019. Accessed 26.03.2019.

[37] Website without author. Patstat. https://www.epo.org/
searching-for-patents/business/patstat.html#tab-1, 2019. Accessed
26.03.2019.

102

https://www.mongodb.com/what-is-mongodb
https://docs.mongodb.com/manual/mongo/
https://db-engines.com/en/system/MongoDB
https://docs.mongodb.com/manual/core/index-text/
https://worldwide.espacenet.com/
https://www.microsoft.com/en-us/research/project/academic/articles/january-2018-graph-update/
https://www.microsoft.com/en-us/research/project/academic/articles/january-2018-graph-update/
https://docs.microsoft.com/en-us/azure/cognitive-services/academic-knowledge/home
https://docs.microsoft.com/en-us/azure/cognitive-services/academic-knowledge/home
http://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/Home
http://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/Home
https://dblp.uni-trier.de/faq/16154937
https://dblp.org/statistics/recordsindblp
https://support.google.com/faqs/answer/7049585
https://db-engines.com/en/system/Neo4j
https://www.epo.org/searching-for-patents/business/patstat.html#tab-1
https://www.epo.org/searching-for-patents/business/patstat.html#tab-1

[38] Website without author. Web of science platform: Introduction.
http://clarivate.libguides.com/webofscienceplatform, 2019.
Accessed 13.04.2019.

103

http://clarivate.libguides.com/webofscienceplatform

	Introduction
	Outline

	Database Models
	Background
	Relational Models versus Non-Relational Models
	Motivations for NoSQL
	Scalability
	Data Variety
	Cost

	Non-Relational Models

	NoSQL Databases Comparison
	MongoDB
	Cassandra
	ElasticSearch
	Graph Database – Neo4J

	Bibliographic Databases
	Background
	Publication databases
	Google Scholar
	Microsoft Academic
	Web of Science

	Patent databases
	What is a Patent?
	Patent Types
	USPTO Patent Database
	Espacenet
	CIPO
	Google Patents
	PATSTAT

	Data Gathering
	Selected Approach
	Database Requirements
	Technology
	Limitations of MongoDB

	Data Sources
	Data Structure
	USPTO Data
	Microsoft Academic Graph Data
	PATSTAT Data
	DBLP Data
	Summary

	Data Preprocessing
	Data Conversion
	XML Conversion
	CSV Conversion

	Column Mapping
	Inserting to the Database
	Indexing
	Searching

	Software Solution
	Sources DB
	Data Sources DB
	Data acquisition
	REST API application
	Web interface

	Data Acquisition Application
	Architecture
	UserInterface package
	Controller package
	DataLoader package
	SourceDbConnection
	MongoDbConnection
	SourceDbLoader
	PatentLoader
	JsonMappingTransformer
	JsonParser

	Model package
	DataSource
	dao
	IDataSourceDAO
	DataSourceDAO
	DataSourceModel

	DbAccess package
	Logging
	Testing
	Unit Tests
	GUI Tests

	API Server Application
	Architecture
	Client-Server communication
	Query
	QueryRestService
	DataRetriever
	DbRecord
	Report
	StandardResponse

	REST API Specification
	Query Endpoint
	Request Format
	Response Format

	Database Testing
	RecordService class
	QueryServlet
	VisualizeServlet

	Future work

	Measurements
	Data
	Query creation
	USPTO Aanalysis
	MAG Aanalysis

	Performance Measuring
	Execution Environment
	Experiments

	Conclusion
	Appendixes
	Bibliography

