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Anotace

V této disertacéni préaci zkoumame rizné verze Thomassenovy hypotézy, ktera
iika, ze kazdy 4-souvisly hranovy graf je hamiltonovsky. Ukazujeme zndmé
pozitivni vysledky davajici ¢astecna feseni Thomassenovy hypotézy i znamé

vyvraceni silnéjsich hypotéz.
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Kapitola 1

Uvod

Hamiltonovské vlastnosti jsou jednou ze zakladnich otézek teorie grafu. Na-
chéazeji siroké uplatnéni v praxi napriklad pti planovani vyroby, v poc¢itacovych
sitich nebo dopravnich problémech. Thomassenova hypotéza patii k dulezitym
a intenzivné zkoumanym problémum této oblasti. Dokladem této skutecnosti
je napiiklad i to, ze ptrehledovy clanek (ktery je soucdsti této prace) obsa-
huje 67 referenci. Tématika, ktera je v praci zkoumana, zahrnuje Siroké spek-
trum otéazek. Za vSechny jmenujme konstrukce snarki, grafy na plochéach, hy-
perkostry, uzavérové operace a charakterizace grafovych tiid. Rozsah téchto
problému a dikazovych technik se neustdle rozsifuje v nadéji, ze novy thel

pohledu piinese néjaky posun - at uz dikaz, nebo nalezeni protipiikladu.

Préace je zpracovana formou souboru sedmi praci, které jsou publikovany
¢i zaslany k publikaci. V komentari jsou vysledky, které jsou predmétem diser-

tace, oznaceny hvézdickou.



Kapitola 2

Zakladni terminologie

Znaceni pouzité v této praci vychazi z knihy [3].

Graf je usporddand dvojice G = (V(G), E(G)), kde V(G) je konetnd
mnozina a £(G) je podmnozina mnoziny vsech dvojic vzéjemné ruznych prvku
z V(G). Povolime-li vice (koneény pocet) ruznych hran mezi stejnou dvojici
uzlu, fikdme, ze G = (V(G), E(G)) je multigraf. Mnozinu hran mezi jednou
dvojici uzli nazveme multihrana. Po¢et hran v multihrané e nazveme multipli-

citou multihrany e.

Okoli uzlu z v grafu G budeme znacit Ng(x) a dile zavedeme Ng[z] =
Ng(z) U{z}. Oznacime dg(z) = |Ng(x)| stupen uzlu z € V(G) a definujeme
mnozinu Vi (G) = {x € V(G)|dg(z) = k}. Volnd hrana je hrana, kterd ma
jeden uzel stupné 1. Klika je uplny podgraf nikoliv nutné maximalni. Induko-
vany podgraf F grafu G je podgraf, pro ktery kazda hrana grafu G mezi uzly
podgrafu F' je soucasné hranou podgrafu F. Podgraf indukovany mnozinou
uzlu M znacime (M). Grafem bez K, 3 rozumime graf, ktery neobsahuje K 3
jako indukovany podgraf. Stejnou vazbu budeme pouzivat i pro dalsi podgrafy.
Graf, ktery se skladd z kruznice C} s k uzly a uzlu sousediciho se vSemi uzly
kruznice Cj, (nazveme ho stied), nazveme k-kolo a oznac¢ime Wy. Sledem na-
zveme posloupnost uzli takovou, ze kazdé 2 po sobé jdouci uzly jsou spojené
hranou. Tahem nazveme sled, v némz se zadna hrana nepouziva dvakrat. Hra-

novy graf H grafu (multigrafu) G, znacime H = L(G), je graf s mnozinou

4



uzlu V(H) = E(G), v némz jsou uzly spojené hranou pravé tehdy, kdyz
odpovidajici hrany v G maji spoletny uzel. Graf G nazveme hranovym gra-
fem (hranovym grafem multigrafu), jestlize existuje graf (multigraf) H tak, ze
G = L(H). Rekneme, ze uzel u je simplicidlni uzel v G, jestlize jeho okoli
N¢(u) indukuje dplny graf. Rekneme, ze graf G je cyklicky hranové k-souvisly,
jestlize neobsahuje hranovy ez R takovy, ze |R| < k a soucasné alespon 2 kom-
ponenty G — R obsahuji kruznici. Rekneme, ze graf G je esencidlné hranové
k-souvisly, jestlize neobsahuje hranovy ez R takovy, ze |R| < k a soucasné ale-
sponi 2 komponenty G — R obsahujf hranu. Jestlize {z,y} C V(G) je uzlovy fez
grafu G a K, K jsou komponenty G —{x,y}, pak podgrafy (V(K;)U{z,y})a
a (V(Ky) U{z,y})e nazveme bikomponenty grafu G urcené {z,y}.

Kruznici (cestu) v grafu G nazveme hamiltonovskou, jestlize obsahuje vSech-
ny uzly grafu GG. Graf nazveme hamiltonovskym, jestlize ma hamiltonovskou
kruznici. Graf G nazveme hamiltonovsky souvislym, jestlize pro kazdou dvojici
uzlu x,y € V(G) existuje hamiltonovska cesta s koncovymi uzly z,y. Graf G
nazveme k-hamiltonovsky souvislym, jestlize G — X je hamiltonovsky souvisly
pro kazdou mnozinu uzla X C V(G) s |X| = k. Graf G je 2-hranové hamil-
tonovsky souvisly, jestlize gratf G + X ma hamiltonovskou kruznici obsahujici
v8echny hrany z X pro kazdou X C E*(G) = {zy|z,y € V(G)}s1 < |X| < 2.
Rekneme, Ze uzavieny tah (kruznice) T' v grafu G je dominantni, jestlize kazda
hrana v G' m4 alespon jeden uzel v T'. Jestlize kruznice (resp. tah) obsahuje
alespon jeden uzel dané hrany e, fekneme, ze hranu e dominuge. Jestlize tah,
ktery dostaneme odebranim prvni a posledni hrany tahu 7', dominuje vSechny
hrany grafu G, fekneme, ze tah T je vnitrné dominantni (zna¢ime IDT z ang-
lického internally dominating trail). Jestlize tah, ktery dostaneme odebréanim
prvni hrany tahu 7', dominuje vSechny hrany grafu G, ozna¢ime ho HIDT (z

anglického half internally dominating trail).

Pokud graf G méa pro kazdy uzel z hamiltonovskou cestu P takovou, ze
x je jeji koncovy uzel, nazveme graf G P-souvislym. Pro podmnoziny X a YV
mnoziny V(G) takové, ze X NY = (), oznacéime E¢(X,Y) mnozinu hran mezi
X aY,addleeq(X,Y) = |Eq(X,Y)|. Kruznici C grafu G nazveme Tutteovou
kruznict grafu G, jestlize (a) C' je hamiltonovska nebo (b) [V (C)| > 4 a kazda

komponenta G — C' méa nejvyse tii sousedni uzly na C. Graf je k-regularni,



jestlize vSechny uzly grafu maji stupen k. Graf, ktery je 3-regularni, oznac¢ime
také jako kubicky. Graf je hranové k-obarvitelny, jestlize hrany lze obarvit
k barvami tak, ze zadné dvé hrany se spolecnym uzlem nemaji stejnou barvu.
Druhou mocninu grafu G dostaneme spojenim vSech uzlu ve vzdélenosti 2 hra-
nami a budeme ji znacit G?. Bud K koneény systém mmnozin. Prinikovyj graf
(pranikovy multigraf) systému K nazveme graf (multigraf), ve kterém kazdou
mnozinu z K reprezentuje jeden uzel a uzly jsou spojené hranou (multihra-
nou s multiplicitou i) pravé tehdy, kdyz mnoziny korespondujici uzlum maji

neprazdny prunik (s ¢ prvky).



Kapitola 3

Charakterizace podtrid grafu
bez K 1.3

3.1 Charakterizace hranovych grafii multigra-

fa

Krausz [38](1943) dokazal nasledujici charakterizaci hranovych grafu multigrafi.
Krauszovym pokrytim grafu G nazveme pokryti grafu G klikami, pro které
plati:
(1) kazda hrana je v alespon jedné klice,

(71) kazdy uzel je préavé ve dvou klikach.

Véta 3.1 [38]. Nepréazdny graf G je hranovy graf multigrafu praveé tehdy,
kdyz existuje Krauszovo pokryti grafu G.

Jestlize G je hranovy graf multigrafu a £ = {Kj, ..., K,,} je Krauszovo
pokryti G, pak multigraf H takovy, ze G = L(H), muze byt ziskan z K jako
prunikovy multigraf systému mnozin {V (K1), ..., V(K,,)}.

Bermond a Meyer [6](1973) dokdzali charakterizaci hranovych grafi mul-

tigrafu pres zakazané podgrafy.

Véta 3.2 [6]. Necht G je graf. Pak nasledujici podminky jsou ekviva-

lentni:



Obréazek 3.1

(a) Graf G je hranovy graf multigrafu.

(b) Graf G neobsahuje jako indukovany podgraf zadny z grafii na obrazku
3.1.

(¢) Z grafu G dostaneme hranovy graf, jestlize nahradime uzlem kazdou

maximalni mnozinu M, pro kterou plati x,y € M < (Ng[z] = Ngly]).

Kliku C grafu G nazveme normalizovanou, pokud kazdy uzel z € V(G) \
V(C) bud lezi mimo Ng(C'), nebo existuje rozdéleni C' na 3 disjunktni podkliky
K, Ky, K3 takové, ze C — (Ng(x)) = Ky, a pro uzly y, z z ruznych klik K;
plati, ze Ng[y] # Nelz].

Véta 3.3 [6]. Graf G je hranovy graf multigrafu pravé tehdy, kdyz neob-
sahuje jako indukovany podgraf K 3 ani G5 na obrazku 3.1 a navic mnoZina
maximalnich klik, které nejsou normalizované, pokryva kazdy uzel grafu G

nejvyse dvakrat (kazdy uzel G je v nejvyse dvou takovych klikach).

Vzor hranového grafu multigrafu neni urcen jednoznacné. Zverovic [63]
(1997) dokéazal nésledujici vétu. Obdobnou vétu pro hranové grafy dokézal
Whitney jiz v roce 1932. Zdkladni graf multigrafu (podle basic graph - Zverovic

[63]) je graf, ktery vznikne nahrazenim kazdé jeho multihrany hranou. Volnd
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multihrana je multihrana, které v zékladnim grafu odpovidé volna hrana. Mul-
tihvézdou nazveme multigraf, jehoz zédkladni graf je izomorfni s grafem K ;,7 >
2. Stfed multihvézdy S nazveme uzel z, ktery je spojen hranami se vsSemi
ostatnimi uzly S. Ostatni uzly multihvézdy S nazveme listy. Pokud stied z je
jediny uzel S, pro ktery plati dg(x) # ds(z), tekneme, ze S je volnd multihvézda
a uzel xr nazveme kotenem. Multigraf, jehoz zakladni graf je izomorfni s C se
nazyva multitrojuhelnik. Pokud pro pravé jeden uzel x v multitrojihelniku H
v grafu G plati dg(z) # dg(z), nazveme H volnyg multitrojiuhelnik a uzel z

nazveme korenem.
Ted zavedeme transformaci libovolné zvoleného multigrafu G ([63]).

Operace A. V libovolné zvolené maximalni (vzhledem k inkluzi) volné mul-

tihvézdé slou¢ime vsechny listy do jednoho uzlu.

Operace B. Pro libovolné zvoleny volny multitrojihelnik H s kofenem v
a mnozinou uzlu V(H) = v,z,y odstranime vSechny hrany mezi uzly v, z.
Nésledné doplnime hrany mezi uzly v,y tak, ze stupen v se pii transformaci

nezmeni.

Multigraf, ktery dostaneme z GG opakovanym pouzitim operaci A, B v libo-

volném poradi, dokud je to mozné, oznacime AB(G).

Véta 3.4 [63]. Budte H a H' souvislé multigrafy, jejichz hranové grafy
jsou izomorfni. Pak multigrafy AB(H) a AB(H’) jsou vzdy izomorfni, ledaze
jeden z H, H' je multitrojihelnik a druhy neizomorfni multitrojihelnik nebo

multihvézda.

Zajimavy dusledek Zverovicovy véty je ukdzén v [54]*. Priddni velmi pfi-
rozené podminky, ze simplicialni uzel v hranovém grafu odpovida volné hrané

v multigrafu, davéd jednoznacny vzor pro hranové grafy multigrafi.

Véta 3.5 [54]*. Bud G souvisly hranovy graf multigrafu. Pak existuje az
na izomorfismus jednoznacné urceny multigraf H takovy, ze G = L(H) a uzel
e € V(G) je simplicidlni v G pravé tehdy, kdyz korespondujici hranae € E(H)

je volna hrana v H.



Tento vzor je velmi dulezity pro dikaz véty o uzavéru grafu bez K 3 za-
chovavajicim 1-hamiltonovskou souvislost, budeme ho znacit H = L} (G) a
pro vzor H hranového multigrafu GG jednozna¢né urceny podle véty 3.5 a hranu
a € E(H) odpovidajici uzlu a € V(G) oznacime a = LX;(G)(CL).

Dulezitou ttidou z hlediska vyuzitelnosti uzavéru jsou hranové grafy mul-
tigrafu bez trojihelniki. Charakterizacemi této tiidy se zabyvaji Kloks, Krat-
sch a Miiller [34]. Pouzivaji zna¢né nestandardni terminologii. Hranové grafy
multigrafu bez trojuhelniku napiiklad nazyvaji domina. Definuji je jako tiidu,
kde kazdy uzel grafu se nachazi nejvyse ve dvou maximalnich klikach. Z Krauz-

sovy charakterizace 1ze snadno dokdzat nésledujici lemma.

Lemma 3.6. Graf G je domino pravé tehdy, kdyz existuje multigraf H
bez trojithelniki takovy, ze L(H) = G.

Dikaz. Nejprve ukdzeme, ze kazdé domino je hranovy graf multigrafu bez
trojuhelnikt. Oznacme systém klik v grafu G napliujici definici domina IC =
{K;,i = 1...m}. Systém klik K pokryvéd vSechny hrany v G, protoze jinak
nepokrytd hrana je v maximdlni klice, kterd dava spor s definici. Bud K’
systém klik, ktery dostaneme z K; doplnénim jednouzlovych klik pro vSechny
uzly, které jsou v pravé jedné maximalni klice (jsou to simplicidlni uzly grafu
(). Systém klik K’ je Krauzsovo pokryti grafu GG. Pokud by vzor odpovidajici
K’ obsahoval trojihelnik 7', kazd4 jeho hrana je v G ve dvou klikach K. Obraz

T je v G maximalni klika a dava spor s definici K.

Necht naopak G je hranovy graf multigrafu H bez trojihelniki. Protoze
v grafu H nejsou trojuhelniky, z definice hranového grafu odpovidaji vsechny
kliky L(H) (tedy i maximalni) multihvézdam v H. Z toho vyplyvé, ze maxi-
malni kliky L(H) jsou podmoziny Krauzsovych klik L(H) korespondujicich
s H. Graf L(H) spliiuje definici domina. [ |

Kloks a kol. charakterizuji domina pres zakazané podgrafy.

Véta 3.7 [34].  Graf je domino pravé tehdy, kdyz je bez K 3, bez 4-kola a

bez druhé mocniny cesty s péti uzly.
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3.2 Charakterizace hranovych grafa

Pokud existuje Krauzsovo pokryti hranového grafu G multigrafu H takové, ze
korespondujici vzor H' je graf, graf G je podle definice hranovy graf a muzeme
takovym pokrytim hranové grafy grafi dokonce charakterizovat. Jedna se o nej-

starsi charakterizaci hranovych grafu vyslovenou Krauszem [38] jiz v roce 1943.

Véta 3.8 [38]. Neprazdny graf G je hranovy pravé tehdy, kdyz existuje
klikové pokryti K grafu G takové, ze kazda hrana je v pravé jedné klice v K

a kazdy uzel je pravé ve dvou klikach v K.

Nésledujici véta (zndmd jako Whitneyho véta) ukazuje jeden z rozdilu mezi

hranovymi grafy a hranovymi grafy multigrafu.

Véta 3.9 [60]. Budte G,G’ souvislé grafy, jejichz hranové grafy jsou izo-
morfni. Pak grafy G,G’ jsou vzdy izomorfni s vyjimkou pripadu, kdy jeden je
Cg a druhj K1,3-

Poznamenejme, ze diive uvedend podminka pro jednoznac¢ny vzor hra-
novych grafi multigrafii neni rozsitenim vzoru z Whitneyho véty na hra-
nové grafy multigrafu a existuje nekonecna tiida 2-souvislych hranovych grafi,
pro které se oba vzory lisi. Obrazek 3.2 ukazuje piiklad takovych grafu. Graf
G je hranovy graf a grafy Hy, Hy dva ruzné vzory G. Graf H; je jediny vzor G
podle véty 3.9, zatimco Hs je jediny vzor G podle véty 3.5. Nekonecnou tiidu
snadno dostaneme pokud jeden z trojihelniku grafu G prislusné nahradime

libovolné velkou klikou.

H, H, G

._<>_.

Obrézek 3.2

Charakterizaci hranovych grafii pomoci zakazanych podgrafi nasel Beineke
[4](1970).
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Véta 3.10 [4]. Graf G je hranovy praveé tehdy, kdyz neobsahuje indukovany

podgraf izomorfni s nékterym grafem na obrazku 3.3.

SRS
< < <P
SNV,

Obrazek 3.3

Doplnime jesté charakterizaci hranovych grafu grafu bez trojihelniku. Bod
(7ii) pochédzi od A.R. Rao, zbytek dokazali Beineke a Hemminger. Vse je v [5]
(1978).

Véta 3.11 [5].  Nasledujici tvrzeni jsou ekvivalentni pro souvislé grafy H
s alesponi ¢tyrmi uzly:
(1) H je hranovy graf grafu bez trojihelniku,
(17) dveé ruzné maximalni kliky grafu H maji spoleény nejvyse jeden uzel a
prunikovy graf maximalnich klik v H je bez trojihelnikii,
(7ii) vSechny uzly sousedni k obéma uzlim libovolné hrany indukuji v H
kliku a okoli kazdého uzlu Ize pokryt dvéma klikami,
(iv) H neobsahuje indukované podgrafy K, 3 a druhou mocninu cesty se ¢tyi-

mi uzly.
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Kapitola 4

Uzavérové operace na grafech
bez K 1.3

4.1 Obecny tvod

Uzavérové operace na grafech jsou velmi dulezité, protoze umoznuji rozsitovat
platnost vét z hranovych grafu (multigrafu) na sirs{ grafové tiidy. Nés zajimaji
predevsim hamiltonovské vlastnosti, ale tyto techniky lze vyuzit také v jinych
oblastech (napf. parovani). Hranové grafy multigrafu jsou vyhodné zejména
moznosti prejit ke vzoru. Casto je mozné pomoci uzavéru vzor omezit napiiklad
na grafy bez trojuhelniku. Uvedeme znamé korespondence pro hamiltonov-

skost, hamiltonovskou souvislost, P-souvislost a Tutteovy kruznice.

Souvislost mezi dominantnimi tahy a hamiltonovskymi kruznicemi dokazali
Harary a Nash-Williams [28] (1965).

Véta 4.1 [28].  Bud G graf s alespon tremi hranami. Pak L(G) je hamilto-

novsky pravé tehdy, kdyz G ma uzavieny dominantni tah.

Podobny argument ddva analogii pro hamiltonovskou souvislost (viz napf.
[46]).
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Véta 4.2 [46]. Bud G graf s alespon tremi hranami. Pak L(G) je hamilto-
novsky pravé tehdy, kdyz kdyz G ma ID'T' s koncovymi hranami ey, e5 pro kazdy
par hran ey, es € E(G).

Jen s velmi malou zménou lze ukazat obdobu pro P-souvislost.

Véta 4.3. Bud G graf s alespon tfemi hranami. Nésledujici tfi podminky
jsou ekvivalentni:
(1) Graf L(G) je P-souvisly.
(1) Graf G ma IDT s prvni hranou e pro kazdou hranu e € E(G).
(1ii) Graf G mda HIDT s prvni hranou e pro kazdou hranu e € E(G).

Cada a kol. [19]* dokézali nasledujici korespondenci. Uzavieny tah T' v grafu
H nazveme slaby Tutteiv uzavieny tah grafu H jestlize (a) Ey(T) = E(H),
nebo (b) |Ey(T)| > 4 aey(F,T) <3 pro vsechny F € Fy(T) = {F|F je kom-
ponenta H — T pro kterou |V (F)| > 2}. Kruznici C' v grafu bez K 3 nazveme
kruznici s (x)-vlastnosti, jestlize pro kazdy simplicidlni uzel = na kruznici C

kruznice C' obsahuje vSechny uzly Ng(x).

Véta 4.4 [19]*. Bud H graf bez trojiihelnikii. Jestlize H m4 slaby Tuttetiv
hranové maximalni uzavreny tah, pak L(H) ma Tutteovu maximalni kruznici

s (x)-vlastnosti.

7 hamiltonovskych vlastnosti nelze uzaveérové operace pouzit ptimo pro pan-
cyklicitu a silnéjsi vlastnosti, jak bylo ukazano napt. Brandtem a kol. [12](2000).
Pro hamiltonovskou souvislost, P-souvislost, délku nejdelsi kruznice, hamil-
tonovskost a existenci hamiltonovské cesty jsou znamé uzavérové operace,

pii kterych jsou tyto vlastnosti stabilni.

Necht G je tifda grafi. Uzdvérem na G budeme rozumét binarni relaci R
na G takovou, ze levy obor R je celd tiida G a pro kazdou dvojici [G1, G3]
relace R plati V(G1) = V(Gs) a E(G1) C E(G2).
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4.2 Uzavér se stabilni hamiltonovskosti

Patrné nejpouzivanéjsi uzaveér v oblasti grafi bez K3 je Ryjackuv uzaver
[52](1997).

Uzel z v grafu G nazveme k-uzaviratelny, jestlize jeho okoli v G indukuje
k-souvisly netplny graf. Pro 1-uzaviratelné uzly budeme pouzivat pouze ozna-
¢eni uzaviratelny uzel. Lokdlnim ziplnénim uzlu x nazveme graf G vytvoreny
z grafu G doplnénim hran (Ng(z)) na kliku. Ryjdékovgm uzdvérem grafu G,
znaceno clg(G), rozumime graf, ktery vznikne z grafu G opakovanym lokdlnim
zipliovanim uzaviratelnych uzlu, dokud je toto mozné. U grafu clgr(G) tedy
kazdé souvislé okoli (Ng(x)) je klika.

Oznacme ¢(G) délku nejdelsi kruznice v grafu G. Oznacme p(G) délku
nejdelsi cesty v grafu G. Body (i) — (ii1) nésledujici véty dokazal Ryjacek [52],
bod (iv) je dokdzan Brandtem a kol. [12].

Véta 4.5 [52], [12]. Bud G graf bez K 3. Pak
(1) clg(G) je jednoznacné definovan,
(11) existuje graf H bez trojihelniki tak, ze clgr(G) = L(H),
(ii1) ¢(G) = c(clr(@)),
(iv) p(G) = p(clr(G)),

Uzaver se také velmi dobfe chova vuéi kruznicim s (x)-vlastnosti.

Déle uvedenou vétu a jeji disledek vyuzili Cada a kol. [19]* ke zkouman{
hypotéz souvisejicich s Tutteovymi cykly na grafech bez K;3. Kruznici C
v grafu G nazveme Tutteovou maximdlni kruznici grafu G, jestlize C' je Tu-

tteova kruznice a maximéalni kruznice grafu G.

Véta 4.6 [19]*.  Bud G graf bez K; 3 a bud v uzaviratelny uzel v G. Jestlize
(" je kruznice s (x)-vlastnosti v grafu G}, pak G ma kruznici C' s (x)-vlastnost{

takovou, ze V(C) = V().

Dusledek 4.7 [19]*. Bud G graf bez K3 Jestlize clg(G) md Tutteovu
maximalni kruznici s (x)-vlastnosti, pak G m& Tutteovu maximalni kruznici

s (x)-vlastnosti.
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4.3 Uzaveéer se stabilni hamiltonovskou souvis-

losti

Hlavni néstroj popsany v této kapitole bude multigrafovy uzavér (zkracené

M-uzéveér) grafu bez K 3 zavedeny v [54]*.

Oznacime k-uzdvér grafu G, znaceny cly(G), graf vznikly z G rekurzivnim
zuplnovanim k-uzaviratelnych uzli, dokud je toto mozné. Graf je k-uzavreny,

jestlize G = cli(G). Pro nés jsou dulezité néasledujici vlastnosti.

Véta 4.8.  Pro kazdy graf G bez K, 3,
(i) [9] k(@) je definovédn jednoznacné pro kazdé k > 1,
(17) [9] cla(@G) je P-souvisly pravé tehdy, kdyz G je P-souvisly,
(1ii) [53]" cla(G) je hamiltonovsky souvisly pravé tehdy, kdyz G je hamilto-

novsky souvisly.

Pouzitim charakterizace hranovych grafu multigrafit od Bermonda a Meye-
ra [6] je snadné ukdzat, ze cly(G) neni hranovy graf multigrafu, protoze grafy
G2, G4 charakterizace na obrazku 3.1 jsou 2-uzaviené. Ale 2-uzavieny graf

neobsahuje zadny z 5 zbyvajicich zakézanych podgrafu charakterizace [54]*.

Bud J = uguy...up4q sled v G. Rekneme, ze J je dobry v G, jestlize k > 4,
J? C G aprokazdé i,0 < i < k—4 podgraf indukovany u;, ..., ;15 je izomorfni
s (G5 nebo G4 na obrazku 3.1.

Lemma 4.9 [54]*. Bud G souvisly 2-uzavreny graf bez K, 3, ktery nenf
mocnina kruznice, a bud J = ug...up4, dobry sled v G, k > 5. Pak
(1) do(uw;)) =4,i=3,....k — 2,

(19) uy...uy je cesta.

Dobry sled J je mazimdlni, jestlize pro kazdy dobry sled J' v G, J je
cast J', implikuje J = J'. Lze ukazat, ze jestlize je G souvisly, 2-uzavieny a

neni druhd mocnina kruznice, pak kazdy dobry sled je v néjakém maximalnim
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dobrém sledu a dva ruzné maximélni dobré sledy jsou uzlové disjunktni (viz
[54]%)-

Ted muzeme definovat M-uzdvér nasledujicim zpusobem.
Bud' G souvisly graf bez K 3, ktery neni druhd mocnina kruznice.
1. Poloz Gy = cly(G), i := 1.
2. Jestlize (G; obsahuje dobry sled, pak
(a) vyber maximalni dobry sled J = uguy . . . Uupy1,
(b) poloz Giy1 = cl(((Gi)3,)3,)
(¢)i:=1i+1 a jdi na (2).
3. Poloz ™ (G) = G;.

Pokud G je druhd mocnina kruznice, definujeme cI™(G) jako tiplny graf.

Véta 4.10 [54]*. Bud G souvisly graf bez K3 a bud cI™(G) M-uzdveér
grafu G. Pak
(i) (@) je jednoznacné definovén,
(i1) existuje multigraf H tak, ze cI”(G) = L(H),
(iii) cI™(G) je hamiltonovsky souvisly pravé tehdy, kdyz G je hamiltonovsky
souvisly,

(iv) (G je P-souvisly pravé tehdy, kdyz G je P-souvisly.

Graf G bez K3 nazveme M-uzavieny, pokud G = cl™(G). Pokud vez-
meme jednoznacné urceny vzor H hranového grafu multigrafu G' podle véty
3.5 muzeme M-uzaviené grafy snadno charakterizovat. Pfipomindame zave-
dené znacen{ takového vzoru H = L}/ (G), hranu @ € E(H) odpovidajicf uzlu

a € V(G) oznacime a = L;j(G)(a).

Véta 4.11 [54]*.  Bud G graf bez K, 3 a Ty, Ty, T3 grafy na obrdzku 4.1. Pak
G je M-uzavieny pravé tehdy, kdyz G je hranovy graf multigrafu a Ly} (G)
neobsahuje podgraf S (ne nutné indukovany) izomorfni s nékterym z grafi
11,15, nebo Ts.

17



T1 T2 T3

Obrazek 4.1

Multigrafovy uzaveér lze dale zesilit a zachovat pti tom stabilitu hamilto-
novské souvislosti a P-souvislosti. Publikovan byl uzavér pro hamiltonovskou
souvislost, ale obdobnym zptusobem lze zesilit i uzaveér pro P-souvislost. Uvede-
me ho prvni kvuli vétsi jednoduchosti jako ukazku metody. Zakladnim néstro-

jem pro vyzkum v této oblasti je nasledujici véta.

Véta 4.12 [12].  Bud z uzaviratelny uzel grafu G bez K, 3 a bud'te a,b dva
ruzné uzly grafu G. Pak pro kazdou nejdelsi cestu P’'(a,b) s koncovymi uzly
a,b v grafu G existuje v grafu G cesta P takovd, ze V(P') = V(P) a P ma
alespon jeden koncovy uzel z mnoziny {a,b}. Navic v grafu G je cesta P(a,b)
s koncovymi uzly a,b takovd, ze V(P) = V(P') kromé moznych nasledujicich
dvou situaci (az na symetrii mezi a,b):
(1) existuje indukovany podgraf F C G izomorfni s grafem S na obrazku 4.2
takovy, ze uzly a,x maji stupen 4 v grafu F. V tom pripadé v grafu
G je cesta P, s koncovym uzlem b, pro kterou V(P,) = V(P’). Jestlize
navic b € V(F), pak v grafu G je také cesta P, s koncovym uzlem a
takova, ze V(P,) = V(P').
(17) x = a,ab € E(G). V tom pripadé graf G obsahuje cestu P, s koncovym
uzlem a, pro kterou V(P,) = V(P') i cestu P, s koncovym uzlem b,
pro kterou V(B,) = V(P').
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Obrézek 4.2

Nyni muzeme definovat uzaver.

Pro dany graf G bez K 3, zkonstruujeme graf G nésledujicim zpusobem.

(i) Jestlize G je P-souvisly, polozime GT = clz(G).
(73) Jestlize G neni P-souvisly, rekurzivné provadime lokalni ziplnéni v ta-

kovém uzaviratelném uzlu, pro ktery vysledny graf stéle neni P-souvisly,

tak dlouho, dokud je to mozné. Ziskame posloupnost grafu Gy, ..., Gy
takovou, ze

e G; =G,

¢ Gip1 = (Gy);, pro néjaky uzaviratelny uzel x;,7 =1,...,k — 1,

e G neni P-souvisly,
e pro kazdy uzaviratelny uzel € V(Gy):,(Gy): je P-souvisly,

a polozime G* = Gj,.

Graf GF ziskany predchozi konstrukei nazveme P-uzdvér grafu G a graf G

rovny svému P-uzavéru nazveme P-uzavieny.

Véta 4.13*.  Bud G graf bez K,3 a bud G' jeho P-uzdvér. Pak GY m4

nasledujici vlastnosti:
(i) V(G) =V (GY) a E(G) c E(GTP),
(it) GT je ziskdn z grafu G posloupnosti lokélnich zipInéni v uzaviratelnych
uzlech,
(iti) G je P-souvisly prave kdyz Gt je P-souvisly,
(iv) GY = L(H), kde H je hranovy graf s nejvyse jednim trojiihelnikem,
(v) jestlize P nema hamiltonovskou cestu s koncovym uzlem a pro néjaky
a € V(G) a X je trojithelnik v H, pak LX/}(GP)(Q) € E(X).
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Duikaz. Body (¢)—(éii) plynou piimo z definice uzavéru. V diukazu nebudeme
pouzivat vzor hranovych grafi odvozeny z véty 3.9. Podle véty 4.10 je GF
M-uzavieny a tedy hranovy graf multigrafu. Pokud H = L;}(GT) obsahuje
multihranu eq, es, nejsou hrany eq, eo v grafu H v trojihelniku podle véty 4.11.
Z toho plyne, ze L(ey) je uzaviratelny uzel v grafu G a neexistuje podgraf S
takovy, ze ds(L(e1)) = 4. Podle véty 4.12 muzeme L(e;) uzaviit pii zachovani

P-souvislosti a dostavame spor s P-uzavienosti.

Predpokladejme, ze graf H obsahuje trojihelnik C', pro ktery neplati tvr-
zeni v bodu (v) véty. Pak obraz libovolné hrany C' v grafu G je uzaviratelny
uzel a podle véty 4.12 ho lze uzaviit pii zachovani P-souvislosti. To je spor s
definici G Jestlize graf H obsahuje dva riizné trojihelniky C;, Cy, podle véty
4.11 jsou hranové disjunktni a jeden z nich proto nespliuje tvrzeni v bodu (v)

véty. Podle predchoziho dostavame spor. [ |

Ted ukdzeme, ze na tiidé grafu bez K, 3 neexistuje uzdvér se stabilni P-sou-

vislosti na tiidu hranovych grafu grafu bez trojuhelniku.

Véta 4.14*.  Na tridé 3-souvislych hranovych grafii neexistuje uzaver cl
takovy, ze kazdy graf cl(G) je hranovy graf bez trojithelnikii a P-souvislost je

stabilni.

Dikaz. Predpokladejme, ze véta neplati a takovy uzavér existuje. Vezméme
graf H na obrazku 4.3 a podle obrazku oznac¢me i uzly zq,--- ,xs. Nejprve
ukdzeme, ze v grafu H neexistuje HIDT s prvni hranou xsxs (na obrazku
vyznacena silné pro lepsi orientaci) a tedy podle véty 4.3 graf G = L(H)
neni P-souvisly. Necht tedy naopak X je HIDT v grafu H s prvni hranou
x3rs. V grafu H jsou tii podgrafy izomorfni s Petersenovym grafem bez hrany.
Oznacéme je Py, P, (ty na obrazku dole) a Ps (ten na obrdzku nahofe). Protoze
Petersenuv graf nema hamiltonovskou kruznici, 1ze snadno odvodit, ze poza-
dovany X konéi v P3. Pro P; (resp. P,) pak existuje jedind moznost prichodu
- kruznice s uzlem x3 (resp. x5) prochazejici viemi uzly P, (resp. P») kromé
uzlu x4 (resp. xg). Tyto podminky nelze splnit soucasné. Graf G tedy neni

P-souvisly.
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Obréazek 4.3

Pokud se pokusime pfejit priddnim hran do grafu G na hranovy graf
grafu bez trojuhelniki, dostaneme podle véty 3.11, ze vSechny tii kliky hra-
nového grafu G odpovidajici uzlum trojuhelniku ve vzoru H je tteba uzaviit
do spoleéné kliky. Takovy graf je ale P-souvisly (potfebné cesty lze snadno
najit, v krajnim piipadé pomoci pocitace a jen oveérit spravnost), coz dava

spor.

Nekonecnou tiidu 3-souvislych hranovych grafii, které nelze prevést prida-
nim hran na hranové grafy grafii bez trojihelnika pii zachovani P-souvislosti,
dostaneme navysenim poc¢tu simplicidlnich uzlu v klikach se simplicialnimi uzly
grafu G = L(H). |

Ted uvedeme zesileni M-uzévéru pro hamiltonovskou souvislost dokdzané
Kuzelem a kol. [41]*.

Pro dany graf G bez K 3 zkonstruujeme graf GM nésledujici konstrukef.
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(i) Jestlize G je hamiltonovsky souvisly, polozime GM = clg(G).
(17) Jestlize G neni hamiltonovsky souvisly, rekurzivné opakujeme lokalni
zuplnéni v takovych lokalné souvislych uzlech, pro které vysledny graf

stale neni hamiltonovsky souvisly, dokud je to mozné. Ziskdame posloup-

nost grafu G, ..., G} takovou, ze
i Gl = G7
o (i1 = (Gy);, pro ngjaky uzaviratelny uzel z;,i =1,...,k — 1

e (G neni hamiltonovsky souvisly

e pro kazdy uzaviratelny uzel x € V(Gg):,(Gy): je hamiltonovsky
souvisly,

a polozime GM = Gj,.

Graf GM ziskany piedchozi konstrukef nazveme silng M-uzdvér (nebo zkracené
SM-uzdvér) grafu G, a graf G rovny svému SM-uzavéru nazveme SM-uzavieny.

Nésledujici véta dava prehled vlastnosti.

Véta 4.15 [41]*.  Bud G graf bez K, 3. Pak existuje graf GM takovy, ze
(1) existuje posloupnost uzli 1, ...,x,_1 € V(G) a grafy Gy, ...Gy takové,
ze G1 = G, Gi+1 = G;NZ = 1, ,k? - 1, a Gk = GM,
(ii) G je hamiltonovsky souvisly pravé tehdy, kdyz G je hamiltonovsky
souvisly,
(1i1) existuje multigraf H takovy, ze
(o) GM = L(H),
(8) H neobsahuje 2 trojiihelniky se spolecnou hranou a zadnou multi-
hranu s multiplicitou vétsi nez 2,

(v) H je bud’ bez multihran a obsahuje nejvyse 2 trojiihelniky, nebo

neobsahuje zadny trojihelnik a nejvyse jednu multihranu,

(0) jestlize H obsahuje trojithelnik T, pak H ma IDT s koncovymi
hranami e, f pro kazdé e, f € E(H) se, fNT =10,

(e) jestlize H obsahuje multihranu ef, pak (e, f) je jedind dvojice,

pro kterou v H neni IDT s koncovymi hranami e, f.
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Nezname polynomialni algoritmus pro rozhodnuti zda je graf SM-uzavieny.
Nevime, zda néjaky SM-uzavieny graf obsahuje alespon jeden trojuihelnik.

Ryjacek a Vrana ukazali nasledujici vétu.

Véta 4.16 [54]*.  Na tridé 3-souvislych hranovych multigrafii neexistuje
uzaver cl takovy, ze kazdy graf cl(G) je hranovy graf a hamiltonovska souvislost

je stabilni.

Poznamenejme, ze definice uzavéru v ¢lanku [54]* je sice jind, ale argu-
ment dukazu (pfidédni hrany do zakdzaného podgrafu pro hranové grafy vede
k hamiltonovské souvislosti grafu) projde i pro nasi definici. Déle se podarilo
dokazat nékolik nasledujicich lemmat popisujicich strukturu SM-uzavienych

grafu.

Lemma 4.17 [54]*. Bud G SM-uzavieny graf a bud H = L,; (G). Pak H

neobsahuje trojihelnik s uzlem stupné 2 v H.

Lemma 4.18 [54]*. Bud G SM-uzavieny graf, bud H = L,}(G). Pak
H neobsahuje podgraf H izomorfni s kruznici Cs s uzlem stupné 2 v H a

s chordou.

Lemma 4.19 [54]*. Bud G SM-uzavieny graf a bud H = L;}(G). Pak
H neobsahuje kruznici C' délky 5 takovou, Ze nékteré dva uzly kruznice C
maji stupenn 2 v H a néktera hrana C' je v multihrané s multiplicitou 2 nebo

v trojuhelniku v H.

Lemma 4.20 [54]*. Bud G SM-uzavieny graf, bud H = L,;}(G) a bud F
graf s mnozinou uzli V(F) = {vy,vq,v3,v4, 05,2} a mnozinou hran E(F) =
{109, Vo3, V3V, VU5, VsVT, V3V, 201, 209} (Viz obrazek 4.4). Pak H neobsahuje

podgraf H izomorfni s grafem F takovy, ze Ny ({vy, vy, vs,v5}) C V(H).
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Obrazek 4.4

4.4 Uzavér se stabilni 1-hamiltonovskou sou-

vislosti

Z uvednych poslednich dvou uzavéru by se mohlo zdat, ze klicova pro cely
postup je snaha uzavirat ”co nejvice”. Posledni uzavér dokazany Ryjackem a

Vranou [55]* ukazuje, ze tomu tak zcela neni.

Bud G graf bez K; 3 a bud = € V(G) takové, ze G — x nenf hamiltonovsky

souvisly. Bud G, graf ziskany nasledujici konstrukei.

(1) Poloz Gy := G, i:=0.

(2) Jestlize existuje u; € V(G;) takové, ze u; je uzaviratelny v grafu G; —x a
soucasné (G;);, — neni hamiltonovsky souvisly, pak poloz Giy1 = (Gy);,
a jdi na (3),

jinak poloz éw = (5, a zastav.

(3) Nastav i :=1i+ 1 a jdi na (2).

Pak tekneme, ze G, je cédstecny x-uzdavér grafu G.

Podle nasledujici véty 4.21* je graf G, — 1 hranovym grafem multigrafu, a
tedy v ném existuje jednoznacéné uréené Krauszovo pokryti K = { K3, ..., K, }
takové, ze prunikovy multigraf systému mnozin {V(K3), ..., V(K,,)} je H, H =
L;;/ (G). Kdykoliv nadile v souvislosti s G, —x hovoffme o Krauszovych klikéch,

mame vzdy na mysli prvky tohoto pokryti K.

Veéta 4.21 shrnuje hlavni vlastnosti ¢astecného z-uzavéru grafu bez K 3 a

je nezbytné nutna pro opravnénost konstrukce nasledujictho uzavéru.
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Véta 4.21 [55]*.  Bud G graf bez K 3, bud = € V(G) takovy, ze G —x neni
hamiltonovsky souvisly a bud G, castecny x-uzaver grafu G. Pak G, — 1 je
SM-uzavreny hranovy graf a graf éw splituje jeden z nasledujicich bodii:
(1) G, je hranovy graf multigrafui;
(i4) z je stied indukovaného Ws a existuji uzly ui,up € Ng (x) takové,
ze
(a) {u1,us} je fez multigrafu G, — «,
(B) jedna z bikomponent multigrafu G, — r uréend {u1,us} je izo-
morfni s grafem K3 — e,
() multigraf (G, + {uy,us}) — & neobsahuje indukované Wy se stie-
dem x,
(0) multigraf (G, + {u1,us}) — = je SM-uzavieny;
(1) v grafu G, — x jsou Krauszovy kliky K1, Ky takové, ze
() Ng. (v) C K1 UKy,
(8) multigraf (V(G,), E(G,) U {azv|v € Ky U K,}) je hranovy graf

multigrafu.

Pokracujeme definici hlavniho uzavéru.

Bud G graf bez K; 3 a bud G graf ziskany nésledujici konstrukef:

(1) Jestlize G je 1-hamiltonovsky souvisly, poloz G = clz(G).

(2) Jestlize G neni 1-hamiltonovsky souvisly, vyber uzel x € V(G), pro kte-
ry G — x neni hamiltonovsky souvisly, a vyber ¢asteény z-uzaveér G,
grafu G.

(3) Jestlize G, splituje (i) véty 4.21 (tzn. z je stied indukovaného Wi
v grafu éx, vyber fez {u;,us} grafu G, — x, pridej hranu uyus do G,
(tzn. poloz G, := G, + uyuy) a pokracuj na (4).

(4) Jestlize G, je hranovy graf multigrafu, poloz G = G,. Jinak G, spliuje
(131) véty 4.21, tzn. nékteré dvé Krauszovy kliky K7, Ks v grafu G, —x
pokryvaji viechny uzly okoli Ng(z), a pak poloz G = (V(G,), E(G,) U
{zvjv € K1 U Ky})

Pak fekneme, ze vysledny graf G je 1HC-uzdvér grafu G.
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Nésledujici véta ukazuje zédkladni vlastnosti 1HC-uzavéru grafu G.

Véta 4.22 [55]*.  Bud G graf bez K, 3 a bud G jeho 1HC-uzdvér. Pak
(i) G je hranovy graf multigrafu,
(i1) pro nékteré x € V(G) je graf G — x SM-uzavieny,
(iii) G je 1-hamiltonovsky souvisly pravé tehdy, kdyz G je 1-hamiltonovsky

souvisly.

Dulezita z hlediska podobnosti s clg uzavérem a tedy i podobnych dukazu

je nasledujici véta.

Véta 4.23 [55]*. Bud G graf bez K,3. Pak existuje posloupnost grafi
Go, ..., Gy takova, ze
(i) Go =G,
(ii) V(Gi) = V(Git1) a soucasné E(G;) C E(Giy1) C E((Gy);,) pro néjaky
x; € V(G;) uzaviratelny v grafu G;,
(1ii) Gy, je 1HC-uzaver grafu G.
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Kapitola 5

Thomassenova hypotéza

5.1 Ekvivalentni verze Thomassenovy hypoté-

zy

Uz v roce 1981 byla zminéna na strané 12 [7] nésledujici hypotéza, kterd se
v roce 1985 objevila v [57], Thomassen ji vznesl v roce 1986 [58] a jejiz platnost

je stéale otevienou otazkou.

Hypotéza 5.1 [57]. (Thomassen (1986)) Kazdy 4-souvisly hranovy graf

je hamiltonovsky.

Hypotéza byla soustavné studovana a casem se ukazala byt ekvivalentni

s nasledujicimi hypotézami.

Hypotéza 5.2 [47]. (Matthews, Sumner (1984)) Kazdy 4-souvisly graf

bez K, 3 je hamiltonovsky.

Hypotéza 5.3 [1]. (Ash, Jackson (1984)) Kazdy cyklicky hranové

4-souvisly kubicky graf ma dominantni kruznici.
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Hypotéza 5.4 [23]. (Fleischner (1984)) Kazdy cyklicky hranoveé 4-sou-

visly kubicky graf ma hranové 3-obarveni nebo dominantni kruznici.

Ekvivalenci hypotézy 5.1 a hypotézy 5.3 dokazali Fleischner a Jackson
[25](1989). Naznacime postup dukazu. Bud H multigraf, bud v € V(H) ta-
kovy, ze d(v) > 4. Kubickou inflact multigrafu H nazveme graf, ktery vznikne
z H smazénim v, pfidanim kruznice k s d(v) uzly a spojenim novych uzlu na
puvodni sousedy v tak, ze vSechny nové uzly kruznice k maji stupen 3 v novém
grafu a ostatni uzly maji stejny stupen jako v H. Ekvivalence plyne z véty 4.1

a nasledujici véty.

Lemma 5.5 [25]. Bud H esencidlné hranové 4-souvisly graf s minimalnim
stupném §(H) > 3. Pak nékterd kubickd inflace H je esencidlné hranové

4-souvisla.

Poznamenejme, ze kubicka inflace se pouzivd i v dalsich dukazech, napf.
[41]*, [42]*.

Prvni krok k ukazani ekvivalenci hypotéz 5.2 a 5.1 udélal Plummer (1993)

[51], kdyz dokazal ekvivalenci hypotézy 5.3 s nésledujicimi dvéma hypotézami.

Hypotéza 5.6 [51]. Kazdy 4-souvisly 4-reguldrni graf bez K, 3 je hamilto-

novsky.

Hypotéza 5.7 [51]. Kazdy 4-souvisly 4-reguldrni graf bez K, 3, ve kterém

kazdy uzel lezi pravé ve dvou trojuhelnicich, je hamiltonovsky.

Ryjacek ukazal [52](1997) ekvivalenci hypotéz 5.2, 5.1. Ekvivalenci hypotéz
5.4, 5.1 ukdzal Kochol [35](2000) a pozdéji dokazal [37](2002), ze hypotézy jsou
ekvivalentni se zdanlivé slabsimi verzemi se sublinearnim defektem. Napiiklad
hypotéza 5.1 je ekvivalentni s hypotézou: "kazdy 4-souvisly hranovy graf G
s poctem uzlu n lze uzlové pokryt ny cestami s vyjimkou no uzlu tak, ze ny, ng

rostou méneé nez linedrné v zavislosti na n.” V soucasnosti jsou jiz zndmé ekviva-

vvvvv
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se podarilo ukazat ekvivalenci s nasledujici hypotézou Kuzelovi a Xiongovi
[43].

Hypotéza 5.8 [43]. Kazdy 4-souvisly hranovy graf multigrafu je hamilto-

novsky souvisly.
Pozdéji Ryjacek a Vrana [54]* rozsitili ekvivalenci az na grafy bez K 3.

Hypotéza 5.9 [54]*. Kazdy 4-souvisly graf bez K, 3 je hamiltonovsky sou-
visly.

V soucasnosti jednu ze zdanlivé nejsilnéjsich ekvivalentnich verzi ukazali
Kuzel, Ryjacek a Vrana [42]*.

Hypotéza 5.10 [42]*. Kazdy 4-souvisly graf multigrafu je 2-hranové ha-

miltonovsky souvisly.

Pomoci uzaveru 4.22* se podaftilo Ryjackovi a Vranovi rozsitit ekvivalentni

verze z predchozi.

Hypotéza 5.11 [55]*. Kazdy 4-souvisly graf bez K, 3 je 1-hamiltonovsky

souvisly.

Tyto hypotézy naznacuji moznou neplatnost Thomassenovy hypotézy (a
vsech ekvivalentnich verzi), protoze v piipadé platnosti je hranovy graf s ale-
spon péti uzly 2-hranové hamiltonovsky souvisly pravé tehdy, kdyz je 4-souvisly.

Nésledujici rozhodovaci problémy jsou pak polynomidlni.

1-HCL
Instance: Hranovy graf G

Otazka: Je G 1-hamiltonovsky souvisly?

2-E-HCL
Instance: Hranovy graf G

Otazka: Je G 2-hranové hamiltonovsky souvisly?
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Je znamo, ze rozhodnuti, zda je hranovy graf hamiltonovsky, je NP-tplné
[8]. Stejné tak je NP-tiplné rozhodnuti, zda graf je 1-hamiltonovsky souvisly
[42]* (respektive 2-hranové hamiltonovsky souvisly [50]*).

Pokud by takova situace byla i na hranovych grafech, Thomassenova hy-
potéza neplati, ledaze P=NP. Na druhou stranu rozhodnuti, zda je rovinny
graf hamiltonovsky, je NP-tiplné (viz napf. [8]) a rovinny graf s alespon péti

uzly je 2-hranové hamiltonovsky souvisly pravé tehdy, kdyz je 4-souvisly [50]*.

V roce 1956 Tutte dokézal [59], ze kazdy 4-souvisly rovinny graf ma hamil-
tonovskou kruznici. V dukazu poprvé pouzil Tutteovy cykly (poznamenejme,
ze maji na rovinnych grafech mirné jinou definici). V souc¢asné dobé je metoda
Tutteovych struktur hlavni dukazovou metodou hamiltonovskych vlastnosti
nejen pro rovinné grafy, ale i pro grafy na dalsich plochéch (napi. torus, pro-
jektivni rovina). Jackson [31] (viz také [22], Hypotéza 2a.5) formuloval v roce
1992 nésledujici hypotézu s cilem pokusit se dokédzat Thomassenovu hypotézu

obdobnym zptusobem, jaky se pouziva pro grafy na plochéch.
Hypotéza 5.12 [31]. Kazdy 2-souvisly graf bez K, 3 md Tutteovu kruznici.

Presnéji navrhoval pokusit se o dukaz zdanlivé slabsi verze hypotézy pro vzo-

ry hranovych graft.

Hypotéza 5.13 [31]. Kazdy hranové 2-souvisly graf G mé eulerovsky pod-
graf H s alespon tremi hranami, pro ktery je kazda komponenta grafu G — H

pripojena nejvyse tremi hranami k H.

Ekvivalenci predchozich dvou hypotéz s hypotézou 5.1 ukézali Cada a kol.
[19]*. Zd4 se tedy, Ze pokus navrhovany Jacksonem je opravnény prinejmensim
ve smyslu nalezeni protipiikladu.

Zdéanlivé nejslabsi je nasledujici hypotéza. Ekvivalenci ukazali Broersma
a kol. v [16])*. Snark je cyklicky hranové 4-souvisly kubicky graf, ktery nema

hranové 3-obarveni, s délkou nejkratsi kruznice alespon 5.

Hypotéza 5.14 [16]*. Kazdy snark md dominantni kruznici.

30



Na kubickych grafech ukézali ekvivalenci se zdanlivym zesilenim Fouquet
a Thuillier [27].

Hypotéza 5.15 [27]. Libovolna dvojice disjunktnich hran cyklicky hranové

4-souvislého kubického grafu lezi na dominantni kruznici.
Pozdéji ekvivalenci rozsifili Fleischner a Kochol [26].

Hypotéza 5.16 [26]. Libovolna dvojice hran cyklicky hranové 4-souvislého

kubického grafu lezi na dominantni kruznici.

Oznacme V;(H) = {z € V(H)|dy(x) = i} a bud H graf s 6(H) = 2 a
|Va(H)| = 4. Rekneme, ze H je Va(H)-dominovang, jestlize pro kazdé dve hrany
€1 = uvy, €a = Uy takové, ze Vo(H) = {uy, vy, us, v} graf H + {e1,eo} ma
dominantni uzavieny tah obsahujici ey, e5. Graf H nazveme silné Vo(H)-domi-
novany, jestlize H je V5(H)-dominovany a pro kazdou hranu e = uv takovou,
ze u,v € Vo(H) graf H + {e} mé dominantni uzavieny tah obsahujici e.

Bud F graf a bud A C V(F). Bud A rozdéleni neprazdné sudé X C A
na dvouprvkové podmnoziny. Oznac¢ime E(A) mnozinu vsech hran ajas ta-
kovych, Ze a1, as jsou ve stejné dvojici v A a F4 ozna¢ime multigraf s mnozinou
uzlt V(F4) = V(F) a mnozinou hran E(F4) = E(F) U E(A). Graf F na-
zveme slabé A-kontrahovatelny), jestlize pro kazdou neprazdnou sudou X C A
a pro kazdé rozdéleni A multigraf F'4 mé uzavieny dominantni tah obsahujici
vSechny hrany E(A).

Dalsich nékolik ekvivalentnich verzi je znamo pro podgrafy kubickych grafu.

Odkazy jsou na ¢lanky, ve kterych je dokazana ekvivalence.

Hypotéza 5.17 [40]. Libovolny podgraf H esencidlné hranové 4-souvislého
kubického grafu s §(H) =2 a |Vo(H)| = 4 je Vo(H )-dominovany.

Hypotéza 5.18 [42]*.  Libovolny podgraf H esencidalné hranoveé 4-souvislého
kubického grafu s 6(H) =2 a |Vo(H)| = 4 je silné Vo(H )-dominovany.

Hypotéza 5.19 [16]*. Kazdy cyklicky hranové 4-souvisly kubicky graf ob-
sahuje slabé A-kontrahovatelny podgraf F' s §(F') = 2.
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5.2 Pozitivni vysledky davajici castecné reseni

Thomassenovy hypotézy

Pokud omezime tiidu vzoru, je znamych nékolik vysledki. Nejprve probe-
reme konstrukci, kterd umoznuje prevést hamiltonovské vysledky z grafu na
plochédch na jejich hranové grafy. Konstrukei objevil Lai (1994) [44] a v témze

roce se objevila jesté v dalsim ¢lanku [17].

Véta 5.20 [44]. Kazdy 4-souvisly hranovy graf rovinného grafu je hamilto-

novsky.

Véta 5.21 [17].  Kazdy 4-souvisly hranovy graf grafu s nakreslenim v pro-

jektivni roviné je hamiltonovsky.

Lze ji prevést uplné stejnym zpusobem i dalsi vysledky z grafi na plochach
na jejich hranové grafy. Ukazeme jako ptiklad pouziti pro 2-hranovou hamilto-
novskou souvislost na rovinnych grafech. (Pouze vysvétlujeme zndmy postup
bez naroku na autorstvi.) Ziejmé nebude snadné pouzit néjaké rozsireni této
metody pro dukaz celé Thomassenovy hypotézy, protoze napiiklad existuji
grafy s nakreslenim v projektivni roviné, které jsou 4-souvislé a nejsou 2-hra-
nové hamiltonovsky souvislé (viz [50]*). Dalsi problém je, ze pro kubické grafy

konstrukce vytvori pouze jejich hranové grafy.

Véta 5.22. Kazdy 4-souvisly hranovy graf rovinného grafu je 2-hranoveé

hamiltonovsky souvisly.

Diikaz. Necht G je 4-souvisly hranovy graf rovinného grafu H. Poznamenej-
me, ze graf H je esencialné hranové 4-souvisly. Pro rovinné nakresleni H se-

strojime novy graf Gp nasledujici konstrukei.
(1) Odstranime z grafu H vsechny uzly stupné 1, podrozdélime vsechny
hrany (tzn. kazdou hranu nahradime cestou s jednim vnitinim uzlem)

a vysledny graf oznacime Gy.
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(17) Sestrojime graf Gp tak, ze pro kazdy uzel = takovy, ze dg,(x) > 3
doplnime do grafu G kruznici s uzly Ng(z) tak, ze v nakresleni G od-
povidajicimu rovinnému nakresleni H se zaddné hrany neprotinaji (po-
drobny popis s obrazky viz [44], [17]). Déle pro vSechny uzly y grafu
Gy odpovidajici uzlim stupné 2 grafu H spojime uzly Ng,(y) hranou
a odstranime uzel y. Nakonec odstranime vsSechny uzly z, pro které
de,(2) = 3.

(7i1) V grafu G pro vSechny uzly w stupné alespon 8 provedeme nésledujici
konstrukci.

(o) Podrozdélime vechny hrany s uzlem w v grafu Gi, doplnime
kruznici k se vSemi novymi uzly tak, ze v nakresleni odpovida-
jicimu rovinnému nakreslenim G se zadné hrany neprotinaji a
odstranime uzel w.

(8) Vezmeme maximalni parovani P v kruznici k takové, ze pro kazdy
blok B grafu G existuji alesponn dva pary, které maji sousedni
uzly jen na k nebo v uzlech odpovidajicich uzlum bloku B.
Pro kazdy par p;p; v parovani P odstranime hranu p;p; a slou¢ime
uzly p;, p; do jednoho. Pro vSechny uzly o na k, které nejsou v P
vybereme jednoho souseda p, uzlu o, odstranime hranu ops a
slouc¢ime uzly o, p;.

7 konstrukce je ziejmé, ze graf Gp je rovinny a lze ho doplnit pridanim
hran na hranovy graf G, ktery se od grafu G lisi v poc¢tu simplicidlnich uzlu
v nékterych klikach, ale kazda klika s neprazdnou mnozinou simplicidlnich uzla
v grafu G mé neprazdnou mnozinu simplicidlnich uzlu i v grafu G, (podrob-
nosti viz [44], [17]).

Ukazeme ze Gp je 4-souvisly. VSechny uzly Gp maji podle konstrukce
stupen alespon 4. Hranovy graf G, je 4-souvisly, protoze se lisi od G pouze
poctem simplicidlnich uzlu v klikach a podle konstrukce, kazda klika se sim-
plicidlnim uzlem ma alespon 4 uzly, které nejsou simplicialni. Vsechny podgrafy
odpovidajici klikdm v G, jsou 2-souvislé, takze fez R grafu G p velikosti nejvyse
3 obsahuje uzly, jejichz odpovidajici uzly v G jsou v jedné klice K. Pokud
2 ruzné komponenty K, Ky grafu Gp — R obsahuji uzly, jimz odpovidajici

v G nelezi v K, existuji mezi K7, Ky v grafu Gp podle konstrukce 4 uzlove
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disjunktni cesty. (Klika K m4 alespon 8 uzlu, které nejsou simplicidlni.) Spor.
Tedy jedna komponenta grafu Gp — R obsahuje pouze uzly, jimz odpovidajici
uzly v G lezi v klice K. Podle konstrukce snadno nalezneme, jak podgrafy

odpovidajici klice K vypadaji, a ovérime spor.

Podle hlavniho vysledku v [50] je Gp 2-hranové hamiltonovsky souvisly a

pridédni hran na tom nic nemeéni. [ |

Obdobny vysledek dokézali Lai, Shao a Zhan pro grafy kvazi bez K, 3 (z an-
glického quasi claw-free) tj. grafy, v nichz kazdy pér uzlu ve vzdalenosti 2 ma

spolecného souseda w sousediciho pouze s uzly v mnoziné N[u] U N|v].

Véta 5.23 [45].  Kazdy 4-souvisly hranovy graf grafu kvazi bez K3 je

hamiltonovsky souvisly.

Pro hranové grafy a grafy bez K 3 s vyssi souvislosti se podafilo dokazat
postupné nasledujici véty. Existenci hranice pro k-souvislost hranovych grafu,

kterd zajistuje hamiltonovskou souvislost stanovil Zhan [62](1991).

Véta 5.24 [62]. Kazdy T-souvisly hranovy graf multigrafu je hamiltonovsky

souvisly.

Ryjackuv uzdveér ukdzal existenci hranice pro k-souvislost grafi bez K 3,

kterd zajistuje hamiltonovskost.
Véta 5.25 [52]. Kazdy T-souvisly graf bez K, 3 je hamiltonovsky.
Predchozi vysledky zesilili Hu, Tian a Wei [30](2005).

Véta 5.26 [30]. Bud G 6-souvisly hranovy graf multigrafu s nejvyse 29
uzly stupné 6. Pak G je hamiltonovsky souvisly.

Véta 5.27 [30]. Bud G 6-souvisly graf bez K3 s nejvyse 29 uzly stupné
6. Pak G je hamiltonovsky.
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Prvni hranice k-souvislosti zarucujici hamiltonovskou souvislost pro grafy
bez K 3 byla stanovena Brandtem [11], ktery dokézal, ze kazdy 9-souvisly graf

bez K 3 je hamiltonovsky souvisly.

Vysledek byl pozdéji zlepsen Hu, Tian and Wei [30].
Véta 5.28 [30]. Kazdy 8-souvisly graf bez K 3 je hamiltonovsky souvisly.
Dusledkem véty 5.26 a M-uzavéru je nasledujici véta.

Véta 5.29 [54]*.  Bud G 6-souvisly graf bez K, 3 s nejvyse 29 uzly stupné
6. Pak G je hamiltonovsky souvisly.

Dalsi zlepseni pro 6-souvislé grafy hranové grafy s dodatecnou podminkou
(s moznosti rozsifeni M-uzavérem) dokazal Zhan [61]. VEtsi posun piinesla az

prace Kaisera a Vrany [33]*.

Véta 5.30 [33]*. Bud G 5-souvisly graf bez K3 s minimalnim stupném

alespon 6. Pak G je hamiltonovsky souvisly.

Mirné okrajovou oblasti vyzkumu jsou zakazané dvojice pro hamiltonovské
vlastnosti vyzadujici 4-souvislost. Zminime je zde predevsim, protoze davaji
urcity vhled pro platnost hypotézy na malych grafech stejné jako posledni smér
vyzkumu v této kapitole, generovani iplnych databdzi malych snarku pomoci
pocitace. Piimy vysledek dokazali Ryjacek a Vrana [55] pomoci 1HC-uzavéru.
Jednoznaéné urceny graf s uzly stupné 4,2,2,2 2 (anglicky ¢asto nazyvany hour-

glass) oznacime Hy.

Véta 5.31 [55]*.  Kazdy 4-souvisly graf bez K, 5 a bez Hy je 1-hamiltonovsky

souvisly.

Znamé jsou jesté vysledky odvozené od zakdzanych dvojic pro hamilto-
novskou souvislost u 3-souvislych grafi. Odebrani uzlu ze 4-souvislého grafu
snizi stupen souvislosti nejvyse o jedna a muzeme proto tyto vysledky primo

pouzit i pro 1-hamiltonovskou souvislost a 4-souvislé grafy. Oznacme Pj cestu
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s poctem uzlu k. Oznac¢me N, ;1 graf slozeny trojuhelniku a tif cest délek 7, j, k
po dvou s prazdnym prunikem takovych, ze kazda cesta mé s trojihelnikem
spolecny pravé jeden uzel a to koncovy. Oznacme H; graf slozeny ze dvou
trojuhelniku spojenych praveé jednou cestou délky ¢. Piiklady popsanych grafu

jsou na obrazku 5.1.

H, Niia H,

Obréazek 5.1

Véta 5.32 [21]*.  Jestlize G je 3-souvisly bez X aY pro X = K;3aY =
Py, Ni13 nebo Ny o9, pak G je hamiltonovsky souvisly.

Véta 5.33 [15].  Jestlize G je 3-souvisly bez X aY proX = Ky 3 aY = Hj,
pak G je hamiltonovsky souvisly.

Velmi zajimavy pokus pro testovani hypotéz jak pozitivné tak negativné
je generovani databazi vsech malych snarku. V soucasnosti se Brinkmannovi
a kol. [13] podafilo vygenerovat viechny snarky s nejvyse 36 uzly. Slaby snark

je cyklicky hranové 4-souvisly kubicky graf, ktery neméa hranové 3-obarveni.
Pozorovani 5.34 [13].  Neexistuji protipiiklady na hypotézu 5.16 mezi

snarky s nejvyse 36 uzly, slabymi snarky s nejvyse 34 uzly a obecnymi ku-

bickymi cyklicky hranoveé 4-souvislymi graly s nejvyse 26 uzly.
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5.3 Vyvracené hypotézy implikujici Thomasse-

novu hypotézu

4D () (I ) () I ()

Obrazek 5.2

S Thomassenovou hypotézou castecné souvisi nasledujici hypotéza, kterou
vyslovil Chvéatal v [18]. Pocet komponent grafu G' ozna¢ime w(G). Graf G je
t-tuhy (t € R,t > 0), jestlize |S| > t*w(G —S) pro kazdou S C V(G) takovou,
ze w(G—S) > 1. Tuhost 7(G) grafu G je nejvetsi ¢islo ¢, pro které je G t-tuhy.

Hypotéza 5.35 [18]. (Chvatal (1973)) Existujet takové, ze kazdy t-tuhy

graf je hamiltonovsky.

V soucasné dobé je znamo, ze hypotéza neplati pro t = 2. Protipiiklad
nalezli Bauer a kol. v [2]. Konstrukce je naznacend na obrazku 5.2. Horni
dva uzly jsou spojené hranami se vSemi zbylymi uzly grafu. Oblast nakreslend
kolem uzlu predstavuje kliku na vSech uzlech uvnitr.

Ackoliv obecné zustava hypotéza oteviend, pro nékteré specidlni tiidy grafu
se ji podarilo dokazat. Souvislost k(G) grafu G je nejvétsi ¢islo k, pro které je
G k-souvisly. Z naseho hlediska je dulezity néasledujici vysledek Matthewse a

Sumnera v [47], ktery umoznuje prevést v grafech bez K 3 tuhost na souvislost.

Véta 5.36 [47]. Pro kazdy graf G bez K, 3 plati: 7(G) = 35(G).
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Ptipomenme, ze v soucasnosti je podle véty 5.30 a predchoziho véty kazdy
3-tuhy graf bez K3 hamiltonovsky souvisly. Dalsi obdobné vysledky mimo

nasi oblast zajmu lze nalézt napiiklad v [14].

V roce 2002 vyslovil Fleischner v [24] hypotézu BMC (bipartizing matching
conjecture), ktera se pokousi spojit Thomassenovu hypotézu s dalsimi slavnymi
hypotézami. Méjme kubicky graf G s dominantni kruznici D. Budeme znacit
(G, D), abychom vyjadrili, kterou dominantni kruznici v .G méme na mysli.
Oznacime {qi,...,q} = V(G) — V(D), a pro uzel v € V(G) oznacime E,
mnozinu hran obsahujicich uzel v. Potlacenim uzlu u € V(G) stupné 2 budeme
rozumét odstranéni uzlu u z grafu GG a spojeni sousednich uzlu u v G hranou.
Bud M C E(G) — E(D) parovan{ v grafu (G, D). Definujeme graf G tak,
ze z grafu G odstranime M a potlacime vzniklé uzly u stupné 2. Pokud G je
kubicky a V(M) = V(G), definujeme Gy = ().

Bipartizujici parovani pro (G, D) je parovani M C E(G) — E(D) takové,
ze graf G je bipartitni a E,, N M # () pro i = 1,..., k. Definujeme G, jako
bipartizujici jestlize V(Gyr) = 0.

Hypotéza 5.37 [24]. Kazdy cyklicky 4-souvisly kubicky graf G, ktery neni
hranové 3-obarvitelny, ma pro kazdou dominantni kruznici D dvé disjunktni

bipartizujici parovani.

V élanku [29] sestrojil Hoffmann-Ostenhof protipiiklad na 5.37 a upravil

hypotézu do nasledujici formy.

Hypotéza 5.38 [29]. Kazdy cyklicky 4-souvisly kubicky graf G ma alespon
jednu dominantni kruznici D takovou, ze (G, D) m4 dvé disjunktni bipartizujici

parovanti.

Bud A podmnozina pfirozenych ¢isel. Graf G nazveme A-pokrytelny, jestli-
ze G' ma podgraf se vSemi uzly sudého stupné, ktery obsahuje alespon jednu
hranu kazdého hranového fezu grafu G, pro ktery plati |T| € A. Mnozinu
A nazveme pokrytelnou, jestlize kazdy graf je A-pokrytelny. V élanku [32]
Kaiser a Skrekovski vyslovili hypotézu, ze N + 3 = {4,5,6,...} je pokryteln4.
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Cada a kol. v [20]* sestrojili nekonecnou t¥idu protipifklada pro A = {4,5}
a zminénou hypotézu tim vyvratili. Pro iplnost uvadime, ze Thomassenova
hypotéza lze vyjadrit timto jazykem nasledujicim zpusobem (zminéno v [20]*).

Kazdy cyklicky 4-souvisly kubicky graf G' je N + 3-pokrytelny.

V roce 1967 Kotzig (viz [10]) polozil otazku, zda kazdy 4-regularni graf ma
dekompozici na dva hamiltonovské cykly. Nezavisle v roce 1969 Nash-Williams
v [49] polozil stejnou otazku (jinak formulovanou), zda je kazdy 4-souvisly
4-regularni graf hamiltonovsky (po odebrani hamiltonovské kruznice by pak
ze 4-souvislosti zbyla ve 4-regularnim grafu druhd). Protiptiklad nasel Me-
redith [48] jiz v roce 1973 a je po ném pojmenovan - Meredithuv graf. Je

na obrazku 5.3.

Obréazek 5.3
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Kapitola 6
Zaveér

Tato prace neni prehledem vysledku kolem Thomassenovy hypotézy, ale po-
kusem o jeji objasnéni. Nejedna se o pokus neuspésny, pouze neukonceny.
Soucasti postupu nedilné tvori dokazovani slabsich hypotéz i vyvraceni sil-
néjsich hypotéz, stejné jako dukazy ekvivalenci hypotéz zdanlive slabsich ¢i

silngjsich. Dulezitou soucasti prace je i prehled vsech dosazenych vysledku.

Ukézali jsme jak zdénlive nejslabsi verzi hypotéz, ktera tikd, ze kazdy snark
ma dominantni kruznici, tak verze zdanlivé velmi silné:
(1) Kazdy 4-souvisly graf bez K 3 je 1-hamiltonovsky souvisly.
(17) Kazdy 4-souvisly hranovy graf multigrafu je 2-hranové hamiltonovsky
souvisly.
(17i) Kazdy 2-souvisly graf bez K 3 ma Tutteovu kruznici.

(7v) Libovolny podgraf H esencidlné hranové 4-souvislého kubického grafu.
sO0(H)=2al|Va(H)| =4 je silné V5 (H)-dominantni.

Dale jsme ukazali ¢astecna teseni:
(1) Kazdy 5-souvisly graf bez K3 s minimdlnim stupném alespon 6 je
hamiltonovsky souvisly.
(i1) Kazdy 4-souvisly graf bez K 3 a bez Hy je 1-hamiltonovsky souvisly.
(1i1) Kazdy 4-souvisly hranovy graf roviného grafu je 2-hranové hamiltonov-

sky souvisly.

40



Snaha o nalezeni protipiikladu vedla k vyvraceni hypotézy, ze kazdy graf je
N + 3-pokrytelny.

K dosazeni vysledku byly vyuzity nové dukazové techniky:
(i) uzaver grafu bez K3 na hranové grafy multigraftt zachovavajici 1-ha-
miltonovskou souvislost,
(i7) uzdver grafu bez K; 3 na hranové grafy multigrafu zachovavajici hamil-
tonovskou souvislost,
(74i) uzaver grafi bez K 3 na hranové grafy zachovéavajici P-souvislost,

(1v) jednozna¢né definovany vzor hranovych grafu multigrafu.

V soucasné dobé nezname techniku, kterd by piimo mohla vést k dukazu
Thomassenovy hypotézy nebo k jejimu vyvraceni. Hlavni motivaci souc¢asného
usili o pokrok v této oblasti je zlepSovani postupu a dukazovych technik, nikoliv
vysledkt samotnych. Hlavnim cilem této prace je ukazat na piikladech takové
zlepSovéani (nikoliv samotny dukaz hypotézy, i kdyz se i o néj pokousime).
Zacina se rozvijet zkoumani souvislosti s grafy na plochach a technika ”zobec-
nénych koster”. Problém je v soucasnosti intenzivné studovan a je mozné, ze

se v blizké budoucnosti dockame vyrazného posunuti hranic znamého.
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Kapitola 7

Shrnuti

Thomassenova hypotéza se ¢asem ukézala jako zasadni problém v teorii grafu.
V soucasné dobé je publikovéano pres dvacet ekvivalentnich hypotéz se Sirokym
zabérem od hamiltonovskych vlastnosti pres dominantni tahy az po Tutteovy

struktury.

V této préci jsme ukazali ekvivalence jak se zdanlive slabsimi hypotézami,
tak hypotézami zdanlivé velmi silnymi. Zdanlivé oslabovani ekvivalentnich hy-
potéz smétuje hlavné na vlastnosti podtiid kubickych grafi. Zdanlivé zesi-
lovani vede k rozsifovani ekvivalentnich hypotéz na grafy bez Kj 3, zesilovani

na silnéjsi vlastnosti nebo k oslabovani podminky souvislosti grafu.

Déle jsme ukézali ¢astecna teseni spocivajici ve vysloveni dodatecnych
podminek na vzor hranovych grafi, zesileni podminky na souvislost, nebo
vysledky z oblasti zakazanych dvojic indukovanych podgrafii. Snaha o nalezeni

protiprikladu vedla k vyvraceni hypotézy, ze kazdy graf je N 4 3-pokrytelny.

K dosazeni vysledku byly vyuzity nové dikazové techniky v oblasti uzaveéru
grafu bez K, 3 a v oblasti jednoznacné korespondence vzoru hranovych grafu
multigrafu. Dukazy vyuzivaji nové charakterizace podttid grafu bez K 3 zejmé-

na grafi bez K 3, u kterych kazdé 2-souvislé okoli uzlu indukuje kliku.

42



Kapitola 8
Summary

Thomassen’s conjecture turned out to be a fundamental problem in graph the-
ory. Currently, more than twenty equivalent conjectures have been published
with a wide range from hamiltonian properties through dominating trails to

Tutte structures.

In the present thesis we show both equivalences with seemingly weaker
conjectures and equivalences with seemingly very strong conjectures. Appa-
rent weakening of the equivalent conjectures is oriented mainly towards the
properties of subclasses of cubic graphs, while apparent strengthening leads
to extending the equivalent conjectures to claw-free graphs, to strengthening
the conjectures to stronger properties or to weakening of the connectivity as-

sumption on the graph.

Furthermore, we have shown partial solutions consisting in imposing addi-
tional conditions on the root graph or in strengthening the connectivity con-
dition, and we also present results on pairs of forbidden subgraphs. Our effort
to find a counterexample led to disproving a conjecture, that every graph is
N + 3-coverable.

The results were obtained using new proof techniques for closures of claw-
free graphs and for uniqueness of the root graph of a line graphs of a mul-
tigraph. The proofs use new characterizations of subclasses of claw-free graphs,
especially claw-free graphs in which every 2-connected neighbourhood induces

a clique.
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Kapitola 9
Zusammenfassung

Thomassen-Vermutung hat sich im Laufe der Zeit als ein grundlegendes Pro-
blem der Graphentheorie erwiesen. Es sind derzeit iiber 20 aquivalente Ver-
mutungen publiziert, die durch ein breites Spektrum von hamiltonschen Ei-

genschaften, dominanten Wegen und Tutte-Strukturen charakterisiert sind.

In dieser Arbeit zeigen wir Aquivalenz mit sowohl scheinbar schwécheren
als auch scheinbar sehr starken Vermutungen. Eine scheinbare Schwéchung der
Vermutung ist durch Eigenschaften von Unterklassen der kubischen Graphen
charakterisiert. Eine scheinbare Verscharfung der Vermutung entschpricht einer
Verallgemeinerung auf klauenfreie Graphen und eine Schwéchung der Bedin-

gung fir Zusammenhang des Graphen.

Dariiber hinaus haben wir partielle Losungen gezeigt, die zusatzliche Be-
dingungen beinhalten wie starkeren Bedingungen fiir Zusammenhang des Gra-
phen. oder Paare von verbotenen Untergraphen. Ein Versuch, ein Gegenbe-
ispiel zu finden, hat zum Widerlegen der Vermutung tiber N+ 3-Abdeckbarkeit
gefiihrt.

Um diese Ergebnisse zu erreichen, haben wir neue Beweistechniken im Be-
reich der Hiillen fiir klauenfreie Graphen eingephiert Wir haben auch eine
eindeutige Korrespondenz von Kantengraphen ausgenutzt. In Beweisen haben
wir dazu noch eine neue Charakterisierung von klauenfreien Graphen, in jeden
jede zweifach zusammenhangende Nachbarschaft eine Clique induziert, benu-
tzt.
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Abstract

We show that the conjectures by Matthews and Sumner (every 4-connected claw-free graph is Hamiltonian), by Thomassen
(every 4-connected line graph is Hamiltonian) and by Fleischner (every cyclically 4-edge-connected cubic graph has either a 3-
edge-coloring or a dominating cycle), which are known to be equivalent, are equivalent to the statement that every snark (i.e. a
cyclically 4-edge-connected cubic graph of girth at least five that is not 3-edge-colorable) has a dominating cycle.

We use a refinement of the contractibility technique which was introduced by Ryjacek and Schelp in 2003 as a common
generalization and strengthening of the reduction techniques by Catlin and Veldman and of the closure concept introduced by
Ryjacek in 1997.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Dominating cycle; Contractible graph; Cubic graph; Snark; Line graph; Hamiltonian graph

1. Introduction

In this paper we consider finite undirected graphs. All the graphs we consider are loopless (with one exception
in Section 3); however, we allow the graphs to have multiple edges. We follow the most common graph-theoretic
terminology and notation, and for concepts and notation not defined here we refer the reader to [2]. If F', G are graphs
then G — F denotes the graph G — V (F) and by an a, b-path we mean a path with end vertices a, b. A graph G is
claw-free if G does not contain an induced subgraph isomorphic to the claw K 3.

In 1984, Matthews and Sumner [8] posed the following conjecture.

Conjecture A (/8]). Every 4-connected claw-free graph is Hamiltonian.
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rkuzel@kma.zcu.cz (R. KuzZel), ryjacek @kma.zcu.cz (Z. Ryjacek), vranaxxpetr@quick.cz (P. Vrdna).
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Since every line graph is claw-free (see [1]), the following conjecture by Thomassen is a special case of
Conjecture A.

Conjecture B ([12]). Every 4-connected line graph is Hamiltonian.

A closed trail T in a graph G is said to be dominating, if every edge of G has at least one vertex on T, i.e., the
graph G — T is edgeless (a closed trail is defined as usual, except that we allow a single vertex to be such a trail). The
following result by Harary and Nash-Williams [6] shows the relation between the existence of a dominating closed
trail (abbreviated DCT) in a graph G and Hamiltonicity of its line graph L(G).

Theorem 1 ([6]). Let G be a graph with at least three edges. Then L(G) is Hamiltonian if and only if G contains a
DCT.

Let k£ be an integer and let G be a graph with |E(G)| > k. The graph G is said to be essentially k-edge-connected
if G contains no edge cut R such that |R| < k and at least two components of G — R are nontrivial (i.e. containing at
least one edge). If G contains no edge cut R such that |R| < k and at least two components of G — R contain a cycle,
G is said to be cyclically k-edge-connected.

It is well-known that G is essentially k-edge-connected if and only if its line graph L(G) is k-connected. Thus, the
following statement is an equivalent formulation of Conjecture B.

Conjecture C. Every essentially 4-edge-connected graph contains a DCT.

By a cubic graph we will always mean a regular graph of degree 3 without multiple edges. It is easy to observe
that if G is cubic, then a DCT in G becomes a dominating cycle (abbreviated DC), and that every essentially 4-edge-
connected cubic graph must be triangle-free, with a single exception of the graph K. To avoid this exceptional case,
we will always consider only essentially 4-edge-connected cubic graphs on at least five vertices.

Since a cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-connected (see [5],
Corollary 1), the following statement, known as the Dominating Cycle Conjecture, is a special case of Conjecture C.

Conjecture D. Every cyclically 4-edge-connected cubic graph has a DC.

Restricting to cyclically 4-edge-connected cubic graphs that are not 3-edge-colorable, we obtain the following
conjecture posed by Fleischner [4].

Conjecture E ([4]). Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a DC.

In [10], a closure technique was used to prove that Conjectures A and B are equivalent. Fleischner and Jackson [5]
showed that Conjectures B—D are equivalent. Finally, Kochol [7] established the equivalence of these conjectures with
Conjecture E. Thus, we have the following result.

Theorem 2 ([5,7,10]). Conjectures A-E are equivalent.

A cyclically 4-edge-connected cubic graph G of girth g(G) > 5 that is not 3-edge-colorable is called a snark.
Snarks have turned out to be an important class of graphs, for example in the context of nowhere zero flows. For more
information about snarks see the paper [9]. Restricting our considerations to snarks, we obtain the following special
case of Conjecture E.

Conjecture F. Every snark has a DC.

The following theorem, which is the main result of this paper, shows that Conjecture F is equivalent to the previous
ones.

Theorem 3. Conjecture F is equivalent to Conjectures A—E.

The proof of Theorem 3 is postponed to Section 4.
As already noted, every cyclically 4-edge-connected cubic graph other than K4 must be triangle-free. Thus, the
difference between Conjectures E and F consists in restricting to graphs which do not contain a 4-cycle. For the proof
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of the equivalence of these conjectures in Section 4 we first develop in Section 2 a refinement of the technique of
contractible subgraphs that was developed in [11] as a common generalization of the closure concept [10] and Catlin’s
collapsibility technique [3], and in Section 3 a technique that allows us to handle the (non)existence of a DC while
replacing a subgraph of a graph by another one.

2. Weakly contractible graphs

In this section we introduce a refinement of the contractibility technique from [11] under a special assumption
which is automatically satisfied in cubic graphs. We basically follow the terminology and notation of [11].

For a graph H and a subgraph F C H, H|r denotes the graph obtained from H by identifying the vertices of F as
a (new) vertex vr, and by replacing the created loops by pendant edges (i.e. edges with one vertex of degree 1). Note
that H|r may contain multiple edges and |E(H|r)| = |E(H)|. For a subset X C V(H) and a partition .4 of X into
subsets, E(A) denotes the set of all edges aja; (not necessarily in H) such that a; and a, are in the same element
of A, and HA denotes the graph with vertex set V(HA) = V(H) and edge set E(HA) = E(H) U E(A) (here the
sets E(H) and E(A) are considered to be disjoint, i.e. if e; = ajay € E(H) and ey = ajay € E(A), then ey, e; are
parallel edges in H Ay,

Let F be a graph and A C V(F). Then F is said to be A-contractible, if for every even subset X C A (i.e. with
| X | even) and for every partition A of X into two-element subsets, the graph F A has a DCT containing all vertices of
A and all edges of E(A). In particular, the case X = @ implies that an A-contractible graph has a DCT containing all
vertices of A.

If H is a graph and F C H, then a vertex x € V(F) is said to be a vertex of attachment of F in H if x has a
neighbor in V(H) \ V (F). The set of all vertices of attachment of F in H is denoted by Ay (F). Finally, dom,,(H)
denotes the maximum number of edges of a graph H that are dominated by (i.e. have at least one vertex on) a closed
trail in H. Specifically, H has a DCT if and only if dom;,(H) = |E(H)]|.

The following theorem shows that a contraction of an A i (F)-contractible subgraph of a graph H does not affect
the value of dom,, (H).

Theorem 4 ([11]). Let F be a connected graph and let A C V (F). Then F is A-contractible if and only if
dom,,(H) = dom,,(H|F)
for every graph H such that F C H and Ay (F) = A.

Specifically, F is A-contractible if and only if, for any H such that F C H and Ay (F) = A, H has a DCT if and
only if H|r has a DCT (the “only if” part follows by Theorem 4; the “if”” part can be easily seen by the definition of
A-contractibility).

Let F be a graph and let A C V(F). The graph F is said to be weakly A-contractible, if for every nonempty
even subset X C A and for every partition A of X into two-element subsets, the graph F A has a DCT containing all
vertices of A and all edges of E(A).

Thus, in comparison with the contractibility concept as introduced in [11], we do not include the case X = . This
means that we do not require that a weakly A-contractible graph has a DCT containing all vertices of A.

Clearly, every A-contractible graph is also weakly A-contractible. It is easy to see that if F' is weakly A-contractible
and |A| > 3, then dr(x) > 2 for every x € A.

Examples. 1. The graphs in Fig. 1 are examples of graphs that are weakly A-contractible but not A-contractible
(vertices of the set A are double-circled).

2. The triangle C3 is A-contractible for any subset A of its vertex set.

3. Let C be acycle of length £ > 4,let x, y € V(C) be nonadjacent and set A = V(C), X = {x, y}and A = {{x, y}}.
Then there is no DCT in C containing the edge xy € C A and all vertices of A. Hence no cycle C of length at least
4 is weakly V (C)-contractible.

If H is a graph and F C H, then H_F denotes the graph with vertex set V(H_r) = V(H)\ (V(F)\ Ay (F)) and
with edge set E(H_r) = E(H) \ E(F) (equivalently, H_F is the graph determined by the edge set E(H) \ E(F)).
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Fig. 1.

Our next theorem shows that, in a special situation, weak contractibility is sufficient to obtain the equivalence of
Theorem 4.

Theorem 5. Let F be a graph and let A C V(F), |A| = 2. Then F is weakly A-contractible if and only if
domy, (H) = dom,, (H|F)

for every graph H such that F C H, Ag(F) = A, dy_,(a) = 1 for everya € A, and |V(K) N A| > 2 for at least
one component K of H_F.

Proof. The proof of Theorem 5 basically follows the proof of Theorem 2.1 of [11].

Let F be a graph and let H be a graph satisfying the assumptions of the theorem. Then every closed trail T in
H corresponds to a closed trail in H|f, dominating at least as many edges as 7. Hence immediately dom,,(H) <
domy,(H|F).

Suppose that F is weakly A-contractible and let 7’ be a closed trail in H |z such that 7/ dominates dom,, (H | )
edges and, subject to this condition, 7’ has maximum length. If vy & V(T’), then T’ is also a closed trail in H,
implying domy, (H|r) < dom,,(H), as requested. Hence we can suppose v € V(T').

If T’ is nontrivial, i.e. contains an edge, then the edges of T’ determine in H a system of trails P = {Py, ..., P},
k > 1, such that every P; € P has end vertices in A (note that all trails in PP are open since dy . (a) = 1 for all
a € A). Sincedy_(a) = 1foralla € A, every x € A is an end vertex of at most one trail from P, and we set
X = {x € Ay (F)|x is an end vertex of some P; € P} and A = {Ay, ..., A}, where A; is the (two-element) set of
end verticesof P;,i =1,...,k.

If T’ is trivial (i.e., a one-vertex trail), then we consider a component K of H_ for which |V(K) N Ay (F)| > 2.
Let x1,x0 € V(K)NAg(F). If V(K) \ {x1, x2} # @ then, since K is connected, K contains a path of length at least
2 with end vertices x1, x2, but then we have a contradiction with the maximality of 7. Hence V (K) = {x1, x»} and
E(K) = {x1x2}, and we set P| = x1x3, P = {P;}, X = {x1,x2} and A = {{x1, x2}}. Note that in both cases the set
X is nonempty.

By the weak A-contractibility of F, F A has a DCT Q, containing all vertices of A and all edges of E(.A). The trail
Q determines in F a system of trails Q1, ..., Qg such that every Q; has its two end vertices in two different elements
of A. Now, the trails Q; together with the system P form a closed trail in H, dominating at least as many edges as 7".
Hence dom;, (H|r) < domy, (H), implying dom, (H|r) = domy,(H).

Next suppose that F' is not weakly A-contractible (possibly even disconnected). Then, for some nonempty X C A
and a partition A of X into two-element sets, F A has no DCT containing all vertices of A and all edges of E(A).
Let A = {{x], x{}, ..., {x;, x/'}}, and construct a graph H with F C H by replacing the edges of E(A) by k vertex
disjoint x/, x/'-paths P; of length at least 3, i = 1, ..., k, and by attaching a pendant edge to every vertex in A \ X.
Since X # {, at least one component K of H_r is a path with end vertices in A, implying [V (K) N A| > 2. Since
F# has no DCT containing all vertices of A and all edges of E(A), H has no DCT. However, clearly H|r has a DCT
and we have dom,,(H) < dom,,.(H|r). N

In the special case of cubic graphs, we have the following corollary.
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Corollary 6. Let F be a graph with §(F) = 2, A(F) < 3 and |A| > 2, where A = {x € V(F) | drp(x) = 2}. Then
F is weakly A-contractible if and only if

domy,(H) = domy,(H|F)
for every cubic graph H suchthat F C H, Ag(F) = A, and |V (K) N A| > 2 for at least one component K of H_F.

Proof. Clearly dy , = 1 for every a € A, since H is cubic. If F is weakly A-contractible, then dom,, (H) =
domy, (H|r) immediately by Theorem 5. For the rest of the proof, it is sufficient to modify the last part of the proof
of Theorem 5 such that the constructed graph H is cubic. To achieve this, it is sufficient to use a copy of the graph
in Fig. 2(a) instead of each of the paths P;, and a copy of the graph in Fig. 2(b) instead of each of the pendant edges
attached to the vertices a; € A\ X. Then there is a component K of H_r with |V (K) N A| > 2 since X is nonempty.
The graph H|r has a closed trail dominating all edges except for the edges different from e; in the copies attached to
the vertices in A \ X, while in H there is no such closed trail. W

We say that a subgraph F C H is a weakly contractible subgraph of H if F is weakly Ay (F)-contractible. We
then have the following corollary.

Corollary 7. Let H be a cubic graph and let F be a weakly contractible subgraph of H with §(F) = 2. Then H has
a DC if and only if H|f has a DCT.

Proof. First note that in a cubic graph every closed trail is a cycle and that a cubic graph with a DC must be essentially
2-edge-connected. Since H is cubic and 6 (F) = 2, Ay (F) = {x € V(F) | dr(x) = 2} and the weak contractibility
assumption implies F is connected. If every component of H_ r contains one vertex from A g (F), then clearly neither
H nor H|F is essentially 2-edge-connected (since H is cubic) and hence neither H nor H|r has a DCT. The rest of
the proof follows from Corollary 6. W

Example. Let H be the graph obtained from three vertex-disjoint copies Fi, F», F3 of the graph F; from Fig. 2(a) by
adding edges xx5, x| x3, x5x5, x{'x5, x{'x%, xJx5. Then H is cubic, F1 C H is weakly contractible, H|r, has a DCT,
but H has no DC. This example shows that the assumption § (F) = 2 in Corollaries 6 and 7 cannot be omitted.

3. Replacement of a subgraph

In this section we develop a technique to replace certain subgraphs by others without affecting the (non)existence
of a DCT.

Let G be a graph and let F C G be a subgraph of G. Let F’ be a graph such that V(F )NV (G) = @,1et A’ C V(F')
be such that |A’| = |Ag(F)| and let ¢ : Ag(F) — A’ be a bijection. Let H be the graph obtained from G_g and F’
by identifying each x € Ag(F) with its image ¢(x) € A’. We say that the graph H is obtained by replacement (in G)

of F by F' modulo ¢ and denote H = G[F % F].
-1
Note that if H = G[F B F'] then also clearly G = H[F’ LN E]. . .
Let F be a graph and let A = {aj,...,ax} C V(F). Let A be a set with A N V(F) = 0, |A| = |A|,
and set A = {ay,...,ax}. Then F* denotes the graph with vertex set V(fA) = V(F) U A and with edge set
E(fA) = E(F)U{qga;li =1,...,k} (..., fA is obtained from F by attaching a pendant edge to every vertex of A).
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The following observation shows that, under certain conditions, the replacement in a graph G of a weakly
contractible subgraph by another one affects neither the existence nor the nonexistence of a DCT in G.

Proposition 8. Let G be a graph with 5(G) > 1 and let F C G be a weakly contractible subgraph of G such that
|E(F)| > 1, dg_, (x) = 1 for every x € Ag(F) and G % F"9". Let F', |E(F")| > 1, be a weakly A'-contractible

graphforan A’ C V(F'), and let ¢ : Ag(F) — A’ be a bijection. Then G has a DCT if and only if G[F 4 F'] has
a DCT.

Proof. Set H = G[F £ F’]. For |Ag(F)| = 0 the assumptions G % Fhoth and §(G) > 1 imply that G is

disconnected and neither G nor H has a DCT. If |Ag(F)| = 1 orif |Ag(F)| = 2 and |V(K) N Ag(F)| = 1 for

every component K of G_p, then neither G nor H can have a DCT since |E(F)| > 1, |E(F')| > 1,dg_,(x) =1

forevery x € Ag(F) and G fAG(F). Thus, we can assume that |Ag(F)| > 2 and there is a component K of G_fr

such that |[V(K) N Ag(F)| > 2. Then, by Theorem 5, G has a DCT if and only if G|r has a DCT. Similarly, H has a
DCT if and only if H|rs has a DCT, but the graphs G|r and H|p are, up to the number of pendant edges at vp (vgr),
isomorphic. W

In the special case of cubic graphs, we obtain the following consequence.

Corollary 9. Let G be a cubic graph and let F C G be a weakly contractible subgraph of G with §(F) = 2. Let
F’ be a graph with §(F') = 2 and A(F') < 3, let A’ = {x € V(F')|dp/(x) = 2} and suppose that F' is weakly
A'-contractible. Let ¢ : Ag(F) — A’ be a bijection. Then the graph H = G[F > F' is cubic and G has a DC if
and only if H has a DC.

Proof. Clearly Ag(F) = {x € V(F)|dr(x) = 2} and since G is cubic, we have dg_,(x) = 1 for every x € Ag(F)

and G # FA9) Since @ is a bijection, H is cubic. By Proposition 8, G has a DCT if and only if H has a DCT, but
in cubic graphs every DCTisaDC. W

Now we consider a similar question if F and/or F’ are not contractible. We restrict our observations to cubic
graphs.

A connected graph F without multiple edges with A(F) < 3 will be called a cubic fragment. For any cubic
fragment F andi = 1,2 weset A;(F) = {x € V(F)|dr(x) =i}and A(F) = A1(F) U A>(F) (note thatif F C H,
F is connected and H is cubic, then F is a cubic fragment and Ay (F) = A(F)). A cubic fragment F is said to be
essential if |V (F) \ A1(F)| > 2. It is easy to observe that if F is an essential cubic fragment, the set V(F) \ Aj(F)
induces (in F) a connected subgraph with at least one edge.

For a cubic fragment F we now introduce the concept of an F-linkage. An F-linkage will be allowed to contain
loops. A loop on a vertex v is considered as an edge joining v to itself, and is denoted by an element vv of the edge
set. Edges of an F'-linkage that are not loops will be referred to as open edges.

Let F be a cubic fragment and let B be a graph with V(B) C A(F), E(B) N E(F) = ¥, and with components
Bi, ..., Bx. We say that B is an F-linkage, if E(B) contains at least one open edge and, foranyi =1, ...,k,

(i) every B; is a path (of length at least one) or a loop,
(1) if B; is a path of length at least two, then all interior vertices of B; are in A (F),
(iii) if B; is a loop at a vertex x, then x € Ay (F).

Let F be a cubic fragment and let B be an F-linkage. Then F? denotes the graph with vertex set V (F8) = V (F)
and edge set E(F?) = E(F)U E(B). Note that E(B) and E(F) are assumed to be disjoint, i.e. if 1] = x1x € E(F)
and iy = x1x3 € E(B), then hy, hy are parallel edges of the graph FB.

Let F1, F» be cubic fragments with |A(F1)| = |A(F)| and let ¢ : A(F1) — A(F>) be a bijection. For any
Fi-linkage B, ¢(B) denotes the graph with vertex set V(¢(B)) = {¢(x)|x € V(B)} and edge set E(¢(B)) =
{o(x)p(y)|xy € E(B)} (note that the sets E(F>) and E(¢(B)) are again considered to be disjoint, and we admit
x =y in which case p(x)@(x) is a loop at ¢(x)). Note that ¢(B) is an F>-linkage.

Let F1, F> be cubic fragments with |[A(F7)| = |A(F>)| and let ¢ : A(F;) — A(F>) be a bijection. We say that ¢
is a compatible mapping if



6070 H. Broersma et al. / Discrete Mathematics 308 (2008) 6064—6077

1 1 2 2
a as a; as
T u v
F By
Yy w z
1 1 2 2
ay ag aj aj
Fig. 3.

@ @(Ai(F) = Ai(F),i = 1,2,
(i) if B is an Fi-linkage such that F' lB has a DC containing all open edges of B, then FZ‘/’ ® has a DC containing all
open edges of ¢ (B).

For a compatible mapping ¢ : A(F1) — A(F>) we will simply write ¢ : F| — F;.

Let F1, F, be cubic fragments and let ¢ : A(F1) — A(F32) be a bijection such that ¢(A; (F1)) = A;(F2),i =1,2.
It is easy to observe that if F; is weakly A(F>)-contractible then ¢ is compatible, and if moreover Fj is weakly A(F1)-
contractible then both ¢ and ¢! are compatible (note that B cannot contain a path of length at least 2 in this case —
this is clear for |A(F;)| < 2, and for |A(F;)| > 3 this follows from the fact that weak A(F;)-contractibility of F; then
implies A(F;) = Ax(F;)).

The following example shows that the compatibility of a mapping ¢ does not imply ¢~
are not weakly contractible.

!'is compatible if the F;’s

2

j9

Jj = 1,2,3, 4. By a straightforward check of all possible F;-linkages B and the corresponding DC’s in F' IB and in

FPB)
2

Example. Let F, F> be the graphs in Fig. 3 and let ¢ : A(F;) — A(F>) be the mapping that maps a} on a

, we easily see that there are, up to symmetry, the following possibilities.

E(B) DCin F DC in F{®
allai allaiyxal1 a%afwuvza%

a faé not existing not existing
alla%, aéai allazlaiyxall a%a%afwuvza%
a%aé, a%a% not existing a%a%a%uwza%
allaé, aéa%, a%ai allaéaéaiyxall a%a%a%aiwuvza%
allai, aia%, a%aé a}aia%a%xa} a%aia%a%uwza%
allai, aéaé allaiyaéaéxall a%aiwua%a%vza%
alla%, a%ai not existing a%a%uva%aiwza%

We conclude that ¢ : A(F|) — A(F,) is a compatible mapping, but there is no compatible mapping of A(F;) onto
A(F1). Note that this mapping ¢ will play an important role in the proof of our main result in Section 4.

The following result shows that the replacement of a subgraph of a cubic graph modulo a compatible mapping does
not affect the existence of a DC.

Theorem 10. Let G be a cubic graph and let C be a DC in G. Let F C G be an essential cubic fragment
such that G — F is not edgeless, and let F' be a cubic fragment such that V(F') N V(G) = @ and there is a

compatible mapping ¢ : F — F'. Then the graph G' = G[F £ F'] is a cubic graph having a DC C’ such that
E(C)\ E(F) = E(C")\ E(F").

(Note that if both ¢ and ¢~! are compatible and both F and F’ are essential, then G has a DC if and only if
G = G[F % F'lhasaDC.)
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Proof. By the compatibility of ¢, A1(F") = ¢(A1(F)) and Ax(F") = ¢(A2(F)), hence G’ is cubic. Let C be a DC
in G. We show that G’ has a DC C’ with E(C) \ E(F) = E(C") \ E(F').

We first observe that E(C) N E(F) # @. Since F is essential, there is an edge xy € E(F) with dp(x) > 2 and
drp(y) > 2. Then one of x, y (say, x) is on C. Since dr(x) > 2, x has a neighbor x1 in F, x; # y. Then, since
dg(x) = 3, the edge xy or xx7 is in E(C) N E(F).

Let Cr and C_F denote the subgraph of C induced by the edge set E(C)NE(F) and E(C)NE(G_F), respectively.
Since E(C) N E(F) # ¥ and G — F is not edgeless, C_F is a nonempty system of paths. Let Py, ..., P be the
components of C_fr. Then:

e the end vertices of every P; are in A(F),
e the interior vertices of every P; are in Aj(F) orin V(G) \ V(F),

wherei =1, ..., k.
We define an F-linkage B as follows:

(i) for every P;, let Pl.B be the path obtained from P; by replacing every maximal subpath of P; with all interior
vertices in V(G) \ V (F) by a single edge (with both vertices in A(F)),
(1) for every vertex x € A(F) \ V(C_F) which is on Cr (note that such a vertex x must be in A>(F)), let e, be a
loop at x,
(iii) B is the graph with components {PiB|i =1,...,k}U{ex|x € Ap(F)\ V(C_p) NV (O)}.

It is immediate to observe that the graph F5 has a DC C? containing all open edges of B. By the compatibility of
@, the graph (F")*®) has a DC C’ B containing all open edges of the graph ¢(B).
Let C'., denote the subgraph of C'? induced by the edge set EC'"®YN E(F"). Then C., is a system of paths, and

the edges in E(C,) U E(C_F) determine a cycle C" in G’ = G[F £ F'] with E(C)\ E(F) = E(C") \ E(F).
Note that, by the construction, V(C) N A(F) C V(C’) N A(F’) (this is clear for vertices x with dc_p(x) > 1, and for
vertices x with dc_, (x) = O this follows from the fact that both C B and C'® dominate all loops in B and in ¢(B),
respectively).

It remains to show that C’ is a DC in G’. Thus, let xy € E(G’).

Ifx,y € V(G)\ V(F') = V(G) \ V(F), then x or y is on C_p, implying x or y is on C’ since C_p C C’.If
x,y € V(F')\ A(F'), then x or y is on CJ,,, implying x or y is on C’ since Cl,, C C".

Up to symmetry, it remains to consider the case x € A(F') = ¢(A(F)).If x € V(C), then also x € V(C’) since
V(C)N A(F) C V(C') N A(F’), as observed above. Hence we can suppose that x ¢ V(C), implying y € V(C).
If y € A(F’), then similarly y € V(C’) and we are done; hence y & A(F’). Then either y € V(F’) \ A(F’), or
y € V(G) \ V(F’). But then, in the first case y is on C’F, since C’ is dominating in (F)*B) and in the second case
y is on C_p since C is dominating in G. In either case this implies y € V(C’). R

The following result shows that the existence of a compatible mapping is not affected by a replacement of a
subgraph by another one modulo a compatible mapping.

Proposition 11. Let X, F be essential cubic fragments such that there is a compatible mapping v : X — F. Let
F1 C F be an essential cubic fragment, and let F, be a cubic fragment such that V(F) NV (F>) = @ and there is a

compatible mapping ¢ : F| — F,. Let F' = F[F; £ F5). Then there is a compatible mapping ' : X — F'.
Proof. For any x € A(X) set

¥ (x) ifx € yNAF) \ A(F))),
(Y (x) ifx €y ' (AF) N A(F)).

Then ' : A(X) — A(F’) is a bijection, and ¥’ : A;(X) — A;(F'),i = 1, 2, by the compatibility of v and ¢. Let B
be an X-linkage such that X2 has a DC containing all open edges of B. By the compatibility of v, the graph FV ()
has a DC C containing all open edges of vy (B). We need to show that (F’ )¥'B) has a DC containing all open edges
of ¥'(B). We will construct a cubic graph H such that F C H, H has a DC that coincides with C on F, and the
structure of H — F implies that an application of Theorem 10 to H yields the required DC in (F’ AL

Let By, ..., Bx be the components of ¥ (B), and choose the notation such that

v'(x) = {
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Fig. 4.

o Bi.....B, (p = Darepaths, V(B}) = (x.....x} (ie. B isof length £;), j = 1...... p;

e if none of By, ..., By is a loop, then £ = 0, otherwise Bpy1,..., Bpye are loops, V(Bpij) = {xpyj},
j=1,...,¢

o if A(F)\ V(¥ (B)) =0, then f =0, otherwise A(F) \ V(¥ (B)) = {Xpyeq1,---» Xptesr)-

Thus, we have k = p + £ and V(¥ (B)) = Uerf(V(Bj)).

Let Q;, R;. (s > 2), Sj and T; be the graphs shown in Fig. 4. We construct a cubic graph H containing F by the
following construction:

o take the graph F with the labeling of vertices of A(F') defined above;

e foreach B; with1 < j < p,£; =1, take one copy of Q; and fori = 0, 1 identify x’l = qj. iij. € A1(F) or add
the edge x}q; if x;. € A, (F), respectively,

e foreach B; with1 < j < p, £; > 1, take one copy of R‘;. fors = £; and

— fori = 0 and i = ¢; identify x§. = r;. if x; € A1 (F) or add the edge x r;. if x; € Ay (F), respectively,

1
j
— for1 <i < ¢; — 1identify x|, = ri;
e foreach B; with p+1 < j < p + £ (if £ > 0) take one copy of S;, add the edge x;s;, and if £ > 2, then for
J = p+2addthe edge vj_juj;
e foreachx; withp+£+1<j < p+L£+ f (if f > 0)do the following:
—if x; € A{(F), take one copy of §;, identify x; = s; and if f > 2, then for j > p + £ + 2 add the edge v;_u;
(ifxj_1 € A1(F)), or the edge w;_ju; (if x;_1 € Ax(F)), respectively;
— if x; € A2(F), take one copy of Tj, identify x; = ¢t; and if f > 2, then for j > p + £ + 2 add the edge v;_jw;
(ifxj—1 € A1(F)), or the edge w;_jw; (if x;_1 € A(F)), respectively;
— if xpye41 € A2(F), thenrelabel wpyo41 as up oy and if xp 404 p € A2(F), then relabel wp ey as vpiey r;
e if £ #£ 0, then
— for £1 = 1 remove the edge q?al and add the edges 6]?14p+] and a1vpye,
— for £; > 1 remove the edge r?rl1 and add the edges r?um_l and rl1 Upies
o if f 0, then
— for £; = 1 remove the edge blqll and add the edges byu p4¢41 and qll Vp et fs

— for £; > 1 remove the edge rfl_lrf‘ and add the edges rfl_lup+g+1 and rfl Vpttdf-

Then H is a cubic graph, F C H, Ay (F) = A(F), and it is straightforward to check that H has a DC C¥ such
that E(CH) N E(F) = E(C) N E(F).

Let r denote the subgraph of C H induced by the edge set E(C") N E(H_F). Then the structure of the graphs
0j, R;, S; and T implies the following properties of C H o
eifl<j<pandi=0o0ri =Ej,thendC§F(xj.) =1,
eifl <j<pandl <i<¢(— l,thendcfp(x;) =2,
eif{>0and p+1<j<p+¢ then dCHF(.Xj) = 0 and x; has no neighbor on CfF,
eif f>0andp+L€+1<j<p+L+ f,then dCHF(.Xj) = 0 and all neighbors of x; in H_f are on CfF.
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Set H = H[F] £ F>]. By the compatibility of ¢ and by Theorem 10, H’ has a DC CH//such th/at
E(CH)\ E(Fy) = E(CH")\ E(F)). Specifically, F' ¢ H' and E(C")\ E(F') = E(CH)\ E(F). Let CH andCH,
denote the subgraph of C¥" induced by E(CH') N E(F’) and E(CH") N E(H' ), respectively. Then Cf’/F, =CcH_,

and from the above properties of C# r we obtain the following properties of C }{,/:
eifl <j<pandi=0o0ri=¢; thend . (x}) =1,
F ) .
eifl<j<pandl <i<¢{;—1,then dc”/ (x;) = 0 and all edges of F’ with at least one vertex in NF/(x;.) have
F/
at least one vertex on CH /,
eif{ >0andp+1<j< p+£,thendcy/(xj) =2,
F/
eif f>0andp+¢+1=<j<p+ L€+ f,theneither dc;’,'(xf) =2,0r dcg,’(xf) = 0 and all neighbors of x; in
F" are on C ;’,,.
This implies that C I{f// together with the open edges of /' (B) determines the required DC in (F’) v'(B) containing
all open edges of ¥/(B). M

For a cubic fragment F' with A(F) = A (F) we will simply write 'O _FrF 1, F> are cubic fragments with
A(F;)) = Ay(Fj),i = 1,2and ¢ : A(F1) — A(F») is a bijection, then g denotes the bijection ¢ : A(F}) — A(F)
defined by ¢p(a) = ¢(a), a € A(Fy).

In the proof of Proposition 14 we will also need the following statement showing that the existence (or
nonexistence) of a compatible mapping is not affected by adding pendant edges to vertices of attachment.

Proposition 12. Let F|, F, be cubic fragments with |A(F1)| = |A(F2)| and A(F;) = Ax(Fy), i = 1,2, and let
¢ : A(F1) = A(F,) be a bijection. Then ¢ is compatible if and only if ¢ : A(F1) — A(F3) is compatible.

Proof. Set A(f 1) = {ai1, ..., ax}. Suppose first that ¢ is compatible and let B be an F]-linkage such that there is a

DC C in (F})® containing all open edges of B. Since A(F|) = A(F}), all components of B are paths. We define an
Fi-linkage B as follows:

(i) ajaj € E(B),i # j,if and only if B has a component which is an a;, aj-path,

(ii) aja; € E(B) if and only if ; € A(Fy) \ V(B).

(This means that vertices in A(F) corresponding to internal vertices of paths in B will not be in V (B), and vertices
corresponding to vertices not in V(Elwill have loops in B.) .

Since C dominates all edges of F; (including the edges a;a; with a; € V(B)), it is straightforward to see that
removing from C the edges of B and the pendant edges of {a;a;,i = 1, ...,k} N E(C), and adding the open edges
of B results ina DC C in F IB , containing all open edges of B. Using the compatibility of ¢ we obtain a DC in FZ") (B)
containing all open edges of ¢(B), and adding the pendant edges and all edges of @(B) yields a required DC in

(F)? ).

Conversely, let @ : A(F)) — A(F>) be compatible and let B be an Fi-linkage. Since A(F1) = Aa(Fy), B
contains no paths of length more than one. Suppose the notation is chosen such that E(B) = {ajaz,...,
Ap_102p, A2 p+1A2p+1, - - - » A2p+eA2p+e), Where 2p+£ < k. Then we define B as the graph which has as components
the path a1a2p 4041 ...araz and GGif p > 1) the edges az;_1a2;, i = 2, ..., p. The rest of the proof is similar to that
above. H

4. Equivalence of Conjectures A—F

Before proving our main result, Theorem 3, we first prove several auxiliary statements that describe the structure
of potential counterexamples to Conjecture D.

Proposition 13. If Conjecture D is not true, then there is an essential cubic fragment F such that

@) [A2(F) = |A(F)| =4,
(i) there is a cyclically 4-edge-connected cubic graph G such that F C G,
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(iii) there is no compatible mapping ¢ : C4 — F.

Proof. Let G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected cubic graph having no DC, let
e =uv € E(G) and set F = G — {u, v}. Then F is an essential cubic fragment with |A>(F)| = |A(F)| = 4. Let,

-1
to the contrary, ¢ : C4 — F be a compatible mapping and set G’ = G[F LN C4]. Then G’ is isomorphic to one

of the graphs in Fig. 5, and hence G’ has a DC. But then, by Theorem 10, the graph G = G'[C4 £ FlhasaDC, a
contradiction. H

Proposition 14. Let F be an essential cubic fragment such that

M) [A2(F)| = [A(F)| =4,

(ii) there is a cyclically 4-edge-connected cubic graph G such that F C G,
(iii) there is no compatible mapping ¢ : C4 — F,
(iv) subject to (1), (ii) and (iii), |V (F)| is minimal.

Then F is essentially 3-edge-connected and contains no cycle of length 4.

Proof. Recall that a cubic graph is cyclically 4-edge-connected if and only if it is essentially 4-edge-connected
(see [5)).

We first show that F is essentially 3-edge-connected. Suppose the contrary. By definition, F is connected. Denote
A(F) = {a1, az, a3z, a4}, and let f; denote the edge in E(G) \ E(F) incident with a;, i = 1,2,3,4. If F has a cut
edge e, then some nontrivial (i.e. containing at least one edge) component of F' — e contains at most two vertices a;,
but then e together with the corresponding edges f; is an essential edge cut in G of size at most 3, a contradiction.
Hence F' has no cut edge. (Note that F' has also no cut vertex since G is cubic.)

Thus, let R = {e1, e2} C E(F) be an essential edge cut of F, and let F|, F> be nontrivial components of F — R.
Denote ¢; = b}b? with b/ € V(F;),i,j = 1,2.If |V(F)) N A(F)| = 1, then we set V(Fj) N A(F) = {x} and
observe that the edges e, e and the only edge of G_F incident to x form an essential edge cut of G of size 3, a
contradiction. We obtain a similar contradiction for |V (F1) N A(F)| = 0; hence |V (F1) N A(F)| > 2. Symmetrically,
[V(F2) NA(F)| = 2, implying |V (F1) N A(F)| = |V(F2) N A(F)| = 2. Thus, we can suppose that the notation is
chosen such that a;, ap € V(F) and a3, as € V(F>). _

If [V(F1)| > 4, then there is a compatible mapping ¢ : C4 — F; by the minimality of F. Let C be a copy of

Cs and set H = F[F (p—l> 6]. Then |V(H)| < |V (F)| and, by the minimality of F, there is a compatible mapping
Y : C4 — H. By Proposition 11 (with X = C4, F = H, F| = Cand F; = F1), there is a compatible mapping
Y Cy— H[E £ F1] = F, a contradiction. Hence |V (F1)| < 4 and, symmetrically, |V (F2)| < 4.

Now, since G is cyclically 4-edge-connected, either {a, ax} N {bl, bé} = (J, or (up to symmetry), a; = b} and
a) = bé. Hence Fj is a single edge or a cycle of length 4. Similarly, F> is a single edge or a cycle of length 4. Thus,
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F is isomorphic to one of the graphs shown in Fig. 6. However, it is straightforward to check that for each of these
graphs there is a compatible mapping ¢ : C4 — F, a contradiction. Thus, F is essentially 3-edge-connected.
Next we show that

() F contains no subgraph F, F # F, with |V (F)| > 4 and |A»(F)| = |A(F)| = 4.
Thus, let F besucha subgraph. By the minimality of F, there is a compatible mapping ¢ : C4 — F.LetCbea copy of

-1
Csandset H = F[F LN ]. By the minimality of F, there is a compatible mapping v : C4 — H. By Proposition 11
(with X .= Cy4, F .= H, F| = c ang o= f), there is a compatible mapping ¥’ : C4 — H[E B F] =F,a
contradiction. Hence there is no such F.

Finally, we show that F' contains no cycle of length 4. Let, to the contrary, Y C F be a copy of C4 (note that
possibly V(Y) N A(F) # ). Let F be the graph obtained from F by attaching a pendant edge to each vertex in
A(F), and let F| and F, be the graphs shown in Fig. 3 (recall that we already know there is a compatible mapping
¢: F| > F). Let Y be the (only) subgraph of Fsuchthat Y C Y and Y is isomorphic to F>, let T be a copy of F}

andlet ¢ : T — Y be a compatible mapping. Set F' = F[Y (2N T](.e,F = F [T % YY), and let F’ be the graph
obtained from F by removing the four pendant edges. Then F’ is a cubic fragment with |A(F)| = |A2(F')| = 4.

We show that there is no compatible mapping v : C4 — F’. Let, to the contrary, ¥ : C4 — F' be compatible By
adding pendant edges to A(C4) and A(F’) and by Proposition 12, there is a compatible mapping v : C4 — F'. Thus,
we have ¥ : C4 — F,T CcF and @ : T — Y. By Proposition 11, there is a compatible mapping w C, — F.By
removing the pendant edges and by Proposition 12 we obtain a compatible mapping ' : C4 — F, a contradiction.
Thus, there is no compatible mapping ¥ : C4 — F’.

By the minimality of F, the graph F’ (and hence also 7/) cannot be a subgraph of a cyclically 4-edge-connected
cubic graph. Thus, there is an edge cut R’ of F such that |R’| < 3 and at least one component X’ of F' — R’ contains
a cycle and has minimum degree 2 (if such an R’ does not exist then, identifying the vertices of degree 1 of T with
vertices of a C4, we get a cyclically 4-edge-connected cubic graph containing 7/, a contradiction). However, there is

-1

no such edge cut in F. Since F = F[Y LN T1], R’ contains the edge e = xy € E(T) with dr(x) = dr(y) = 3 and
some two edges f1, f» € E(f/) \ E(T). Suppose the vertices of T are labeled such that A{(T) = {ai, a2, a3, aa},
E(T) ={aix,axx,aszy,asy, xy}and ay, az, x € V(X'). Then R” = {f1, f2, a3y, a4y} is an edge cut in F' such that
|R”| = 4 and X' + e is a component of F — R". Let e1 (e, e3, e4) denote the pendant edge of Y which corresponds
to the edge a1x (axx, azy, asy) € E(T), respectively, in the mapping ¢. Then R = {f1, f2, e3, e4} is an edge cut of
F such that the component X of F — R containing X’ and Y has |V (X)| > 4 and |A>(X)| = |A(X)| = 4.

By (x) (and since F % C4, implying ej, ex € E(F)), F contains no such graph as a proper subgraph; hence
X = F. But then {ey, e2} is an edge cut of F, contradicting the fact that F is essentially 3-edge-connected. Hence F
contains no cycle of length 4. W

Proposition 15. If Conjecture D is not true, then there is an essential cubic fragment F such that

(1) F contains no cycle of length 4,

(i) there is a cyclically 4-edge-connected cubic graph G such that F C G,
(i) |A2(F)| = |A(F)| = 4 and A(F) is independent,
(iv) there is a compatible mapping ¢ : F — Ca.

Proof. By Propositions 13 and 14, there is an essential cubic fragment H such that H contains no cycle of length
4, |A2(H)| = |A(H)| = 4, there is a cyclically 4-edge-connected cubic graph G such that H C G, and there is
no compatible mapping ¢ : C4 — H. Let H be minimal with these properties. Since A(H) = A»(H), by the
nonexistence of a compatible mapping ¢ : C4 — H, H is not weakly A (H )-contractible. Hence there is a nonempty
even set X C A(H) and a partition A of X into two-element subsets such that H A has no DCT containing all
vertices of A(H) and all edges of E(A). Set A(H) = {ay, a3, a3, as} and suppose the notation is chosen such that
A = {{a1, a2}} if |X| = 2 or A = {{a1, a2}, {a3, a4}} if |X| = 4. Then the graph H? has no DC containing all open
edges of B for either E(B) = {a1a», azas, asas} or E(B) = {ajaz, azas}.

Let H, H' be two copies of H (with a corresponding labeling A(H') = {a}, a}, a3, a}}), and let F be the cubic
fragment obtained from H and H’ by adding the edges aja| and axa). Recall that H contains no cycle of length 4.
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Since H is essentially 3-edge-connected by Proposition 14, the set {a1, a2, a3, a4} (and hence also {a{, a}, a}, ay})
is independent. Hence F also contains no cycle of length 4, and the set A(F) = {a3, aa, aé, ag} is independent. It
remains to prove that there is a compatible mapping ¢ : F — Cj.

First we show that the graph F B has no DC containing all open edges of B for E(B) = {azas, asays, agaﬁ"}. To
the contrary, let C be such a DC. Then (E(C) N E(H)) U {ajaz} is a DC in HE containing all open edges of B for
E(B) = {a1a2, aza3, asas}, and (E(C) N E(H")) U {a{a}, ajay} is a DC in H' containing all open edges of B’
for E(B') = {aa}, aja)}, which is not possible. Thus, there is no such DC in FB. Symmetrically, FB' has no DC
containing all open edges of B’ for E(B') = {a}a}, ayay, azas}. Let Y be a copy of C4 with vertices labeled b3, b, b},
by such that b3by ¢ E(Y) and bb, ¢ E(Y). Then it is straightforward to check that YB" has aDC containing all open
edges of B” for all Y-linkages B” except for the cases E(B") = {b3b3, babs, bib,} and E(B") = {b}b}, byb),, b3bs)}.
Hence the mapping ¢ : A(F) — A(Y) that maps a; on b; and a; on b}, i = 3, 4,is a compatible mapping. M

Note that we do not know any example of a cubic fragment with the properties given in Proposition 15. Moreover,
we believe that such a graph in fact does not exist.
Now we are ready to prove the main result of this paper, Theorem 3.

Proof of Theorem 3. Clearly, Conjecture E implies Conjecture F. By Theorem 2, it is sufficient to show that
Conjecture F implies Conjecture D. Thus, suppose Conjecture D is not true, and let F' be an essential cubic fragment
as given by Proposition 15. Let G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected cubic graph
without a DC. For any cycle C of length 4 in G, choose a compatible mapping of F on C, and let G’ be the graph
obtained by recursively replacing every cycle of length 4 by a copy of F. Then G’ is a cubic graph of girth g(G’) > 5
and, by Theorem 10, G’ has no DC. Moreover, G’ is cyclically 4-edge-connected since any cycle-separating edge cut
in G’ of size at most 3 would imply the existence of such an edge cut in G. If G’ is not 3-edge-colorable, G’ is a snark
and we are done. Otherwise, we use the following fact and construction by Kochol [7].

Claim ([7]). If a cubic graph G contains the graph H of Fig. 7 as an induced subgraph, then G is not 3-edge-
colorable.

We use the claim as follows. Let xy € E(G’), let x’, x” (y', y”) be the neighbors of x (of y) different from y (x),
respectively, and let G}, i = 1,2, 3, be three copies of the graph G’ — x — y (where x/, x/’, y/, y/ are the copies of
X', x",y',y"in G)),i = 1,2, 3. Then the graph G obtained from G/, G, G’ and H by adding the edges x| v3, x{'v4,
Y1X5, Y1x5, ¥5x3, y5 x5, y3v1 and y3 vy is a cyclically 4-edge-connected graph of girth g(G) = 5. By the claim, G is
not 3-edge-colorable. It remains to show that G has no DC.

Let, to the contrary, C be a DC in G. Then it is easy to check that for some i € {1, 2, 3}, the intersection of C with
G is either a path with one end in {x/, x/'} and the second in {y/, y!'}, or two such paths. But, in both cases, the path(s)

can be easily extended to a DC in G/, a contradiction. W
5. Concluding remarks
1. Note that our proof of the equivalence of Conjecture F with Conjectures A-E is based on properties (compatible

mappings) that are specific for the C4. This means that our proof cannot be directly extended to obtain higher girth
restrictions.



H. Broersma et al. / Discrete Mathematics 308 (2008) 6064—6077 6077

2. We pose the following conjecture and show it is equivalent to Conjectures A—F.

Conjecture G. Every cyclically 4-edge-connected cubic graph contains a weakly contractible subgraph F with
8(F)=2.

Theorem 16. Conjecture G is equivalent to Conjectures A-F.

Proof. We first show that Conjecture G implies Conjecture D. Suppose Conjecture G is true and let G be a minimum
counterexample to Conjecture D. Hence G has no DC. Let F C G be a weakly contractible subgraph of G with
8(F) = 2and set A = Ag(F). Note that A # ¢ since §(F) = 2. By Corollary 7, the graph G|r has no DCT. If
|A] < 3, then every edge in G_F has at least one vertex in A since G is essentially 4-edge-connected. But then G|r
has a (trivial) DCT, a contradiction. Hence |A| > 4.

We use the following operation (see [5]). Let H be a graph, let v € V(H) be of degree d = dy(v) > 4, and let
X1, ..., Xq be an ordering of the neighbors of v (allowing repetition in case of multiple edges). Let H’ be the graph
obtained by adding edges x;y;, i = 1,...,d, to the disjoint union of the graph H — v and the cycle y;y2 ... y4y1.
Then H’ is said to be an inflation of H at v. The following fact was proved in [5].

Claim (/5]). Let H be an essentially 4-edge-connected graph of minimum degree 5(G) > 3 and let v € V(H) be of
degree d(v) > 4. Then some inflation of H at v is essentially 4-edge-connected.

Now let G’ be an essentially 4-edge-connected inflation at vy of the graph obtained from G|r by deleting its
pendant edges. Then G’ is a cubic graph having no DC (since otherwise G|r would have a DCT). Since no cycle of
length ¢ > 4 is weakly contractible, F' is not a cycle, and since §(F) = 2, we have |Ag(F)| < |E(F)|. But then
|E(G")| < |E(G)|, contradicting the minimality of G.

For the rest of the proof, it is sufficient to show that Conjecture D implies Conjecture G. Indeed, if C is a dominating
cyclein G, e = uv € E(C) and A = {u, v}, then the graph F with V(F) = V(G) and E(F) = E(G) \ {e} is a
weakly A-contractible subgraphof G. W

It should be noted here that the last part of the proof of Theorem 16 is based on a construction with |A| = 2,
which forces G — F be empty (G_F is a one edge graph) since G is cubic and cyclically 4-edge-connected. It is
straightforward to observe that the following stronger statement implies Conjectures A—G. However, we do not know
whether these statements are equivalent.

Conjecture H. Every cyclically 4-edge-connected cubic graph G contains a weakly contractible subgraph F with
|AGg (F)| = 4.
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1. NOTATION AND TERMINOLOGY

In this article, by a graph we mean a finite simple undirected graph G =(V(G), E(G));
whenever we allow multiple edges we say that G is a multigraph.

For a vertex x € V(G), dg(x) denotes the degree of x in G, Ng(x) denotes the neigh-
borhood of x in G (i.e. Ng(x)={ye V(G)| xye E(G)}) and Ng[x] denotes the closed
neighborhood of x in G (i.e. Ng[x]=Ngx)U{x}). For x,ye V(G), distg(x,y) denotes
the distance of x,y in G. A universal vertex of G is a vertex that is adjacent to all other
vertices of G. By a clique we mean a (not necessarily maximal) complete subgraph of
G; a(G) denotes the independence number of G and k(G) denotes the (vertex) connec-
tivity of G. By the square of a graph G we mean the graph G? with V(G*)=V(G) and
E(G*)={xy e V(G)|distg(x,y) <2}

If G, H are (multi-)graphs, then HC G or H HEDG means that H is a subgraph or
an induced subgraph of G, respectively, and H>~G stands for the isomorphism of H
and G. The induced subgraph of G on a set M C V(G) is denoted (M)g.

A path with endvertices a,b will be referred to as an (a,b)-path. If P is a path and
ueV(P), then u~ and u™t denote the predecessor and successor of u on P. A path on
k vertices is denoted Py.

For a graph G and a,b € V(G), p(G) denotes the length of a longest path in G, p,(G)
the length of a longest path in G with one endvertex at a € V(G), and p,;(G) the length
of a longest (a,b)-path in G. A graph G is homogeneously traceable if, for any a € V(G),
G has a hamiltonian path with one endvertex at a (i.e. for any a € V(G), p,(G)=|V(G))),
and G is Hamilton-connected if, for any a,b€V(G), G has a hamiltonian (a,b)-path
(i.e. for any a,b e V(G), pap(G)=|V(G))).

A walk (in G) is a sequence of vertices ujuy...u; such that u;u; 1 € E(G), i=
1,...,k—1.ForawalkJ=ujuy ...u; we denote V(J)={uy,uz, ..., u;} the corresponding
set of vertices, and |V(J)|=[{u1,uz,...,ux}| (thus, |V(J)|=k if and only if J is a path).
Finally, G is claw-free if G does not contain an induced subgraph that is isomorphic
to the claw K 3.

For further concepts and notations not defined here we refer the reader to [4].

2. INTRODUCTION

A vertex xe V(G) is eligible if Ng(x) induces a connected non-complete graph, and x
is simplicial if the subgraph induced by Ng(x) is complete. The local completion of G
at a vertex x is the graph G} obtained from G by adding all edges with both vertices in
Ng(x) (note that the local completion at x turns x into a simplicial vertex, and preserves
the claw-free property of G).

The closure cl(G) of a claw-free graph G is the graph obtained from G by recursively
performing the local completion operation at eligible vertices as long as this is possible.
We say that G is closed if G=cl(G).

The following was proved in [14].

Theorem A (Ryjacek [14]). For every claw-free graph G:
(1) cl(G) is uniquely determined,

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 1. Forbidden subgraphs for line graphs.

(1) cl(G) is the line graph of a triangle-free graph,
(iii) cl(G) is hamiltonian if and only if G is hamiltonian.

Note that the fact that cl(G) is a line graph can be seen e.g. also from the well-known
Beineke’s characterization of line graphs in terms of forbidden induced subgraphs.

Theorem B (Beineke [1]). A graph G is a line graph (of some graph) if and only if
G does not contain a copy of any of the graphs in Figure 1 as an induced subgraph.

A class C is stable if G eC implies cl(G) €C. A graph property = is stable in a stable
class C if, for any GeC, G has = if and only if cl(G) has =.

Thus, Theorem A says that hamiltonicity is a stable property in the class of claw-free
graphs.

Zhan [17] proved the following.

Theorem C (Zhan [17]). Every T-connected line graph of a multigraph is Hamilton-
connected.

Using the fact that hamiltonicity is a stable property, combining Theorems A and C
the following was obtained.

Theorem D (Ryjacek [14]). Every 7-connected claw-free graph is hamiltonian.

The line graph of the multigraph H in Figure 2 shows that Hamilton-connectedness
is not stable in 3-connected claw-free graphs (there is no hamiltonian (u1,u»)-path in
L(H), where uj,u, are the vertices of L(H) that correspond to the edges u,u in H).
Thus, the closure technique does not give a similar result for Hamilton-connectedness.

The existence of a connectivity bound for Hamilton-connectedness in claw-free
graphs was established by Brandt [5] who proved that every 9-connected claw-free
graph is Hamilton-connected. This result was later on improved by Hu et al. [8] as
follows.

Theorem E (Hu et al. [8]). Every 8-connected claw-free graph is Hamilton-
connected.

In the same article, Zhan’s result (Theorem C) was improved as follows.
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FIGURE 2. A graph with non-Hamilton-connected line graph.

Theorem F (Hu et al. [8]). Let G be a 6-connected line graph of a multigraph with
at most 29 vertices of degree 6. Then G is Hamilton-connected.

On the other hand, the following conjectures by Matthews and Sumner (Conjecture G)
and by Thomassen (Conjecture H) are still wide open.

Conjecture G (Matthews and Sumner [16]). Every 4-connected claw-free graph is
hamiltonian.

Conjecture H (Thomassen [16]). Every 4-connected line graph is hamiltonian.

Note that Theorem A immediately implies that Conjectures G and H are equivalent.
More equivalent versions of these conjectures (among others, on cycles in cubic graphs),
can be found e.g. in [7].

Another equivalence was established by Kuzel and Xiong [10] (see also [11]), who
proved that Conjectures G and H are equivalent with the following statement.

Conjecture I (Kuzel and Xiong [10]). Every 4-connected line graph of a multigraph
is Hamilton-connected.

It is natural to pose the following question.
Conjecture J. Every 4-connected claw-free graph is Hamilton-connected.

For a similar reason as with the extension of Theorem D to Hamilton-connectedness,
the closure technique as introduced in [14] does not establish the equivalence of
Conjecture J with the previous ones.

In Section 4 we develop a closure concept for Hamilton-connectedness from which, as
immediate applications, we obtain the following statements (see Theorems 15 and 17).

(i) Every 6-connected claw-free graph with at most 29 vertices of degree 6 is
Hamilton-connected.
(i1) Every T-connected claw-free graph is Hamilton-connected.
(iii) Conjecture J is equivalent with Conjectures G, H and 1.

3. k-CLOSURE AND STRUCTURE OF 2-CLOSED GRAPHS
The closure concept was extended in [3] as follows.
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FIGURE 3. A graph with no Hamiltonian (a, b)-path.

A vertex xeV(G) is k-eligible if its neighborhood induces a k-connected non-
complete graph, and the k-closure of G, denoted cli(G), is the graph obtained from G
by recursively performing the local completion operation at k-eligible vertices as long
as this is possible. A graph G is k-closed if G=clx(G).

A class C is k-stable if G €C implies clg(G)eC. A graph property 7 is k-stable in a
k-stable class C if, for any GeC, G has « if and only if cli(G) has 7.

Theorem K (Bollobas et al. [3]). For every claw-free graph G,

(1) clg(G) is uniquely determined,
(i1) cla(G) is homogeneously traceable if and only if G is homogeneously traceable,
(iii) cl3(G) is Hamilton-connected if and only if G is Hamilton-connected.

Thus, homogeneous traceability is 2-stable and hamilton-connectedness is 3-stable in
the class of claw-free graphs.

Let G be the graph in Figure 3 (where the ovals represent cliques on at least three
vertices). Then G has no hamiltonian (a, b)-path, the vertex x is 2-eligible, and there is a
hamiltonian (a, b)-path in the local completion G of G at x. This shows that the property
“having a hamiltonian (a, b)-path for given a,b € V(G)” is not 2-stable. However, neither
G nor its 2-closure are Hamilton-connected. This motivated the following conjecture.

Conjecture L (Bollobas et al. [2]). Hamilton-connectedness is 2-stable in the class
of claw-free graphs.

Note that in [9] the author claimed to give an infinite family of counterexamples to
Conjecture L. However, this statement is not true, since it is not difficult to observe
that the graphs constructed in [9] have similar behavior as the graphs in Figure 3 (i.e.
they show that the property “having a hamiltonian (a,b)-path for given a,b € V(G)” is
not 2-stable, but do not disprove Conjecture L).

Affirmative answer to Conjecture L was given in [15].

Theorem M (Ryjacek and Vrana [15]). Hamilton-connectedness is 2-stable in the
class of claw-free graphs.

A natural question is whether a 2-closure of a claw-free graph belongs to some
“nice” class of graphs. It is easy to see that, in general, cl>(G) is not a line graph, since
e.g. the second or fourth graph in Figure 1 is an example of a 2-closed claw-free graph
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FIGURE 4. Forbidden subgraphs for line graphs of multigraphs.
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FIGURE 5. The graphs S; and S».

that is not a line graph. Thus, a next question is whether a 2-closure of a claw-free
graph is a line graph of a multigraph.

Line graphs of multigraphs were characterized by Bermond and Meyer [2] (see also
Zverovich [18]).

Theorem N (Bermond and Meyer [3]). A graph G is a line graph of a multigraph if
and only if G does not contain a copy of any of the graphs in Figure 4 as an induced
subgraph.

We see that, in general, cl2(G) is not a line graph of a multigraph, since the graphs
G, and Gy of Figure 4 are 2-closed, i.e. they can be induced subgraphs in cly(G).

We now consider the structure of cly(G) in more detail. We include here only those
results that are needed for introducing the closure concept in Section 4. Proofs and
further necessary auxiliary results are postponed to Section 6.

Lemma 1. Let G be a 2-closed claw-free graph, and let G, i=1,...,7 be the graphs
from Figure 4. Then G is {G1,G3,Gs,Ge,G7}-free.

Thus, a 2-closed claw-free graph can contain only induced G, and/or Gy4. In the rest
of the article we will keep the notation of these graphs as shown in Figure 5.

Let J=uqu; ...u;41 be a walk in G. We say that J is good in G, if k>4, J>C G and
for any i, 0<i<k—4, ({uj,uiy1,...,uiy5})c is isomorphic to S1 or to S3.

Similarly, a cycle CCG is said to be good in G, if every set of six consecutive
vertices of C induces in G the graph S or S5.
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Lemma 2. Let G be a 2-closed claw-free graph and J =uqu, ... ug4+1 a good walk in
G, k>=5. Then dg(u;))=4, i=3,... ,k—2.

Thus, for i=3,...,k—2, (Ng(u;))c is a path of length 3 with vertices u;_p, u;_1,
U1, Uj2.

Corollary 3. Let G be a connected 2-closed claw-free graph and let C C G be a good
cycle in G. Then G=C2.

Corollary 3 specifically implies that a connected 2-closed claw-free graph either
is isomorphic to the square of a cycle (and hence is trivially Hamilton-connected),
or contains no good cycle. In the rest of the article we concentrate on the second
(non-trivial) case.

Let J be a good walk in G. We say that J is maximal if, for every good walk J' in
G, J being a subsequence of J' implies J=J".

Lemma 4. Let G be a connected 2-closed claw-free graph that is not the square of a
cycle, and let J=uguj ...uxy1 be a maximal good walk in G. Then (Nglui]\{u3})g=
(Ngluz]\{u3,us}) G and this subgraph is a clique.

Note that symmetrically also (Nglux]\{ur—2})6 = (Nglur—11\{ux—2,ux—3})G 1is
a clique.

Lemma 5. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle, and let J=uou ... ury1 be a good walk in G. Then uy ...uy is a path.

Let Jll‘ be the graphs in Figure 6. We set:

Ji =S k=4),
Jo =I5 |k>4),
Js =% |k>6),

Js =173 |k=8}.

Our next lemma describes the structure of subgraphs induced by good walks.

Lemma 6. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle, let J=uou ...ux+1 be a maximal good walk in G, and let J be chosen such
that
VD) =min{|{x,uy,...,ux,y}| | xui...ury is a maximal good walk in G}.
Then
(V) e HUTRUT3U 4.

The following lemma shows that the sets of interior vertices of maximal good walks
in a 2-closed graph are vertex-disjoint.
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FIGURE 6. Subgraphs induced by maximal good walks.

Lemma 7. Let G be a connected 2-closed claw-free graph that is not the square of

a cycle and let J' _u(l)ul .M}H_l, JZ_M(Z)M% u]%,_H be maximal good walks in G such

that ué:utzfor some s,t, | <s<k, 1<t<k'. Then

() {u],....ujy={u},....ul},

i 1/ 1.2 1.2 c__
(ii) k=K and u; =u; or u; =U_ip s i=1,....,k

4. CLOSURE CONCEPT AND HAMILTON-CONNECTEDNESS

Before introducing the main concept of this article, the closure operation, we first
introduce some notations and recall some helpful definitions and facts from [9].

For any X C V(G) let Gy denote the local completion of G at X, i.e. the graph with
V(G%)=V(G) and E(G%)=E(G)U{uv| u,v € X}. Thus, the previous notation G; means
that, for a vertex x € V(G), we simply write G for Gj’:, ( ) Similarly, for a sequence of

*
X

Let C be a class of graphs and let P be a functlon on C such that, for any G€C,
P(G)c2"9 (ie. P(G) is a set of subsets of V(G)). We say that a graph F is a
‘P-extension of G, denoted G < F, if there is a sequence of graphs Go =G, Gy, ...,Gy=
F such that G;eC, i=1,...,k, and G4 =(G,~)§i for some X; € P(G)), i=1,...,k—1.
Clearly, for any graph G a <-maximal P-extension H exists, and in this case we say
that H is a P-closure of G. If a P-closure is uniquely determined then it is denoted
by clp(G). Finally, a function P is non-decreasing (on a class C), if, for any H,H' €C,
H < H' implies that for any X € P(H) there is an X’ € P(H’) such that X CX’.

The following result was proved in [9]. For the sake of completeness, we include
its (short) proof here.

vertices X, ...,xx we will simply write G* for (G}

Theorem O (Kelmans [9]). If P is a non-decreasing function on a class C, then, for
any GeC, a P-closure of G is uniquely determined.

Journal of Graph Theory DOI 10.1002/jgt
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Proof. Let H#H' be P-closures of G, let G=Gy,Gy,...,Gy=H' be such that
Git1 =(G,-)§i for some X;€P(G;), and let s be a smallest integer such that G, Z H.
Since Gs—1 CH and P is non-decreasing, there is X € P(H) such that X;_; C X. Since
H is <-maximal, we have H;:H, a contradiction. [ |

For a given graph G, let Cs denote the class of graphs with vertex set V(G). The
following two facts are easy to observe.

Lemma 8. Let G be a graph.

(i) Let P be a non-decreasing function on Cg, let X CV(G), and for any H € Cg set
PX(H)=P(H)U{Np(x)| xeX}. Then PX is a non-decreasing function on Cg.

(ii) For any integer k> 1, the function Py(H)={Ny(x)| (Ng(x))g is k— connected}
is a non-decreasing function on Cg. ]

Consequently, for any graph G, integer k>1 and a set X C V(G), the function P¥,
defined (for any H €Cg) by 73,5( (H)=(Py)X(H), is a non-decreasing function on Cg.

Let now G be a connected claw-free graph that is not the square of a cycle and let
J1,...,J; be all maximal good walks in cl»(G). For any Jizuf)u’i '””5&1 set

Xi={uy, .. oul_JU{ul b} if k=2r
or
Xi={uy, .. oul_JU{ul 5. by} if k=2r+1,

respectively, and set X = Ule Xi (note that the sets X; are pairwise disjoint by Lemma 7).
Then, by Lemma 8, the function pM (H)=P§ (H) is a non-decreasing function on Cg.
The corresponding PY-closure of G (which is unique by Lemma 8) will be called the
multigraph closure (or simply M-closure) of G and denoted cM(G). If G is the square
of a cycle, we define cM(G) as the complete graph on V(G). If G=cI™(G) then we
say that G is M-closed.

Theorem 9. Let G be a connected claw-free graph and let c(G) be the M-closure
of G. Then

i) M(G) is uniquely determined,
(ii) there is a multigraph H such that cM(G)=L(H),
(iii) for every a€V(G), pa(c"(G))=pa(G),
@iv) cM (G) is Hamilton-connected if and only if G is Hamilton-connected.

Proof. If G=C? for some cycle C then the statement is trivial, hence we suppose
that G is not the square of a cycle. Part (i) then follows immediately from Lemma 8§,
and part (ii) follows immediately from Lemma 1, from the construction of cM (G),
from Lemma 25 and from Theorem N. ]

Before proving parts (iii) and (iv) of Theorem 9, we first show that if G is not
the square of a cycle, then cI(G) can be equivalently constructed by the following
algorithm.
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FIGURE 7. Forbidden subgraphs for preimages of M-closed graphs.

Algorithm 10. Let G be a connected claw-free graph that is not the square of a
cycle.

1. Set Gy =clh(G), i:=1.

2. If G; contains a good walk, then
(a) choose a maximal good walk J=uguy ...uxy1,
(b) set Giy1=ch((Gi)y, )
(c) i:=i+1 and go to (2).

3. Set G=G;.

Proposition 11.  Let G be a connected claw-free graph that is not the square of a
cycle and let G be the graph constructed by Algorithm 10. Then G =cl®(G).

Proof. By Lemma 28, Algorithm 10 closes all vertices with neighborhood in some
PM(G)), hence cIM (G)C G. By Lemma 25, every vertex with neighborhood in some
PM(G;) is closed by Algorithm 10. Hence G is a special case of one possible construc-
tion of PM(G) and, by Theorem 9(i), G=cI™(G). [ ]

Proof. Proof of parts (iii), (iv) of Theorem 9 now immediately follows from
Proposition 27. n

Let T1,7>,T3 be the graphs in Figure 7. It is easy to observe that if G=L(H) and
xe€ V(G) is 2-eligible, then the edge x1xp € E(H), corresponding to x, is contained in a
copy of T; for some i, 1 <i<3, such that dr,(x1) =dr,(x2) =3. However, the converse
is not true in general, unless x; and/or x, have an appropriate neighbor outside. More
specifically, it is straightforward to verify the following observation.

Proposition 12. Let G be a claw-free graph and let T1,T2,T3 be the graphs shown
in Figure 1. Then G is M-closed if and only if there is a multigraph H such that
G=L(H) and H does not contain a subgraph S (not necessarily induced) with any of
the following properties:

(i) Sx~T1,
(1) S~T, and there is a uc V(H)\ V(S) such that |Ng(u)N{x1,x}| =1,
(iii)) S~T3 and there are ui,uy € V(H)\ V(S) such that u; #uy and uix; e E(H), i=
1,2

(where x1, x are the only vertices in S with ds(x;)=3).

A well-known drawback of line graphs of multigraphs is the fact that there can be
multigraphs Hi, H, such that Hy 2 H;, but L(H{)~L(H>) (i.e. the “preimage” is not
uniquely determined). However, this problem can be avoided by a slight modification
of an approach given in [18]. Namely, we show that the preimage H ZLA_/[I (G) of a
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line graph G of a multigraph is uniquely determined under an (very natural) additional
assumption that simplicial vertices in G correspond to edges in H with one vertex of
degree 1 (called pendant edges).

The basic graph of a multigraph H is the graph with the same vertex set, in which two
vertices are adjacent if and only if they are adjacent in H. A multitriangle (multistar)
is a multigraph such that its basic graph is a triangle (star). The center of a multistar S
with m edges is the vertex x € V(S) with ds(x)=m (for |V(S)|=2 we choose the center
arbitrarily), and all other vertices of S are its leaves. An induced multistar S in H is
pendant if none of its leaves has a neighbor in V(G)\ V(S), and similarly a multitriangle
T is pendant if exactly one of its vertices (called the roof) has neighbors in V(G)\ V(S).
We will use the following operations introduced in [18].

Operation A. Choose a pendant multistar in H and identify all its leaves.
Operation B. Choose a pendant multitriangle H with vertices {v,x,y} and root v,
delete all edges joining v and x, and add the same number of edges between v
and y.

Now, for a multigraph H, AB(H) denotes the multigraph obtained by recursively
repeating operations A and B. The following result was proved in [18].

Theorem P (Zverovich [18]). Let H, H' be connected multigraphs such that L(H) >~
L(H'). Then AB(H)=AB(H') unless one of H, H' is a multitriangle and the other one
is a non-isomorphic multitriangle or a multistar.

We will need one more operation.

Operation C. Choose a pendant multistar in H and replace every leaf of degree
k>2 by k leaves of degree 1.

Similarly as before, let BC(H) denote the multigraph obtained from a multigraph
H by recursively repeating operations B and C. Theorem P then easily implies the
following result.

Theorem 13. Let G be a connected line graph of a multigraph. Then there is, up
to an isomorphism, a uniquely determined multigraph H =L;,11(G) such that a vertex
e V(G) is simplicial in G if and only if the corresponding edge e € E(H) is a pendant
edge in H.

Proof. Let G=L(H). It is easy to see that every edge e € E(H) corresponding to a
simplicial vertex e € V(G) is in a pendant multitriangle or in a pendant multistar. Thus,
BC(H) has the required properties. Uniqueness follows from Theorem P. ]

Note that if, specifically, G is a line graph of a graph, then the multigraph preimage
L;,[] (G) of G, given by Theorem 13, and the obvious line graph preimage L™!(G) can
be different. For example, for the graph 7' of Figure 7, L;/II(T]) and L] (T)) are shown
in Figure 8.

The following result shows that, with the use of the (uniquely determined) preimage
LA_,[I(G) of a line graph of a multigraph G, Proposition 12 can be simplified.

Proposition 14. Let G be a claw-free graph and let T1,T2,T3 be the graphs shown
in Figure 7. Then G is M-closed if and only if G is a line graph of a multigraph and
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Ly (Ty) T L~Y(Th)
T2 X9

FIGURE 8. Preimages of the graph T;.

LA_/II(G) does not contain a subgraph (not necessarily induced) isomorphic to any of
the graphs Ty, Ty or Ts.

Proof. If L;,II(G) does not contain any of 71, T, T3, then clearly the conditions (i),
(i1) and (iii) of Proposition 12 are satisfied and hence G is M-closed by Proposition 12.
Conversely, suppose that G is M-closed and let H be a multigraph given by
Proposition 12. Then clearly 77 is not a subgraph of H and any 7> or 73 in H not
satisfying (ii) or (iii) is turned by Operations B and/or C into a star. Hence BC(H)
does not contain any of 71, T2, T3. [ |

5. APPLICATIONS AND SHARPNESS

Combining Theorems F and 9(iv), we immediately obtain the following result.

Theorem 15. Every 6-connected claw-free graph with at most 29 vertices of degree
6 is Hamilton-connected.

Proof. If G is a counterexample to Theorem 15, then H=cl"(G) is a counterex-
ample to Theorem F. |

Corollary 16. Every 7-connected claw-free graph is Hamilton-connected.
Similarly, Theorem 9(iv) immediately implies the following result.
Theorem 17. Conjecture J is equivalent with Conjectures G, H and L.

Proof. Conjecture J implies Conjecture I since every line graph (of a multigraph)
is claw-free. Conversely, if G is a counterexample to Conjecture J, then H=cI™(G) is
a counterexample to Conjecture 1. |

Note that Corollary 16 was conjectured in [12].

We conclude by showing that the closure operation cI¥(G) is, in a sense, best
possible; more specifically, there is no closure operation that turns a 3-connected
line graph of a multigraph into a line graph (of a graph) and preserves Hamilton-
connectedness.

If C is a class of graphs, then by a closure on C we mean a mapping cl:C — C such
that, for any GeC, V(G)=V(c(G)) and E(G)C E(cI(G)). Let L denote the class of
k-connected line graphs (of graphs) and let Lﬁ” denote the class of k-connected line
graphs of multigraphs.

Theorem 18. There is no closure cl on ng such that clzﬁg’l — L3 and Hamilton-
connectedness is stable under cl.
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Proof. Let H be the multigraph shown in Figure 2 and let G=L(H). Then G is not
Hamilton-connected, and the vertices of G that correspond to edges of H adjacent to
some of the vertices aj,az induce in G a subgraph F isomorphic to the sixth graph in
Figure 1. Thus, for any closure cI:L‘g‘” — L3, ¢I(G) contains at least one edge joining
two non-adjacent vertices of F. However, adding any such edge turns G into a graph
that is Hamilton-connected. |

6. PROOFS AND LEMMAS

Lemma 19. Let G be a claw-free graph, xe V(G), let ye V(G) be a cutvertex of
(Ng(x))g and let K|, Ky be components of (Ng(x))g—y. Then (up to a relabeling of
Ki,K>),

1) (V(K1)U{h g is a clique and K3 is a clique,
(i1) if HC (Ng(x))g is 2-connected non-complete, then HC (V(K2)U{y})¢.

Proof. 1If (i) fails, then a({Ng(x))g)>3 and x is a center of an induced claw, a
contradiction. Part (ii) follows immediately from (i). |

IND
Corollary 20. Let G be a claw-free graph, xeV(G), let H C (Ng(x))g be a
2-connected graph containing two distinct pairs of independent vertices. Then (Ng(x))G
is 2-connected.

Proof. Proof follows immediately from Lemma 19. |

Corollary 21. Let G be a 2-closed claw-free graph, H C G (not necessarily induced),
H>~S1. If {ugup31€£=0,1,2YNE(G)=0, then

IND
(i) either H C G,
. IND
(i1) or H4+upus C G (and H+ugus>=S>).

Proof. If uguyi4 € E(G) for some £ €{0, 1}, then uy4, is 2-eligible by Corollary 20,
a contradiction. [ |

IND
Lemma 22. Let G be a 2-closed claw-free graph, xeV(G), H C (Ng(x))g
2-connected, u,v € V(H) independent. Then u or v is a cutvertex of (Ng(x))g.

Proof. Since G is 2-closed and u,v are independent, (Ng(x)); cannot be
2-connected. If (Ng(x))g is disconnected, then, for an arbitrary vertex w in the
component of (Ng(x))c not containing H, ({x,u,v,w})c K] 3, a contradiction. Hence
K({Ng(x))g)=1. Rest of the proof follows from Lemma 19. ]

Proof of Lemma 1. Each of the graphs G;, i€{1,3,5,6,7}, contains a vertex x;
satisfying the assumptions of Corollary 20, i.e. such that x; is 2-eligible in any claw-free

IND
graph G such that G; C G. Hence none of the G; can be an induced subgraph of a
2-closed graph. ]
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IND
Lemma 23. Let G be a 2-closed claw-free graph, H C G, H>~S{ or H>~S,. Then
there is no vertex z€ V(G)\V(H) such that {ui,usz} CNg(z) or {uz,u3} C Ng(z) (and,
symmetrically, neither {u,us} C NG(z)).

Proof.

1. We first show that there is no z€ V(G)\ V(H) such that {uy,up,u3,us} C NG(2).
Let, to the contrary, zeV(G)\V(H) and u;eNg(z) for i=1,2,3,4. Then
({u1,u2,u3,us})G is a 2-connected subgraph of (Ng(z))g and uj, us are indepen-
dent. By Lemma 22, u; or uy4 is a cutvertex of (Ng(2))g-

Suppose u4 is a cutvertex of (Ng(z))g (the other case is symmetric), and let
weNg(z) be in the component of (Ng(z))Gg —u4 not containing uy, up and u3.
Since ({ua,us,uz,w})c # K13, we have uswe E(G). Then ({ua,u3,us,w,z})g is a
2-connected subgraph of (Ng(u4))g containing two distinct pairs of independent
vertices, hence u4 is 2-eligible by Corollary 20, a contradiction.

2. We show that there is no z€V(G)\V(H) such that {uj,us,u3} CNg(z) or
{us,uz,us} CNg(z). Let, to the contrary, {uy,uz,u3} CNg(z) (the second case is
symmetric). By part 1 of the proof, zus ¢ E(G) and from ({ua,up,z,us})c 2 K13
we have zug € E(G). Then ({ug,u2,u3,2z})¢ is 2-connected, up, u3 are independent
and, by Lemma 22, either ug or u3 is a cutvertex of (Ng(u1))g. Choose a vertex
w in the component of (Ng(u1))c —uo ({(Ng(u1))G —u3) not containing up and gz,
respectively.

(i) If ug is a cutvertex of (Ng(u1))g, then ({w,uq,uy,uz,u3,us})c is isomorphic
to S; or S» and we have a contradiction with part 1 of the proof (for the
vertex z).

(i1) If u3 is a cutvertex of (Ng(u1))g, then from ({uz, w,u2,us})c# K13 we have
wus € E(G), but then (Ng(u3)) g contains a 2-connected induced subgraph with
two distinct pairs of independent vertices. By Corollary 20, u3 is 2-eligible,
a contradiction.

3.(a) Letnow {u1,u3} C Ng(2) (but upz ¢ E(G)). From ({u3,z,u2,us})c # K13 we have
zus € E(G), but then again u3 is 2-eligible by Corollary 20, a contradiction.
(b) The case {uz,us} C Ng(z) is symmetric.
(c) Finally, if {uz,u3} CNg(z) (but uiz¢ E(G)), then from ({u3,z,u1,us})c 2 K13
we have zuy € E(G), which is not possible by part 2 of the proof. ]

IND
Corollary 24. Let G be a 2-closed claw-free graph, H C G, H>~S| or H>~S,.
Then

(1) both (Ngluil\{uz,u3})G and (Ngluz2)\{us,us})c are cliques,
(i) Nglua]\{u3z,us} CNglui]\{us},
(iii) the only neighbor of us in Ng(uy) is u3.

Note that also symmetrically (Ng[ua]\ {u3,u2})G and (Ng[uz]\ {u2,u1}) g are cliques.

Proof.

(1) If (Ng[u1]\{u2,u3})c is not a clique, then there is a z€ Ng(u1) such that zugy ¢
E(G), but then by Lemma 23 ({u1,z,u0,u3})c = K13, a contradiction. The proof
for (Nglua]\{u3,usa})g is symmetric.
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(i) By (i), every neighbor of u; is adjacent to u;.
(ii1) If ze Ng(u2), z7#u3, is adjacent to u4, then z¢ V(H) since H is induced, but this
contradicts Lemma 23. |

Lemma 25. Let G be a claw-free graph, F CV(G), F={ug,uy,uz,u3,us4,us}. If F
induces S1 or Sy in clo(G), then there are vertices vy,vs € V(G) such that the set
{vo,u1,ur,u3,us,vs} induces Sy or Sy in G.
Proof. Let clp(G)=G* , set Gi=G* ,i=1,...,k (i.e. Gy=cly(G)), and let
X1.oo Xk X

.o e X
F={up,u1,u2,u3,us,us} be such that (F)g, :lS
by induction from the following fact.

If vo,vs € V(G) are such that {vg,u;,us,u3,u4,vs} induces Sy or S in G4 for some
i, 1 <i<k—1, then there are wo,ws € V(G) such that {wq,ui,u>,u3,us,ws} induces S;
or Sz in G,’.

Thus, suppose that {vg,ui,us,u3,us,vs} induces S; or Sy in Giy1=(Gj)
B=E(Gi41)\E(G)).

Since x; is adjacent to both vertices of all edges in B and F induces S; or
S in Gr=cl(G), by Lemma 23, BN{ujuz,uou3,upus}=9. Since (Ng,(x;))G, is a
clique, and by symmetry, we can suppose that B C {vouy,voua,uiuz}. If ujup € B, then
({uz,u1,uz,us})G; is a claw; hence ujup € E(G;) and |B| <2. If x; is adjacent in G;
to both u; and uy, then {x;,u;,u>,u3,us,us} induces S; or Sy in G;, we set wo=ux;,
ws=vs and we are done. Hence it remains to consider the case when x; is adjacent
in G; to at most one of u;, u and, consequently, |[B|=1. But then for B={vou} we
have ({uz,vo,u1,us})G;,=Ki3 and for B={vouz} we have ({u,x;,u1,us})g,=Ki3, a
contradiction. [ |

1 or (F)G, == S>2. The proof then follows

*
y,» and set

Proof of Lemma 2. Let dg(u;)>5 for some i, 3<i<k—2, and let we V(G) be
a neighbor of u;, wé {u;—2,u;—1,ui+1,uiy2}. By Lemma 23 and since J is good, we
have wu;_» ¢ E(G) and wu, 7 ¢ E(G). From ({u;,w,u;—2,u;12})c# K13 we then have
ui—auit3 € E(G), contradicting the fact that J is good. [ |

Proof of Corollary 3. 1f |V(C)| <6, then C cannot be good, hence |V(C)|>7. Then,
by Lemma 2, all vertices of C are of degree 4 in G, implying C>=G.

Proof Lemma 4. By Corolary 24 (i), (Nglup]\{u3,us})g is a clique and by
Corollary 24 (ii), Ng[u2]\ {u3,ua} C Nglu1]\ {u3}. Thus, it remains to show that Ng[u1]\
{u3} C Ngluz]\ {u3,us}. If this is not the case, then there is a vertex xe V(G) such that
xu1 €E(G) and xupy¢E(G). By Corollary 24 (i) then xug € E(G) and, by Corollary 21,
J =xupuy ...up11 is a good walk in G, contradicting the maximality of J. [ |

Proof of Lemma 5. Suppose that u; =u; for some i, j, 1 <i<j<k, and choose i, j
such that j—i is minimum. Then u; ...u;_1u; is a cycle, and by the minimality of j—i,
Uit1 7 Uj—1.

1. Let first 3<j<k—2. Then, by Lemma 2, (Ng(u;))c >~ Ps.

If 2 <i<k—2, then also the neighborhood of &; in J 2 is a P4, and these neighbor-
hoods coincide. Since u;11#u;j—1, we have u; 1 =u;y 1, from which u; > =u;»,
ui 1 =uj and u; p=u; . Then u;...u; 1u; is a good cycle, a contradiction by
Corollary 3.
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If i=1, then the equality ug=u;_ follows from u; =u;; and from the equality
of neighborhoods, and the cycle ; ...u;_ju; is good by Corollary 21.

2. The case 3<i<k—2 is symmetric.

3. Thus, it remains to consider the possibility i € {1,2}, je {k—1,k}. This specifically
implies that for every good walk J=ugu; ...ux4+1 we have k<|V(G)|+2, hence
for every good walk J there is a maximal good walk J’ such that J is a subsequence
of J'. Hence we can without loss of generality suppose that J is maximal. We
distinguish 4 cases.

(a) i=1, j=k—1. Then, by Lemma 4 and by the fact that J is good, (Ng(u1))g
consists of a clique and one edge while (Ng(ux—1))c consists of a clique and
a P3, a contradiction.

(b) i=2, j=k. This case is symmetric to the previous one.

(c) i=2, j=k—1. Then the only possible vertices of degree 1 in (Ng(u2))g are
ug and us, and, in (Ng(ux—1))G only ug_3 and wuyy1. Since ur_3#u4 (by the
choice of i and j), we have uy4 | =u4, and hence u;_3 =ug. Since clearly k> 5,
we have dg(u3z)=4 and u3 is the only common neighbor of u3, u4, but then,
since uy is a common neighbor of ux_1 =u» and ug4 1 =u4, necessarily uy =u3
and we are in Case 2.

(d) i=1, j=k. The only universal vertex in (Ng(u1))g is uz and in (Ng(ux))G is
ux—1. Hence up =ui_1, contradicting the choice of i, j.

Lemma 26. Let G be a connected 2-closed claw-free graph that is not the square
of a cycle, J=ugu; ...u+1 a maximal good walk in G, ueV(G), ué¢ {up,uy,uz,u3,us},
such that uuy € E(G) or uup € E(G). Then:

(i) both uuy € E(G) and uujy € E(G),
(1) uuy...uxy1 is a good walk in G,
(i) if ueV(J), then k>6 and u € {ug_1,up, i1}

Proof. (i) follows immediately from Lemma 4.

(i), (iii) if u¢V(J), then Lemma 23 implies uu3z ¢ E(G) and we are done by
Corollary 21. Hence suppose u € V(J). Since uu; € E(G) and J is good, necessarily u = u;
for some j>7, implying k> 6. Since dg(uz)=4 (by Lemma 2), uusz ¢ E(G) and hence
uuy ...ugy1 is good by Corollary 21. Since dg(uj)=4 for 3<j<k—2 (by Lemma 2),
we have ue {Ltk_l s U uk+1}.

Proof of Lemma 6. First observe that by Lemma 2 the only edges to be considered
are those between ug,u1,uy and ug_1, Uy, Ug+1.

Case 1. J is not a path. Since uy,...,u; is a path by Lemma 5, the only possibili-
ties are uq € {ug—1,ux, ur+1}, and, symmetrically, ug41 € {ug,u1,u2} (note that k>6 by
Lemma 26).

(a) up=ug—1. By Lemma 4, ({uy,un,up,ur+1,ur})G is a clique (not excluding the
possibility that ug41 € {u1,uz}). Then ({uy, ..., ur})c € Ja (since all edges between
uy,up and uy_1,u; are present and no other edges are possible by Lemma 2), and
hence for uyy1 € {u1,u2} we have (V(J))g= ({u1,...,ur})c € J1 and we are done,
otherwise we have a contradiction with the minimality of J.
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(b) ugp=ug. Then similarly, by Lemma 4, ({uy,un,ug,up—1,ux+1})c is a clique and
then, as before, for ugi1 € {ui,uz} we obtain (V(J))g= ({u1,...,ux})c € Ja, and
otherwise we have a contradiction with the minimality of J.

(¢c) up=ug4+1. Then the only possible edges to be considered are the edges
between uy,uy and ug_1,u;. By Lemma 26, either {ujug, w1, uouy, uptgs1} C
E(G), or {ujup,ujupy1,usug, upup+1}NE(G)=@. In the first case we have
(VD \{uo})c= {u1,...,ux})G € Ja, contradicting the minimality of J, otherwise
(VNG € Js.

Case 2. J is a path. By Lemma 26, either {uuyy1,upugs1} C E(G), or {uytgy1,upttgs1}1N
E(G)=0. In the first case, the walk J—ug=urjuiuy...upupy is good in G,
contradicting the minimality of J. Hence ujugi1,uzur+1 ¢ E(G), and, symmetrically,
uou_1,uoux € E(G).

It remains to consider the edges between uj,uy and ug_1,u;. Again, by Lemma 26,
either all of them or none of them are present. In the first case, the walk J — {ug, uy1}=
upuiuy ... ug—1uguy is good in G, contradicting the minimality of J; in the second case
we have (V(J))g € J1 if upugs1 € E(G) and (V(J))g € T2 if ugups1 € E(G). ]

Proof of Lemma 7. 1f 3<s<k—2 or 3<r<k'—2, then the statement follows
immediately by Lemma 2 (for {s,#}N{1,2}#@ we use the equality of neighborhoods
of the vertices ué :ug, and symmetrically for se {k—1,k} or re {k'—1,k'}).

It remains to consider the cases when se€{1,2,k—1,k} and re{1,2,k'—1,k'}. By

symmetry, it is sufficient to suppose s, € {1,2} (otherwise we relabel one or both walks).

1. Let u% =u%. By Lemma 4, <Ng(u}))(; consists of a clique and an edge, while
(N(;(u%))g consists of a clique and a P3, a contradiction. Hence u};ﬁu% and,
symmetrically, u% #* ué.

2. Suppose that ué =u§. By Lemma 4, at most two vertices in (N(;(ué))G can be of
degree 1, namely, uf) and uf‘, i=1,2. We distinguish two subcases.

(a) u}‘ =ui. The only neighbor of uj{ in (N(;(ug)k; is the vertex ug, i=1,2; hence
u%:ug By Lemma 23, u’l is the only neighbor of u’3 in (NG(ué))G, distinct
from ui, i=1,2, hence also u% :u%. For k=k'=4 we thus have uJ1 :ujz,jz
1,2,3,4; otherwise (i.e. if k>5 or k' >5) the statement follows from ué :u%

by the beginning of the proof.
(b) ué:ui (and hence ui:u%). Similarly as in (a) we have u% =u§. The vertex
u(z) is of degree 1 in (N(;(u%))g (since u%:u}1 and ul is of degree 1), hence
u% =u%. But then the vertices ué =u% and ui:ué have a common neighbor
ué and uiué ¢ E(G), contradicting the fact that, by Lemma 4, NG[u%]\{ug}:

Ngluz]\ {3, uz}.

3. Finally, let u} =u%. By Lemma 23, the only universal vertex in (Ng(u"l))(; is ué,
i=1,2. Hence u% :u% and we are back in Case 2. [ |
Proposition 27. Let G be a connected 2-closed claw-free graph that is not the square

of a cycle and let J=ugu ...ug4+1 be a maximal good walk in G. Then

() for every a€ V(G), pa(Gy, ) =pa(G),
(i) the graph G} (1w, 18 Hamilton-connected if and only if G is Hamilton-connected.
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dQ C3 dl
FIGURE 9. The graph S.

Proof. 1In the proof of Proposition 27 we will need the following result by Brandt
et al. (see [6], Proposition 3.2). |

Proposition Q (Brandt et al. [6]). Let x be an eligible vertex of a claw-free graph G,
G, the local completion of G at x, and a, b two distinct vertices of G. Then for every
longest (a,b)-path P'(a,b) in G there is a path P in G such that V(P)=V(P') and P
admits at least one of a, b as an endvertex. Moreover, there is an (a,b)-path P(a,b) in
G such that V(P)=V(P') except perhaps in each of the following two situations (up to
symmetry between a and b):

(1) There is an induced subgraph H C G isomorphic to the graph S in Figure 9 such
that both a and x are vertices of degree 4 in H. In this case G contains a path
Py, such that b is an endvertex of P and V(Pp)=V(P"). If, moreover, be V(H),
then G contains also a path P, with endvertex a and with V(P,)=V(P").

(i) x=a and abe E(G). In this case there is always both a path P, in G with
endvertex a and with V(P,)=V(P') and a path Pj, in G with endvertex b and
with V(Pp)=V(P).

Let G and J=u,u; ...ur4+1 satisfy the assumptions of Proposition 27 and let S be
the graph of Figure 9. For simplicity, set G'=Gj; and G"=(G); =Gy, ,, - We show
the following.

Claim 27.1. There is no set M C V(G) satisfying either of the following conditions:

(1) (M)G~=S and d);(u1)=4 or dpy;(uz2) =4,
(i) (M)e ~S and d<M>G,(uk)=4 or d(M>G’ (up_1)=4.

Proof of Claim 27.1. Suppose there is such a set M C V(G).

(1) If doy;(u1)=4, then (N (u1))G =2 Ps, but, by Lemma 4, (Ng(u1))c consists
of a clique and an edge, a contradiction.

Suppose that dpn(u2)=4, let e.g. up=cq (see Fig. 9). Then (N, (u2))6
is a P4 with vertices d»,c1,c2,d;. By Lemma 4, the only possible induced P4
in (Ng(u2))G is xujusug, where x € Ng(uz)\ {us,us}, but then u; =cy or uj=cp
and we are in the previous case.

(i) Let first J & J4. Since (Ng(ur))g = (N¢g (ux)) ¢, and for k> 5 also (Ng(ux—1))g =
(Ng'(ug—1))¢’» the proof is symmetric to the proof in (i) in these cases. It
remains to consider the case d(u),, (ux—1) =4 for k=4. Then (N (u3))c can be
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covered by two cliques K|, K>, where {ug,u1,u2} C V(K1) and {ug,us} C V(K3),
and hence the only possible induced Py is xupusy for xe V(Kj) and y € V(K3).
This again leads to the previous case. Secondly, if J € J4, then k>8§, we have
(Ng'(up)) o = (Ng(ux) U{u3}) and then, by Lemma 4 and by the definition of
G, (Ng/(ur)) consists of a clique and an edge, a contradiction. ]

By Claim 27.1, the case (i) of Proposition Q is not possible. From this, again by
Proposition Q, we conclude that:

e for any a€ V(G), po(G")=p.(G), i.e. statement (i) of Proposition 27 holds,

o if the statement (ii) of Proposition 27 fails, i.e. if pyp(G) #pap(G) or pup(G”) #
pap(G'), then we have the situation described in case (ii) of Proposition Q, i.e.
ab e E(G) and x e {a,b} (where x=u; or x=uy, respectively).

Suppose that pap(G)#pap(G). Then uj €{a,b}. Let G denote the local completion
of G at up. Since Ng(u1) CNg(uz) by Lemma 4, we have E(Q/)CE(G), and hence
for any pair a,b€V(G) for which pup(G)#pu(G) also pup(G)#pap(G). Thus, by
Proposition Q, u € {a,b}. Hence we conclude that if p.,(G')#pap(G), then {a,b}
={ur,uz}.

Symmetrically, if p,p(G”)#pap(G’), then {a,b} ={up_1,u;} (since the argument for
u1,up used only the statements of Lemma 4 and of Proposition Q and these remain true
also in G’). In the latter case (i.e. {a,b} = {ug_1,ux}), we observe that G” = Gjluk = szul .
The proof for G;k is then symmetric to the proof for G’ and {a,b}={u;,us}, and the
proof for Gy, ,, (i.e. for the local completion of Gy, at u;) follows by Proposition Q.
Hence it is sufficient to prove the statement for uy,us.

Consider the following statements:

(a) G’ is Hamilton-connected,

(b) G contains a hamiltonian (a,b)-path for all pairs a,be V(G) except possibly
{a,b}={u1,uz},

(¢) G’ contains a hamiltonian (uy,u3)-path,

(d) G contains a hamiltonian (u1,u,)-path,

(e) G is Hamilton-connected.

By the previous discussion, (a) = (b). Obviously (a) = (c) and (b) A (d) = (e). Thus,
in order to show that (a) = (e) (i.e. to finish the proof of Proposition 27), it is sufficient
to show that (¢) = (d).

Claim 27.2. If G’ contains a hamiltonian (uy,u3)-path, then G contains a hamiltonian
(u1,uz)-path.

Proof of Claim 27.2. Let P’ be a hamiltonian (up,u3)-path in G’. We first show
that P’ can be chosen such that P'CG.

By Lemma 4, every edge in E(G)\ E(G) contains the vertex u3. Thus, if P’ contains
an edge in E(G')\ E(G), then this is the edge u; u3. If u; =uy, we set P :=uyuy P'ujus
(since upu; € E(G) by Lemma 4); for u;r #uy we replace in P’ the path uu lufr by the
edge ul_u;r and the edge u; u3 by the path u; ujus, i.e. we set P’ ::uzP’ul_uTP’u;ulug
(the edges we need are in G again by Lemma 4). Thus, in the rest of the proof we

Journal of Graph Theory DOI 10.1002/jgt



LINE GRAPHS OF MULTIGRAPHS 171

suppose that P’ is a hamiltonian (up,u3)-path in G and we construct a hamiltonian
(uy,up)-path P in G.

If u; =u;, then we set P=uiP'usup, and if u é{u;,u;}, then we set P=
uyuzP’ u;“ul_P/ uy (note that ul_ufeE(G) by Lemma 4). Thus, we can suppose that
uy =uy . For u; =uy we then set P=uP'uqusuy, hence we can further suppose that
u;r #uy4. Now, if uqus € E(P") (which, by Lemma 2, necessarily occurs if k> 6), then
for us =uI we set P=u1 P usuzusP'ur and for u4=u;r we set P=u1 P usuzusP'us.

Thus, it remains to consider the following situation: u; =u;, u; “uy, usus ¢ E(P)
and 4 <k<5.

If k=4, then M3,M4,M5,u2,uj{ are in a clique (by Lemma 4) and we replace u4ujrr
by u4u3ui, i.e. we set P=u1P’qu3u4P’u2.

Finally, if k=35, then u4,u5,uz,ui,u5_ ,u;r are in a clique (again by Lemma 4) and
we set P=u1P’u;u;P’uzu5u3u4P/u2 if P'=uyP'usP'usP'uju3, and P=u1 P'usuzusu,
P/u;rus_P’uz if P =urP'usP usP'ujus. [ ]

Lemma 28. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle, J1=uouy ... ugy1, J2=vovi...vpy1 two maximal good walks in G, {uy ... u;} #
{vi...v}, and let G’ =c12(Gjlvp). Then either (V(J1))¢ is a clique, or there are vertices
wo, Wkt such that wouy ... ugwyy1 is a maximal good walk in G'.

If moreover p>6, then also either (V(J2))g is a clique, or vy...vy, is a maximal
good walk in G

Proof. First note that, by Lemma 7, {u1 ...ux} N {v1...vp} =0. Let Go,G1,...,G; be
a sequence of graphs such that Goszlvp, Git1 =(G,~)Z_ for some z; that is 2-eligible
in G;, i=0,1,...,t—1,and G;=G". Set J| ={u3,...,ux_2}, Jy={v4,...,vp_3} and let j
be the smallest integer such that at least one of the following holds:

(i) there is a vertex weJ} UJ, such that dg,(w)>4,
(if) Jy or vy...v, is not good in G;.

Thus, there is an edge e € E(G;)\ E(Gj—1) such that either

(i’) e has one vertex at some weJ;UJ), or
(i) e joins some vertices u;, iy, or vi,vit, for 3<p<5

(such an edge will be referred to as a bad edge).

If j=0, then a bad edge is obtained by local completion at vy or at v,. Then clearly
Vi ...V, remains good, and (i') is not possible since neither vi nor v, can be adjacent
in G;_1 to any weJi UJé. Hence the bad edge has both vertices in V(Jy). But, for vy,
all edges in E((Gj,l)j1 )\ E(Gj_1) contain v3, hence the existence of a bad edge implies
v3 € V(J1), contradicting Lemma 7. The argument for v, is symmetric.

Hence j>1, i.e. a bad edge is obtained by closing a 2-eligible vertex. We prove the
statement for the case when the bad edge has at least one vertex w in V(J1); the proof
for a bad edge with both vertices in v; ..., is the same.

We first verify the following two observations.

(*) If (V(J1))g, is not a clique, then every vertex we{us,...,ux_2} has in G; no
neighbors outside V(J1).
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Proof. Suppose (x) fails and let w=u, have a neighbor outside V(J1). Then w has
in Gj_ a 2-eligible neighbor z, and, by the choice of j, z€{uy—2,uy1,ua11,uq42}.
Also by the choice of j, z¢ {u3,...,ux—2} (since a'ij1 (z)=4 and any additional edge in
(NG,«,I(Z»G_,-,] would violate (ii). Thus, by symmetry, it remains to consider the cases
z€{ur,uz}.

If k> 6, then u; cannot be 2-eligible in G;_1 since u4 is of degree 1 in (NG_].?1 (uz))ijl,
and similarly with u3 being of degree 1 in (Ng,; ,(u1))g, , for k=5. Since clearly k#4
(otherwise there is nothing to do), it remains to consider the case k=5 and z=uj.
However, in this case, if u, happens to be 2-eligible, then it is easy to see that (V(J1))g,
is a clique. ]

Gex) If (V(J1)) g, is not a clique, then no vertex u;, 1 <i<k, is 2-eligible in G;_;.

Proof. We first consider the case ie{1,2}. If u; is 2-eligible in Gj—1 and k=4
or if up is 2-eligible in G;_; and k<35, then, by Lemma 4, (V(J1))g, is a clique. In
all remaining cases, by («) and by the choice of j, u; has a neighbor of degree 1 in
<NG,;1(”i)>G/;1’ i=1,2, hence u; cannot be 2-eligible. Symmetrically, i ¢ {k—1,k}.

Hence 3<i<k—2. Then (NG].fl(u,-))G].fl contains a path P that is not in G. By the
choice of j, P has no interior vertices, hence P is an edge. But then P is a bad edge in
Gj_1, a contradiction. [ |

By the assumption, there is an edge xy € E(G;)\ E(Gj_1) such that xy is a bad edge
in G;. By (%) and (xx), there are the following two cases.

Case 1. xe{uj,up}, ye{ug—1,ux} and xy is obtained by closing a vertex z¢& V(J)
that is 2-eligible in G;_;. Then, by Lemma 4, {u1,u2, ug—1,ux} CNg; (z). Since closing
at z creates a bad edge, (k—1)—2<4, i.e. k<7. But then, for any k, 4<k<7, V(Jy)
contains a vertex that is 2-eligible in G;, implying (V(J1))g, is a clique.

Case 2. k=4, x=ug, ye{us,us} or k=5, x=ug, y=uy (or, symmetrically, k=4,
x=us, ye{uy,uz} or k=5, x=us, y=up). Then, using Lemma 4, (V(J1))g, is again a
clique. ]
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Zdenék Ryjacek and Petr Vrana were supported by project IM0545 and Research Plan MSM 4977751301
of the Czech Ministry of Education.

H. J. Broersma (D<)

Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: h.j.broersma@utwente.nl

Z. Ryjacek - P. Vrana

Department of Mathematics, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
e-mail: ryjacek@kma.zcu.cz

Z. Ryjéacek - P. Vrana

Institute for Theoretical Computer Science, Charles University, Univerzitni 8,
306 14 Pilsen, Czech Republic

e-mail: vranap@kma.zcu.cz

@ Springer



58 Graphs and Combinatorics (2012) 28:57-75

Most of the results in this survey paper are inspired by the following two conjectures
that were tossed in the 1980s, and later appeared in the cited papers. The first conjecture
is due to Matthews and Sumner [50].

Conjecture 1 Every 4-connected claw-free graph is hamiltonian.

The second conjecture due to Thomassen was posed in [60], but was already men-
tioned in 1981 on page 12 of [6], and also appeared in [1].

Conjecture 2 Every 4-connected line graph is hamiltonian.

The above two highly related conjectures and their relationship to other open prob-
lems and results have been the subject of anumber of specialized small scale workshops
between 1996 and 2011 in Enschede, Nectiny (twice), Hannover, Hijek and DomaZlice
(twice). In order to make the material available to a larger community we decided to
compose this survey paper that contains most of the relevant material related to these
intriguing open conjectures.

The presented material involves—apart from line graphs and claw-free graphs—
cubic graphs, snarks, and concepts like Hamilton cycles, Hamilton-connectedness,
dominating closed trails (circuits), and dominating cycles, and techniques involving
closures, collapsible graphs, and edge-disjoint spanning trees.

The paper is organized as follows. We first continue in the next section by explaining
the necessary terminology to understand the above statements and their relationship.
Next we will introduce the tools that show that the two conjectures are in fact equiv-
alent, and we analyze what the statement of the latter conjecture would mean for the
root graph of the line graph. Then we will present a sequence of seemingly weaker
but equivalent conjectures, and of seemingly stronger but equivalent conjectures. We
finish with a survey of some of the existing partial solutions to the conjectures, and
discuss how far we are from either proving or refuting the conjectures.

2 Basic Terminology and Concepts

All graphs in this survey are finite, undirected and loopless, and the majority is simple
(in some results we allow multiple edges). We refer to [10] for standard terminology
and notation.

We denote a (simple) graph G as G = (V, E), where V = V(G) is the vertex set
and E = E(G) is the edge set.

Adopting the terminology of [10], a graph is called hamiltonian if it contains a Ham-
ilton cycle, i.e., a cycle containing all its vertices, i.e., a connected spanning 2-regular
subgraph.

If H is a graph, then the line graph of H, denoted by L(H), is the graph on vertex
set E(H) in which two vertices in L (H) are adjacent if and only if their corresponding
edges in H share an end vertex (with a straightforward extension in case of multiple
edges).

A graph G is a line graph if it is isomorphic to L (H) for some graph H.

Which graphs are line graphs (of simple graphs) and which are not? This question
was answered by a forbidden subgraph characterization due to Beineke [5].

@ Springer



Graphs and Combinatorics (2012) 28:57-75 59
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Fig. 1 The nine forbidden subgraphs for line graphs of simple graphs

Theorem 3 A graph G is a line graph if and only if G does not contain a copy of any
of the graphs of Fig. 1 as an induced subgraph.

Let G be a graph and let S be a nonempty subset of V(G). Then the subgraph
of G induced by S, denoted by G[S], is the graph with vertex set S, and all edges
of G with both end vertices in S. H is an induced subgraph of G if it is induced in
G by some subset of V(G). G is H-free if H is not an induced subgraph of G. In
particular, a graph G is claw-free if G does not contain a copy of the claw K 3 as an
induced subgraph. Direct inspection of Beineke’s result shows that every line graph
is claw-free.

3 A Handful of Conjectures and More

Since line graphs are claw-free, Conjecture 1 is stronger than Conjecture 2. Or are they
equivalent? (A question Herbert Fleischner posed during the EIDMA workshop on
Hamiltonicity of 2-tough graphs, Hotel Holterhof, Enschede, November 19-24, 1996
(81.)

To answer the question affirmatively, Zden&k Ryjacek introduced a closure concept
for claw-free graphs at the same workshop which was published in [53]. It is based on
adding edges without destroying the (non)hamiltonicity (similar to the Bondy—Chvatal
closure [9] for graphs with nonadjacent pairs with high degree sums).

The edges are added by looking at a vertex v and the subgraph of G induced by
N (v): the neighborhood of v.

If G[N(v)] is connected and not a complete graph, all edges are added to turn
G[N (v)] into a complete graph.

This procedure is repeated in the new graph, etc., until it is impossible to add any
more edges. By the following theorem due to Ryjacek [53], the closure cl(G) we
obtain this way is a well-defined graph.

Theorem 4 Let G be a claw-free graph. Then

— the closure cl(G) is uniquely determined,
— ¢cl(G) is hamiltonian if and only if G is hamiltonian,
— cl(G) is the line graph of a triangle-free graph.
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The above theorem also shows that Conjectures 1 and 2 are equivalent. Moreover,
it gives the opportunity to translate questions on hamiltonicity in claw-free graph to
questions on hamiltonicity in line graphs, and results on line graphs to results on the
more general class of claw-free graphs. We come back to this later when we discuss
partial solutions to the two conjectures. Variants on the above closure technique and
extensions are discussed in [18].

Here we follow the line of reasoning by turning our attention to what the statements
of the conjectures entail for the root graph of the line graph.

Whenever we consider a line graph G, we can identify a graph H such that G =
L(H).If G is connected this H is unique, except for G = K3: then H can be K3 or
K 3 (this is different for multigraphs, where we could also have three parallel edges,
or two parallel edges and one additional incident edge; and there are other pairs of
connected multigraphs with isomorphic line graphs). If we restrict ourselves to simple
graphs and take K 3 in this exceptional case, we can talk of a unique graph H as the
root graph of the connected line graph G isomorphic to L(H). What is the counterpart
in H of a Hamilton cycle in G? A closed trail (sometimes referred to as a circuit in
the literature) is a connected eulerian subgraph, i.e., a connected subgraph in which
all degrees are even. A dominating closed trail (DCT for short) is a closed trail 7" such
that every edge has at least one end vertex on 7. Note that this notion of domination
is not equivalent to the usual notion of domination meaning that every vertex not on
the trail has a neighbor on the trail; in our case of a DCT T in a graph H, the graph
H — V(T) is edgeless. Also note that a DCT might consist of only one vertex (in case
the graph H is a star; then L(H) is a complete graph).

There is an intimate relationship between DCTs in H and Hamilton cyclesin L(H),
a result due to Harary and Nash-Williams [30] that is known since the 1960s.

Theorem 5 Let H be a graph with at least three edges. Then L(H) is hamiltonian if
and only if H contains a DCT.

What is the counterpart in H of 4-connectivity in L(H)? Note that 4-edge-connec-
tivity is not the right answer, because edge-cuts in H that consist of all edges incident
to a single vertex v of H do not correspond to vertex-cuts in L(H) if H — v has at
most one component containing edges. A graph H is essentially 4-edge-connected if
it contains no edge-cut R such that |R| < 4 and at least two components of H — R
contain an edge. It is not difficult to check that L(H) is 4-connected if and only if H
is essentially 4-edge-connected. The previous results and observations imply that the
following conjecture is equivalent to Conjectures 1 and 2.

Conjecture 6 Every essentially 4-edge-connected graph has a DCT.

If H is cubic, i.e., 3-regular, then a DCT becomes a dominating cycle (abbreviated
DCQ). H is cyclically 4-edge-connected if H contains no edge-cut R such that |R| < 4
and at least two components of H — R contain a cycle. It is not difficult to show that a
cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-con-
nected. Hence the following conjecture due to Ash and Jackson [2] is a specialization
of Conjecture 6 to cubic graphs.
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Conjecture 7 Every cyclically 4-edge-connected cubic graph has a DC.

Plummer [52] observed that Conjecture 7 is equivalent to the following two
specializations of Conjecture 1.

Conjecture 8 Every 4-connected 4-regular claw-free graph is hamiltonian.

Conjecture 9 Every 4-connected 4-regular claw-free graph in which each vertex lies
on exactly two triangles is hamiltonian.

Fleischner and Jackson [25] proved that Conjecture 7 is in fact also equivalent to
the others. First note that one can transform an essentially 4-edge-connected graph
into one with minimum degree at least three by first deleting the vertices with degree 1,
and then replacing the paths with internal vertices with degree 2 by edges (suppressing
vertices with degree 2). The main ingredient in their proof is a nice trick to replace
vertices with degree more than 3 in the obtained graph by cycles without affecting the
essentially 4-edge-connectivity.

Let H be an essentially 4-edge-connected graph of minimum degree § (H) > 3 and
let v € V(H) be of degree d(v) > 4. Delete v and add a cycle on d(v) new vertices,
and join the new vertices to the original neighbors of v by a perfect matching. The
resulting graph is called a cubic inflation of H at v. It is not unique, since it depends
on the choice of the matching edges joining the new vertices to the original neighbors
of v. Fleischner and Jackson [25] proved that by a suitable choice of these edges, some
cubic inflation of H at v results in an essentially 4-edge-connected graph. By repeating
this procedure, the resulting graph will eventually be cubic and still essentially (and
hence cyclically) 4-edge-connected.

Before we continue with imposing further restrictions on the cubic graphs under
consideration, we would like to mention the following two related conjectures that
have been stated in [25] and are due to Jaeger and Bondy, respectively.

Conjecture 10 Every cyclically 4-edge-connected cubic graph G has a cycle C such
that G — V (C) is acyclic.

Conjecture 11 Every cyclically 4-edge-connected cubic graph G on n vertices has a
cycle of length at least cn, for some constant ¢ with0 < ¢ < 1.

It is obvious that Conjecture 7 implies Conjecture 10, and it is not difficult to
show that Conjecture 10 implies Conjecture 11. We are not aware of any attempts to
establishing the equivalence of these conjectures, and we leave it as an open problem.

A further restriction to cyclically 4-edge-connected cubic graphs that are not
3-edge-colorable, is due to Fleischner [24] who posed the following conjecture.

Conjecture 12 Every cyclically 4-edge-connected cubic graph that is not 3-edge-col-
orable has a DC.

Kochol [39] proved that Conjecture 12 is equivalent to the others, by a constructive
approach. By assuming a counterexample to Conjecture 7 and using this as a black
box building block, he was able to construct a counterexample to Conjecture 12, using
an auxiliary gadget that is almost cubic and not 3-edge-colorable. We skip the details.
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For our final restriction on the cyclically 4-edge-connected cubic graphs under
consideration, we now turn to snarks. In this paper a snark is defined as a cyclically
4-edge-connected cubic graph of girth at least 5 that is not 3-edge-colorable. Here the
girth of a graph G is the length, i.e., the number of edges or vertices, of a shortest
cycle in G. In the literature one can find several variants on this definition where
either the restriction on the cyclically edge-connectivity or on the girth or on both
are relaxed. Snarks turn up as the ‘difficult’ objects in many open problems in graph
theory, including conjectures on double cycle covers and nowhere zero flows. These
are beyond the scope of this survey. We refer to the books of Zhang [66] and [67] for
more details and background.

The next conjecture has appeared independently at different places.

Conjecture 13 Every snark has a dominating cycle.

Conjecture 13 is also equivalent to the others, as shown in [13], using the construc-
tive approach together with the concept of contractible subgraphs. We will explain
some of the key ingredients here but refer to [13] for more details. The first step in the
proof of the equivalence is based on a refinement of a technique introduced in [56].

In [56], the notion of A-contractible graphs is introduced. For a graph H and a sub-
graph F of H, H|F denotes the graph obtained from H by contracting F to a single
vertex and adding some new vertices and edges in order to keep the same number of
edges. This is done by identifying the vertices of F as one new vertex vr, replacing
the edges between vertices of F and vertices of V(H) \ V(F) by the same number
of edges between vy and the adjacent vertices of V(H) \ V(F), and by replacing the
created loops (i.e., one for each edge of F') by pendant edges, i.e., edges incident with
vr and one other newly added incident vertex of degree 1. Note that H | r may contain
multiple edges but has the same number of edges as H. A vertex of F' is a vertex of
attachment if it has a neighbor in V (H) \ V(F). The set of vertices of attachment of
F with respect to H is denoted by Ay (F).

For a subset X C V(H), and a partition .« of X into subsets, E (<) denotes the
set of all edges ajay (not necessarily in H) such that ay, a; are in the same element
(i.e., the same equivalence class) of 7. Now H “ denotes the graph with vertex set
V(H“) = V(H) and edge set E(H”) = E(H) U E(</) (where E(H) and E (/)
are considered to be disjoint, so if e; = ajap, € E(H) and ey = ajay € E(</), then
e1 and e are parallel edges in H ‘Q{).

Let Fbeagraphand A C V(F). Then F is A-contractible, if for every even subset
X C A (i.e., with | X| even) and for every partition <7 of X into two-element subsets,
the graph F “ has a DCT containing all vertices of A and all edges of E (). Note
that the case X = ¢ implies that an A-contractible graph has a DCT containing all
vertices of A.

The importance of A-contractible graphs lies in the fact proved in [56] that a con-
nected graph F is A-contractible if and only if, for any H such that F C H and
Ap(F) = A, H has a DCT if and only if H|r has a DCT. In fact, the authors of
[56] proved the stronger result that the (extended) contraction (as defined above) of an
A-contractible subgraph of a graph H does not affect the maximum number of edges
dominated by a closed trail in H. Note that this number corresponds to the length of
a longest cycle in L(H).
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In [13], the following slightly weaker notion of a weakly A-contractible graph
plays an essential role. The difference with the above notion is that only nonempty
even subsets X C A are required to have the above property. This means that a weakly
A-contractible graph is not required to have a DCT containing all vertices of A. Using
this weaker notion, one of the key auxiliary results proved in [13] yields that for a
2-connected cubic graph H with a weakly A g (F)-contractible subgraph F of H, H
has a DC if and only if H | has a DCT. This obviously imposes structural restrictions
on possible minimal counterexamples to the conjectures on the existence of a DC in
certain cubic graphs. This is combined in [13] with a second step in which it is shown
that replacing a subgraph of a cubic graph does not affect the (non)existence of a DC
if certain compatible mappings are respected. Without going into the technical details
of explaining what these mappings entail, this enables the replacement of 4-cycles
in a possible counterexample to Conjecture 7 in order to construct a counterexample
with girth at least 5 (Note that the only cyclically 4-edge-connected cubic graph with
triangles is K4). This is then further combined in [13] with techniques that were pre-
viously used in [39] in order to construct a snark without a DC under the assumption
of a counter example to Conjecture 7.

We like to bring the following two conjectures that were posed in [ 13] to the reader’s
attention. The first of these two conjectures was shown to be equivalent to the other
conjectures.

Conjecture 14 Every cyclically 4-edge-connected cubic graph contains a weakly
contractible subgraph F with §(F) = 2.

The following statement, also posed as a conjecture in [13], implies the above, but
we do not know whether it is equivalent to the above conjecture.

Conjecture 15 Every cyclically 4-edge-connected cubic graph G contains a weakly
contractible subgraph F with |Ag(F)| > 4.

To date Conjecture 13 is the seemingly weakest conjecture on the existence of a
DC in certain cubic graphs that is equivalent to Conjectures 1 and 2. All snarks up to
36 vertices were tested for the existence of a DC by Brinkmann et al. [11]. Due to the
role snarks play in other areas we would like to pose the following two open questions.

— Is there a link to conjectures on Double Cycle Covers?
— Is there a link to conjectures on Nowhere-Zero Flows?

Taking a slightly different approach, we continue with presenting some other seem-
ingly weaker conjectures. Kochol [40] proved equivalence with seemingly weaker
versions, using a concept called sublinear defect. As an example, he proved that Con-
jecture 2 is equivalent to the following conjecture.

Conjecture 16 There are sublinear functions fi(n) and f>(n) such that every 4-con-
nected line graph G of order n contains < f1(n) paths that cover > n — f>(n) vertices
of G.

Similar techniques were introduced and applied in [3] to obtain equivalent versions
of the 2-tough conjecture, and in [4] successfully applied with suitable small gadgets

@ Springer



64 Graphs and Combinatorics (2012) 28:57-75

to obtain counterexamples to the 2-tough conjecture. Although the 2-tough conjecture
restricted to claw-free graphs is equivalent to Conjecture 1, it is beyond the scope of
this survey. We refer the reader to [12] for more details. Inspired by these techniques,
independently of [39] it has been shown in [14] that Conjectures 1 and 2 are equivalent
to seemingly weaker conjectures in which the conclusion is replaced by a conclusion
similar to the one in Conjecture 16. We use the term r-path-factor for a spanning
subgraph consisting of at most » paths. A 2-factor is a set of vertex-disjoint cycles
that together contain all the vertices of the graph, i.e., a 2-regular spanning subgraph.

Theorem 17 Letk > 2 be an integer, and let f (n) be a function of n with the property

that lim;,_, o ! 'El") = 0. Then the following statements are equivalent.

(1) Every k-connected claw-free graph is hamiltonian.

(2) Every k-connected claw-free graph on n vertices has an f (n)-path-factor.

(3) Every k-connected claw-free graph on n vertices has a 2-factor with at most f (n)
components.

(4) Every k-connected claw-free graph on n vertices has a spanning tree with at most
f(n) vertices of degree one.

(5) Every k-connected claw-free graph on n vertices has a path of length at least

n — f(n).

The key ingredient for proving the above equivalences is the auxiliary result proved
in [14] that the existence of a k-connected nonhamiltonian claw-free graph G on n
vertices implies the existence of such a graph G* on at most 2n — 2 vertices that
contains a k-clique, i.e., a set of kK mutually adjacent vertices. This result enables the
construction of k-connected claw-free graphs on at most (2r + 1)(2n — 2) vertices
without an r-path-factor, assuming that there is a k-connected nonhamiltonian claw-
free graph G on n vertices, by simply taking 2r + 1 vertex-disjoint copies of G* and
adding all edges between the k-clique vertices of all the copies.

By results in [32], where it has been shown that a claw-free graph G has an r-path-
factor if and only if ¢/(G) has an r-path-factor, and in [55], where it has been shown
that a claw-free graph G has a 2-factor with at most » components if and only if c/(G)
has such a 2-factor, the equivalence of statements (1), (2) and (3) in the above theorem
also holds for line graphs.

In this section we have presented a sequence of gradually seemingly weaker con-
jectures that turned out to be equivalent. In the next section we are going to present
some seemingly stronger conjectures.

4 Seemingly Stronger Versions for Cubic Graphs

Fouquet and Thuillier [27] considered a seemingly stronger version than the Ash-Jack-
son-Conjecture (Conjecture 7). Although the next conjecture is equivalent to Conjec-
ture 7, the conclusion is stronger in the sense that it requires a DC containing any two
given disjoint edges, as follows.

Conjecture 18 In a cyclically 4-edge-connected cubic graph any two disjoint edges
are on a DC.
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Establishing equivalent conjectures with stronger conclusions might help in an
attempt to refute the conjectures. The above equivalence was extended by Fleischner
and Kochol [26] by requiring a DC through any two given edges.

Conjecture 19 In a cyclically 4-edge-connected cubic graph any two edges are on a
DC.

Brinkmann et al. [11] have verified Conjecture 19 for all not 3-edge-colorable cycli-
cally 4-edge-connected cubic graphs with girth at least 4 up to 34 vertices, and for all
snarks on 36 vertices.

There are several further equivalent versions involving other subgraphs of cubic
graphs, like Conjecture 14. We present two others here without going too much into
the technical details. Interested readers are invited to consult the sources [43] and [45],
respectively. We need some additional terminology. Let H be a graph with minimum
degree 6 (H) = 2 and suppose that the set V> (H) of all vertices with degree 2 in H has
four elements. We say that H is Vo (H)-dominated if the graph H + {e1, e»} arising
from H after adding two new edges e; = xy and e = wz (possibly creating multiple
edges) such that {x, y, w, z} = V2(H) has a dominating closed trail containing e;
and ep. We say that H is strongly Vo(H)-dominated if H is V,(H)-dominated and
moreover the graph H +e obtained from H by adding the new edge e has a dominating
closed trail containing e for any newly added edge e = uv for {u, v} C Vo(H).

The following two conjectures appeared in [43] and [45], respectively.

Conjecture 20 Any subgraph H of an essentially 4-edge-connected cubic graph with
8(H) =2 and |Vo(H)| = 4 is Vo(H)-dominated.

Conjecture 21 Any subgraph H of an essentially 4-edge-connected cubic graph with
0(H) =2 and |Va(H)| = 4 is strongly Vo (H)-dominated.

We now turn to seemingly stronger versions than Conjecture 2 for line graphs.
Adopting the terminology of [10], a graph is called Hamilton-connected (sometimes
called hamiltonian-connected in the literature) if it admits a Hamilton path between
any two distinct given vertices. It is easy to check that any Hamilton-connected graph
on at least 4 vertices is necessarily 3-connected.

Kuzel and Xiong [46] established the equivalence of Conjecture 2 with the follow-
ing conjecture.

Conjecture 22 Every 4-connected line graph of a multigraph is Hamilton-connected.

Ryjacek and Vrana [58] further extended the equivalence to claw-free graphs by
proving that the following conjecture is equivalent to Conjecture 22.

Conjecture 23 Every 4-connected claw-free graph is Hamilton-connected.

One of the key ingredients in their equivalence proof is a result from [57] that
extends the closure technique used in [53] to establish the equivalence of Conjec-
tures 1 and 2. In this new version of the closure technique, the 2-closure, edges are
added to a noncomplete neighborhood in a claw-free graph G if this neighborhood
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Fig. 2 The seven forbidden subgraphs for line graphs of multigraphs

induces a 2-connected subgraph instead of just a connected one. Then it is proved that
the new graph G’ is Hamilton-connected if and only if G is Hamilton-connected. We
note here that it is not always true that a Hamilton path between two vertices u and
v exists in G if and only if it exists in G’. Successively adding edges to a claw-free
graph G according to this new version yields a unique graph denoted c/;(G). One of
the serious difficulties in this approach is that the successive application of this new
closure operation to 2-connected neighborhoods does not always result in a line graph
(of a multigraph). One of the structures that can appear in cl»(G) is the square of
a cycle, i.e., the graph obtained from a cycle by adding edges between nonadjacent
vertices that have a common neighbor. The closure operation defined in [58] deals
with these squares of cycles separately (by adding all the edges to turn them into
complete graphs on the same vertex set) and defines an additional closure operation
on good walks in the graph cl» (G) if it is not the square of a cycle. We will not explain
the details involved in the handling of these good walks, but we conclude here with
the statement that this extension guarantees that the resulting multigraph closure is
a unique graph cly;(G), and that it is the line graph of a multigraph. Moreover, this
new graph clys(G) is Hamilton-connected if and only if the original graph G is Ham-
ilton-connected. For convenience, we add the counterpart of Fig. 1 which shows the
forbidden induced subgraphs of line graphs of multigraphs. These are illustrated in
Fig. 2.

5 A Link to the P Versus NP Problem

At present the seemingly strongest version of the conjectures for line graphs is by
KuZel, Ryjacek and Vrana [45].

Adopting the terminology of [45], a graph G is called I-Hamilton-connected if
for any vertex x of G there is a Hamilton path in G — x between any two vertices,
and G is called 2-edge-Hamilton-connected if the graph G 4 X has a Hamilton cycle
containing all edges of X forany X C {xy|x,y € V(G)} with 1 < |X| < 2.Itis easy
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to check that for both properties 4-connectedness is a necessary condition (except for
complete graphs on at most 4 vertices).

Using the equivalence of Conjecture 2 and Conjecture 21, in [45] it is proved that
the following conjecture is equivalent to Conjecture 2.

Conjecture 24 Every 4-connected line graph of a multigraph is 1-Hamilton-con-
nected (2-edge-Hamilton-connected).

This version strongly suggests that Conjecture 2 (and all equivalent versions) might
fail, for the following reasons. If the above conjecture is true, it implies that a line graph
is 1-Hamilton-connected (2-edge-Hamilton-connected) if and only if it is 4-connected.
Itis well-known that the connectivity of a (line) graph can be determined in polynomial
time. It is an NP-complete problem to decide whether a line graph is hamiltonian (see,
e.g., [7]). It is not difficult to show that deciding whether a given graph is 1-Hamilton-
connected is also NP-complete. It seems not unlikely that deciding whether a given
graph is 1-Hamilton-connected remains NP-complete when restricted to line graphs.
If one would be able to show this, however, it would imply that Conjecture 2 cannot
be true, unless P=NP. In other words, the validity of Conjecture 2 would imply poly-
nomiality of both 1-Hamilton-connectedness and 2-edge-Hamilton-connectedness in
line graphs.

We add here as a side remark that, on the other hand, it is an easy exercise to show
that a result of Sanders (see [59, p. 342]) implies that every 4-connected planar graph
is 1-Hamilton-connected. Thus for a given planar graph one can decide in polynomial
time whether it is 1-Hamilton-connected or not, whereas deciding whether a planar
graph is hamiltonian is an NP-complete problem.

6 One Step Beyond

Very recently, the closure techniques of [57,58] have been strengthened and adapted
to work for the stronger notion of 1-Hamilton-connectivity. In [44], the concept of
multigraph closure is further strengthened in such a way that this adapted closure of
a claw-free graph is the line graph of a multigraph with at most two triangles or at
most one double edge. In [54], this is used to obtain a closure that turns a claw-free
graph into a line graph of a multigraph while preserving the property of (not) being 1-
Hamilton-connected. This yields the following currently seemingly strongest version
of the conjectures.

Conjecture 25 Every 4-connected claw-free graph is 1-Hamilton-connected.

7 Positive Results Related to the Conjectures

The gap between the conjecture(s) and the positive results is narrowing, in the following
sense. If we look at the connectivity conditions in Conjectures 1 and 2, then the first nat-
ural question is whether one can prove a theorem on hamiltonicity of claw-free graphs
or line graphs if one imposes a stronger connectivity condition. The earliest result in
this direction is due to Zhan [65] (and was independently proved by Jackson [33]).
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Theorem 26 Every 7-connected line graph (of a multigraph) is hamiltonian.

In fact, Zhan proved the stronger result that such graphs are Hamilton-connected.
For this purpose, he slightly generalized Theorem 5 to formulate an equivalent result
on the existence of dominating trails between pairs of edges in the root graph H of
a line graph G = L(H) such that each edge of H is dominated by an internal vertex
of the trail. He then used an approach that is typical for most of the results in this
section. We will present some of the ingredients here, starting with a classic result on
the existence of k edge-disjoint spanning trees due to Nash-Williams [51] and Tutte
[61].

Theorem 27 A graph G has k edge-disjoint spanning trees if and only if for every
partition &2 of V(G) we have () > k(|| — 1), where £(Z?) counts the number
of edges of G joining distinct parts of 2.

Kundu [42] observed that Theorem 27 has the following consequence.

Theorem 28 Every k-edge-connected graph has at least [(k — 1)/2] edge-disjoint
spanning trees.

The use of the existence of two edge-disjoint spanning trees for obtaining a spanning
eulerian subgraph was observed by several researchers independently, and appeared
in a paper by Jaeger [36].

Theorem 29 Every graph with two edge-disjoint spanning trees has a spanning eule-
rian subgraph.

The intuition behind this result is that the vertices of odd degree in one of the trees
can be paired and connected by edge-disjoint paths in the other tree to form a spanning
eulerian subgraph (a spanning closed trail).

Combining the above results, we immediately obtain the next corollary.

Corollary 30 (i) Every4-edge-connected graph has a spanning eulerian subgraph.
(ii) Every 4-edge-connected graph has a hamiltonian line graph.

On the other hand, we know that Conjecture 2 is equivalent to the conjecture (see
Conjecture 6) that every essentially 4-edge-connected graph has a hamiltonian line
graph. At first sight the gap between Corollary 30(i) and Conjecture 6 does not look that
large. Moreover in Corollary 30(i) we obtain a spanning eulerian subgraph, whereas
we would only need a DCT, i.e., a dominating eulerian subgraph in order to prove
Conjecture 6. Nevertheless Conjecture 6 and all the equivalent conjectures seem to
be very hard. As a side remark and a possible approach to solving the conjectures,
we would like to present another conjecture, that would clearly imply Conjecture 6,
and was put up by Jackson [34]. It resembles the way one can prove that 4-connected
planar graphs are hamiltonian by proving assertions on the existence of certain cycles
(paths) in 2-connected planar graphs.

Conjecture 31 Every 2-edge-connected graph G has an eulerian subgraph H with
at least three edges such that each component of G — V (H) is linked by at most three
edges to H.

Vréana [63] recently observed that Conjecture 31 is equivalent to Conjecture 2.
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We continue with sketching the approach to proving Theorem 26 and similar results.
Similarly to the way we have been proving the equivalence of many of the conjectures
mentioned earlier, the first step is to consider the root graph of the line graph, and
the equivalent property one has to establish, e.g., the existence of a DCT or of a trail
between two given edges that internally dominates all edges of the root graph. In the
next step the root graph is usually reduced by deleting the vertices with degree one (or
with only one neighbor in the case of multigraphs) and suppressing the vertices with
degree two. In the third step the degree and connectivity properties of the reduced
graph are used to establish the existence of a spanning eulerian subgraph (or trail
between two given edges). In this step the existence of two disjoint spanning trees (or
something slightly more sophisticated) is usually the intermediate goal.

Theorem 26 has been extended to results on 6-connected line graphs with some
additional conditions. The proof in [65] together with Theorem 4 immediately implies
that every 6-connected claw-free graph G with 6(G) > 7 is hamiltonian. More careful
considerations show that the condition §(G) > 7 can be weakened to ‘at most 33
vertices have degree 6’ (Li [8]) or ‘the vertices of degree 6 are independent’ (Fan [8]).
Further extensions to 6-connected line graphs with some additional conditions and the
conclusion Hamilton-connected, but following basically the same method as in [65],
can be found in [31]. Even further extensions can be found in [64], but they still need
an additional condition bounding the number of vertices with degree 6 to at most 74 or
the structure they induce to at most 8 disjoint K4s (for 6-connected claw-free graphs
to be hamiltonian) or bounding the number of vertices with degree 6 to at most 54 or
the structure they induce to at most 5 disjoint K4s (for 6-connected line graphs to be
Hamilton-connected). The proofs in [64] use a similar approach as in the above sketch,
but combined with a powerful reduction technique based on collapsible graphs intro-
duced by Catlin [19]. Since this technique and its refinements play an important role
in obtaining results on the existence of spanning closed trails and DCTs, we will give
a brief outline of the basics involved. Before doing so, we first present the currently
best connectivity result related to Conjectures 1 and 2 due to Kaiser and Vrana [37].

Theorem 32 Every 5-connected claw-free graph with minimum degree at least 6 is
Hamilton-connected.

The proof of Theorem 32 is very technical and too complicated and long to present
here. Basically, the proof is along the same lines as the proofs of the other results in
this section. However, instead of finding two edge-disjoint spanning trees the authors
use a far more sophisticated approach to find quasitrees with tight complements in
hypergraphs associated with the root graphs. They apply this to prove that an essen-
tially 5-edge-connected graph in which every edge has at least 6 neighboring edges
contains a connected eulerian subgraph spanning all the vertices of degree at least 4.
This suffices to prove Theorem 32 for line graphs and with the conclusion hamiltonian.
Refinements of the techniques then show the validity of the more general statement.
The authors state in their concluding section of [37] that it is conceivable that a further
refinement in some parts of their analysis might improve the result a bit, perhaps even
to all 5-connected line (claw-free) graphs. On the other hand, they believe that the
4-connected case would require major new ideas. For instance, the root graph H of a
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4-connected line graph may be cubic, in which case it is not clear how to associate a
suitable hypergraph with H in the first place.

To finish this section we give the basic definitions and results related to the technique
of collapsible graphs. We refer to [20] for a survey on applications of the technique.

A graph is called supereulerian if it contains a spanning eulerian subgraph. A graph
H is collapsible if for every even subset X of V(H), H has a subgraph Hy such that
H — E(Hy) is connected and X is the set of odd degree vertices of Hy. As examples,
it is easy to see that a cycle of length 3 (or an edge of multiplicity 2 in a multigraph) is
a collapsible graph and it is not difficult to show that a graph containing two edge-dis-
joint spanning trees is a collapsible graph. But also many graphs that are only a few
edges short of having two edge-disjoint spanning trees are collapsible (see, e.g., [21]).
The importance of collapsible graphs is immediate from the following result proved
by Catlin [19].

Theorem 33 If H is a collapsible subgraph of a graph G, then G is supereulerian
(collapsible) if and only if G/ H is supereulerian (collapsible).

Here G/ H is the graph obtained from G by contracting all edges of H and remov-
ing all loops. The theorem gives a powerful reduction method for studying supere-
ulerian graphs because one can contract any collapsible subgraph without affecting
this property. It was shown in [19] that any (multi)graph G has a unique collec-
tion of maximal collapsible subgraphs, so contracting them yields a well-defined
unique graph called the reduction of G. Apart from applications in the area of our
survey, there are many applications of the above reduction method in the study of
cycle double covers, nowhere-zero 4-flows, etc. These are beyond the scope of this
survey.

Motivated by the idea to modify the above technique to the study of DCTs instead
of spanning closed trails, Veldman [62] refined Catlin’s technique by handling vertices
of degree 1 and 2 in a special way (since degree 1 vertices cannot occur on any closed
trail, and the two neighbors of a degree 2 vertex are on any DCT). This refinement
can be described in the following way. For a simple graph H, let D(H) = {v €
V(H)|dg(v) = 1,2}. For an independent set X of D(H), let Ix(H) be the graph
obtained from H by contracting one edge incident with each vertex of X. Veldman
then defined H as X-collapsible if Ix(H) is collapsible in the Catlin sense. Also this
refined reduction technique is a powerful tool for studying hamiltonicity of line graphs,
in particular for dense graphs. However, the main drawback of Catlin’s and Veldman’s
techniques is that the search for maximal collapsible subgraphs is very difficult. In this
context, a natural question is whether the claw-free closure concept can be strength-
ened by using line graph techniques or by combining them with closure techniques.
A first attempt in this direction was done in [17], but the major work was done in
[56], where it was shown that the reduction techniques of Catlin and Veldman can be
reformulated in terms of a closure technique for line graphs. This closure technique
might be more convenient to use since it avoids the necessity of a search for maximal
collapsible subgraphs. It is based on the concept of A-contractible graphs that was
introduced earlier. We refer to [56] for more details and to [18] for a survey on closure
techniques (this survey does not contain the work of [56]).
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8 Related Results with a Weaker Conclusion

First of all, if we drop the connectivity condition of the 2-regular spanning subgraph,
we move from a Hamilton cycle to a 2-factor. Enomoto et al. [22] proved that every
2-tough graph contains a 2-factor. Since 2k-connected claw-free graphs are k-tough
by a result in [50], this implies the following.

Theorem 34 Every 4-connected claw-free graph has a 2-factor.

It does not seem easy to use this as a starting point to show that there is a 2-factor
with only one component, although there are some results that give upper bounds on
the number of components (see, e.g., [15,16,29]). These results are beyond the scope
of this paper.

By Theorem 3.1 in Jackson and Wormald [35], every connected claw-free graph
has a 2-walk, i.e., a closed walk which passes every vertex at most twice. Clearly, the
edges of a 2-walk induce a connected factor with maximum degree at most 4. In [14]
the following related result is proved.

Theorem 35 Every 4-connected claw-free graph contains a connected factor which
has degree two or four at each vertex.

By the results of Kriesell [41] it is possible to prove the related result that between
every pair of distinct vertices in a 4-connected line graph there exists a spanning trail
which passes every vertex at most twice. As with the 2-factor result these results do
not seem to help in finding a way to prove Conjectures 1 and 2, although they supply
some supporting evidence in favor of the conjectures.

9 Related Results with Additional Conditions

We have already presented some results in which a connectivity condition is accompa-
nied by another condition, e.g., Theorem 32. Another way of obtaining positive results
related to the conjectures is by relaxing the 4-connectedness and adding something
else. Many such results involve degree conditions and other neighborhood conditions.
Such results have been surveyed in several papers (see, e.g., [12,23,28]). We do not
want to discuss such conditions in this survey, but here is a connectivity-only result.

If we add an ‘essentially connectivity’ condition there is this result due to Lai et al.
[48].

Theorem 36 Every 3-connected, essentially 11-connected claw-free (line) graph is
hamiltonian.

The proof of Theorem 36 is based on the technique of collapsible graphs by Catlin
applied to the graph obtained from the root graph of the line graph by deleting vertices
with degree 1 and suppressing vertices with degree 2. We omit the details.

Recently, Kaiser and Vrana [38] were able to decrease the 11 to 9 in the above
theorem. In their proof they use a slight modification of their proof approach to
Theorem 32 in [37]. The proof is again based on quasitrees with tight complements in
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hypergraphs, but in the proof they have to work around quasitrees which contain bad
type leaves. This can be done by suitably choosing the hyperedges of the associated
hypergraph. We refer to [37] for the details.

Perhaps the 11 in Theorem 36 can be replaced by 5, which would be best possible
(by the line graph of the Petersen graph in which the edges of a perfect matching are
subdivided exactly once). An open question is how far we can decrease the 11 (or 9)
by raising the 3 to a 4 in the theorem.

10 Restrictions on the Root Graph

Using the technique of collapsible graphs, Lai [47] proved the following partial affir-
mative answer to Conjecture 2 by restricting the root graph to the class of planar
graphs, i.e., graphs that can be embedded in the plane in such a way that the edges
only intersect in incident vertices.

Theorem 37 Every 4-connected line graph of a planar graph is hamiltonian.

Kriesell [41] proved a similar result on line graphs of claw-free (multi)graphs with
the stronger conclusion of Hamilton-connectedness. In fact, he proved the following
more general result.

Theorem 38 Let G be a graph such that L(G) is 4-connected and every vertex of
degree 3 in G is on an edge of multiplicity at least 2 or on a triangle of G. Then L(G)
is Hamilton-connected.

Lai, Shao and Zhan [49] did something similar for quasi claw-free graphs, i.e.,
in which every pair of vertices u and v at distance 2 has a common neighbor w the
neighbors of which are in N (1) U N (v) U {u, v}.

Theorem 39 Every 4-connected line graph of a quasi claw-free graph is Hamilton-
connected.

11 Conclusion

We presented many conjectures, most of which have been shown to be equivalent to
the conjecture that 4-connected claw-free graphs are hamiltonian. We also presented
several results that supply supporting evidence in favor of the conjectures, including
the most recent result that 5-connected claw-free graphs with minimum degree at least
6 are Hamilton-connected. There are many other results on hamiltonian properties of
sufficiently connected claw-free graphs, including many that have not been listed here.
In most of the proofs of the results that are closely related to the open conjectures, clo-
sure techniques are used to restrict the statements to line graphs. Then the root graphs
are considered and the aim is to find a (closed or open) trail (internally) dominating all
edges. A common approach is the following. First the degree 1 vertices are deleted,
then the degree 2 vertices are suppressed, and now one tries to show that the reduced
graph has a suitable spanning (closed) trail. This is usually accomplished by applying

@ Springer



Graphs and Combinatorics (2012) 28:57-75 73

the technique of finding two edge-disjoint spanning trees (or similar structures that
yield suitable trails), or by the technique of collapsible subgraphs, or by advanced
closure concepts. It seems that none of these techniques is capable of tackling the
open conjectures. Does the latter conclusion suggest that the conjectures are all false?
We now tend to believe that there might exist nonhamiltonian 4-connected claw-free
graphs, but we have no strong opinion. It is our sincere hope that this survey will
inspire new research into this intriguing and challenging field.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Abstract: A graph G is 1-Hamilton-connected if G—x is Hamilton-
connected for every xe V(G), and G is 2-edge-Hamilton-connected if the
graph G+ X has a hamiltonian cycle containing all edges of X for any
XCET(G)={xy| x,ye V(G)} with 1<|X|<2. We prove that Thomassen's
conjecture (every 4-connected line graph is hamiltonian, or, equiva-
lently, every snark has a dominating cycle) is equivalent to the state-
ments that every 4-connected line graph is 1-Hamilton-connected and/or
2-edge-Hamilton-connected. As a corollary, we obtain that Thomassen's
conjecture implies polynomiality of both 1-Hamilton-connectedness and
2-edge-Hamilton-connectedness in line graphs. Consequently, proving that
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1-Hamilton-connectedness is NP-complete in line graphs would disprove
Thomassen's conjecture, unless P=NP. © 2011 Wiley Periodicals, Inc. J Graph Theory
69: 241-250, 2012

Keywords: line graph; 4-connected; Hamiltonian;, Hamilton-connected; dominating cycle;
Thomassen’s conjecture; snark

1. INTRODUCTION

By a graph we mean a finite undirected loopless graph G=(V(G),E(G)) allowing
multiple edges. We follow the most common graph-theoretical notation and for notation
and concepts not defined here we refer the reader e.g. to [2].

A graph G is said to be hamiltonian if G has a hamiltonian cycle, i.e. a cycle
of length |V(G)|, and Hamilton-connected if, for any x,ye V(G), G has a hamil-
tonian (x,y)-path, i.e. an (x,y)-path P with V(P)=V(G). Obviously, a hamiltonian
graph must be 2-connected and a Hamilton-connected graph must be 3-connected.
A graph G is k-Hamilton-connected if, for any X C V(G) with |X| =k, the graph G—X
is Hamilton-connected. It is easy to see that a k-Hamilton-connected graph must be
(k+3)-connected.

We will use L(H) for the line graph of a graph H. Recall that every line graph is claw-
free, i.e. does not contain an induced subgraph isomorphic to the claw K 3, and that a
line graph G=L(H) is k-connected if and only if H is essentially k-edge-connected, i.e.
H has no edge-cutset X C E(H) such that |X|<k and at least two components of G—X
contain at least one edge (such an X will be referred to as an essential edge-cutset).
Also recall that if an edge in a graph H is pendant (i.e. one of its vertices has degree 1),
then the corresponding vertex in G=L(H) is simplicial, i.e. its neighborhood induces
a complete graph.

If a graph H has no edge-cutset X C E(H) such that |X|<k and at least two compo-
nents of G—X contain at least one cycle, we say that H is cyclically k-edge-connected.
It is a well-known fact (see e.g. [5]) that a cubic (i.e. 3-regular) graph H is cycli-
cally 4-edge-connected if and only if H is essentially 4-edge-connected. A cyclically
4-edge-connected cubic graph H of girth (Iength of shortest cycle) g(H)> 5 that is not
3-edge-colorable is called a snark.

A closed trail (i.e. an Eulerian subgraph) 7 in a graph H is said to be dominating
if every edge of H has at least one vertex on 7. It is a well-known fact (see [9])
that if G is a line graph of order at least 3 and G=L(H), then G is hamiltonian if
and only if H contains a dominating closed trail. For a,be E(H), a trail T is said to
be an (a,b)-trail if a is the first and b is the last edge of 7. A trail T in a graph
H is internally dominating if every edge of H has at least one vertex in the set of
internal vertices of T. Let G=L(H), a,be V(G), and let a,be E(H) be the edges of
H that correspond to a,b. Analogously to [9] (see e.g. [14]), a line graph G of order
at least 3 has a hamiltonian (a,b)-path if and only if H has an internally dominating
(@,b)-trail.

Thomassen [17] posed the following conjecture.

Conjecture A (Thomassen [17]). Every 4-connected line graph is Hamiltonian.
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Since then, many statements that are seemingly stronger or weaker than Conjecture A
have been proved to be equivalent to it. Below we list some of them. The reference
always refers to the paper in which the equivalence with Conjecture A was established.

Theorem B. The following statements are equivalent with Conjecture A.

(1) [15] Every 4-connected claw-free graph is Hamiltonian.
(ii) [5] Every essentially 4-edge-connected graph has a dominating closed trail.
(iii) [5] Every cyclically 4-edge-connected cubic graph has a dominating cycle.
(iv) [11] Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable
has a dominating cycle.
(v) [3] Every snark has a dominating cycle.

Statement (iii) of Theorem B was strengthened as follows.
Theorem C. The following statements are equivalent with Conjecture A.

(1) [7] Any two independent edges of a cyclically 4-edge-connected cubic graph are
contained in a dominating cycle.

(ii) [6] Any two edges of a cyclically 4-edge-connected cubic graph are contained
in a dominating cycle.

On the positive side, the strongest known results related to Conjecture A are the
following.

Theorem D.

(i) [10] Every 5-connected claw-free graph G with minimum degree 6(G)>6 is
Hamiltonian.

(i1) [16] Every 6-connected claw-free graph with at most 29 vertices of degree 6 is
Hamilton-connected.

2. MAIN RESULT

Set EY(G)={xy| x,y € V(G)}, and for X C ET(G) set G+X=(V(G), E(G)UX) (note that
we admit E(G)NX#). A graph G is said to be k-edge-Hamilton-connected if, for
any X C ET(G) such that |X| <k and X determines a path system, the graph G+X has
a hamiltonian cycle containing all edges of X (note that by a path system we mean a
forest each component of which is a path).

The following facts are easy to observe.

Proposition 1. Ler G be a graph. Then

(1) G is 1-edge-Hamilton-connected if and only if G is Hamilton-connected,
(i1) G is 2-edge-Hamilton-connected if and only if

() G is 1-Hamilton-connected, and

(p) for any four distinct vertices xi,x3,x3,x4€V(G), G has a path factor
consisting of two paths P1,P> such that both Py and P> have one endvertex
in {x1,x3} and one endvertex in {x3,x4},

(iil) if G is k-edge-Hamilton-connected, then G is (k-+2)-connected.
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Proof. Parts (i) and (ii) follow immediately from the definitions. Let G be k-edge-
Hamilton-connected and let {a,...,a;} CV(G), £<k+1, be a cutset of G. Then for
X={aiar,aas, ...,a;_1as} the graph G has no Hamiltonian cycle containing all edges
of X. This contradiction proves part (iii). ]

Our main result, Theorem 2, shows that Conjecture A is equivalent to the statement(s)
that every 4-connected line graph has any of the above mentioned properties. Note that
the equivalence of (i) and (ii) was originally established in the unpublished paper [13].

Theorem 2. The following statements are equivalent.

(i) Every 4-connected line graph is Hamiltonian.
(i) Every 4-connected line graph is Hamilton-connected.
(iii) Every 4-connected line graph is 1-Hamilton-connected.
(iv) Every 4-connected line graph is 2-edge-Hamilton-connected.

Proof of Theorem 2 is postponed to Section 3.

We will now discuss complexity aspects of Theorem 2.

The problem to decide whether a given graph G has a hamiltonian (a,b)-path for
given vertices a,b is one of the classical NP-complete problems (see [8]), and the
hamiltonian problem remains NP-complete even when restricted to line graphs (see e.g.
[1] for the hamiltonian path problem). The problem to decide whether G is Hamilton-
connected is also known to be NP-complete [4]. The complexity of the corresponding
Hamilton-connectedness problem in line graphs is not known, however, it is usually
supposed to be NP-complete. We now consider the next step (we include the easy proof
here since we are not aware of its being published).

1-HC
Instance: A graph G.
Question: Is G 1-Hamilton-connected?

Theorem 3. 1-HC is NP-complete.

Proof. Obviously 1-HC € NP. We transform the Hamilton-connectedness problem
to 1-HC. Given a graph G, take a vertex w¢ V(G) and set G'=(V(G)U{w},E(G)U
{wx| x€ V(G)}). We show that G’ is 1-Hamilton-connected if and only if G is Hamilton-
connected. Suppose first that G is Hamilton-connected. We show that for any x,y,u e
V(G’), G’ —u has a hamiltonian (x,y)-path. Let P be a hamiltonian (x,y)-path in G.
If usw, then P'=xPu~wu'Py is a hamiltonian (x,y)-path in G'—u, and for u=w
we simply set P’=P. Conversely, if G’ is 1-Hamilton-connected, then G=G'—w is
Hamilton-connected by definition. ]

Thus, we can analogously define the following problems.

1-HCL
Instance: A line graph G.
Question: Is G 1-Hamilton-connected?

2-E-HCL
Instance: A line graph G.
Question: Is G 2-edge-Hamilton-connected?
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Note that, with respect to the above mentioned facts, a common expectation would
probably be that both these problems are NP-complete.

If Conjecture A is true, then, by Theorem 2, we have that every 4-connected line
graph is 2-edge-Hamilton-connected (hence also 1-Hamilton-connected). Conversely,
by Proposition 1(iii), every 2-edge-Hamilton-connected graph is 4-connected and, simi-
larly, every 1-Hamilton-connected graph is 4-connected. From this we observe that if
Conjecture A is true, then

(i) aline graph G is 1-Hamilton-connected if and only if G is 4-connected,
(i1) a line graph G is 2-edge-Hamilton-connected if and only if G is 4-connected.

Consequently, Conjecture A, if true, would imply polynomiality of both 1-HCL and
2-E-HCL. We thus have the following consequence.

Theorem 4. At least one of the followings is true:

(i) Both 1-HCL and 2-E-HCL are polynomial.
(i) Conjecture A fails.

Remark. Note that Theorem 4 means that proving NP-completeness of 1-HCL or
2-E-HCL would imply the existence of a 4-connected non-hamiltonian line graph (and
also, e.g. the existence of a snark with no dominating cycle, etc.), unless P = NP.

3. PROOF OF THEOREM 2

We first mention several results that will be needed for our proof.

Set Vi(H)={xeV(H)|dg(x)=i} and let H be a graph with o6(H)=2 and
|Vo(H)|=4. Then H is said to be V,(H)-dominated if for any two edges e;=
uivy,ex =uovo € EY(H) with {uy,vi,us,v2}=V2(H) the graph H+{ej,er} has a
dominating closed trail containing e; and e, and H is said to be strongly V,(H)-
dominated if H is V,(H)-dominated and for any e=uveET(H) with u,veV,(H),
the graph H+{e} has a dominating closed trail containing e. Note that in the
special case of a cubic graph a dominating closed trail becomes a dominating
cycle.

The following was proved in [12].

Theorem E (Kuzel [12]). Conjecture A is equivalent to the statement that any subgraph
H of an essentially 4-edge-connected cubic graph with 6(H)=2 and |Vo(H)|=4 is
Vo (H)-dominated.

We will need the following slight strengthening of Theorem E.

Theorem 5. Conjecture A is equivalent to the statement that any subgraph H of an
essentially 4-edge-connected cubic graph with (H)=2 and |Vo(H)|=4 is strongly
Vo (H)-dominated.

Proof. Suppose that Conjecture A is true, let H be a subgraph of an essentially
4-edge-connected cubic graph with 6(H)=2 and |V,(H)| =4, let Vo(H)={a,b,c,d}, set
e=ab and suppose that H+{e} has no dominating cycle containing e.
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FIGURE 1. The graph F.

Let H;, i=1,2,3,4 be four vertex-disjoint copies of H, denote V>(H;)={a;, b;,c;,d;},
i=1,2,3,4, and let F’ be the graph with V(F')=|J\_, V(H;) and E(F") = (J%, E(H;))U
{aiaz,b1b2,a3a4,b3b4,c1d3,cads,dic4,drc3}. Finally, let F be the graph obtained from F’
by subdividing the following edges with new vertices: c1d3 with a vertex x, caods with a
vertex y, czd with a vertex z and c4d; with a vertex w, and set e; =xy and e; =zw (Fig. 1).

By Theorem E, the graph F'+{ej,es} has a dominating cycle C with ey, e; € E(C).
As {w,x,y,z} separates H{ UH, from H3zUHy, both e] and e; must be incident to edges
on C to both H{UH, and H3UH,. But no matter how we pick these edges, two of
w,x,y,z are adjacent on C to some c;, d;, contradicting that H;+a;b; has no dominating
cycle containing a;b; for j€{1,2,3,4}N{3—i,7—i}.

Conversely, if every subgraph H of an essentially 4-edge-connected cubic graph with
0(H)=2 and |Vo(H)|=4 is strongly V,(H)-dominated, then clearly every such H is
Vo (H)-dominated and Conjecture A is true by Theorem E. ]

We will also need the following operation (see [5]). Let H be a graph, ze V(H) a
vertex of degree d >4, and let uy,uy,...,uq be an ordering of neighbors of z (we allow
repetition in case of parallel edges). Then the graph H,, obtained from the disjoint
union of G—z and the cycle C,=z1,22,...,2421 by adding the edges u;z;, i=1,....d,
is called an inflation of H at z. If 6(H)>3, then, by successively taking an inflation
at each vertex of degree greater than 3 we can obtain a cubic graph H’, called a cubic
inflation of H. The inflation of a graph at a vertex is not unique (since it depends
on the ordering of neighbors of z) and it is possible that the operation decreases the
edge-connectivity of the graph. However, the following was proved in [5].

Lemma F (Fleischner and Jackson [5]). Let H be an essentially 4-edge-connected
graph with minimum degree 0(H)>3. Then some cubic inflation of H is essentially
4-edge-connected.

Let H' be a cubic inflation of a graph H and for any z€ V(H) set I(z)=V(C;) if
dy(z)>3 and I(z) = {z} otherwise. Observing that a dominating cycle in H’ must contain
at least one vertex in I(z) for each z€ V(H) with dy(z) >4, we immediately have the
following fact (which is implicit in [5]).

Lemma G (Fleischner and Jackson [5]). Let H be a graph with (H)>3 and let H' be
a cubic inflation of H. Let C be a dominating cycle in H'. Then H has a dominating
closed trail T such that

(1) T contains all vertices of degree at least 4,
(ii) if uve E(C) and uel(x), vel(y) for some x,ye V(H), x#y, then xy € E(T).
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Proof of Theorem 2. ltis sufficient to prove that (i) implies (iv). Thus, suppose that
Conjecture A is true and let G be a minimum counterexample to the statement (iv) of
Theorem 2, i.e. G is a 4-connected line graph that is not 2-edge-Hamilton-connected but
every 4-connected line graph G’ with |V(G')|<|V(G)| is 2-edge-Hamilton-connected.
Let Y C ET(G) be such that |Y| <2 and G+Y has no hamiltonian cycle containing all
edges of Y.

If |Y|=1, then denote Y ={e;}, choose an arbitrary e, € E(G) such that ej,e; have
no vertex in common, and set X={e1,ep}. If |Y|=2, then denote Y ={e1,e2} and set
X =Y. Denote e =ab, e» =cd, and choose the notation such that possibly b=d. With
a slight abuse of notation, we will use X also for the subgraph determined by ey, e>.
To reach a contradiction, it is sufficient to show that G+X has a hamiltonian cycle
containing all edges of X.

Claim 1. None of the vertices a, b, c, d is simplicial.

Proof of Claim 1. Suppose that u < {a,b,c,d} is simplicial.

Case 1: dx(u)=1. Without loss of generality suppose u=a, and set G’'=G —u. Then
G’ is a 4-connected line graph with |V(G")|<|V(G)|, hence G’ is 2-edge-Hamilton-
connected. Choose a’ € Ng(u) such that a’ &{b,c,d} (this is always possible since
dG(u)>4) and set ¢} =a’'b and X'={e/,e2}. Let C’' be a hamiltonian cycle in G'+X’
containing ¢] and ey. Then C=d'ae;hC'd’ is a hamiltonian cycle in G containing e
and ey, a contradiction.

Case 2: dx(u) =2. Then, by the choice of notation, u=>b=d. Similarly as before, G' =
G —u is 2-edge-Hamilton-connected. Set ¢’ =ac, X' ={¢'} and let C’ be a hamiltonian
cycle in G’ containing X’. Then C=aucC'a is a hamiltonian cycle in G containing X,
a contradiction. |

Let now H be a graph such that L(H)=G, and let a, l_a, c, d be the edges corresponding
to the vertices a,b,c,d € V(G), respectively. By Claim 1, none of the edges Ez,l_a,é,c_l is
pendant.

We now distinguish two cases.

Case 1: {a,b}N{c,d}=0. We define a graph H4 by the following construction.

e H' is a graph obtained from H by subdividing each of the edges a,b,¢,d with a
new vertex a’,b’,c’,d’, respectively,

e Hj is a graph obtained from H’ by adding a new vertex u and edges ud’,ub’,uc’,ud’,

e H is obtained from H; by removing vertices of degree 1 and suppressing vertices
of degree 2.

Then Hj is essentially 4-edge-connected with minimum degree 6(H»)>3 and, by
Lemma F, H, has an essentially 4-edge-connected cubic inflation H3. Finally, let Hy
be obtained from H3z by removing /(u) (i.e. the vertices of the cycle that corresponds
to the vertex u of Hy).

Then H, satisfies the assumptions of Theorem 5, hence Hy+{a’'b’,c'd’} has a domi-
nating cycle containing a’b’ and c'd’.

By Lemma G, (Hy —u)+{a'b’,c’d’} has a dominating closed trail T containing the
edges a'b’, ¢’d’ and all vertices of degree at least 4. The graph H is essentially 4-edge-
connected, hence for every vertex of H of degree 1 or 2, all its neighbors are of degree
at least 4. Thus, T is a dominating closed trail also in H' +{a’b’,c’d'}. Since T contains
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the edges a’b’ and ¢’d’, G+ X has a hamiltonian cycle containing the edges e and e,
a contradiction.

Case 2: {a,b}N{c,d}#. By the choice of notation, we have b=d and the vertices
a,b,c are distinct. By the assumption, G is not 2-edge-Hamilton-connected, hence
G —b has no hamiltonian (a, c)-path, implying that H —b has no internally dominating
(a,c)-trail.

Claim 2. Neither a and b nor b and ¢ share a vertex of degree 2.

Proof of Claim 2. By symmetry, suppose that z and b share a vertex v of degree 2.
Then abe E(G). Let K denote the subgraph of G induced by Ng(a)\{b,c}. Since
dy(v)=2, K is a clique of order at least 2. _

Let H' be obtained from H by suppressing the vertex v, i.e. a and b coincide in H' into
an edge w. Set G'=L(H’). Then G’ is obtained from G by contraction of the edge ab
into a vertex w. Clearly, G’ is 4-connected, hence, by the minimality of G, G’ is 2-edge-
Hamilton-connected. Let a; be an arbitrary vertex in K, set e/1 =waj and e/2 =wec, and
let C" be a hamiltonian cycle in G’ +{e}, €} containing ¢} and €. Then C=ajabcC'a;
is a hamiltonian cycle in G+X containing e; and e, a contradiction. ]

Let H; be the graph obtained from H by removing vertices of degree 1 and
suppressing vertices of degree 2. Then Hj is essentially 4-edge-connected. Let a*,b*,c*
denote the edges of H; that correspond to the edges a,b,c of H. Note that possibly
a*=c* (if a and ¢ share a vertex of degree 2), but, by Claim 2, a* #b* and b* #£c*.

Let H, be an essentially 4-edge-connected cubic inflation of H; and, with a slight
abuse of notation, let a*,b*,c* denote the edges of Hj that correspond to these edges
of H;. Set a*=ajap, b*=b1by, c*=cjcs.

Claim 3. The edges a*,b*,c* (and hence also the edges a,b,¢) do not share a vertex
of degree 3.

Proof of Claim 3. Let, to the contrary, w=a;=b;=c] be of degree 3. If a=
wa) for some a}#an, then, by the construction of Hi, a} is of degree 2 in H and
{a}az,baw,cow} is an essential edge-cutset separating the edge aw from the rest of H,
a contradiction. Hence a* =a and, similarly, b* =b and c*=c.

By Theorem C(ii), H> has a dominating cycle C containing ¢* and c*. Since w is
of degree 3, C does not contain b*. By Lemma G and since H is essentially 4-edge-
connected, H has a dominating closed trail 7 containing a and ¢ and not containing b.

But then T is an internally dominating (a,c)-trail in H —b, a contradiction. ]

By Claim 3, we either have a* =c*, or either a*,c* or a*,b* have no common vertex.
Let H3 and H4 be the graphs obtained from H, as follows:

(i) if a*,c* have no vertex in common, then H3 is obtained from H; by subdividing
each of the edges a*,c* with a new vertex a’,c’, respectively, and by adding the
edge d'c’, and Hy is obtained from H3 by deleting the edges a'c’ and b* (but
keeping the vertices d’,c’,b1,b7);

(i) if a*=c*, then H3=H; and Hj is obtained from H3 by deleting the edges a*,
b* (but keeping the vertices aj,ap,b1,b2), and, for consistence, by relabeling
a;:=d and ap:=c';
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(iii) if a*,b* have no vertex in common, then H3 is obtained from Hj by subdividing
a* and b* with a new vertex a’ and b’ and adding the edge a'b’ and then
subdividing a’b’ and ¢* with a new vertex d’ and ¢’ and adding the edge d'c/,
and Hy is obtained from H3 by deleting the vertices b" and d'.

It is an easy observation that an essentially 4-edge-connected cubic graph remains
essentially 4-edge-connected if we subdivide two independent edges and connect the
new vertices with a new edge. Hence, in all three cases, the graph Hs is essentially
4-edge-connected. Since Hy is a subgraph of H3 with 6(H4)=2 and |V,(H4)|=4, Hs
satisfies the assumptions of Theorem 5. Then the graph Hs+{a'c’} has a dominating
cycle containing the edge a'c’, implying that H —b has an internally dominating (a,¢)-
trail, a contradiction. [ |
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1. Introduction

Is there a positive constant C such that every C-connected graph is hamiltonian? Certainly not, as
shown by the complete bipartite graphs K, ,+1, where n is large. The situation may change, however,
if the problem is restricted to graphs not containing a specified forbidden induced subgraph. For
instance, for the class of claw-free graphs (those not containing an induced K 3), Matthews and
Sumner [18] conjectured the following in 1984.

Conjecture 1 (Matthews and Sumner). Every 4-connected claw-free graph is hamiltonian.

The class of claw-free graphs includes all line graphs. Thus, Conjecture 1 would in particular imply
that every 4-connected line graph is hamiltonian. This was stated at about the same time as a separate
conjecture by Thomassen [23].

Conjecture 2 (Thomassen). Every 4-connected line graph is hamiltonian.

Although formally weaker, Conjecture 2 was shown to be equivalent to Conjecture 1 by
Ryjacek [21]. Several other statements are known to be equivalent to these conjectures, including
the Dominating Cycle Conjecture [5,6]; for more work related to these equivalences, see also
[2,11,12].

Conjectures 1 and 2 remain open. The best general result to date in the direction of Conjecture 2 is
due to Zhan [26] and Jackson (unpublished).
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Theorem 3 (Zhan; Jackson). Every 7-connected line graph is hamiltonian.

In fact, the result of [26] shows that any 7-connected line graph G is Hamilton-connected — it
contains a Hamilton path from u to v for each choice of distinct vertices u, v of G.

For 6-connected line graphs, hamiltonicity has been proved only for restricted classes of graphs
[9,25]. Many papers investigate the Hamiltonian properties of other special types of line graphs; see,
e.g., [15,16] and the references given therein.

The main result of the present paper is the following improvement of Theorem 3.

Theorem 4. Every 5-connected line graph with minimum degree at least 6 is hamiltonian.

This provides a partial result towards Conjecture 2. Furthermore, the theorem can be strengthened in
two directions: it extends to claw-free graphs by a standard application of the results of [21], and it
remains valid if ‘hamiltonian’ is replaced by ‘Hamilton-connected’.

One of the ingredients of our method is an idea used (in a simpler form) in [10] to give a short
proof of the characterization of graphs with k disjoint spanning trees due to Tutte [24] and Nash-
Williams [19] (the ‘tree-packing theorem’). It may be helpful to consult [10] as a companion to
Section 5 of the present paper.

The paper is organized as follows. In Section 2, we recall the necessary preliminary definitions
concerning graphs and hypergraphs. Section 3 introduces several notions related to quasigraphs, a
central concept of this paper. Here, we also state our main result on quasitrees with tight complement
(Theorem 5). Sections 4-7 elaborate the theory needed for the proof of this theorem, which is finally
given in Section 8. Sections 9 and 10 explain why quasitrees with tight complement are important
for us, by exhibiting their relation to connected eulerian subgraphs of a graph. This relation is used
in Section 10 to prove the main result of this paper, which is Theorem 4 and its corollary for claw-
free graphs. In Section 11, we outline a way to further strengthen this result by showing that graphs
satisfying the assumptions of Theorem 4 are in fact Hamilton-connected. Closing remarks are given
in Section 12.

The end of each proof is marked by . In proofs consisting of several claims, the end of the proof of
each claim is marked by A.

2. Preliminaries

All the graphs considered in this paper are finite and may contain parallel edges but no loops.
The vertex set and the edge (multi)set of a graph G is denoted by V(G) and E(G), respectively. For
background on graph theory and any terminology which is not explicitly introduced, we refer the
reader to [4].

A hypergraph H consists of a vertex set V(H) and a (multi)set E(H) of subsets of V(H) that are
called the hyperedges of H. We will be dealing exclusively with 3-hypergraphs, that is, hypergraphs
each of whose hyperedges has cardinality 2 or 3. Multiple copies of the same hyperedge are allowed.
Throughout this paper, any hypergraph is assumed to be a 3-hypergraph unless stated otherwise.
Furthermore, the symbol H will always refer to a 3-hypergraph with vertex set V. For k € {2, 3}, a
k-hyperedge is a hyperedge of cardinality k.

To picture a 3-hypergraph, we will represent a vertex by a solid dot, a 2-hyperedge by a line as
usual for graphs, and a 3-hyperedge e by three lines joining each vertex of e to a point which is not a
solid dot (see Fig. 1).

In our argument, 3-hypergraphs are naturally obtained from graphs by replacing each vertex of
degree 3 by a hyperedge consisting of its neighbours. Conversely, we may turn a 3-hypergraph H into
a graph Gr(H): for each 3-hyperedge e of H, we add a vertex v, and replace e by three edges joining
v, to each vertex of e.

As in the case of graphs, the hypergraph H is connected if for every nonempty proper subset X C V,
there is a hyperedge of H intersecting both X and V — X. If H is connected, then an edge-cut in H is
any inclusionwise minimal set of hyperedges F such that H — F is disconnected. For any integer k, the
hypergraph H is k-edge-connected if it is connected and contains no edge-cuts of cardinality less than
k. The degree of a vertex v is the number of hyperedges incident with v.
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Fig. 1. A 3-hypergraph H with three 2-hyperedges and two 3-hyperedges.

To extend the notion of induced subgraph to hypergraphs, we adopt the following definition. For
X C V, we define H[X] (the induced subhypergraph of H on X) as the hypergraph with vertex set X
and hyperedge set

E(H[X]) ={eNnX:ecEH)and [eNnX| > 2}.

IfeNX = fNX for distinct hyperedges e, f, we include this hyperedge in multiple copies. Furthermore,
we assume a canonical assignment of hyperedges of H to hyperedges of H[X]. To stress this fact, we
always write the hyperedges of H[X] as e N X, where e € E(H).

Let & be a partition of a set X. & is trivial if # = {X}. AsetY C X is #-crossing (or: Y crosses &) if
it intersects at least two classes of P.

As usual, another partition R of X refines & (written as R < ) if every class of R is contained in
aclass of 2. In this case, we also say that R is finer than & or that 2 is coarser. If R < # and R # P,
then we write R < & and say that R is strictly finer (and & is strictly coarser). It is well known that
the order < on partitions of X is a lattice; the infimum of any two partitions &, R (i.e., the unique
coarsest partition that refines both & and R) is denoted by # A R.

If Y C X, then the partition induced on Y by £ is

PIYI={PNY:PePandPNY # 0} .

3. Quasigraphs

A basic notion in this paper is that of a quasigraph. It is a generalization of tree representations and
forest representations used, e.g., in [7].

Recall from Section 2 that H is a 3-hypergraph on vertex set V. A quasigraph in H is a pair (H, ),
where 7 is a function assigning to each hyperedge e of H a set w(e) C e which is either empty or
has cardinality 2. The value 7 (e) is called the representation of e under 7. Usually, the underlying
hypergraph is clear from the context, and we simply speak about a quasigraph 7. Quasigraphs will be
denoted by lowercase Greek letters.

In this section, = will be a quasigraph in H. Considering all the nonempty sets 7 (e) as graph edges,
we obtain a graph 7* on V. The hyperedges e with 7 (e) # @ are said to be used by 7. The set of all
such hyperedges of H is denoted by E (;r). The edges of the graph 77*, in contrast, are denoted by E (;7*)
as expected. We emphasize that, by definition, 7 * spans all the vertices in V.

To picture 77, we use a bold line to connect the vertices of i (e) for each hyperedge e used by 7. An
example of a quasigraph is shown in Fig. 2.

The quasigraph 7 is a acyclic (or a quasiforest) if 7* is a forest; w is a quasitree if * is a tree.
Furthermore, we define 7 to be a quasicycle if 7* is the union of a cycle and a (possibly empty) set of
isolated vertices. The hypergraph H is acyclic if there exists no quasicycle in H.

If e is a hyperedge of H, then w — e is the quasigraph obtained from 7 by changing the value at
e to ). The complement 7 of 7 is the spanning subhypergraph of H comprised of all the hyperedges
of H not used by 7. Since 7 includes the information about its underlying hypergraph H, it makes
sense to speak about its complement without specifying H (although we sometimes do specify it for
emphasis). Note that 7 is not a quasigraph.
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Fig. 2. A quasigraph p in the hypergraph of Fig. 1.

LA

X

(a) Possible types of 3-hyperedges e with (b) The corresponding 2-hyperedges of the
leNX| = 2 withrespect to the quasigraph 7.  induced quasigraph. Note that e does not
have a corresponding hyperedge.

Fig. 3. An illustration to the definition of the 7 -section at X.

How to define an analogue of the induced subgraph for quasigraphs? Let X C V. At first sight, a
natural choice for the underlying hypergraph of a quasigraph induced by 7 on X is H[X]. It is clear
how to define the value of the quasigraph on a hyperedge e N X, exceptif [e] = 3 and [eNX| = 2
(see Fig. 3(a)). In particular, if 7 (e) intersects both X and V — X, then e N X will not be used by the
induced quasigraph; furthermore, it is (at least for our purposes) not desirable to include e N X in the
complement of the induced quasigraph either. This brings us to the following replacement for H[X]
(cf. Fig. 3(b)).

The m-section of H at X is the hypergraph H[X]" defined as follows:

e H[X]" has vertex set X,
e its hyperedges are the sets e N X, where e is a hyperedge of H such that [eN X| > 2 and r(e) C X.

The quasigraph 7 in H naturally determines a quasigraph 7 [X] in H[X]", defined by
(XD(eNX) =m(e),

where e € E(H) and eNX is any hyperedge of H[X]". We refer to 7 [X] as the quasigraph induced by
on X. Let us stress that whenever we speak about the complement of 77 [X], it is - in accordance with
the definition - its complement in H[X]".

The ideal quasigraphs for our purposes in the later sections of this paper would be quasitrees
with connected complement. It turns out, however, that this requirement is too strong, and that the
following weaker property will suffice. The quasigraph z has tight complement (in H) if one of the
following holds:

(a) 7 is connected, or

(b) there is a partition V = X; U X, such that fori = 1, 2, X; is nonempty and 7 [X;] has tight
complement (in H[X;]™); furthermore, there is a hyperedge e € E(x) such that w(e) C X; and
eNX; # A.

The definition is illustrated in Fig. 4.
Our main result regarding quasitrees in hypergraphs is the following.

Theorem 5. Let H be a 4-edge-connected 3-hypergraph. If no 3-hyperedge in H is included in any edge-cut
of size 4, then H contains a quasitree with tight complement.
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X, X2

Fig.4. The quasigraph p of Fig. 2 has tight complement in H. The ovals show the subsets of V relevant to the definition of tight
complement. For i = 1, 2, p[X;] has connected complement in H[X;]”, so p[X] has tight complement in H[X]” ‘thanks to’ the
hyperedge e. Similarly, f makes the complement of p in H tight.

Theorem 5 will be proved in Section 8.

An equivalent definition of quasigraphs with tight complement is based on the following concept.
Let us say that a partition & of V is w-narrow if for every &-crossing hyperedge e of H,  (e) is also
P-crossing. (We call & ‘narrow’ since none of these sets m (e) fits into a class of &.) For instance,
the partition shown in Fig. 5(b) below is 7 -narrow. Observe that the trivial partition is 7z -narrow for
any 7.

Lemma 6. A quasigraph w in H has tight complement if and only if there is no nontrivial w-narrow
partition of V.

Proof. We prove the ‘only if part by induction on the number of vertices of H.If |[V| = 1, the assertion
is trivial. Assume that |V| > 1 and that & is a nontrivial partition of V; we aim to prove that & is not
mr-narrow. Consider the two cases in the definition of tight complement. If 77 is connected (Case (a)),
then there is a #-crossing hyperedge e of 77. Since 77 (e) = @ is not £-crossing, & is not T -narrow.

In Case (b), there is a partition V = X; U X5 into nonempty sets such that each 7 [X;] has tight
complement in H[X;]™. Suppose that &#[X;] is nontrivial. By the induction hypothesis, it is not 7 [X;]-
narrow. Consequently, there is a hyperedge f of H[X;]”" contained in 7z [X;] and such thatz (f) € PNX;,
where P € 2. It follows that & is not 7 -narrow as claimed.

By symmetry, we may assume that both $[X;] and $£[X;] are trivial. Since & is nontrivial, it must
be that » = {Xj, X3}. Case (b) of the definition of tight complement ensures that there is a hyperedge
e € E(mr) such that w (e) € X7 and eNX; # (. Since e is $-crossing and 7 (e) is not, & is not 7T -narrow.
This finishes the proof of the ‘only if’ part.

The ‘if’ direction will be proved by contradiction. Suppose that V admits no nontrivial 7 -narrow
partition, but 7 does not have tight complement in H. Let R be a coarsest possible partition of V such
that each [X], where X € R, has tight complement in H[X]". (To see that at least one partition with
this property exists, consider the partition of V into singletons.) Since (R is nontrivial by assumption,
there is an R-crossing hyperedge e of H with w(e) C R;, where R; is some class of R. Since e is
R-crossing, it intersects another class R, of R. By the definition, 7[R; U R,] has tight complement in
H[R; U R,]™, which contradicts the maximality of R. O

4. Narrow and wide partitions

We begin this section by modifying the definition of a 7 -narrow partition of V. If 77 is a quasigraph
in H, then a partition & of V is r-wide if for every hyperedge e of H, it (e) is a subset of a class of &. (In
particular, 7 (e) is not -crossing for any #-crossing hyperedge e.) An example of a 7-wide partition
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v
(a) A quasigraph t in H and the positive (b) The negative t-part of H. Note that the
t-parts of H (the grey regions). vertex v belongs to a larger negative 7-part,
although it forms a component of T on its

own.

Fig. 5. Positive and negative parts.

is shown in Fig. 5(a) below. Again, the trivial partition is 7w -wide for any 7. Lemma 6 has the following
easier analogue.

Lemma 7. If 7 is a quasigraph in H, then * is connected if and only if there is no nontrivial -wide
partition of V.

Proof. We begin with the ‘only if direction. Suppose that & is a nontrivial partition of V. Since * is
a connected graph with vertex set V, there is an edge 7 (e) of 7* crossing #. This shows that & is not
m-wide.

Conversely, suppose that 7* is disconnected, and let & be the partition of V whose classes are the
vertex sets of components of 7 *. Let e be a hyperedge of H. We claim that 7 (e) is not #-crossing. This
is certainly true ife & E (7). In the other case, 7 (e) is an edge of 7* and both of its endvertices must be
contained in the same component of 7*, which proves the claim. We conclude that & is a (nontrivial)
m-wide partitionof V. O

It is interesting that both the class of 7-narrow partitions and the class of 7-wide partitions are
closed with respect to meets in the lattice of partitions:

Observation 8. If 7 is a quasigraph in H and & and R are ;w-narrow partitions, then A R is w-narrow.
Similarly, if & and R are w-wide, then £ A R is w-wide.

By Observation 8, for any quasigraph  in H, there is a unique finest 7w -narrow partition of V,
which will be denoted by + _ (7r; H). Similarly, there is a unique finest 7 -wide partition of V, denoted
by A (;r; H). If the hypergraph is clear from the context, we write just 4 (;r) or A_ (7). Lemmas 6
and 7 provide us with a useful interpretation of + (;r) and 4_ (7). It is not hard to show from the
latter lemma that the classes of 4, () are exactly the vertex sets of components of 77 *. Similarly, by
Lemma 6, the classes of A _ (;7) are all maximal subsets X of V such that 7 [X] has tight complement
in HIX]".

We call the classes of A (;r) the positive w-parts of H and the classes of A_(;r) the negative
mr-parts of H. (See Fig. 5 for an illustration.) The terms ‘positive’ and ‘negative’ are chosen with regard
to the terminology of photography, with ‘positive’ used for 7z and ‘negative’ for its complement, in
accordance with the above discussion.

We note the following simple corollary of Lemma 6.

Lemma 9. Let & be a quasigraph in H. For i = 1, 2, let X; C V be such that [X;] has tight complement

in H[X;]™. Then the following holds:

(i) each X; is contained in a class of A_ () (as a subset), and

(ii) if H contains a hyperedge e such that e intersects each X; and 7 (e) C X; (we allow e & E(rr)), then
X1 U X5 is contained in a class of A_ (7).
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Proof. (i) Clearly, if & is a w-narrow partition of V, then £[X;] is 7 [X;]-narrow; it follows that
A_(m)[X1] = A_(w[Xq]). By Lemma 6, A_(;[X;]) is trivial. Hence +_(r)[X1] is also trivial. A
symmetric argument works for X,.

(ii) It suffices to prove that 7w [X; U X;] has tight complement in H[X; U X;]”. If not, let & be a
nontrivial 7 [X; U X5]-narrow partition of X; U X,. By the assumption, each #[X;] has to be trivial as
it is 7w [X;]-narrow. Thus, # = {Xi, X»}. However, since w(e) C Xj, this is not a 7[X; U X,]-narrow
partition — a contradiction. O

We use the partitions 4 (;r) and A_ () to introduce an order on quasigraphs. If 7 and o are
quasigraphs in H, then we write

TG0 ifAy(r) < Ay(0)and A_(7) < A_(0).

Clearly, < is a partial order.
For a set X C V, let us say that two quasigraphs 7 and o in H are X-similar if the following holds
for every hyperedge e of H:

(1) w(e) € X ifand only if o (¢) C X, and
(2) if r(e) € X, thenm(e) = o (e).

Let us collect several easy observations about X-similar quasigraphs.

Observation 10. If X C V and quasigraphs w and o are X-similar, then the following holds:

(i) HIXT™ = H[X]°,
(ii) if X € A, (), then A (0) < Ay (1),
(iii) if X € A_ (1), then A_(0) < A_ (7).

The following lemma is an important tool which facilitates the use of induction in our argument.

Lemma 11. Let X C V and let & and o be X-similar quasigraphs in H. Then the following holds:
if t[X] < o[X], thenm <o.

Proof. Note that by Observation 10(i), H[X]® = H[X]?. We need to prove that
ifA_(7[X]) < A_(c[X]), thenA_(7) < A_(0), (1)

and an analogous assertion (1) with all occurrences of ‘—’ replaced by ‘+'.
We prove (1). By the definition of A_ (o), (1) is equivalent to the statement that

if every o [X]-narrow partition of X is 7z [X]-narrow (in H[X]"),
then every o -narrow partition of V is 7-narrow (in H).

Assume thus that every o [X]-narrow partition is 7 [X]-narrow and that & is a o -narrow partition of
V. For contradiction, suppose that & is not 7 -narrow.

We claim that 2[X] is o[X]-narrow in H[X]°. Let e N X be a $[X]-crossing hyperedge of H[X]”
(wheree € E(H)).Then e is #-crossing, and since & is o -narrow, o (e) is #-crossing. By the definition
of H[X]?, o (e) € X and thus o (e) = o [X](e N X) is L [X]-crossing. This proves the claim.

Since every o [X]-narrow partition of X is assumed to be 7 [X]-narrow, £[X] is 7 [X]-narrow.

On the other hand, & is not w-narrow, so there is a #-crossing hyperedge f of H such that 7 (f)
is not »-crossing. However, o (f) is $-crossing as & is o-narrow. Thus, 7 (f) # o (f), and since
and o are X-similar, both 7 (f) and o (f) are subsets of X. It follows that o (f), and therefore also the
hyperedge f N X of H[X]° = H[X]", is $[X]-crossing. We have seen that $[X] is 7 [X]-narrow, and
this observation implies that 7 (f) is $[X]-crossing and therefore #-crossing. This contradicts the
choice of f.

The proof of (17) is similar to the above but simpler. The details are omitted. O
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Fig. 6. The partition sequence of the quasigraph 7 from Fig. 5. Partitions #§, #{ and &, are shown in different grey shades
from light to dark. Note that the classes of #; are t-solid.

5. Partition sequences

Besides the order < introduced in Section 4, we will need another derived order < on quasigraphs,
one that is used in the basic optimization strategy in our proof. Let 7 be a quasigraph in H. Similarly
as in [10], we associate with 7 a sequence of partitions of V, where each partition is a refinement of
the preceding one. Since H is finite, the partitions ‘converge’ to a limit partition whose classes have a
certain favourable property.

Recall from Section 4 that there is a uniquely defined partition of V into positive 7 -parts; we will
let this partition be denoted by £ . The partition sequence of r is the sequence

P* = (PF,PT,..),

where for even (odd) i > 1, $7 is obtained as the union of partitions of X into positive (negative,
respectively) r [X]-parts of H[X]" as X ranges over classes of » ;. (See Fig. 6.) Thus, for instance, for
eveni > 2 we can formally write

Pl = AxD.
XeP,
Since H is finite, we have ] = £, for large enough k, and we set 7, = #.
Let us call aset X C V m-solid (in H) if w[X] is a quasitree with tight complement in H[X]". By the
construction, any class of 7 is -solid.
Let us define a lexicographic order on sequences of partitions: if (+g, 41, ...) and (Bo, B, .. .)
are sequences of partitions of V, write

(Ao, A1, ...) 2(Bo, B1,...)

if there exists some i such that for j < i, 4; = B;, while A; strictly refines ;.
We can now define the order < on quasigraphs as promised. Let 7 and o be quasigraphs in H.
Define

m <o ifr <oandP” < P°.

Ifr <obuto £, wewriter <o.
From Lemma 11, we can deduce a similar observation regarding the order < (in which the
implication is actually replaced by equivalence).
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Lemma 12. Let X C V and assume that either X is a positive -part of H, or 2y is trivial and X is a
negative w-part of H. Let w and o be X-similar quasigraphs in H. Then the following holds:
w[X] X o[X] ifandonlyif r < o.
Proof. We consider two cases depending on whether X is a positive or negative s -part of H.

Case 1: X is a positive ;r-part of H.
Since ;v and o are X-similar, we have

P = (pF, T u T v — X1, PF¥ U 2TV —X],...) and
P = (2, PN ueT v — X1, 2SN U PTIV — X, .. ). 2)

Assume first that w[X] =< o[X]. Egs. (2) imply that for eachi > 1, #7 < £7. Furthermore,
m[X] < o[X] and Lemma 11 imply that 7 < o. In particular,

PT = A (1) < AL(0) = P

so P <; P° and therefore also 7 < o.
Conversely, assume that 7 =< o. The fact that P* <; P? together with (2) implies that fori > 1,

:P,.”[X] < ?f[X]. Recall that X is a positive 7r-part of H. We claim that X is also a positive o -part of H;
indeed, this follows from the fact that ] < £7 and that = and o are X-similar. This claim implies

X = x = P (3)

and, consequently, P*X1 <, 1 [t remains to verify that 77 [X] < o [X]. This follows from (3) and the
observation that £ x] <9/ X1 (Here we use the fact that if £ is trivial, then P = A_(1)).
Case 2: PJ is trivial and X is a negative s -part of H.

In this case, Eqs. (2) are replaced by
P = ({V} L A_(TIX]) U PV — X],
PFM I - x1, AU LIV~ X1, and
P = (V). A-(@lXD U PV = X],
P{NUPFV = X1, PPN U PV = X)) (4)

Assume first that ¥ < o. Since X is a positive w-part of H, the partition A4_ (;7[X]) appearing in the
second term of P” is trivial. A similar observation holds for o in place of . Hence, P™ and P’ are equal
in their first two terms and (4) directly implies that P*™1 <; P°™X], Moreover, 7 [X] < o[X] is implied
by (4) as well. We conclude that 7[X] < o[X].

The converse implication follows from (4) without any further effort. The proof is complete. O

Corollary 13. Let 7 and o be X-similar quasigraphs in H, where X € £ for some i. Then the following
holds:

w[X] X o[X] ifandonlyif m <o.

Proof. Follows from Lemma 12 by easy induction. O

We conclude this section by a lemma that suggests a relation between <-maximal and acyclic
quasigraphs. If 7 and o are quasigraphs in H, then let us call o a restriction of 7 if for every hyperedge
e of H, o (e) equals either v (e) or ¥.

Lemma 14. Let 7w be a quasigraph in H and i > 0. If w[X] is acyclic for each X € £, but 7 itself is not
acyclic, then there exists an acyclic restriction o of m such that o > 7.
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X1
X1
X2 X4
Xo
X
X
(a) A quasigraph 7 and a partition & of V. (b) The contracted quasigraph

/% in H/$. Observe that
although e is used by 7, e/ is a
hyperedge of 7 /2.

Fig. 7. An example of contraction.

Proof. Suppose that y is a quasicycle in H such that E(y) € E(s). By the assumption, not all of the
edges of y* are contained in the same class of & ; in other words, y* contains a & -crossing edge.
Let k > 0 be the least integer such that y* contains a & -crossing edge y (e) (where e € E(H)).

Since £ is a partition of V into positive wr-parts and y is a restriction of 7, there are no £ -
crossing edges in y*. Thus, k > 1. Similarly, if j > 2 is even and X € £, then H[X]" contains no
fPfI;[X]—crossing edges. It follows that k is odd. Let Y be the class of " ; containing all edges of y* as
subsets.

Set p = m — e. Observe that (p[Y])* is a connected graph spanning Y, since (7 [Y])* has this
property, and the removal of the edge 7 (e) cannot disconnect ([Y])* as 7 (e) is contained in a cycle
in7*. Thus, £§ = {Y}.

Assume that 7 (e) = 212, and let Z; (i = 1, 2) be the class of # containing z;. Since each Z; is a
class of A_(7t[Y]), p[Z;] has tight complement in H[Z;]”. Now the hyperedge e N Y containing z; and
z, is not used by p. By Lemma 9(ii), Z; U Z; is contained in a class of 4 _ (p[Y]). Consequently,

A_(p[Y]) > A_([Y])

and therefore p[Y] > w[Y]. By Corollary 13, p > 7.
If p is not acyclic, we repeat the previous step. Since H is finite, we will arrive at an acyclic
restriction o > 7 of 7 after finitely many steps. O

6. Contraction and substitution

In this section, we introduce two concepts related to partitions: contraction and substitution.

Let & be a partition of V. The contraction of & is the operation whose result is the hypergraph
H/% defined as follows. For A C V, define A/ % as the subset of # consisting of all the classes P € »
such that A NP # (. The hypergraph H/& has vertex set & and it hyperedges are all the sets of
the form e/, where e ranges over all #-crossing hyperedges. Thus, H/# is a 3-hypergraph, possibly
with multiple hyperedges. As in the case of induced subhypergraphs, each hyperedge f of H/ % is
understood to have an assigned corresponding hyperedge e of H such that f = e/P.

If 7 is a quasigraph in H, we define 7 /% as the quasigraph in H/# consisting of the hyperedges
e/ such that i (e) is $-crossing; the representation is defined by

(m/P)(e/P)=m(e)/P.
(Contraction is illustrated in Fig. 7.) In keeping with our notation, the complement of 7 /& in H/ % is

denoted by v /%. Observe that if e € E(H), then e/ is an edge of 7 /& if and only if e is #-crossing
and 7 (e) is not. The following lemma will be useful.
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Lemma 15. Let R < P be partitions of V and & be a quasigraph in H. If y /R is a quasicycle in 7 / R,
then one of the following holds:

(a) forsome X € 2, y[X]/RI[X] is a quasicycle in the complement of w[X]/R[X]in H[X]" /R[X],
(b) vy /& is a nonempty quasigraph in 7w /P such that (y /$)* is an eulerian graph (a graph with all vertex
degrees even).

Proof. We will use two formal equalities whose proof is left to the kind reader as a slightly tedious
exercise: for X € # and any quasigraph o in H,

o [X1/RIX] = (o /R)[RIX]], (5)
H[X]H/R[X] = (H/R)[R[X]]ﬂ/'ﬂ. (6)

Let y /R be a quasicycle in 77 /R. Suppose that there is X € &£ such that every edge of (y /R)* is
a subset of R[X]. Let y = (y/R)[RI[X]]. Thus, y is a quasicycle in (H/R)[R[X]] and E(y) is disjoint
from E((rr /R)[R[X]]). We infer that 7 is a quasigraph in (H/R)[R[X]]"/®. Using (6), we find that
is a quasigraph in H[X]" /R [X]. Finally, we use (5) twice (for y and 7 ) and conclude that condition (a)
holds.

Thus, we may assume that the endvertices Y7, Y, of some edge y (e) of (y/R)* are classes of R
contained in different classes of & (say, X; and X5, respectively). Thus, y /& is a nonempty quasigraph
in H/ . Furthermore, E(y /) is clearly disjoint from E (7t /$). To verify (b), it remains to prove that
(y/%)* is eulerian. This is immediate from the fact that (y/%)* can be obtained from the graph
(y/R)* (which consists of a cycle and isolated vertices) by identifying certain sets of vertices (namely
those contained in the same class of #). O

If X C V and o is a quasigraph in H[X]", we define the substitution of o into 7 as the operation
which produces the following quasigraph 7 |o in H:

7 (e) ifeNnX ¢ E(H[X]™),
o(eNX) otherwise.

(mlo)(e) = {

This yields a well-defined represented subhypergraph of H (see Fig. 8). More generally, let & be a
family of disjoint subsets of V and for each X € &, let ox be a quasigraph in H[X]". Assume we
substitute each oy into 7 in any order. For distinct X € %, the hyperedge sets of the hypergraphs
H[X]" are pairwise disjoint, since e € E(H[X]") only if |e N X| > 2. It follows easily that the resulting
hypergraph o in H is independent of the chosen order. This hypergraph will be denoted by

o=nml|{ox: X € P}.

Substitution behaves well with respect to taking induced quasigraphs and contraction.
Lemma 16. Let 7 be a quasigraph in H and & a partition of V. Suppose that for each X € P, ox is a
quasigraph in H[X]", and define

o =nml|{ox: X € P}.

Then the following holds for everyY C X € £:
(1) HIY] = (HIXI)IY]?,
(ii) o[Y] = ox[Y].

Furthermore,
(iii) o /P =7/ P.

Proof. (i) Using the definition of H[Y]° and the definition of substitution, it is not hard to verify that
eg C Vis a hyperedge of H[Y]° if and only if e = e N Y, where e is a hyperedge of H such that
lenY|] > 2, 7(e) € X and ox(e N X) C Y. If we expand the right hand side of the equality in (i)
according to these definitions, we arrive at precisely the same set of conditions.
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X

(a) A quasigraph 7 inH andasetX C V. (b) A quasigraph o in H[X]".

(c) The quasigraph r|o.
Fig. 8. An example of substitution.

(ii) Both sides of the equation are quasigraphs in H[Y]?. We will check that they assign the same
value to a hyperedge e N'Y of H[Y]?. For such hyperedges, we have

olYI(eNY) =o(e) = ox(eNX) (7)

where the second equality follows from the definition of substitution. On the other hand, by part (i),
e NY is a hyperedge of (H[X]™)[Y]°%, and thus

ox[Y1(eNY) = ox(e NX). (8)

The assertion follows by comparing (7) and (8).
(iii) Both o /& and v /& are quasigraphsin H/ . Let e/ be a hyperedge of H/#, where e € E(H).
Using the definitions of substitution and contraction, one can check that

7(e)/P ifenX ¢ EH[X]") and 7 (e) is £-crossing,
(o/P)(e/P) = {ax(e)/? ifeNX € E(H[X]") and ox(e) is $-crossing,
@ otherwise.

However, the middle case can never occur since ox(e) € X and oy (e) is therefore not #-crossing. It
follows easily that (o /P)(e/P) = (w/P)(e/P). O

7. The Skeletal Lemma

In this section, we prove a lemma which is a crucial piece of our method. It leads directly to an in-
ductive argument for the existence of a quasitree with tight complement under suitable assumptions,
which will be given in Section 8.

If v is a quasigraph in H, then a partition & of V is said to be 7 -skeletal if every X € & is w-solid
and the complement of 77 /% in H/$ is acyclic.
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Lemma 17 (Skeletal Lemma). Let r be an acyclic quasigraph in H. Then there is an acyclic quasigraph o
in H such that o > m and o satisfies one of the following:

(@) o > m, or
(b) there is a o -skeletal partition .

Proof. We proceed by contradiction. Let the pair (77, H) be a counterexample such that H has minimal
number of vertices; thus, no acyclic quasigraph o > 7 in H satisfies any of (a) and (b). Note that 7 is
not a quasitree with tight complement (which includes the case |V| = 1), for otherwise 0 = 7 would
satisfy condition (b) with 8 = {V}.
Claim 1. § is nontrivial.

Suppose the contrary and note that $ := 4_(s) is nontrivial. Consider a set Y € & and the
acyclic quasigraph s [Y]. By the minimality of H, there is a quasigraph oy > 7 [Y]in H[Y]" satisfying
condition (a) or (b) (with respect to 7[Y] and H[Y]" ). Define

o=nml|{oy:Y e P}.

By Lemmas 14 and 16(ii), we may assume that o is acyclic.

Assume first that for some Y € £, oy > n[Y] (case (a) of the lemma). Since o[Y] = oy
(Lemma 16(ii)), Lemma 12 implies that o > 7, a contradiction with the choice of 7.

We conclude that case (b) holds for each Y € &, namely that there exists a partition 4y which is
oy-skeletal in H[Y]”. Set

5:U5y.

Yep

We claim that 4§ is o-skeletal. Let Z € 4 and assume that Z C Y € 4. Since Z is oy-solid, and since
o[Z] = oy[Z] and H[Y]° = (H[Y]")[Z]°Y by Lemma 16(i)-(ii), Z is o -solid.

Suppose that o /4 is not acyclic and choose a quasigraph y in H such that y /4 is a quasicycle in
o /4.ByLemma 15,y /# is anonempty quasigraph in the complement 77 /2 of = /& in H/ &. However,
by the definition of A _ (77), every #-crossing hyperedge of H belongs to r /& and thus cannot be used
by v /%, a contradiction. It follows that o /4 is indeed acyclic and 4§ is o -skeletal. This contradiction
with the choice of 7 concludes the proof of the claim. A

For each X € &7, H[X]" has fewer vertices than H. By the minimality of H, there is an acyclic
quasigraph px > w[X]in H[X]". Define

,O=7T|{,0xZX€c7)6T}.

ByLemma 12, p > 7. Note thatsince £ is w-wide, p* is the disjoint union of the graphs py (X € £J ).
Therefore, p is acyclic.

If px > m[X]for some X € £, then by Lemmas 16(ii) and 12, o > 7 and we have a contradiction.
Consequently, for each X € £, there is a px-skeletal partition Rx (with respect to the hypergraph
H[X]™). We define a partition R of V by

R = U Ry. 9)

T
Xery

Similarly as in the proof of Claim 1,each Y € R is easily shown to be p-solid. An important difference
in the present situation, however, is that R may not be p-skeletal as there may be quasicycles in p/R.
Any such quasicycle y’ can be represented by a quasigraph y in H such that y’ = y/R.

Thus, let y be a quasigraph in H such that y /R is a quasicycle in p/R. By Lemma 15, there are two
possibilities:

(a) for some X € 2J, y[X]/Rx is a quasicycle in the complement of p[X]/Rx in H[X]? /R, or
(b) y/#§ is a nonempty quasigraph in the complement of po/#7 in H/% such that (y/#§)* is an
eulerian graph.



T. Kaiser, P. Vrdna / European Journal of Combinatorics 33 (2012) 924-947 937

Fig.9. Anillustration to the proof of Claim 2. Some hyperedges are omitted. The light grey regions are the classes of £, the
darker ones are the classes of R. Bold lines indicate the quasigraph p. The set {fy, e, e, e3} corresponds to a quasicycle y
in H/R. The quasigraph o is obtained by including f, in E(p), with the representation given by dashed lines. Note that v is
contained in the same negative o -part as u.

Since p[X] = px (Lemma 16(ii)) and Ry is px-skeletal, case (a) is ruled out. Thus, we can choose a
hyperedge f, of H such that y (f, ) is £ -crossing. As y /R is a quasicycle in p/R, p(f,) is contained
in a class of R. If f,, is used by p, then this class will be denoted by Y,, and we will say that the chosen
hyperedge f, is a connector for Y,,.

Claim 2. For each quasicycle y /R in p /R, the hyperedge f,, is used by p.
Suppose to the contrary that y (f,) = uju,, where each u; (i = 1, 2) is contained in a different class

X; of £J. By Lemma 11 and Observation 10(ii), £J = J’{. Let o be the quasigraph in H defined by
O,(e)z {Tr(e) lfe;éfya

uqu, otherwise

(see Fig. 9). Considering the role of the hyperedge e, we see that

Py < Py (10)

Next, we would like to prove that
A_(p) < A_(0). (11)

First of all, we claim that u; and u; are contained in the same class of 4_ (o). Let the vertices on the
unique cycle in (y/R)* be Ty, ..., T in this order, where each T; is a class of R, u; € T; and u; € Ti.
By symmetry, we may assume that | f, N Tk| = 1 (i.e,, T is the only class of R which may contain
more than one vertex of f, ).

By Lemma 16(i)-(ii), together with the fact that each Y € R is px-solid (where Y C X C £f),
eachT;(i=1,..., k)is p-solid. Thus, T; is also o-solid for i > 2. Let T; be the negative o [T;]-part of
H[T:]° containing u;.

Fori=1,...,k—1,lete; be the hyperedge of E(y) such that y (¢;)/R = TiTi41 (choosing e; # f,
ifk =2).LetT =T; UT, U--- U Ty Using the minimality of H and Lemma 9(ii), it is easy to prove
that T is a subset of a class, say Q, of A_ (o). Note that Q contains u; and u, as claimed.

If (11) is false, then the unique vertex of f, — {u;, u,} is necessarily contained in a class of A_ (o)
distinct from Q. In that case, however, A_ (o) is not o-narrow as o (f,) € Q. This contradiction with
the definition proves (11).

By (10)and (11), 7 < p < o.Moreover, o is acyclic, since p is acyclic and o (f, ) has endvertices in
distinct components of p*. Thus, o satisfies condition (a) in the statement of the lemma, contradicting
the choiceof 7. A
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Forany Y € R, let conn(Y) be the set of all connectors for Y, and write
conn,(Y)={fNY: feconn()}.

Note that for any connector f for Y, f NY is a 2-hyperedge of p[Y].

Let us describe our strategy in the next step in intuitive terms (see Fig. 10 for an illustration). We
want to modify p within the classes of R and ‘free’ one of the hyperedges f, from p, which would
enable us to apply the argument from the proof of Claim 2 and reach a contradiction. If no such
modification works, we obtain a quasigraph o and a partition § which refines . The effect of the
refinement is to ‘destroy’ all quasicycles y /R in p/R by making the representation p(f,) of each
associated connector f, §-crossing. Thanks to this, it will turn out that § is o -skeletal as required to
satisfy condition (b).

Thus, let Y € R and set

Hy = H[Y)? — conny(Y),
Py = plY] — conny(Y)

(we allow conn,(Y) = @) and observe that py is an acyclic quasigraph in Hy. Let oy be a <-maximal
acyclic quasigraph in Hy such that oy > py. We define a quasigraph ty in H[Y]” by

e ife € conny(Y),
oy(e) otherwise.

Ty(e) = {

Claim 3. ForallY € R,
A4 (0y; Hy) = A4 (Dy; Hy).

From oy > py, we know that the left hand side in the statement of the claim is coarser than
(or equal to) the right hand side. Suppose that for some Y € R, A, (oy; I:Iy) is strictly coarser than
A4 (Dy; fly). Then we can choose vertices uy, u, € Y which are contained in different classes Uy, Uy,
respectively, of A (py; Hy), but in the same class U of Ay (oy; Hy). Since Y is p-solid, the graph p[Y]*
contains a path P joining u4 to u,. The choice of u; and u, implies the following:

(A1) P contains the edge f, N'Y € conn,(Y) for some quasicycle y, and
(A2) all the edges of E(P) N conn,(Y) are contained in a cycle in (p|oy)*.

We choose a quasicycle y satisfying (A1) and let t be the quasigraph in H obtained as
T = (plmy) —f, NY.

By (A2) and the fact that p[Y] is connected, t[Y] is connected as well. Since oy has tight
complement in Hy, T[Y] has tight complement in H[Y]” (the two complements coincide). Thus, Y
is t-solid. By Corollary 13, T > p. By Lemma 14 and the fact that p > 7, we may assume that t is
acyclic.

Since p and t are Y-similar, we have

p/R=T1/R.

In particular, the quasicycle y in p/R (associated with f, ) is also a quasicycle in T /R. As f,, is not used
by 7 (and T > p), we can repeat the argument used in the proof of Claim 2, namely add f, (with a
suitable representation) to t and reach a contradiction with the choice of 7. A

We will now construct a o -skeletal partition of V.Let Y € R. By the choice of H and the maximality
of oy, there is a oy-skeletal partition Sy of Y (in Hy). We define a quasigraph o in H and a partition §
of V by

g:p|{fy:Y€eR},

5:U5y.

YeRr
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Y .
(a) Bold lines show the quasigraph p, the dotted (b) The dotted regions here are the pos-
regions are the positive py-parts of Hy. itive oy-parts of Hy. If the partition is strictly coarser

than in (a), we can ‘free’ a suitable connector f,, and
use it as before.

(c) Otherwise, we obtain a finer partition 4§
(darkest grey regions) such that p(f, ) is §-crossing
for each y.

Fig. 10. An illustration to the proof of Claim 3 and the following part of the proof. We use similar conventions as in Fig. 9.

We aim to show that § is o-skeletal. Let Z € § and suppose thatZ C Y C X, where X € #{ and
Y € R.Since 0[Z] = oy[Z] and 8y is oy-skeletal, o [Z] is a quasitree.
To show that the complement of o[Z] in H[Z]° is tight, we use Lemma 16(i):

HIZI” = (HIY1")[Z]™ = Hy[Z]" = Hy[Z]". (12)

Here, the second and the third equality follows from Claim 3 which implies that any connector for
Y intersects two classes of A, (oy; Hy). From (12) and the fact that oy[Z] has tight complement in
Fly [Z]°Y, it follows that o [Z] has tight complement as well.

It remains to prove that o /4 is acyclic. Suppose, for the sake of a contradiction, that y is a
quasigraph in H such that y /4 is a quasicycle in o /4. Note that the complement of 7y /8y in H[Y]?
is the same as the complement of oy /4§y in Hy, and hence acyclic. By Lemma 15, y /R is a nonempty
quasigraph in p /R with (y /R)* eulerian.

Let § be a restriction of y such that §/R is a quasicycle in p/R. Every such quasicycle has an
associated hyperedge f; which is a connector for a class Y5 € R (Claim 2). In particular, fs is used
by p. By the fact that f; intersects two classes of A (oy;; I:Iyg), p(fs) is 8-crossing. This implies that
o (fs) is 8-crossing, which contradicts the assumption that y /4 is a quasicycle in o /8. The proof is
complete. O
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8. Proof of Theorem 5

We can now prove our main result regarding spanning trees in hypergraphs, announced in
Section 3 as Theorem 5:

Theorem. Let H be a 4-edge-connected 3-hypergraph. If no 3-hyperedge of H is included in any edge-cut
of size 4, then H contains a quasitree with tight complement.

Proof. Let v be a <-maximal acyclic quasigraph in H. By the Skeletal Lemma (Lemma 17), there exists
a m-skeletal partition & of V. For the sake of a contradiction, suppose that 7 is not a quasitree with
tight complement. In particular, & is nontrivial.

Assume that H/# has n vertices (that is, || = n) and m hyperedges. For k € {2, 3}, let my be
the number of k-hyperedges of 7 /4. Similarly, let m; be the number of k-hyperedges of 7 /. Thus,
m=my + mz + my; + ms. _ _

Since 7 /& is acyclic, the graph Gr(;r /#) (defined in Section 2) is a forest. As Gr (7t /&) has n + m3
vertices and m; + 3mj3 edges, we find that

T+ 2 <n— 1. (13)

Since & is w-solid and 7 is an acyclic quasigraph, we know that m; + m; < n — 1. Moreover, by the
assumption that i is not a quasitree with a tight complement, either this inequality or (13) is strict.
Summing the two, we obtain

m+ms < 2n— 3. (14)

We let nyq be the number of vertices of H/# of degree 4, and ns+ be the number of the other vertices.
Since n > 2 and H is 4-edge-connected, we have n = n4 + ns+. By double counting,

4ng + 5ns+ < 2(my +my) + 3(m3 + m3) = 2m 4+ m3 + ms. (15)
The left hand side equals 4n + ns+. Using (14), we find that

4n + ns+ > 2m + 2ms + ns+ + 6.
Combining with (15), we obtain

ms > ms3 + ng+ + 6. (16)

We show that m3 < ns+. Let T" = (;r/P)* be the forest on & which represents 7 /#. In
each component of T’, choose a root and direct the edges of T’ away from it. To each 3-hyperedge
e € E(r /%), assign the head h(e) of the arc 7 (e). By the assumptions of the theorem, no edge-cut
of size 4 contains a 3-hyperedge, so h(e) is a vertex of degree at least 5. At the same time, since each
vertex is the head of at most one arc in the directed forest, it gets assigned to at most one hyperedge.
The inequality m3 < ns+ follows. This contradiction to inequality (16) proves that 7 is a quasitree
with tight complement. O

9. Even quasitrees

In the preceding sections, we were busy looking for quasitrees with tight complement in
hypergraphs. In this and the following section, we will explain the significance of such quasitrees
for the task of finding a Hamilton cycle in the line graph of a given graph.

Let 7t be a quasitree in H. For a set X C V, we define a number &, (X) € {0, 1} by

G (X) = Y dpe(v) (mod 2).
veX
Observe that @, (X) = 0if and only if X contains an even number of vertices whose degree in the tree
* is odd.
For X C V, we say that 7 is even on X if for every component K of @ whose vertex set is a subset
of X, it holds that @, (V(K)) = 0. If  is even on V, then we just say 7 is even.
The main result of this section is the following:
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()

(a) The quasitree 7. (b) The quasitree 7/, resulting from the switch.

Fig. 11. The case @, (X;) = 1 in the proof of Lemma 19. The grey regions are the sets X; and X,. Note how the switch of the
representation of e changes the parity of exactly one vertex degree in X;.

Lemma 18. If 7 is a quasitree in H with tight complement, then there is a quasigraph p in H such that
E(p) = E(rr) and p is an even quasitree in H.

Lemma 18 is a direct consequence of the following more technical statement (to derive Lemma 18,
setX =V):

Lemma 19. Let 7 be a quasitree in H and X C V. Assume that @, (X) = 0 and 7 has tight complement
in H[X]". Then there is a quasitree p in H such that 7 and p are X-similar, and p is even on X.

Proof. We proceed by induction on |X|. We may assume that |X| > 2, since otherwise the claim is
trivially true. Similarly, if 77[X] is connected, then the assumption @, (X) = 0 implies that 7 is even
on X. Thus, we assume that 77[X] is disconnected.

The definition implies that there is a partition X = X; U X, such that:
(B1) foreachi = 1, 2, w[X;] has tight complement in H[X;]",
(B2) there is a hyperedge e intersecting X, with 7 (e) C X;, and
(B3) for any hyperedge f intersecting both X; and X,, we have f € E ().

If @, (X;) = 0, then we may use the induction hypothesis with X; playing the role of X. The result
is a quasitree p; in H which is even on X; and X;-similar to p. In particular, ®,, (X;) = 0 and hence
also @, (X;) = 0. Using the induction hypothesis for X,, we obtain a quasitree p, in H which is even
on X,; furthermore, being X,-similar to o1, it is even on X; as well. By (B3), the vertex set of every
component K of 7 with V(K) C X is a subset of X; or X,. Thus, p := p, is even on X, and clearly
X-similar to 7.

It remains to consider the case that @, (X;) = 1, illustrated in Fig. 11. Here we need to ‘switch’
the representation of e (the hyperedge from (B2)) as follows. Let e = x1x,y, with 7 (e) = x1x,. The
removal of the edge x1x, from 7 * splits 7* into two components, each containing one of x; and x;.
By symmetry, we may assume that y is contained in the component containing x;. We define a new
quasigraph 7’ in H by

oy _ 1%y iff =e,
m(e) = {n (f) otherwise.

Note that 7’ is a quasitree and @,/(X;) = 0. Consequently, we can proceed as before, apply the
induction hypothesis and eventually obtain a representation p which satisfies the assertions of the
lemma. O

10. Hamilton cycles in line graphs and claw-free graphs

We recall two standard results which interpret the connectivity and the hamiltonicity of a line
graph in terms of its preimage. The first result is a folklore observation, the second is due to Harary
and Nash-Williams [8]. We combine them into one theorem, but before we state them, we recall some
necessary terminology.

Let G be a graph. An edge-cut C in G is trivial if it consists of all the edges incident with some vertex
v of G. The graph G is essentially k-edge-connected (k > 1) if every edge-cut in G of size less than k is
trivial. A subgraph D of G is dominating if G — V(D) has no edges.
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(a) The vertices of odd degree in 77 * are circled.  (b) Since each component of 77 contains an
even number of circled vertices, we can
complete 77* to an eulerian graph (the added
edges are shown as dashed bold lines).

Fig. 12. An illustration to Lemma 22. The grey regions are the components of 7, where 7 is the quasigraph shown by solid
bold lines.

Theorem 20. For any graph G and k > 1, the following holds:

(i) L(G) is k-connected if and only if G is essentially k-edge-connected,
(ii) L(G) is hamiltonian if and only if G contains a dominating connected eulerian subgraph C.

In a similar spirit, the minimum degree of L(G) equals the minimum edge weight of G, where the
weight of an edge e is defined as the number of edges incident with e and distinct from it.

Given a set X of vertices of G, an X-join in G is a subgraph G’ of G such that a vertex of G is in X if
and only if its degree in G’ is odd. (In particular, #-joins are eulerian subgraphs).

We will need alemma which has been used a number of times before, either explicitly or implicitly.
For completeness, we sketch a quick proof.

Lemma 21. If T is a tree and X is a set of vertices of T of even cardinality, then T contains an X-join.

Proof. By induction on the order of T.If |V (T)| = 1, the assertion is trivial. Otherwise, choose an edge
e = vqv, and let T; and T, be components of T — e, T; being the one which contains v;. Let X; be
X N V(Ty) if the size of this set is even; otherwise, set X; = (X N V(Ty)) & {v1}, where & stands for
the symmetric difference. The induction yields an X;-join T in T;. A set X; and an X,-join T} in T is
obtained in a symmetric way. It is easy to check that the union of T; and T, with e added if [X N V (T;)|
is odd, is an X-join. O

If G; and G, are two graphs, then G; + G, denotes the graph whose vertex set is the (not necessarily
disjoint) union of vertex sets of Gy and G,, and whose multiset of edges is the multiset union of E(G)
and E(G,).

As the following lemma shows, an even quasitree in H allows one to find a connected spanning
eulerian subgraph of Gr(H) (see Fig. 12 for an illustration):

Lemma 22. If i is an even quasitree in H, then there is a quasigraph t in H such that E(;r) and E(t) are
disjoint, and w* + t* is a connected eulerian subgraph of the graph Gr (H) spanning all vertices in V.

Proof. Let K be a component of 77, and let X be the set of vertices of K whose degree in 7* is odd.
Since 7 is even, |X| is even. Choose a spanning tree T of the (connected) graph Gr(K). Using Lemma 21,
choose a subforest T’ of T such that for every vertex w of Gr(K), d/(w) is odd if and only if w € X.
In 7* 4+ T’, all the vertices of K have even degrees. In fact, the same holds for any vertex v, of Gr(K),
where e is a hyperedge of H of size 3: if e is used by =, then d,;« 1/ (ve) = 2, and otherwise we have

A 117 (Ve) = dpr (Ve),

which is even since v, & X. In particular, there is a quasigraph 7 in H such that 77 = T.
We apply the above procedure repeatedly, one component of 77 at a time. For this, we need to
be sure that a 3-hyperedge e will not be used by i, as well as tx,, where K; and K, are distinct
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components of 7. This is clear, however, since e can only be used by i if |e N V(K)| > 2. Thus, the
components of 7 can be treated independently, and we eventually obtain an eulerian subgraph S of
Gr(H). Since it contains the tree 77 *, S spans all of V, and since each of the trees (tx)* contains an edge
incident with a vertex in V (unless (tx)* is edgeless), it follows that S is connected. O

Using Theorem 20, it will be easy to derive our main result (Theorem 4) as a consequence of the
following proposition. Let us remark that the proposition is closely related to a conjecture made by
Jackson (see [1, Conjecture 4.48]) and implies one of its three versions.

Proposition 23. If G is an essentially 5-edge-connected graph with minimum edge weight at least 6, then
G contains a connected eulerian subgraph spanning all the vertices of degree at least 4 in G.

Proof. For the sake of a contradiction, let G be a counterexample with as few vertices as possible.
Since the claim is trivially true for a one-vertex graph, we may assume |V (G)| > 2. For brevity, a good
subgraph in a graph G’ will be a connected eulerian subgraph spanning all the vertices of degree at
least4in G'.

Claim 1. The minimum degree of G is at least 3.

Suppose first that G contains a vertex v of degree 2 with distinct neighbours w; and w,. If we
suppress v, the resulting graph G’ will be essentially 5-edge-connected. Furthermore, the minimum
edge weight of G’ is at least 6 unless G is the triangle vw;w, with the edge w;w, of multiplicity 5,
which is however not a counterexample to the proposition. By the minimality assumption, G’ contains
a good subgraph C’. It is easy to see that the corresponding subgraph of G is also good.

Suppose then that G contains a vertex u of degree 1 or 2 with a single neighbour z. Let U be the set
of all the vertices of degree 1 or 2 in G whose only neighbour is z. If V(G) = U U {z}, then the Eulerian
subgraph consisting of just the vertex z shows that G is not a counterexample to the proposition. Thus,
z has aneighbour x outside U. In fact, since G is essentially 5-edge-connected, z is incident with at least
5 edges whose other endvertex is not in U. Let e be an edge with endvertices z and x. Since the degree
of x is at least 3, the edge weight of ein G — U is at least 6. This implies that the minimum edge weight
of G — U is at least 6. Since the removal of U does not create any new minimal essential edge-cut,
G — U is essentially 5-edge-connected. Since the degree of z in G — U is at least 5, any good subgraph
in G — U is a good subgraph in G. Thus, G — U is a smaller counterexample than G, contradicting the
minimality of G. A

Claim 2. No vertex of degree 3 in G is incident with a pair of parallel edges.

Suppose that v is a vertex of degree 3 incident with parallel edges ey, e,. If v has only one neighbour,
then any good subgraph of G — v is good in G. By the minimality of G, v must have exactly two
neighbours, say w and z, where w is incident with e; and e;. Let G’ be obtained from G by removing v
and adding the edge e, with endvertices w and z.

It is easy to see that G’ is essentially 5-edge-connected, and that any good subgraph of G’ can be
modified to a good subgraph of G (as dg(w) > 6). We show that the minimal edge weight in G’ is at
least 6.

Suppose the contrary and let e be an edge of G’ of weight less than 6. We have e # ey as the
assumptions imply that dg(w) > 6 and dg(z) > 5, so the weight of any edge with endvertices w and
zin G is at least 8. Thus, e is an edge of G.

It must be incident with w, for otherwise its weight in G’ would be the same as in G. Let u be the
endvertex of e distinct from w. Since dg(w) > 6, w is incident in G’ with at least 3 edges of G’ distinct
from ey and e. By the weight assumption, u must be incident with only at most one edge of G’ other
than e, contradicting Claim 1. A

Let H be the 3-hypergraph whose vertex set V is the set of all vertices of G whose degree is at least
4; the hyperedges of H are of two kinds:

o the edges of G with both endvertices in V,
e 3-hyperedges consisting of the neighbours of any vertex of degree 3 in G.

Note that H is well-defined, for any neighbour of a vertex of degree 3 in G must have degree at least
4 (otherwise they would be separated from the rest of the graph by an essential edge-cut of size at



944 T. Kaiser, P. Vrdna / European Journal of Combinatorics 33 (2012) 924-947

most 4). Furthermore, by Claim 2, any vertex of degree 3 does indeed have three distinct neighbours
inV.

In the following two claims, we show that H satisfies the hypotheses of Theorem 5.
Claim 3. The hypergraph H is 4-edge-connected.

Suppose that this is not the case and F is an inclusionwise minimal edge-cut in H with |F| < 3. Let
A be the vertex set of a component of H — F.

Let e € F. By the minimality of G, |e — A| > 1. We assign to e an edge ¢’ of G, defined as follows:

o if|e] = 2,thene’ =,
e ifle] =3 and e NA = {u}, then e’ = uv,,
e if|le| =3,leNA| =2ande — A = {u}, then e’ = uv,.

Observe that F/ := {e/ :ec€F } is an edge-cut in G. Since G is 5-edge-connected, F/ must be a trivial
edge-cut. This means that a vertex v € V has degree 3 in H, a contradiction as v has degree at least 4
in G and therefore alsoin H. A

The other claim regards edge-cuts of size 4 in H:

Claim 4. No 3-hyperedge of H is included in an edge-cut of size 4in H.

Let F be an edge-cut of size 4 in H. As in the proof of Claim 3, we consider the corresponding
edge-cut F' in G. Since G is essentially 5-edge-connected, one component of G — F’ consists of a single
vertex w whose degree in G is 4. Assuming that F includes a 3-hyperedge e, we find that in G, w has
a neighbour v of degree 3. Since the weight of the edge vw is 5, we obtain a contradiction with our
assumptions about G. A

Since the assumptions of Theorem 5 are satisfied, we can use it to find a quasitree 7 with tight
complement in H. By Lemmas 18 and 22, Gr(H) = G admits a connected eulerian subgraph spanning
the set V. This is what we wanted to find. O

We can now prove our main theorem, stated as Theorem 4 in Section 1:

Theorem. Every 5-connected line graph of minimum degree at least 6 is hamiltonian.

Proof. Let L(G) be a 5-connected line graph of minimum degree at least 6. By Theorem 20(i),
G is essentially 5-edge-connected. Furthermore, the minimum edge weight of G is at least 6. By
Proposition 23, G contains a connected eulerian subgraph C spanning all the vertices of degree at
least 4. By Theorem 20(ii), it is sufficient to prove that G — V(C) has no edges. Indeed, the vertices of
any edge e in G — V(C) must have degree at most 3 in G, which implies that e is incident to at most 4
other edges of G, a contradiction to the minimum degree assumption. Thus, L(G) is hamiltonian. O

Using the claw-free closure concept developed by Ryjacek [21], Theorem 4 can be extended to
claw-free graphs. Let us recall the main result of [21]:

Theorem 24. Let G be a claw-free graph. Then there is a well-defined graph cl(G) (called the closure of
G) such that the following holds:

(i) Gis a spanning subgraph of cl(G),
(ii) cl(G) is the line graph of a triangle-free graph,
(iii) the length of a longest cycle in G is the same as in cl(G).

Corollary 25. Every 5-connected claw-free graph G of minimum degree at least 6 is hamiltonian.

Proof. Apply Theorem 24 to obtain the closure cl(G) of G. Since G C cl(G), the closure is 5-connected
and has minimum degree at least 6. Being a line graph, cl(G) is hamiltonian by Theorem 4. Since G is
a spanning subgraph of cl(G), property (iii) in Theorem 24 implies that G is hamiltonian. O

11. Hamilton-connectedness

Recall from Section 1 that a graph is Hamilton-connected if for every pair of distinct vertices u, v,
there is a Hamilton path from u to v. The method used to prove Theorem 4 and Corollary 25 can be
adapted to yield the following stronger result:



T. Kaiser, P. Vrdna / European Journal of Combinatorics 33 (2012) 924-947 945

Theorem 26. Every 5-connected claw-free graph of minimum degree at least 6 is Hamilton-connected.

In this section, we sketch the necessary modifications to the argument. For a start, let H = L(G) be
a 5-connected line graph of minimum degree at least 6. By considerations similar to those in the proof
of Proposition 23, it may be assumed that the minimum degree of G is at least 3 and that no vertex of
G is incident with a pair of parallel edges, so we may associate with G a 3-hypergraph H just as in that
proof. Moreover, H may again be assumed to satisfy the assumptions of Theorem 5.

Let V>4 C V(G) be the set of vertices of degree at least 4 in G.

First, we will need a replacement of Theorem 20(ii) that translates the Hamilton-connectedness of
H to a property of G. A trail F is a sequence of edges of G such that each pair of consecutive edges is
adjacent in G, and F contains each edge of G at most once. We will say that F spans a set Y of vertices if
each vertex in Y is incident with an edge of F. A trail is an (e, e;)-trail if it starts with e; and ends with
e,. Furthermore, an (eq, ey)-trail F is internally dominating if every edge of G has a common endvertex
with some edge in F other than e; and e,. The following fact is well-known (see, e.g., [17]):

Theorem 27. Let G be a graph with at least 3 edges. Then L(G) is Hamilton-connected if and only if for
any pair of edges e, e; € E(G), G has an internally dominating (eq, e;)-trail.

One way to find an internally dominating (eq, e;)-trail (where eq, e; are edges) is by using a
connection to X-joins as defined in Section 10. For each edge e of G, fix an endvertex u, of degree
at least 4 in G (which exists since G is essentially 5-edge-connected). If e; and e, are edges, set

_ {ue1 s ueZ} iflle] #* Ue,,
X(e1, e2) = {@ otherwise.

Suppose now that the graph G — e; — e, happens to contain a connected X (eq, e;)-join J spanning
all of V- 4. By the classical observation of Euler, all the edges of J can be arranged in a trail Ty whose
first edge is incident with u,, and whose last edge is incident with u,,. Adding e; and e,, we obtain an
(e, ex)-trail T in G. (If uy = uy, we use the fact that u; is incident with an edge of T;.) Since G contains
no adjacent vertices of degree 3, T is an internally dominating (eq, e,)-trail.

Summing up, the Hamilton-connectedness of L(G) will be established if we can show that for every
e, ey € E(G), the graph G — e; — e, contains a connected X (e;, e;)-join spanning V4.

How to find such X (e, e;)-joins? Recall that in Section 10, the existence of a connected dominating
eulerian subgraph of G (a connected dominating -join) was guaranteed by Lemma 22 based on the
assumption that H contains an even quasitree. As shown by Lemma 18, an even quasitree in H exists
whenever H contains a quasitree with tight complement. A rather straightforward modification of the
proofs of these two lemmas (which we omit) leads to the following generalization:

Lemma 28. Let H' be a 3-hypergraph containing a quasitree t with tight complement, and let X € V(H').
Then there is a quasigraph t such that E(;r) and E(t) are disjoint, and w* + t* is a connected X-join in
Gr(H’) spanning all vertices in V (H').

Roughly speaking, Lemma 28 will reduce our task to showing that for each pair of edges eq, e; of G, a
suitably defined 3-hypergraph H’ admits a quasitree with tight complement.

Let us define the 3-hypergraph H’ to which Lemma 28 is to be applied. Suppose that e; and e; are
given edges of G, and let w; (i = 1, 2) be the endvertex of e; distinct from u;. We distinguish two cases:

(1) if e; and e, have a common vertex of degree 3 (namely, the vertex w; = w;), then H' is obtained
from H by removing the 3-hyperedge corresponding to wy;
(2) otherwise, H' is the hypergraph obtained by performing the following fori = 1, 2:
(2a) if w; has degree 3, then the 3-hyperedge e, of H corresponding to wj is replaced by the 2-
hyperedge e, — {u;},
(2b) otherwise, the 2-hyperedge e; of H is deleted.
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By Lemma 28 and the preceding remarks, it suffices to show that H' admits a quasitree with tight
complement. To do so, we apply to H' the proof of Theorem 5, which works well as far as equation
(14). However, the inequality (15) may fail since H’ is not necessarily 4-edge-connected. It has to be
replaced as follows.

For an arbitrary hypergraph H*, let s(H*) be the sum of all vertex degrees in H*. Let & be the
partition of V(H’) obtained in the proof of Theorem 5. Furthermore, let nj be the number of vertices
of degree 4in H/#, and let nf, = n — nj. (All the symbols such as n, m, ms etc., used in the proof of
Theorem 5, are now related to the hypergraph H’ rather than H.)

It is not hard to relate s(H’) to s(H). Indeed, the operations in cases (1), (2a) and (2b) above decrease
the degree sum by 3, 1 and 2, respectively. It follows that s(H") > s(H) — 4 and, in fact,

s(H'/P) > s(H/P) — 4.
Since H is 4-edge-connected, we know that

s(H/P) = 4nj + 5n,
and thus we can replace (15) by

4nj +5n;, —4 <s(H'/P) = 2m + m;3 + m;.
This eventually leads to

mz > M3 +ng, + 2
as a replacement for (16). Thus, the contradiction is much the same as before, since we have (by the
same argument as in the old proof) that m3 < n;, . This proves Theorem 26 in the case of line graphs.

If G is a claw-free graph, we will use a closure operation again. However, the claw-free closure

described in Section 10 is not applicable, since the closure of G may be Hamilton-connected even if
G is not. Instead, we use the M-closure which was defined in [22] and applied there to prove that 7-

connected claw-free graphs are Hamilton-connected. Let us list its relevant properties [22, Theorem
9]:

Theorem 29. If G is a connected claw-free graph, then there is a well-defined graph cI™(G) with the
following properties:
(i) Gis a spanning subgraph of cl™(G),
(ii) c(G) is the line graph of a multigraph H,
(iii) ¢ (G) is Hamilton-connected if and only if G is Hamilton-connected.
Using this result (and the fact that parallel edges are allowed throughout our argument), it is easy
to prove Theorem 26 just like Corollary 25 is proved using the claw-free closure.

12. Conclusion

We have developed a method for finding dominating eulerian subgraphs in graphs, based on the
concept of a quasitree with tight complement. Using this method, we have made some progress on
Conjecture 2, although the conjecture itself is still wide open. It is conceivable that a refinement in
some part of the analysis may improve the result a bit — perhaps to all 5-connected line graphs. On the
other hand, the 4-connected case would certainly require major new ideas. For instance, the preimage
G of a 4-connected line graph may be cubic, in which case we do not even know how to associate a
3-hypergraph with G in the first place.

As mentioned in Section 1, a simpler variant of our method yields a short proof of the tree-packing
theorem of Tutte and Nash-Williams. It is well known that spanning trees in a graph G are the bases of
a matroid, the cycle matroid of G, and thus matroid theory provides a very natural setting for the tree-
packing theorem. Interestingly, quasitrees with tight complement do not quite belong to the realm
of matroid theory, although quasitrees themselves do. [s there an underlying abstract structure, more
general than the matroidal one, which forms the ‘reason’ for the existence of both disjoint spanning
trees in graphs, and quasitrees with tight complement in hypergraphs?

It remains a question for further research whether our approach may be useful for other problems
on the packing of structures similar to spanning trees, but also lacking their matroidal properties.
These include the packing of Steiner trees [13,14] or T-joins [3,20].
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Abstract

A graph G is said to be claw-free if G has no induced subgraph isomorphic to K; 3. For
a cycle C' in a graph G, C' is called a Tutte cycle of G if C is a Hamilton cycle of G, or the
order of C is at least 4 and every component of G — C' has at most three neighbors on C.
In [On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997), 217-224],
Ryjacek proved that the conjectures by Matthews and Sumner (every 4-connected claw-free
graph is Hamiltonian) and by Thomassen (every 4-connected line graph is Hamiltonian) are
equivalent. In this paper, we show the above conjectures are equivalent with the conjecture
by Jackson in 1992 (every 2-connected claw-free graph has a Tutte cycle).
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1 Introduction

In this paper, we consider finite graphs without loops. For terminology and notation not defined
in this paper, we refer the readers to [5]. Let G be a graph. We denote by V(G) and E(G) the
vertex set and the edge set of G, respectively. The degree of a vertex v of G is the number of
edges incident with v in G, and we denote by §(G) the minimum degree of G. For X C V(G),
we let G[X] denote the subgraph induced by X in G, and let G — X = G[V(G) — X]. For
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a subgraph H of G, let G — H = G — V(H). A graph G is said to be Hamiltonian if G has
a Hamilton cycle, i.e., a cycle containing all vertices of GG, and Hamilton-connected if G has a
Hamilton path between any pair of vertices, i.e., a path containing all vertices of G. A graph G
is said to be claw-free if G has no induced subgraph isomorphic to Ky 3. For a cycle C of G, C
is said to be mazimal if there exists no cycle C’ such that V(C) C V(C”).

In this paper, we will deal with many statements which are unknown to be true or not. We
call two statements equivalent if the correctness of one statement implies that of the other and
vice versa. Most of the results in this paper are motivated by the following two conjectures due

to Matthews and Sumner [16] and Thomassen [22], respectively.

Conjecture A (Matthews and Sumner [16], Thomassen [22]) The following statements

are true.
(A1) Every 4-connected claw-free graph is Hamiltonian.
(A2) Every 4-connected line graph is Hamiltonian.
Since every line graph is claw-free, statement (A2) is a special case of statement (Al).

However it is known that a result on closures due to Ryjacek [17] implies that statements (A1)

and (A2) are even equivalent.

Theorem B (Ryjacek [17]) Statements (Al) and (A2) are equivalent.

Like Theorem B, many statements that are seemingly stronger or weaker than statements
(Al) and (A2) have been proven to be equivalent to it as follows (see a survey [4] for more
details). Note that statements (A5) and (A6) were conjectured by Ash and Jackson [1] and

Fleischner [7], respectively.

Theorem C All of the following statements are equivalent to statements (A1) and (A2).
A3
A4

Every 4-connected claw-free graph is Hamilton-connected [18].

Every 4-connected line graph is 1-Hamilton-connected (2-edge-Hamilton-connected) [14].

A6

(A3)

(Ad)

(A5) Every essentially 4-edge-connected graph has a dominating closed trail [8].
(A6) Every cyclically 4-edge-connected cubic graph has a dominating cycle [8].
(A7)

A7) Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a dominating

cycle [11].
(A8) Every snark has a dominating cycle [2].
Recently, as a positive result related to Conjecture A, Kaiser and the fourth author [15]

proved that every 5-connected claw-free graph with minimum degree at least 6 is Hamilton-

connected.



On the other hand, it is known that considering “Tutte cycles” is an effective approach to
some problems on Hamiltonicity, where a cycle C of a graph G is called a Tutte cycle of G if
(i) C is a Hamilton cycle of G, or (ii) |V(C)| > 4 and every component of G — C has at most
three neighbors on C. Note that every Tutte cycle C' of a 4-connected graph G is a Hamilton
cycle, since otherwise the neighbors of a component of G — C form a cut set of order at most
three, contradicting 4-connectedness of G. One can show that every 4-connected planar graphs
are Hamiltonian by proving assertions on the existence of certain Tutte cycles in 2-connected
planar graphs (see [21, 23]). Starting with this result, many researchers have studied about the
existence of certain Tutte cycles not only in planar graphs but also in projective planar graphs
or graphs on other surfaces in order to show Hamiltonicity of such graphs, (for example, see
[19, 20, 24]). Thus, it has succeeded to show Hamiltonicity of 4-connected planar graphs or
graphs on surfaces, considering stronger concept “Tutte cycles”.

Motivated by the above situation for planar graphs, in this paper, we concentrate on Tutte
cycles in claw-free graphs. As a possible approach to solve Conjecture A, Jackson [10] proposed

the following conjecture (also see a survey [6, Conjecture 2a.5]).

Conjecture D (Jackson [10]) The following statement is true.
(A9) Every 2-connected claw-free graph has a Tutte cycle.

As mentioned above, Tutte cycles in 4-connected graphs are Hamilton cycles, and hence
statement (A9) implies statement (Al). The main result of this paper is to show that the

converse also holds. In fact, we prove the following theorem.

Theorem 1 Statements (Al) and (A9) are equivalent.

On the other hand, if a graph has a Tutte cycle, then we can expect that it is long since it
can avoid only vertices in a component of the graph after deleting a cut set of order at most
three. Actually, Tutte cycles in 4-connected graphs are Hamilton cycles, i.e., Tutte cycles in
4-connected graphs are longest cycles of the graphs. How about 2-connected (or 3-connected)
claw-free graphs? In view of Theorem 1, it would be natural to ask that every 2-connected (or
3-connected) claw-free graph has a Tutte cycle which is longest. As an answer of this problem,
in Section 6, we will give a 3-connected claw-free graph in which any Tutte cycle is not longest.
Thus it is not always true that a 2-connected (or 3-connected) claw-free graph has a longest
one. However, the following theorem, which is also our main theorem, implies that if every

2-connected claw-free graph has a Tutte cycle, then we can always take it so that it is maximal.
Theorem 2 Statement (A9) is equivalent to the following statement.
(A10) Every 2-connected claw-free graph has a Tutte cycle which is a maximal cycle of the graph.

In Sections 3 and 4, we prove Theorems 1 and 2 by using closure concepts and other related

results, some of which are also new.



2 Notation and terminology

In this section, we prepare terminology and notation which we use subsequent sections. Let G
be a graph. For a vertex v of G, we denote by dg(v) and Ng(v) the degree and the neighborhood
of v in G, respectively, and let Ng[v] = Ng(v) U {v}. For an integer [, let V;(G) = {v € V(G) |
dg(v) = 1}, and let V5/(G) = U,,,>; Vin(G) and V(G) = U,,,<; Vim(G). For a subgraph H of
G and a vertex v in G — H, let N;{(v) = Ng(v) NV (H). Forisubgraphs H and F of G with
V(F)NV(H) =0, we define Ng(F) = Uyey(r) Nu(v). We use L(G) for the line graph of G.
Let e € E(G). We denote by v, a vertex in L(G) corresponding to e. Let V(e) be the set of
end vertices of e, and we define Eg(e) = {f € E(G) | V(f) NV (e) # 0}. The edge degree of
e in G is defined by the number of elements of Eg(e) — {e}, i.e., the number of edges incident
with e. Note that for a graph G, the minimum edge degree of G is d if and only if the minimum
degree of L(G) is d. For subsets X and Y of V(G) with X NY =0, let E¢(X,Y) denote the
set of edges between X and Y, and let eq(X,Y) = |Eq(X,Y)|. We often identify a subgraph
H of G with its vertex set V(H). For example, we write Eq(H, F') instead of Eg(V (H),V (F))
for two disjoint subgraphs H and F' of G. For a graph H and an edge set X, H + X means
the graph with vertex set V(H)U (U.cx V(e)) and the edge set E(H)U X. For a subgraph H
of G, let Eq(H) = E(G[V(H)])U Eq(H,G — H). A star is a graph consisting of a vertex and

edges incident with the vertex (note that a star is not necessary a tree in this paper).

3 Closure

In this and the next sections, we will prove Theorems 1 and 2. In order to prove them, here we
consider a new statement and divide the proof into two theorems. Before mentioning those, we
need some definitions.

A connected graph T is called a closed trail (abbreviated as CT) if all vertices of T" have even
degree in T'. Let H be a multigraph, and let T be a CT of H. We call T" a dominating closed
trail of H if H — T is edgeless (in case that T is a cycle, we call T' a dominating cycle), and T is
said to be edge-mazximal if there exists no closed trail 7" of H such that Ey(T) C Ey(T"). Note
that a dominating CT of H is an edge-maximal CT of H. In [9], it is shown that for a connected
multigraph H with |E(H)| > 3, H has a dominating CT if and only if L(H) is Hamiltonian.

Hence by the definition of an edge-maximal CT, we can easily obtain the following lemma.

Lemma 1 Let H be a graph, and let T' be an edge-maximal CT of H and H* = H[V(T)] +
Ey(T,H —T). Then L(H*) has a Hamiltonian cycle which is a maximal cycle of L(H).

Let H be a graph with |E(H)| > 3. For a closed trail T of H, T is called a Tutte closed
trail of H if (i) Ex(T) = E(H), or (ii) |[Eg(T)| > 4 and ey (F,T) < 3 for every component
F of H—T, and T is called a weakly Tutte closed trail of H if (i) Ey(T) = E(H), or (ii)



|Eg(T)| > 4 and ey (F,T) < 3 for all F' € Fy(T), where let Fy(T) = {F | F is a component
of H—T with |V(F)| > 2}. If T is a Tutte closed trail (resp. a weakly Tutte closed trail) and
an edge-maximal closed trail of H, then we call T' a Tutte (resp. a weakly Tutte) edge-mazimal
closed trail of H. Furthermore, we need the following terminology and notation. Now let H
be a connected multigraph. For an edge-cut set X of H, X is called an essential k-edge-cut
set of H if |X| = k and G — X has exactly two components of orders at least 2. We define
E(H)={X C E(H) | X is an essential k-edge-cut set of H}. For an integer k > 2, H is called
essentially k-edge-connected if |E(H)| > k+ 1 and &(H) = 0 for all [ < k. It is known that for
a multigraph H such that L(H) is not complete, H is essentially k-edge-connected if and only
if L(H) is k-connected and that if H is essentially 2-edge-connected and H is not a star, then
H — Vi(H) is 2-edge-connected.

We are ready to state a new statement that plays a crucial role in the proofs of Theorems 1

and 2. We also give two theorems.
(A1l) Every essentially 2-edge-connected multigraph has a weakly Tutte edge-maximal CT.
Theorem 3 If statement (Al) is true, then statement (A11) is also true.

Theorem 4 If statement (A11) is true, then statement (A10) is also true.

Here we prove Theorems 1 and 2 assuming Theorems 3 and 4.

Proof of Theorem 1. It is clear that statement (A10) implies statement (A9) and statement
(A9) implies statement (A1l). On the other hand, if statement (A1) is true, then by Theorem 3,
statement (A11) is true, and by Theorem 4, statement (A10) is also true. This completes the
proofs of Theorems 1 and 2. [

Thus, to prove Theorems 1 and 2, it suffices only to show Theorems 3 and 4. We will prove
Theorems 3 and 4 in the next section and in the rest of this section, respectively. Notice that
by Theorems 3 and 4, we have that statement (A11) is also equivalent to statement (Al).

Before preparing some results to prove Theorem 4, we also state other statements and a

theorem as follows.

(A12) Every essentially 2-edge-connected multigraph has a weakly Tutte CT.

(A13) Every essentially 2-edge-connected multigraph has a Tutte CT.

Theorem 5 If statement (A12) is true, then statement (A13) is also true.

We can easily see that statement (A11) implies statement (A12). Moreover, by the definition
of a Tutte CT, it is easy to check that statement (A13) implies statement (A5) “every essentially
4-edge-connected graph has a dominating CT”. Therefore, combining this with Theorems C, 3



and 5, we have that statement (A1) is also equivalent to statements (A12) and (A13). Note that
it is not necessary to prove Theorem 5 for the proofs of Theorems 3 and 4, but we prove it since

it may itself be interesting (we will prove Theorem 5 in Section 5).

Now we introduce some concepts to prove Theorem 4. We use Ryjécek closure [17] and
certain cycles with a particular property. In [17], Ryjdcek introduced the concept of a closure
for claw-free graphs as follows. For a vertex v of a graph G, we call v a locally connected vertex
of G if G[N¢g(v)] is connected. For a locally connected vertex v of a graph G, we call v an eligible
vertex of G if G[Ng(v)] is not compete. Let G be a claw-free graph. For an eligible vertex v of
G, the operation of adding all possible edges between vertices in Ng(v) is called local completion
at v. In [17], it is shown that this operation preserves the claw-freeness of the original graph.
Iterating local completions as long as possible, we obtain the graph G* in which G*[Ng+(v)] is
a complete graph for every locally connected vertex v, i.e., there is no eligible vertex in G*. We
call this graph the closure of G, and denote it cl(G). In [17], it is shown that the closure of a
graph has the following property.

Theorem E (Ryjacek [17]) Let G be a claw-free graph. Then the following hold.
(i) cl(G) is well-defined, (i.e., uniquely defined).

(ii) There exists a triangle-free simple graph H such that L(H) = cl(G).

(iii) The length of a longest cycle in G and in cl(G) is the same.

To obtain Theorem E (iii), Ryjdcek actually proved the following, where for an eligible vertex

v of a claw-free graph G, let G, be the graph obtained from G by local completion at v.

Proposition F (Ryjacek [17]) Let G be a claw-free graph and v be an eligible vertex of G.
If C’ is a longest cycle of G,, then G has a cycle C' such that V(C) =V (C").

We further consider about certain cycles with a particular property as follows. For a vertex
v of G, we call v a simplicial vertex of G if G[Ng(v)] is complete. A cycle C of a claw-free graph
G is called a cycle with (x)-property if C satisfies the following property:

for every vertex x in C such that z is a simplicial vertex of cl(G),

(+) it B(G[Ng[z]]) N E(C) # 0, then Ngla] € V(C).

Proposition F might not hold for a cycle C’ which is not a longest cycle of G,. However, in the
proof of Proposition F, the maximality of |V (C")] is only used for the fact that Ng, [v] C V(') if
E(Gy[Ng,[v]]) N E(C") # (). Therefore by the definition of the (x)-property, the same argument
can work in the proof of the following proposition. Note that every eligible vertex of G is a
simplicial vertex of cl(G). Note also that Ng(z) C Ng,(x) for all x € V(G), and hence the
(x)-property is a heredity property from G, to G.



Proposition 6 Let G be a claw-free graph and v be an eligible vertex of G. If C' is a cycle
with (x)-property of G, then G has a cycle C with (x)-property such that V(C) = V(C").

As a corollary of Proposition 6, we can obtain the following, where for convenience, we call
a cycle C of a graph G a Tutte mazimal cycle of G if C is a Tutte cycle and a maximal cycle
of G. Note that if C’" is a Tutte cycle (resp. a maximal cycle) of G, then C is a Tutte cycle
(resp. a maximal cycle) of G for any cycle C' in G such that V(C) = V().

Corollary 7 Let G be a claw-free graph. If cl(G) has a Tutte maximal cycle with (x)-property,
then G has a Tutte maximal cycle with (x)-property.

By the definition of a weakly Tutte edge-maximal CT, the following holds.

Proposition 8 Let G be a claw-free graph, and let H be a graph with L(H) = cl(G). If H has
a weakly Tutte edge-maximal CT, then L(H) has a Tutte maximal cycle with (x)-property.

Proof of Proposition 8. Let T" be a weakly Tutte edge-maximal CT of H and H* = H[V(T')]+
Ey(T,H —T). Then by Lemma 1, L(H*) has a Hamilton cycle C which is a maximal cycle of
L(H). Let e € E(H*). Then by the definition of H*, if e € Ey(F,T) for some F € Fy(T),
then v, is not a simplicial vertex of L(H) ( = cl(G)). Also, if e ¢ Egy(F,T) for all F' € Fy(T),
then Ep(e) € E(H*), and hence Np,g)(ve) € V(C). This implies that C' is a cycle with (x)-
property of L(H). On the other hand, by the definition of a weakly Tutte CT, ey(F,T) < 3
for all ' € Fy(T). Since Ey(F) N E(H*) = Eg(F,T) for each F € Fy(T), we have that
INc(L(F))| = |[Eg(F)N E(H*)| = eg(F,T) < 3 for each F € Fy(T). Moreover, by again the
definition of a weakly Tutte CT, V(C) = E(H*) = Eg(T) = E(H) or |V(C)| = |[E(H*)| =
|Er(T)| > 4 holds. These imply that C' is a Tutte cycle of L(H). Thus C is a Tutte maximal
cycle with (x)-property of L(H). O

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Suppose that statement (A11) is true. Let G be a 2-connected claw-free
graph. By Theorem E (ii), there exists a triangle-free simple graph H such that L(H) = cl(G).
If L(H) is complete, then L(H) clearly has a Hamilton cycle, and hence by Theorem E (iii), G
has a Hamilton cycle, that is, G has a Tutte maximal cycle. Thus we may assume that L(H)
is not complete, and hence H is essentially 2-edge-connected. Since we assumed that statement
(A11) is true, H has a weakly Tutte edge-maximal CT. Then, by Proposition 8, L(H) has a
Tutte maximal cycle with (x)-property. Hence by Corollary 7, G has a Tutte maximal cycle.
Thus statement (A10) is also true and this completes the proof of Theorem 4. [



4 Proof of Theorem 3
4.1 Set up for the proof of Theorem 3

In the end of this section, we will prove Theorem 3, that is, prove statement (A1l) assuming
(A1), by induction on the number of elements of & (H) U E(H ), where H is a given essentially
2-edge-connected multigraph. In order to do that, we need the following for the first step of
the induction. Here for a graph H and a subset S of E(H) UV (H), a closed trail T' of H is
a called an S-closed trail (abbreviated as S-CT) if S C E(T)UV(T). Furthermore, if T is a
dominating closed trail (resp. a weakly Tutte closed trail) and an S-closed trail of H, we call T

a dominating (resp. a weakly Tutte) S-closed trail of H.

Lemma 2 Statement (Al) is equivalent to the following statement.

(A14) Every essentially 4-edge-connected multigraph H has a dominating V>4(H)-CT, ie., H
has a Tutte edge-maximal CT.

Proof of Lemma 2. By Theorem C, it is easy to see that statement (A14) implies statement
(A1). So it suffices to show the converse. Assume that statement (A1) is true. Then by Theorem
C, every essentially 4-edge-connected graph has a dominating CT. Let H be an essentially 4-edge-
connected multigraph. Let H* be the graph obtained from H by adding a pendant edge to each
vertex in V>4 (H). Then H* is also essentially 4-edge-connected and V>4(H*) = V>4(H). By the
assumption, H* has a dominating closed trail 7. Since each vertex in V>4(H™) is incident with
a pendant edge, V>4(H*) C V(T). Therefore by the definition of H*, since V>4(H*) = V>4(H),
we have that T is a dominating V>4(H)-CT of H. [

We next prepare some results to prove the case of £2(H) = () and E3(H) # 0. To show this
case, we actually consider about weakly Tutte closed trails passing through specified vertices
and edges. Before mentioning the statement, we prepare the following terminology. Let H be a
multigraph. For three distinct edges e1, e2 and e3 in H, (e1, 9, e3) is called a 3-star of H if there
exists a vertex u of H such that dg(u) =3, u € V(e1)NV(e2)NV (e3) and V(e3)—{u} C V>3(H),

and u is called the center of (ey, ez, e3).

(A15) Let H be an essentially 4-edge-connected multigraph, and let (e, ez, e3) be a 3-star of H.
Then H has a dominating {e1,e2} UV (e3) U V>4(H)-CT.

In order to consider statement (A15), we need the concept called “Va(H)-dominated”. A
graph H is said to be Vo(H)-dominated if for any distinct four vertices uy,ue,v; and ve in H
with {uy,ug,v1,v2} = Vao(H), the graph H + {ujuz,vive} has a dominating {ujuz,viv}-CT.
The following was proven by Kuzel [13].

Theorem G (Kuzel [13]) Statement (Al) is equivalent to the following statement.



(A16) Any subgraph H of an essentially 4-edge-connected cubic graph with §(H) = 2 and
|Vo(H)| = 4 is Vo(H)-dominated.

Actually, we show the following theorem in this section.

Theorem 9 If statement (A16) is true, then statement (A15) is also true.

We prove Theorem 9 in the next subsection and prove Theorem 3 in Subsections 4.3 and 4.4.

At the end of this subsection, we give another theorem as follows.

Theorem 10 If statement (A15) is true, then statement (Al) is also true.

Combining Theorem 10 with Theorems G and 9, statement (A1) is also equivalent to state-
ment (A15). Note that it is not necessary to prove Theorem 10 for the proof of Theorem 9, but

we prove it since it may itself be interesting (we will prove Theorem 10 in Section 5).

4.2 Proof of Theorem 9

We first prove Theorem 9. We need some concepts and results.

Let k > 3 be an integer, and let H be an essentially 3-edge-connected graph such that L(H)
is not complete. Note that V<a(H) is an independent set of H. The core of a graph H denoted by
core(H), is the graph obtained by recursively deleting all vertices of degree 1, recursively deleting
a vertex z with degree 2 in H and adding the edge zy with Ny (z) = {z,y}, and recursively
deleting the created loops. It is easy to see that if H is an essentially k-edge-connected graph
such that L(H) is not complete, then core(H) is a 3-edge-connected essentially k-edge-connected

multigraph (in particular, d(core(H)) > 3). Moreover we can see that the following holds.

Lemma 3 Let H be an essentially 4-edge-connected graph such that L(H) is not complete, and
let H* = core(H). Suppose that H* has a dominating V>4(H"*)-closed trail T*. Then H has a
dominating V>4(H)-closed trail T' which satisfies the following:

o Ifxy € E(T*), then vy € E(T) or xz,yz € E(T) for some z € Va(H).

Proof of Lemma 3. By the definition of a core, for each zy € E(H*), zy € E(H) or there
exists a vertex z in Vo(H) such that zz,yz € E(H). Let X = {e € E(H*) | e ¢ E(H)}.
For each e = zy € X, let z. be a vertex in Vao(H) such that Ny(z.) = {x,y}. Then by
replacing e with a path zz.y for each e = zy € E(T*) N X, we can obtain a closed trail T
of H such that V(T) = V(T*)U{z | e € E(T*)N X} and E(T) = {xze,yz. | € = ay €
E(T*)NX} U (E(T*) — X). Moreover, since V>4(H*) = V>4(H) by the definition of a core
and the assumption, V>4(H) = V>4(H*) C V(T*) C V(T). Therefore, to complete the proof,
we have only to prove that T is a dominating CT of H. Note that |E(H)| > 5 because H is
essentially 4-edge-connected. Let x € V(H —T). Since V(T*) C V(T), = ¢ V(T*). Suppose that



Ny(x) Z V(T), and let z € Ny(z) —V(T). If {z, 2} C V>3(H), then by the definition of a core,
{z,2z} CV(H*) and zz € E(H*). Since z,z ¢ V(T*), this contradicts that 7% is a dominating
CT of H*. Thus {z,z} N V<o(H) # 0. Since H is essentially 4-edge-connected and L(H) is
not complete, we also have that {z,z} N V>3(H) # 0. Since z,z € V(H —T) and zz € E(H),
we may assume that @ € Va3(H) and z € V<o(H). Since V>4(H) C V(T), z € V3(H). Then
Ep(zz) —{zxz} € E&2(H) U E(H), a contradiction. Thus Ny (x) C V(T'). Since x is an arbitrary
vertex in H — T, this implies that T is a dominating CT of H. [

We also need the following operation (see [8] for more details). Let H be a graph and
z € V>4(H), and let ug,ug,...,uqg (d = du(z)) be an ordering of neighbors of z (we allow
repetition in case of parallel edges). Then the graph H, obtained from the disjoint union of
G — z and the cycle C, = z129...2421 by adding the edges u;z; for each 1 < ¢ < d is called
an inflation of H at z. If 6(H) > 3, then, by successively taking an inflation at each vertex
of degree greater than 3, we can obtain a cubic graph H', called a cubic inflation of H. An
inflation of a graph at a vertex is not unique (since it depends on the ordering of neighbors of

z) and the operation may decrease the edge-connectivity. However, the following was proven in

[8].

Theorem H (Fleischner and Jackson [8]) Let H be an essentially 4-edge-connected graph
with 6(H) > 3. Then some cubic inflation of H is also essentially 4-edge-connected.

Let H! be a cubic inflation of a graph H and for each z € V(H), set I(z) = V(C,) if
z € Vsyu(H); otherwise, set I(z) = {z}. Observing that a dominating cycle in H! must contain
at least one vertex in I(z) for each z € V>4(H), we immediately have the following fact (which

is implicit in [8]).

Lemma I (Fleischner and Jackson [8]) Let H be a graph with 6(H) > 3, and let H' be a
cubic inflation of H. Suppose that H! has a dominating cycle C. Then H has a dominating
V>4(H)-closed trail T which satisfies the following:

o Ifuv € E(C) withu € I(x) and v € I(y) for some x,y € V(H) (z # y), then xy € E(T).

Proof of Theorem 9. Suppose that statement (A16) is true. Let H be an essentially 4-edge-
connected multigraph, and let (ej, ez, e3) be a 3-star of H (note that V(e3) C V>3(H) and that
V(e1) UV (e2) C V>o(H) because H is essentially 4-edge-connected). We will find a dominating
{e1,e2} UV (e3) UVs4(H)-CT of H.

If L(H) is complete, then we can easily see that (i) H is a star such that V(e;) = V(e2) =
V(es), or (ii) H is a triangle such that es is an unique simple edge in H or V(e;) = V(e3) and
V(es—i) # V(es) for some i = 1 or 2. In either case, clearly H has a spanning closed trail T’
such that {e1,ea} C E(T), that is, H has a desired closed trail.

10
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Thus we may assume that L(H) is not complete. Let u be the center of (ej,es,e3). Let
H* = core(H). Then H* is an essentially 4-edge-connected graph with §(H*) > 3. Note that
es € E(H*) since V(e3) C V>3(H). Let e} and e} be two distinct edges incident with u in H*
such that e # ez for each i = 1,2, and let e = e3. Note that (e], e}, €3) is a 3-star with center
wof H*.

By Theorem H, there exists a cubic inflation H! of H* such that H' is essentially 4-edge-
connected. Note that H' is a simple graph. Note also that by the definition of a 3-star,
I(u) = {u}. For each ¢ with 1 < i < 3, let v; € V(ef) — {u}, and let v} € I(v;) such that
wv, € BE(H!). We claim that H! has a dominating cycle containing uv}, uvh and v§. Since H'
is essentially 4-edge-connected, if vjv, € E(H') for some k and [ with 1 < k < [ < 3, then it
is easy to check that H! = Ky, and hence H! has a desired dominating cycle. Thus we may
assume that vjv] ¢ E(H') for each k and | with 1 <k << 3.

Let {wgg),wgg)} = Ny (v}) — {u}. Then since H' := H! — {u,v}} is a subgraph of H! such

that 6(H') = 2 and Va(H') = {v}, v}, w§3),w53)} and we assumed that statement (A16) is true,

H + {U’lvé,wg?’)wé‘?)} has a dominating cycle C’ containing vjvy and wf’)wgg) (see Figure 1).

Hence (C' — {v’lvé,wgs)wég)}) + {uv’l,uvé,vgw?),véwgﬂ } is a desired dominating cycle of HY.
Thus the assertion holds. Then by Lemma I, H* has a dominating {e},e5} UV (e}) U Vayq(H*)-
CT. Hence by Lemma 3 and the definition of e, €5 and e}, H has a dominating {e;,ea} UV (e3)U

V>4(H)-CT. Therefore, statement (A15) is true, and this completes the proof of Theorem 9. O

4.3 Preparation for the proof of Theorem 3

In this subsection, we prepare some technical lemmas to prove Theorem 3.
In the proof of Theorem 3, we will restrict maximal cycles on H to some component. To

show that the resulting graph is a weakly Tutte CT, we use the following lemma.

11
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Lemma 4 Let H be a graph, and let T be a weakly Tutte CT of H. If T' is a CT of H such
that Eg(T") = En(T), then T" is also a weakly Tutte CT of H.

Proof of Lemma 4. Let 77 be a CT of H such that Ey(T') = Eg(T), and suppose that
T’ is not a weakly Tutte CT of H. Then there exists F' € Fy(T') with ey(F',T") > 4.
Write Ey(F',T') = {e1,...,e;} (I > 4). Since Ey(F',T') € Ey(T") = En(T), V(T) N
(U, V(es)) #0. Let S = V(T)n (U._, V(e:)), and suppose that S C V(T") N (UL, V(e:))-
Then {e1,...,e;} = Eg(F',T") C Eg(T, H — T) and there exists a component F of H — T such
that V(F') C V(F), which contradicts the assumption that 7" is a weakly Tutte CT of H. Thus
SOV(FYN (UL, V() # 0, and hence E(F') N Eg(T) # 0. Since E(F') N Egx(T") = 0, this
contradicts the assumption that Ey(7") = Eg(T). O

In the rest of this subsection, we fix the following notation. Let k be an integer with
2 <k <3, and let H be an essentially k-edge-connected graph.

To prove Theorem 3, we prepare the following terminology and notation. Let 7j(H) =
{(X,Hy1,Hy) | X € &(H) and, Hy and Hs are distinct components of G— X }. Let (X, Hy, Hy) €
Ti(H). We define two graphs Hi* and Hj® as follows. For each i = 1,2, let H;X be the graph
obtained from H by contracting Hs_; to a vertex uy, ,. Note that H;X is also an essentially k-
edge-connected multigraph. If X = {eq,...,ex}, then for each i, j with 1 <i <2and 1 < j <k,
let eg.i) be the edge in H;* corresponding to e; (see Figure 2).

Now we fix the following notation. Let (X, Hy, Ha) € Ti(H), and write X = {e1,...,ex}.

Lemma 5 Let 1 < ¢ < 2. If HlX has a weakly Tutte edge-maximal closed trail T; such that
E(T;)N {egi), e e,(j)} = (), then T; is a weakly Tutte edge-maximal closed trail of H, or H;* has
a weakly Tutte edge-maximal closed trail R; such that E(R;) N {egi), cee e,(;)} # 0.

Proof of Lemma 5. We may assume that ¢ = 1. Note that 7} is a weakly Tutte CT of H because
E(Ty)n {egl), .. .,elgl)} = (). Suppose that T} is not a weakly Tutte edge-maximal CT of H.
Then there exists an edge-maximal closed trail 7" of H such that Ey(T1) € Ef(T"). Note that
E(T")N X # () because T} is an edge-maximal CT of H;X such that F(T}) N {egl), . ,e](:)} = 0.
Note also that |E(T")NX| = 2 because 2 < k < 3. We may assume that E(T")NX = {e1, ez}, and
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let Ry = (T'—V (Hy))+{e{", e{"}. Then Ry isa CT of H{¥. Since By (T1) € En(T"), Eyx (T1)—
(e, e} = Ey(Ty) n E(Hy) C Ey(T") N E(H,). Moreover, by the definition of R and
since {egl),...,eg)} C Epx(R1) because up, € V(R1), (Eg(T")NE(Hy)) U {egl),...,elgl)} =
Epx (R1). This implies that Epx (Ty) C EHlx(Rl). Since T3 is an edge-maximal CT of H{*, we
have that Epx (Th)=F HX (R1), and hence R; is also an edge-maximal CT of H;*. Furthermore,
since T} is a weakly Tutte CT of H;* and E X (Th)=F X (R1), it follows from Lemma 4 that
Ry is also a weakly Tutte CT of H;¥. Thus R; is a weakly Tutte edge-maximal CT of H{X such
that B(R) n{el”,..., e 0. O

We further fix the following notation in the following three lemmas (Lemmas 6 through 8).
Let e; = vgl)vl-@) with vi(l) € V(H;) and vZ@) € V(Hy) for each 1 < i < k. Let l; and Iy be

Iy < ly <k, and for each i = 1,2, let T; be a {el(?,el(;)}—CT of H¥ and
(T2 —um,)) +{ew, e}

integers with 1 <
T = ((Tl — uH2) U
Lemma 6 If T; is a weakly Tutte CT of H;X for each i = 1,2 and {vy), . ,v,(:)} C V(T;) for
some i =1 or 2, then T is a weakly Tutte CT of H.

Proof of Lemma 6. We may assume that [; = 1 and [y = 2, and hence {Ugi),véi)} C V(Ty)
for each i = 1,2. By the symmetry of 77 and T», we also may assume that {vil), - ,v,gl)} -
V(T1). Let F be a component of H — T. Since {vg), . ,v,gl)} CV(Ty) — {um,} C V(T) and
{e1,e2} C E(T), we have that if v,(f) ¢ V(F), then F is a component of H;X — T; for some
i =1 or 2, and hence Ey(F,T) = EHix(F,J}) for some i = 1 or 2; if v,(f) € V(F) (note that
in this case, k = 3), then F' is a component of H2X — T5 and e,(f) € EH2x(F, T5), and hence
Ey(F,T) = (EH2X (F,\Ty) — {e,(f)}) U {er} (see Figure 3). Since T; is a weakly Tutte CT of H;X
for each ¢ = 1,2, this implies that T is a weakly Tutte CT of H. [

Lemma 7 IfT; is an edge-maximal CT of HX for each i = 1,2 and {vii), e ,v,(j)} C V(T;) for

some i =1 or 2, then T is an edge-maximal CT of H.
(1) (1) _ D (4. :
Proof of Lemma 7. If {v;’,...,v; '} C V(I1), then let A = {v;”,..., v }; otherwise, let
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A= {1)%2), e ,’L}]E:Q)}. Suppose that T' is not an edge-maximal CT of H. Then there exists an
edge-maximal closed trail 7" of H such that Eg(T) € Eg(T"). Note that E(T")NX # 0. Let my
and mg be integers with 1 < my < ma < k such that E(T")N X = {em,, em,}. For each i =1,2,
let R, = (T" —V(Hs—;)) + {em17 m2} Then R; is a CT of HX for each i =1,2. Let 1 <4 < 2.

Since Ey(T) C Ex(T'), we have that Eyx(Ti) - {e ...,ek } = FEy(T)NE(H;) C Exg(T') N
E(H;) = Eyx (Ri)—{e{”,...,e}. Since {e{”,... e} C Bpyx (T}) N Epyx (R;) becanse g, , €
V(T;) N V(R;), this 1mphes that Epx (T;) € Epx (R) Since i“ is an edgle maximal CT of H,
we obtain Epx (T;) = Eyx (Ri), ie., Epgx (T)—{ef’ ... e} = EHX( O—{el .. e,gi)} Since
i is an arbitrary integer with 1 < i < 2 EHx( i) — {e . ek } = EHx( ) — {e . )}
holds for each i = 1,2. On the other hand, since A C ( ( —{um, HU(V(T2)— {qu}) = (

X C Ey(T), and hence X C Eg(T"). Thus we obtain EH(T) = (Egx(T1) — {egl), . (1)}) U
(Bux () —{el”, . e HUX = (Byx(R) —{el”,... el D U (Bpx (Ra) — {el?,... e H U

X = Eg(T'), a contradiction. [

We call (X, Hy, Hs) € Ti,(H) a minimal 3-tuple of H if there exists no X’ € £ (H) such that
H — X’ has a component H), such that V(H}) C V(Hz). Then by the definition of a minimal

3-tuple, we can obtain the following.

Lemma 8 Suppose that k = 3 and (X, Hy, Hs) is a minimum 3-tuple of H. If dg (v 2)) = 2 for

some j with 1 < j < 3, then Hs is isomorphic to Ks.

(
Yj

Proof of Lemma 8. We may assume that j = 3. Since H is essentially 3-edge-connected,
X € &(H) and dy (v§2)) = 2, it follows that there exists an unique vertex v’ in Ny (véz))ﬂV( Hy).
Note that v' € V>3(H) and Hy — v§2) is connected. Then X' := {ey, ea, v3 v’} is an edge-cut set
of H, and H; + {e3} and Hy — (2) are components of H — X'. Therefore, since (X, Hy, Hy) is
a minimal 3-tuple of H, we have |V(H2 — U3 )| =1. 0O

4.4 Proof of Theorem 3

We finally prove Theorem 3.

Proof of Theorem 3. Assume that statement (A1) is true. Let H be an essntially 2-edge-
connected multigraph. We will prove that H has a weakly Tutte edge-maximal CT by induction
on g(H) = |&(H) U&(H)|. If g(H) = 0, then H is essentially 4-edge-connected. By the
assumption that statement (A1) is true and Lemma 2, H has a desired CT, and we are done.
Hence we may assume that g(H) > 1.

By way of a contradiction, suppose that

H has no weakly Tutte edge-maximal CT. (4.1)
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Suppose first that & (H) # 0, let (X, Hy, Hy) € To(H) and write X = {e1,ea}. Then H;* is
also essentially 2-edge-connected and g(HZX ) < g(H) for each ¢ = 1,2. Hence by the induction
hypothesis, HZX has a weakly Tutte edge- maximal closed trail T; for each ¢ = 1,2. By Lemma 5
and (4.1), we may assume that E(7;) N { (l } # 0 for each ¢ = 1,2, and hence {61 g)} -
E(T;) for each i = 1,2. Then by Lemmas 6 and 7, T = ((Ty — um,) U (To — um,)) + {e1, €2} is
a weakly Tutte edge-maximal CT of H, which contradicts (4.1) again. Thus E(H) = 0.

Then H is essentially 3-edge-connected. Let (X, Hy, H2) be a minimal 3-tuple of H in 73(H ).
Write X = {e1,e9,e3} and e; = v§1)v§2) with vl(l) € V(H;) and UZ(Q) € V(Hj) for each 1 <i < 3.
Note that HZX is also essentially 3-edge-connected, and g(Hlx ) < g(H) for each i = 1,2, and
hence by the induction hypothesis, H{* has a weakly Tutte edge-maximal CT. We define 7 =
{T1 | Ty is a weakly Tutte edge-maximal CT of H;* such that E(Ty) N {egl), es ,631)} #0}. By
Lemma 5 and (4.1), 7 # () (note that [E(Ty) N {e{", eV, eV}| = 2 for all Ty € T).

We divide the proof of Theorem 3 into two cases.

Case 1. dH2;<(v§2)) > 3 for each j with 1 < j < 3.

Let Ty € 7, and we may assume that E(77) N {egl ,egl),eé } = {egl),eg)}. Then by the
assumption of Case 1, (6%2)769),6&2)) is a 3-star with center up, in HQX Moreover, by the
definition of a minimal 3-tuple and since (H) = (), Hs' is essentially 4-edge-connected. Since
we assumed that statement (A1) is true, it follows from Theorems G and 9 that statement (A15)
is also true. Thus Hs has a dominating {652), eg)}UV(eg2))UV24(H2X)—closed trail Ty, i.e., This a
weakly Tutte edge-maximal CT of Hs\, {egz), eg)} C E(T3) and {v?), véz), v§2)} C V(T3). Hence
by Lemmas 6 and 7, T := (T} — up,) U (T2 — un,)) + {e1, €2} is a weakly Tutte edge-maximal
CT of H, which contradicts (4.1).

Case 2. dH2x (vj(?)) < 2 for some j with 1 < j < 3.

We may assume that dpx (v:(,)z)) < 2. Then by the denition of Hs* and since X € &(H),
dH(v§2)) = ngx(vég)) = 2. Hence by Lemma 8, Hy & Kj, i.e. viz) = vf) and ”1 7é 0(2). Let
T € T. We choose T} so that egl) € E(Ty) or {Ul ,Uél U (1 } C V(Ty) if possible.

Suppose that e:gl) € E(Ty). By the symmetry of eg ) and eg ), we may assume that E(77) N
{egl), egl)} = {egl)}. Let Th = HQX—{eg)}. Then T is clearly a weakly Tutte {e?), eéQ)}UV(e(QQ))—
CT of Hs such that Epx (Ty) = E(H5), i.e., Ty is a weakly Tutte edge-maximal CT of H5\,
{6&2), ei(f)} C E(T3) and {v§2),v§2),v§2)} C V(T3). Hence by Lemmas 6 and 7, T := (T} —up,)U
(T — um,)) + {e1, e3} is a weakly Tutte edge-maximal CT of H, which contradicts (4.1). Thus
eV ¢ B(Ty), that is, E(Ty) N {e{V, e, eP} = {elV, efP1.

Let Ty = HsX — v§2) and T = (T — um,) U (T2 —up,)) + {e1,e2} (= (Tt —um,) + {e1, e2}).
Then T5 is clearly a weakly Tutte {e?), 652)}—CT of H5< such that EH2x (Ty) = E(H), ie., Ty
is a weakly Tutte edge-maximal CT of Hs* and {652), eg)} C E(T3). Then by Lemma 6, we also
have that T is a weakly Tutte CT of H. Hence by Lemma 7 and (4.1), vél) ¢ V(T1) and there

exists an edge-maximal closed trail 77 of H such that Ey(T) C Eg(T’). In particular, since
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V¢ v
Ey(T) = (Eyx (T1) — {ef”, e, e§}) U {er, 2, 0087} (see Figure 4). (4.2)

Note that since T} is an edge-maximal closed trail of H{* and Ey(T) C Ey(T"), Ex(T") N
X # 0. Let I3 and Iy be integers with 1 < I3 < Iy < 3 such that Eg(T") N X = {ey,, e}
Let Ry = (T’ V(Hg)) +{etV, e’} Then Ry is a CT of HY. Since Ey(T) C Ey(T"),
B (T3) - {ef”, 2 e} = En(T) N E(Hy) € Eg(I') 0 E(Hy) = Eyx (Ry) — {e{", el", e},
Since {el ,egl), } g Eyx(T1) N Epx (R1) because up, € V(T1) N V(Ry), this implies that
Epx (Th) C EHlx(Rl). Since T} is an edge-maximal CT of HiX, we have Epx (Th) = Epx (Ry).
Since T} is a weakly Tutte CT of H{*, this together with Lemma 4 implies that R is a weakly
Tutte CT of Hi¥. Therefore Ry is a weakly Tutte edge-maximal CT of HiX such that E(R;) N
{e(l) egQ)} # 0, ie., Ry € T. Then by the choice of T}, we have that {ll,lz} = {1,2} and
vél) ¢ V(R1). Then by the definition of Ry, E(T") N X = {e1,e2} and v3 §é V(T"). Therefore

we obtain
En(T') = (Epx(R1) — eV e ef}) U {er, ea, 070D} (4.3)

Since Eyx (1) — {e{, e5", e§)} = By (R1) — {el”, el e§"}, it follows from (4.2) and (4.3)
that Fy(T) = Eg(T"), which contradicts the fact that Ey(T) € Ey(T").
This completes the proof of Theorem 3. [J

5 Proofs of Theorems 5 and 10

As mentioned in the paragraph following Theorem 5 and the paragraph following Theorem 10

in Sections 3 and 4, respectively, we prove Theorems 5 and 10 in this section.

Proof of Theorem 5. Assume that statement (A12) is true. Let H be an essentially 2-edge-
connected multigraph. Let H* be a graph obtained from H by adding a pendant edge to each
vertex in V>4(H). Then H* is also essentially 2-edge-connected and V>4(H*) = V>4(H). Since
we assumed that statement (A12) is true, H* has a weakly Tutte closed trail 7. Then by the
definition of H*, T is also a weakly Tutte CT of H. We show that 7" is a Tutte CT of H. Suppose
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Figure 5: The cubic graph to construct the example

that T is not a Tutte CT of H. Since T is a weakly Tutte CT of H, there exists a component
F of H—T such that |V(F)| =1, say V(F) = {z}, and € V>4(H). Then by the definition of
H*, there exists a vertex y in Ng«(x) N V1 (H*). Since ¢ V(T) and V(H —T) CV(H* - T),
we have that zy is a graph in Fg-(T) such that ey« ({z,y},T) = du(xz) > 4, which contracts
that 7' is a weakly Tutte CT of H*. Thus T is a Tutte CT of H*. Hence statement (A13) is

also true, and this completes the proof of Theorem 5. [

Proof of Theorem 10. By Lemma 2, it is enough to show that statement (A15) implies
statement (A14). Assume that statement (A15) is true. Let H be an essentially 4-edge-connected
multigraph. We will find a dominating V>4(H)-CT. If L(H) is complete, then H is a star or
a triangle, and hence we can easily see that H has a desired dominating CT. Thus, we may
assume that L(H) is not complete.

Then H* := core(H) is an essentially 4-edge-connected graph with §(H*) > 3. By Theorem
H, there exists a cubic inflation H! of H* such that H' is essentially 4-edge-connected. Since
we assumed that statement (A15) is true, taking any vertex in H' as the center of a 3-star, we
can find a dominating cycle of H!. By Lemma I, H* has a dominating V>4(H*)-CT. By Lemma
3, H also has a dominating V>4(H )-CT. Hence statement (A14) is also true, and this completes
the proof of Theorem 10. [

6 Concluding remarks

In 1992, Jackson posed the possible approach to the well-known conjecture on the existence of a
Hamilton cycle in 4-connected claw-free graphs (Conjecture A), using a Tutte cycle. Indeed, he
conjectured that statement (A9) “every 2-connected claw-free graph has a Tutte cycle” is true
(Conjecture D), which directly implies Conjecture A. In this paper, we have concentrated on a
Tutte cycle on claw-free graphs and seen that many statements (A1)-(A16) are equivalent (see
Theorems B, C, G, 1-5, 9, 10 and Lemma 2).

By the above fact, we have that statement (A10) “every 2-connected claw-free graph has a
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Figure 6: The cubic graph introduced by Kochol [12]

Tutte maximal cycle” is seemingly stronger than statement (A9), that is, if (A9) is true, then
we can always take a Tutte cycle so that it is maximal. However, as mentioned in Section
1, it is not always true that a 3-connected claw-free graph has a Tutte cycle which is longest
even if statement (A9) is true. The following is the 3-connected claw-free graph showing this.
Let G be the graph illustrated in Figure 5. Then it is easy to check that G is an essentially
3-edge-connected (3-connected) cubic graph which is not Hamiltonian. Moreover, the edges
depicted in Figure 5 by bold lines induce a cycle C such that V(C) = V(G) — {z,y} and C
is a maximal cycle of G. Let d > 3 be an integer. Let G* be the graph obtained from G by
adding d — 2 pendant edges to each vertex in {z,y} and at least 2d — 2 pendant edges to each
vertex in V(G) — {z,y}, and let X be the set of pendant edges which are incident with {z,y}
in G*. Note that | X U {zy}| = 2d — 3. Then by the definition of G* and since G is essentially
3-edge-connected, we have that G* is also essentially 3-edge-connected and the minimum edge
degree of G* is just d. Furthermore, since G is not Hamiltonian and C' is a maximal cycle
of G satisfying V(C) = V(G) — {z,y}, for every closed trail (cycle) T of G* with T # C,
|Ec+(T)| < |Eg+(C)| holds. These imply that L(G*) is a 3-connected claw-free graph with
d(L(G*)) = d, and for any longest cycle D of L(G*), V(D) = Eg«(C) = E(G*) — (X U {zy})
holds. Since |Eg+(C)NEg+(xy)| = eq~({z,y}, V(G*) —{z,y}) = 4, every cycle D of L(G*) with
V(D) = Eg+(C) is not a Tutte cycle of L(G*). Thus any Tutte cycle of L(G*) is not longest.
In addition, if statement (A9) is true, then we can also take Tutte closed trails (weakly
Tutte closed trails, weakly Tutte edge-maximal closed trails) in essentially 2-edge-connected
graphs (see statements (A11)—(A13)). Moreover, it is also true that every essentially 4-edge-
connected graph has a Tutte edge-maximal CT if statement (A9) is true (see statement (A14)).
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However, it is not always true that an essentially 3-edge-connected graph has a Tutte edge-
maximal CT. We finally give the graph showing this. We use the methods of Kochol [12] for
constructions of snarks with a maximal cycle that is not a dominating cycle. (Note that by using
this method, we can also construct a 3-connected claw-free graph in which any Tutte cycle is
not longest other than the above graph.) Let G be the graph in the right side of Figure 6. It
arises from five copies of the graph H (Hy, Ho, Hs, Hy, Hs) illustrated in the left side of Figure
6 after joining the vertices a; and b; of degree 2 as in depicted in the figure. Then G is an
essentially 3-edge-connected (3-connected) cubic graph and the cycle C' depicted by bold lines is
a maximal cycle of G such that V(C) = V(G) — {x,y, 21, 22, 23}. Let G’ be the graph obtained
from G by contracting zy to a vertex vy, (see Figure 6), and let G* be the graph obtained
from G’ by adding a pendant edge to each vertex in V(G’) — {vay, 21, 22, 23}. Then G* is also
essentially 3-edge-connected and C' is a dominating CT of G*, i.e., C is an edge-maximal CT
of G*. Since each vertex in V(G’) — {vay, 21, 22, 23} is incident with a pendant edge in G* and
Eg-(C) = E(G*), every edge-maximal closed trail of G* contains V(G’) — {vay, 21, 22, 23}. On
the other hand, since C' is a maximal cycle of G satisfying V(G) — {z, vy, 21, 22, 23} and by the
definition of H, G, G’ and G*, we can see that for every closed trail T' of G* with v,, € V(T),
V(G) — {z,y, 21, 22,23} = V(G') — {vay, 21, 22,23} € V(T) holds (note that there exists no
Hamilton path in H from a; to {a2, b2} and H has no two disjoint paths covering V(H) from a;
to {az2, b2} and from b; to {ag,ba}, respectively, see [12] for more details). Thus C' is an unique
edge-maximal CT of G*. But since C is not a Tutte CT of G*, any Tutte CT of G* is not an
edge-maximal CT of G*.
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On 1-Hamilton-connected claw-free graphs

Zdenék Ryjacek!2345 Petr Vrdnal?4o

June 19, 2012

Abstract
A graph G is 1-Hamilton-connected if G — z is Hamilton-connected for every ver-
tex z € V(G). In the paper we introduce a closure concept for 1-Hamilton-
connectedness in claw-free graphs. The closure of a graph G is the line graph of a
multigraph H such that, for some e € E(H), H — e has at most two triagles or one
double edge, and is 1-Hamilton-connected if and only if GG is 1-Hamilton-connected.
As an application, we prove that
(i) the Thomassen’s conjecture (every 4-connected line graph is hamiltonian)
is equivalent to the statement that every 4-connected claw-free graph is 1-
Hamilton-connected,
(ii) every 4-connected claw-free and hourglass-free graph is 1-Hamilton-connected.

1 Introduction

A well-known concept in Hamiltonian graph theory is the closure operation cl(G) for claw-
free graphs, introduced in [17]. The closure operation turns a claw-free graph into the
line graph of a triangle-free graph while preserving the hamiltonicity of the graph. While
cl(G) also preserves many weaker graph properties (such as traceability or the existence
of a 2-factor), stronger properties, such as Hamilton-connectedness, turn out not to be
preserved [4], [18]. The first attempt to develop a closure for Hamilton-connectedness was
by Brandt [3], the technique was further developed in [19] and [10]. In the present pa-
per, we further strengthen these techniques to the property of 1-Hamilton-connectedness
(where a graph G is k-Hamilton-connected if G — M is Hamilton-connected for any set of
vertices M C V(G) with |M| = k).

The concept of k-Hamilton-connectedness was introduced already in 1970 by Lick [15]
and since then, studied in many papers (see e.g. [12], [7]). The property of 1-Hamilton-
connectedness is closely related to a well-known conjecture by Thomassen [20] which states
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that every 4-connected line graph is hamiltonian, as it was recently shown [9] that the
Thomassen’s conjecture is equivalent with the statement that every 4-connected line graph
is 1-Hamilton-connected. Having in mind that 4-connectedness is a necessary condition
for a graph to be 1-Hamilton-connected, we observe that the Thomassen’s conjecture, if
true, would imply that a line graph is 1-Hamilton-connected if and only if it is 4-connected,
which means that 1-Hamilton-connectedness would be polynomial in line graphs. Note
that there are many further known equivalent versions of the conjecture (see [5] for a
survey on this topic).

In the present paper, we
e in Section 3, develop a closure concept for 1-Hamilton-connectedness in claw-free
graphs,
e in Section 4, as applications of the closure, prove that
— the Thomassen’s conjecture is equivalent with the statement that every 4-
connected claw-free graph is 1-hamilton-connected,
— every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected
(which gives a partial solution to the conjecture).

We follow the most common graph-theoretical terminology and for concepts and notations
not defined here we refer e.g. to [2]. Specifically, by a graph we mean a finite undirected
graph G = (V(G), E(G)); in general, we allow a graph to have multiple edges. The precise
way of using (simple) graphs and multigraphs will be specified later in Section 2. We use
dg(x) to denote the degree of a vertex x, and we set V;(G) = {z € V(G)| da(z) = i}.
The neighborhood of a vertex x, denoted Ng(z), is the set of all neighbors of x, and we
define the closed neighborhood of x as Ng[x] = Ng(x) U {z}. For aset M C V(G), (M)¢g
denotes the induced subgraph on M, and for a graph F', GG is said to be F-free if G does
not contain an induced subgraph isomorphic to F. Specifically, for /' = K 3 we say that
G is claw-free.

If {x,y} C V(G) is a vertex-cut of G and K, K are components of G — {x,y}; then
the subgraphs (V(K;) U {z,y})c and (V(K32) U {x,y})c are called the bicomponents (of
G at {x,y}).

For x € V(G), G — z is the graph obtained from G by removing = and all edges
adjacent to it. If z,y € V(G) are such that e = xy ¢ E(G), then G + e is the graph with
V(G +e) =V(G) and E(G + ¢) = E(G) U {e}, and, conversely, for e = zy € E(G) we
denote G — e the graph with V(G —e) = V(G) and E(G —e) = E(G) \ {e}.

We use a(G) to denote the independence number of G, v(G) to denote the matching
number of G (i.e., the size of a largest matching in G), and w(G) stands for the number
of components of G. A clique is a set K C V(G) such that (K)¢ is a complete graph.

A graph G is hamiltonian if G contains a hamiltonian cycle, i.e. a cycle of length
|V(G)|, and G is Hamilton-connected if, for any a,b € V(G), G contains a hamiltonian
(a,b)-path, i.e., an (a,b)-path P with V(P) = V(G). For k > 1, G is k-Hamilton-connected
if G — X is Hamilton-connected for every set of vertices X C V(G) with |X| = k. Note
that a hamiltonian graph is necessarily 2-connected, a Hamilton-connected graph must
be 3-connected and if G is k-Hamilton-connected, then G must be (k + 3)-connected.
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2 Preliminary results

In this section we summarize some background knowledge that will be needed for our
results.

The line graph of a graph (multigraph) H, denoted L(H), is the graph with E(H) as
vertex set, in which two vertices are adjacent if and only if the corresponding edges have
a vertex in common. Recall that every line graph is claw-free.

It is well-known that if G is a line graph of a simple graph, then the graph H such
that G = L(H) (called the preimage of G) is uniquely determined, with one exception
of G = Kj3. However, in line graphs of multigraphs this is, in general, not true, as can
be seen from the graphs in Fig. 1, where L(H;) = L(Hy) = G. This difficulty can be

Hy H, G

._<>_.

Figure 1

overcome by imposing an additional requirement that simplicial vertices in the line graph
correspond to pendant edges.

Proposition A [19]. Let G be a connected line graph of a multigraph. Then there is,
up to an isomorphism, a uniquely determined multigraph H such that a vertex e € V(QG)
is simplicial in G if and only if the corresponding edge e € E(H) is a pendant edge in H.

For a line graph G, we will always consider its preimage to be the unique multigraph
with the properties given in Proposition A; this preimage will be denoted L™1(G). This
means that, throughout the paper, when working with a claw-free graph or with a line
graph G, we always consider GG to be a simple graph, while if G is a line graph, for its
preimage H = L™1(G) we always admit H to be a multigraph, i.e. we always allow H to
have multiple edges.

We will also use the notation e = L™ (a) and a = L(e) in situations when H = L™!(G),
a € V(G) and e € E(H) is the edge of H corresponding to the vertex a. Note that
our special choice of the line graph preimage already implies some restrictions on its
structure: for example, it is not difficult to observe that H = L~!(G) can never contain
a triangle with two vertices of degree 2, for if ({x1, x5, x3})y is such a triangle with
dy(x1) = dg(xg) = 2, then L(z1x2) is a simplicial vertex in G, but x25 is not a pendant
edge in H (see the graphs H; and G in Fig. 1). More generally, if ({1, x2}) g is a multiedge
in H = L™(@), then both z; and x5 must have a neighbor outside the set {z1, x5}, and
if ({1, 29, 23})y is a triangle or a multitriangle (a triangle with some multiple edges)
in H, then at most one of the vertices xq, xs, x3 can have no neighbor outside the set
{1, 29,23} (for otherwise G contains a simplicial vertex corresponding to a nonpendant

edge of H).

We will need the following characterization of line graphs of multigraphs by Krausz [8].
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Theorem B [8]. A nonempty graph G is a line graph of a multigraph if and only if
V(G) can be covered by a system of cliques K such that every vertex of G is in exactly
two cliques of KC and every edge of G is in at least one clique of K.

If G is a line graph and K = {K, ..., K,,,} is a partition with the properties given in
Theorem B, then a graph H such that G = L(H) can be obtained from K as the intersec-
tion graph (multigraph) of the set system {V(Ky),...,V(K,,)}, in which the number of
vertices shared by two cliques equals the multiplicity of the (multi)edge joining the corre-
sponding vertices of H. A system of cliques K = {K, ..., K,,} with the properties given
in Theorem B is called a Krausz partition of GG, and its elements are called Krausz cliques.
Note that not every clique (and even not every maximal clique) in a line graph G has to
be a Krausz clique. If G = L(H), then such non-Krausz cliques in G can correspond to
(some of the) triangles, multiple edges or multitriangles (i.e., triangles with some multiple
edges) in H.

In general, for a given line graph G, a Krausz partition is not uniquely determined, but
every such partition uniquely determines a graph H with the property G = L(H) as its
intersection graph. However, by Proposition A, every line graph G has a unique Krausz
partition K such that a vertex x € V(G) is simplicial if and only if one of the two cliques
containing x is of order 1. Thus, whenever we will be working with Krausz cliques and
Krausz partitions, we will be always using this particular uniquely determined partition
(which gives the unique preimage L™'(G)).

Harary and Nash-Williams [6] showed that a line graph G of order at least 3 is hamil-
tonian if and only if H = L7Y(G) contains a dominating closed trail, i.e. a closed trail
(eulerian subgraph) T such that every edge of H has at least one vertex on 7. A similar
argument gives the following analogue for Hamilton-connectedness (see e.g. [13]). Here
an internally dominating trail (abbreviated IDT) is a trail 7" such that every edge of H
has one vertex on T as its internal vertex, and, for e;,es € E(H), an (e, e2)-IDT is an
IDT having e;v and e as terminal edges.

Theorem C [13]. A line graph G of order at least 3 is Hamilton-connected if and only
if H= L7'(G) has an (ey,e5)-IDT for any pair of edges e, ey € E(H).

An edge cut R of a graph H is essential if H— R has at least two nontrivial components.
For an integer k > 0, H is essentially k-edge-connected if every essential edge cut R of G
contains at least k edges. Obviously, a line graph G = L(H) is k-connected if and only if
the graph H is essentially k-edge-connected.

A vertex x € V(QG) is locally connected (eligible), if (N(zx)) is a connected (connected
noncomplete) subgraph of G, respectively. The set of all eligible vertices in G will be
denoted Vg, (G). It is an easy observation that in the special case when G is a line
graph and H = L7Y(G), a vertex z € V(G) is locally connected if and only if the edge
e = L' () is in a triangle or in a multiedge in H, and G, = L(H|.), where the graph H]|.
is obtained from H by contraction of e into a vertex and replacing the created loop(s) by
pendant edge(s).



For = € V(G), the local completion of G at z is the graph G, = (V(G), E(G) U
{v192] v1,y2 € Ng(x)}), i.e. the graph obtained from G by adding all the missing edges
with both vertices in Ng(x)).

As shown in [17], if G is claw-free and = € Vg (G), then G, is hamiltonian if and only
if G is hamiltonian. The closure cl(G) of a claw-free graph G is then defined [17] as the
graph obtained from G by recursively performing the local completion operation at eligible
vertices, as long as this is possible (more precisely: cl(G) = Gy, where Gy,...,Gy is a
sequence of graphs such that G = G, G4y = (G;),, forsome z; € Vg (G),i=1,... k-1,
and Vg (Gy) = 0). We say that G is closed if G = cl(G).

The following result from [17] summarizes basic properties of the closure operation.

Theorem D [17].  For every claw-free graph G:
(1) cl(G) is uniquely determined,
(77) cl(G) is the line graph of a triangle-free graph,
(#4i) cl(G) is hamiltonian if and only if G is hamiltonian.

Recall that the closure operation cl(G) does not preserve the Hamilton-connectedness
of G [18], [4]. Thus, more generally, for k > 1, we say that a vertex x is k-eligible if (N (z))
is k-connected noncomplete. The following fact was conjectured in [1] and proved in [18].

Proposition E [18]. IfG is claw-free and x € V(G) is 2-eligible, then G is Hamilton-
connected if and only if G}, is Hamilton-connected.

We will often use the following observation. Let 77,75 be the graphs shown in Fig. 2
(the graph T will be referred to as the diamond and Ty as the multitriangle). Let G =

Ty T,

Figure 2

L(H), suppose that H contains a subgraph F' isomorphic to 7} or T, (in case of T5
such that at least vertex of e has a neighbor outside F'), and set x = L(e). Then it is
easy to see that x is 2-eligible in G and, consequently, by Proposition E, G = L(H) is
Hamilton-connected if and only if G = L(H|.) is Hamilton-connected (or, equivalently,

H has an (fi, fo)-IDT for any fi, fo € E(H) if and only if H|, has an (f1, f2)-IDT for any
fla f2 € E(H‘e))

By recursively performing the local completion operation at k-eligible vertices, we can
define [1] the k-closure clix(G) of G, which is uniquely determined [1] and, if G is claw-free,
cly(@) is Hamilton-connected if and only if so is G [18].

It can be easily seen that, in general, cly(G) is not a line graph, and even not a
line graph of a multigraph. To overcome this drawback, the authors developed in [19]
the concept of the multigraph closure (or briefly M-closure) cI(G) of a graph G: the
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graph cI™ (@) is obtained from cly(G) by performing local completions at some (but
not all) eligible vertices, where these vertices are chosen in a special way such that the
resulting graph is a line graph of a multigraph while still preserving the (non-)Hamilton-
connectedness of G. We do not give technical details of the construction since these will
not be needed for our proofs; we refer the interested reader to [18], [19].

The concept of M-closure was further strengthened in [10] in such a way that the
closure of a claw-free graph is the line graph of a multigraph with either at most two
triangles and no multiedge, or with at most one double edge and no triangle.

For a given claw-free graph G, we construct a graph G™ by the following construction.
(i) If G is Hamilton-connected, we set GM = cl(G).
(77) If G is not Hamilton-connected, we recursively perform the local completion oper-
ation at such eligible vertices for which the resulting graph is still not Hamilton-

connected, as long as this is possible. We obtain a sequence of graphs G, ..., G
such that
L Gl = G7

o Gip1 = (Gy),, for some z; € Vg (Gy),i=1,...,k—1,
e (. has no hamiltonian (a,b)-path for some a,b € V(Gy),
e for any z € Vg1 (G}), (Gy), is Hamilton-connected,
and we set GM = G,
A graph GM obtained by the above construction will be called a strong M -closure (or
briefly an SM-closure) of the graph G, and a graph G equal to its SM-closure will be
said to be SM -closed.

The following theorem summarizes basic properties of the SM-closure operation.

Theorem F [10].  Let G be a claw-free graph and let GM be its SM-closure. Then
GM has the following properties:
(i) V(G) =V(GM) and E(G) C E(GM),
(it) GM is obtained from G by a sequence of local completions at eligible vertices,
(4i1) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
(v) if G is not Hamilton-connected, then either
(@) Ver(GM) =0 and GM = cl(G), or
(B8) Ver(GM) £ () and (GM), is Hamilton-connected for any x € Vg, (GM),
(vi) GM = L(H), where H contains either
(o) at most 2 triangles and no multiedge, or
(B) no triangle, at most one double edge and no other multiedge,
(vii) if G contains no hamiltonian (a,b)-path for some a,b € V(G) and
(a) X is a triangle in H, then E(X) N {Lzx(a), Loy (b)} # 0,

(8) X is a multiedge in H, then E(X) = {Lgy(a), Loy (b)}-



Note that, by (vi), the structure of L=1(GM) is very close to that of L™(cl(G)) (only
at most two triangles or at most one double edge). In some cases (specifically, in cases
(iv) and (v)(a) of Theorem F), we have Vg (GM) = 0 and GM = cl(G), implying that
GM is uniquely determined. However, if Vi (GM) # ), then, for a given graph G, its
SM-closure GM is in general not uniquely determined and, as will be seen from the proof,
the construction of GM requires knowledge of a pair of vertices a, b for which there is no
hamiltonian (a,b)-path in G. Consequently, there is not much hope to construct GM in
polynomial time (unless P=NP). Nevertheless, the special structure of GM will be very
useful for our considerations in the next sections.

3 Closure for 1-Hamilton-connectedness

Let G be a claw-free graph and let « € V(&) be such that G'—z is not Hamilton-connected.
Let GG, be a graph obtained by the following construction.

(1) Set Gy :=G,i:=0.

(2) If there is a u; € V(G;) such that w; is eligible in Gy — x and (Gy);, — « is not
Hamilton-connected, then set G411 = (G;)% and go to (3),

Us

otherwise set ém := G; and stop.
(3) Set i:=i+ 1 and go to (2).
Then we say that éw is a partial x-closure of the graph G.

The following proposition summarizes main properties of a partial z-closure of a claw-
free graph. Here the 5-wheel, denoted Wi, is the graph consisting of a 5-cycle C5 and a
vertex (the center of the W5) adjacent to all vertices of the Cj.

Proposition 1. Let G be a claw-free graph, let x € V(G) be such that G — x is not
Hamilton-connected, and let éx be a partial x-closure of G. Then éx —x is an SM-closed
line graph and G, satisfies one of the following:
(i) G, is a line graph;
(i4) @ is a center of an induced W5, and there are uy, us € Ng (x) such that
(a) {uy,up} is a cut set of Gy — x,
(8) one of the bicomponents of CNJ;E — x at {uy,us} is isomorphic to K3 — e,
() the graph (G, + {uy,us}) — & contains no induced Ws with center at x,
(8) the graph (Gy + {u1, us}) — x is SM-closed;
(iii) there are Krausz cliques K1, Ky in G, — x such that
(@) Ng. (r) C K1 UKy,
(8) the graph (V(G,), E(G,) U {azv| v € K; U K,}) is a line graph.

Proof of Proposition 1 is postponed to Section 5. [ |



Note that if GG is such that CNJ;E satisfies (i) of Proposition 1, then the graph CNJm + uv
contains no induced W5 with center at x, hence G,+uw satisfies (i) or (iii) of Proposition 1.

It is also easy to see that, in case (it), {L ™ (u1), L7 (uz)} is a 2-element edge cut of
H = Lil(éx — x) separating a single edge from the rest of H.

Let now G be a claw-free graph, and let G be a graph obtained by the following
construction:

(1) If G is 1-Hamilton-connected, set G = cl(G).

(2) If G is not 1-Hamilton-connected, choose a vertex = € V(G) such that G — z is not
Hamilton-connected and a partial z-closure G, of G.

(3) If G, satisfies (i7) of Proposition 1 (i.e., z is a center of an induced Wj in C:ch), choose
a cut set {uj,us} of G, — x, add the edge ujuy to G, (i.e., set G, := G, + ujus),
and proceed to (4).

(4) If G, is a line graph, set G = G,.

Otkierwise, CNJw satisfies (7iz) of Proposition 1, i.e. some two Krausz gliques K, Ky
in G, — x cover all vertices in Nz(r), and then set G = (V(G,), E(G,) U {zv| v €
(K1 UK))}).

Then we say that the resulting graph G is a 1HC-closure of the graph G.

The following result summarizes basic properties of a 1THC-closure of a graph G.

Theorem 2. Let G be a claw-free graph and let G be its 1HC-closure. Then
(i) G is a line graph,
(ii) for some x € V(Q), the graph G — x is S M-closed,
(i3i) G is 1-Hamilton-connected if and only if G is 1-Hamilton-connected.

Proof.  Properties (i) and (ii) follow immediately by the definition of G. Also clearly
G is 1-Hamilton-connected if so is G, and if G is not 1-Hamilton-connected, then neither
is G, (for some z € V(@) which is used in the construction). It remains to show that
G is not 1-Hamilton-connected if G, is not. This is clear if G, satisfies (i) or (iii) of
Proposition 1. Finally, if G, satisfies (i), then G is not 1-Hamilton-connected since
neither CNJ;E nor G is 4-connected. [ |

Note that (i) is equivalent to the statement that H = L~(G) contains an edge
e € E(H) such that L(H — e) is SM-closed.

Also note that, for a given claw-free graph G, its 1-Hamilton-connected closure is not
uniquely determined.

We finish this section with a result which shows that steps (3) and (4) in the defi-
nition of a 1HC-closure of a graph can be also accomplished by adding (some) edges in
neighborhoods of eligible vertices.



Proposition 3. Let G be a claw-free graph. Then there is a sequence of graphs
Gy, ..., G} such that
(2) Go =G,
(ii) V(Gi) = V(Giy1) and E(G;) C E(Gi1) C E((Gy);,) for some z; € V(G;) eligible
in Gi,
(1ii) Gy is a 1HC-closure of G.

Proof.  Steps (1) and (2) of the definition of a IHC-closure clearly satisfy the conditions
of the proposition, and so does step (3), since the added edge has both vertices in Ng(x)
and x is eligible. It remains to verify the statement in step (4). Suppose, to the contrary,
that, in step (4), for some Krausz clique K; in G, — x, adding the edges joining K; to x
does not satisfy the conditions.

If |K; N Neg(z)| > 2, then K; and (Ng(z))g share an edge, say, v1v2, but then v,
is eligible, a contradiction. Hence |K; N Ng(z)] = 1. Let K; N Ng(z) = {u}. By the
properties of the Krausz partition, u is, besides Kj;, in some other Krausz clique K;. If
(Ne(2))g, is disconnected, then u is a simplicial vertex in G —x (otherwise u centers a claw
in G) and, since simplicial vertices in G — x correspond to pendant edges in H = L™}(G),
one of K;, K; (say, K;) is of size 1. But then, extending K to z adds no new edge to G,

Finally, if (Ng(z))g, is connected, then there is an edge e in (Ng(z))g. containing u,
and necessarily e is in K. But then, for the clique K, we have |[K; N Ng(z)| > 2 and we

are in the previous case. [ |

4 Applications of the closure

In this section we show two applications of the ITHC-closure. The first of them, Theorem 4,
is related to a famous conjecture by Thomassen [20] stating that every 4-connected line
graph is hamiltonian. There are many known equivalent versions of the conjecture (see [5]
for a survey on this topic). We show the following equivalence.

Theorem 4. The following statements are equivalent:
(1) Every 4-connected line graph is hamiltonian.
(17) Every 4-connected claw-free graph is 1-Hamilton-connected.

Proof.  Obviously, (i7) implies (i). Conversely, first recall that, by a recent result
[9], (7) is equivalent to the statement that every 4-connected line graph is 1-Hamilton-
connected. Thus, if G be a counterexample to (iz), then its 1HC-closure provides a
counterexample to (7). [

As another application, we prove a theorem on hourglass-free graphs. Our result,
Theorem 5, is a strengthening of the main result of [14] and can be considered as a
partial solution to the statement (i7) of Theorem 4, i.e., equivalently, to the Thomassen’s
conjecture.



Here the hourglass is the unique graph I' with degree sequence 4,2,2,2,2. The vertex
x € V(I') of degree 4 is called the center of I" and we also say that I' is centered at .
Note that I' is a line graph and, in multigraphs, it has three nonisomorphic preimages

R

Figure 3

The following theorem is our second application.

Theorem 5. Every 4-connected claw-free and hourglass-free graph is 1-Hamilton-
connected.

For the proof of Theorem 5, we will need several auxiliary results.

Lemma 6. Let G be a claw-free graph such that every induced hourglass in G is
centered at an eligible vertex and let G be a 1HC-closure of G satisfying the statement of
Proposition 3. Then every induced hourglass in G is centered at an eligible vertex.

Proof. Let Gy,...,G; be a sequence of graphs with the properties given in Propo-
sition 3, let G = Gy, and let i, 0 < i < k — 1, be the smallest integer such that
G;+1 contains an induced hourglass I' centered at a locally disconnected vertex. De-
note V(') = {ug, u1, ug, ug, ug} such that E(I') = {ugu, ugug, ugug, ugtiy, s, uzug} (i.e.,
ug is the center of I'). By the choice of i, E(I") ¢ E(G;). If G; contains all the edges of T
containing ug, then ugy centers a claw in G;; hence we can choose the notation such that
uouy ¢ E(G;). By Proposition 3, there is a vertex v eligible in G; such that ugu; € Ng, (v).
Let us be the first vertex of a (ug, u;)-path in (Ng,(v))q,. Then ({ug, v, us, us, us})g, is
an induced hourglass in G;, centered at ug. This contradicts the choice of 7 since ug is
locally disconnected in Gj. [ |

Lemma 7. Let G be a 4-connected claw-free hourglass-free graph. Then there is a
1HC-closure G of G such that L='(G) has at most three vertices of degree three.

Proof. Let G be a 1HC-closure of G with the properties given in Proposition 3 and
let H = L7Y(G). Recall that H is essentially 4-edge-connected and that a vertex of G is
eligible if and only if the corresponding edge of H is in a triangle or in a multiedge.

Claim 1.  Let © € V(H) be of degree 3 in H. Then there is a subgraph T C H such
that T is isomorphic to the graph Ty or Ty of Fig. 2 and dp(x) = 3.
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Proof. Let Ny(x) = {u,v,w}. We distinguish two possibilities.

First suppose that u, v, w are distinct. Since H is essentially 4-edge-connected, we have
dy(w) > 3, and since the vertex L(zw) does not center in G a hourglass with a locally
disconnected center, zw is in a triangle. Since dy(z) = 3, we have, up to a symmetry,
uw € FE(H). The same idea, applied to the edge zv, implies vw € E(H). But then
x,w,u,v are vertices of a T7 in H.

Secondly, let v = wv. Similarly as before, the edge rw is in a triangle, implying
uw € E(H) and then x,u, v are vertices of a T in H. O

Let now x € V(H) be of degree 3 in H. We distinguish two cases.

Case 1: All vertices of degree 3 in H are in Ny|[z].

If x is in a Ty, then |Ng[z]| = 3 and we are done. Thus, suppose x is in a T} C H.
If all vertices of T are of degree 3, then either T} is connected to H — T} with exactly
two edges, in which case H is not essentially 4-edge-connected, or H is in a K4, but then
removal of any edge from H yields a diamond, contradicting the fact that G contains a
vertex the removal of which yields an SM-closed graph. Hence H contains at most three
vertices of degree 3.

Case 2: There isy € V(H) such that dg(y) = 3 and zy ¢ E(H).

By Claim 1, there are subgraphs 7, and T, of H (not necessarily induced) such that
x or y is of degree 3 in T}, or T, respectively, and each of T}, T, is isomorphic to T} or to
T5. By the properties of the 1HC-closure, there is an edge e € E(H) such that L(H —e) is
SM-closed, i.e., H — e contains at most two triangles or at most one double edge. Thus,
e is an edge of both T, and T}, and, since x, y are nonadjacent, e contains neither x nor
y. Now, if one of T, T, is a T5, then removal of any edge leaves in H — e two double
edges or a double edge or a triangle, which is not possible. Hence both T, and T}, is the
diamond T;.

Denote e = wz, and let u and v be the fourth vertex in 7}, and T}, respectively. Then
we have, up to a symmetry, the following two possibilities (see Fig. 4):

(a) dr, (w) = dr, () = 3 (implying dr, (=) = dx, (2) = 2),

(b) dr,(w) = dr,(2) = 3 (implying dr, () = dr, (w) = 2).
We consider these possibilites separately.

X NA

Figure 4

(a) Let first dg, (w) = dg,(w) = 3. If u = v, then H — e contains a diamond, hence
u # v. If dy(u) = 3, then, by the previous observations, u is a vertex of degree 3
of a diamond 7). This implies either uu’ € E(H) and w'w € E(H) for some other
vertex v/, or uz € E(T,), but then, in both cases, T, is a diamond also in H — e, a
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contradiction. If dy(u) = 2, then {uw, zw,zz} is an edge-cut separating the edge uz, a
contradiction. Hence dg(u) > 3 and, symmetrically, dy(v) > 3. Thus, among the vertices
in V(T,) UV(T,), only z, y and possibly z are of degree 3. If H contains another vertex
t of degree 3, then ¢ is adjacent to neither x nor y and, by Claim 1, ¢ is in a diamond T7.
But then, for any edge f € F(H), H — f contains at least three triangles, a contradiction.

(b) Secondly, let dr, (w) = dr,(2) = 3. For u = v immediately dg(u) = dg(v) > 3;
for u # v, similarly as before, dgy(u) = 3 implies that uz € E(H) and H — e contains a
diamond, and dy(u) = 2 contradicts the connectivity assumption. Thus, in both cases,
we have dy(u) > 3 and, symmetrically, dg(v) > 3. Hence x and y are the only vertices
of degree 3 in V(7},) U V(T,). Similarly, if dy(t) = 3 for some other ¢t € V(H), then t is
adjacent to neither x nor y, ¢ is in a diamond and, for any f € E(H), H — f contains at
least three triangles, a contradiction. [ |

The core of a graph H, denoted co(H), is the graph obtained from H by deleting all
vertices of degree 1 and suppressing all vertices of degree 2 (i.e., contracting exactly one
of the edges zy, yz for each path zyz with dg(y) = 2). Note that, by the definition of
the core, all vertices of degree one or two are deleted or suppressed, hence d(co(H)) > 3.

For the proof of Theorem 5, we will need two more results.

Theorem G [11]. Let H be a graph such that co(H) has two edge-disjoint spanning
trees and G = L(H) is 3-connected. Then, for any any pair of edges e;,es € E(H), H
has an internally dominating (ey, es)-trail.

Theorem H [16], [21]. A graph G has k edge-disjoint spanning trees if and only if
| Eo| = k(w(G — Eo) — 1)

for each subset Ey of the edge set E(G).

Proof of Theorem 5. Let G be a 4-connected claw-free hourglass-free graph and, by
Lemma 7, let G be a 1HC-closure of G such that H = L~!(G) has at most three vertices
of degree 3. Recall that H is essentially 4-edge-connected.

By Theorem C, we need to show that for any f,e;,es € E(H), the graph H — f has an
(e1,e2)-IDT. Since the graph L(H — f) = G — x (where = L(F)) is clearly 3-connected,
by Theorem G, it is sufficient to show that the graph co(H — f) has two edge-disjoint
spanning trees. Thus, let f € E(H).

Claim 1. The graph co(H) — f has two edge-disjoint spanning trees.

Proof.  First note that possibly f ¢ FE(co(H)) if f is a pendant edge of H; in this case
co(H) — f = co(H). Obviously, co(H) is essentially 4-edge-connected (since so is H) and
has at most three vertices of degree 3 (since, by the connectivity assumption, pendant
edges in H can be incident only to vertices of degree at least 4 in co(H)). Hence, for any
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set £ C E(co(H)), every component C of co(H) — E is connected to (co(H) — E) — C
by at least 4 edges, except for the case when C' is a trivial component consisting of one
of the at most three vertices of degree 3. This implies 2|E| > 4(w(co(H) — E) — 3) +
3-3 = 4dw(co(H) — E) — 3, from which, by parity, 2|E| > 4w(co(H) — E) — 2, ie.,
|E| > 2w(co(H) — E) — 1.

Now, set H' = co(H) — f and let Ey C E(H'). Set E = Eq U{f} if f € E(co(H))
and £ = E, otherwise . Then clearly |Ey| < |E| < |Eo| + 1, E C E(co(H)) and
w(co(H)—FE) = w(H'—Ey). Hence |Ey| > |E|—1 > 2w(co(H)—E)—2 = 2w(H'— Ey) —2.
By Theorem H, H' has two edge-disjoint spanning trees. U

Claim 2.  The graph co(co(H) — f) has two edge-disjoint spanning trees.

(co(H)) (otherwise there is nothing to do by Claim 1)
and note that, since Vi(co(H)) = Va(co(H)) = 0, we have Vi(co(H) — f) = () and
Va(co(H) — f) = Va(co(H)) NV (f). By Claim 1, let T, Ty be two edge-disjoint spanning
trees in co(H) — f, let u € Va(co(H) — f) and let uy, us be the neighbors of u. Then each
of the edges uju, ugu is in one of Ty, Ty, say, uyu € E(T)) and ugu € E(Ts) and, removing
for every u € Va(co(H) — f) the edge u;u from T;, ¢ = 1,2, we obtain two edge-disjoint
spanning trees in co(co(H) — f). O

Proof.  Suppose that f € E
)

Claim 3.  co(H — f) = co(co(H) — f).

Proof. The claim is trivially true if f is a pendant edge of H, so suppose f is nonpendant.
As already noted, we have Vi(co(H) — f) = 0 and Va(co(H) — f) = Va(co(H)) NV (f),
from which V' (co(co(H) — f)) = V(H) \ [Vi(H) UVa(H) U (V5(H) NV (f))]. On the other
hand, Vi(H — f) = Vi(H)U (Va(H)NV(f)) (note that V5(H) is an independent set by the
connectivity assumption) and Va(H — f) = (Vo(H) \ V(f)) U (V3(H) NV (f)), from which
Vi(H — f)UVa(H — f) = Vi(H) UVa(H) U (Vy(H) 0V (1)), implying V(co(H — f)) =
VH)\[Vi(H)UVa(H)U (V3(H)NV(f))]. Thus, co(H — f) and co(co(H) — f) are graphs
on the same vertex set.

In the construction of co(H — f), each of the vertices in Vi (H — f) = Vi(H)U(Va(H)N
V(f)) was removed together with a pendant edge; in co(co(H) — f), in the construction
of co(H), the set Vi (H) was removed, and in the step from co(H) — f to co(co(H) — f),
Vo(H)NV (f) was removed. Thus, in the construction of both graphs, the sets of removed
vertices are the same. Consequently, the sets of suppressed vertices are also the same and
the claim follows. d

Now, co(H — f) has two edge-disjoint spanning trees by Claims 3 and 2. [ |

5 Proof of Proposition 1

For our proof we will need four lemmas describing subgraphs that cannot occur in the
preimage of an SM-closed graph.
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Lemma 8. Let G be an SM-closed graph and let H = L™'(G). Then H does not
contain a triangle with a vertex of degree 2 in H.

For the proof of Lemma 8, we will need the following proposition from [4].

Proposition I [4].  Let x be an eligible vertex of a claw-free graph G, G, the local
completion of G at x, and a, b two distinct vertices of G. Then for every longest (a,b)-
path P'(a,b) in G, there is a path P in G such that V(P) = V(P') and P admits at
least one of a, b as an endvertex. Moreover, there is an (a,b)-path P(a,b) in G such that
V(P) = V(P') except perhaps in each of the following two situations (up to symmetry
between a and b):

(1) There is an induced subgraph F' C G isomorphic to the graph S in Fig. 5 such
that both a and x are vertices of degree 4 in F'. In this case G contains a path P,
such that b is an endvertex of P and V(P,) = V(P'). If, moreover, b € V(F'), then
G contains also a path P, with endvertex a and with V (P,) = V(P’).

(11) * = a and ab € E(G). In this case there is always both a path P, in G with
endvertex a and with V(P,) = V(P’) and a path P, in G with endvertex b and
with V(P,) = V(P').

Figure 5

Proof of Lemma 8. Let GG be an SM-closed graph. If G is Hamilton-connected, the
lemma is obvious since H = L™'(G) is triangle-free by the definition of the SM-closure.
Thus, suppose that G is not Hamilton-connected. Let, to the contrary, T = ({vy, ve, v2}) g
be a triangle in H with dy(v;) = 2, and set x; = L(v;v;41), i = 1,2,3 (indices mod 3).
Observe that L7(S) (where S is the graph in Fig. 5) is isomorphic to the net N, i.e.
the graph obtained by attaching a pendant edge to each vertex of a triangle. Since
dy(v1) =2, T is not contained in a copy of N, hence the triangle L(T) = ({x1, 22, 23})¢
is not contained in an induced subgraph of G = L(H) isomorphic to S = L(N).

Since the edge L™1(x3) = vyvs is in the triangle T, and T' cannot have two vertices of
degree 2 by the definition of the preimage L™, x5 is eligible in G' and, by the definition
of the SM-closure, G, is not Hamilton-connected, i.e., there is no hamiltonian (a,b)-
path in G}, for some a,b € V(G) for which there is no hamiltonian (a,b)-path in G.
By Proposition I(ii), for every such hamiltonian (a,b)-path in G}, , one of a,b is z; (say,
a =), and b € N(z3).

Now, z; is also eligible in G, and since Ng(x1) C Ng(z2) (this follows easily from
dp(v1) = 2), also G, C G}, hence every hamiltonian path in G is also a hamiltonian
path in G . We already know that every such (a, b)-path satisfies a = z;, and, applying
Proposition 1(ii) to x;, we have b = x;.

Thus, we conclude that the only possible vertices for which there is a hamiltonian
path in G, but not in G are the vertices x; and x,. However, x3 is also eligible in G' and
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Ng(z3) C Ng(x2), thus, by a symmetric argument, we obtain the same conclusion for z3
and z9, a contradiction. [ |

In the proof of the next three lemmas we will need the following slight extension of a
technical lemma from [10].

For a graph H, u € V(H) with dy(u) = 2 and Ny (u) = {vi,v2}, H|w) denotes the
graph obtained from H by suppressing the vertex u (i.e., by replacing the path v uvy by
the edge v1vy) and by adding one pendant edge to each of v; and vs.

Lemma J [10]. Let H be a graph and u € V(H) of degree 2 with Ng(u) = {vy, v}
and h; = uv;, i = 1,2. Set H' = H|,), h = viv, € E(H'), and let fy, fo € E(H') \ E(H)
be the two pendant edges attached to vy and vs, respectively.
(1) If L(H) is Hamilton-connected, then H' has an (ey, e2)-IDT for every ey, ey € E(H')
such that either
(o) h ¢ {e1,es}, or
(B) h € {e1,ex} and {e1,ea} N f1, fo} # 0.
(13) If L(H') is Hamilton-connected, then H has an (eq, e2)-IDT for every ey, es € E(H)
such that {61, 62} 7£ {hl, hg}
(43) If moreover H contains a pendant edge attached to vy and H has an (hy,e)-IDT
for every e € E(H), then H' has an (h,¢e')-IDT for every ¢’ € E(H’)

Proof. Parts (i) and (i7) are a reformulation of Lemma 3 from [10]. We prove (iii).
Thus, for any €' € E(H'), we construct an (h,e')-IDT in H'. Let f denote the pendant
edge at vy in H. If ¢ € {f, f1, fo}, then, for any (hy,he)-IDT in H, an appropriate
replacement of hy and hy with h and €' gives the desired (h,e’)-IDT in H’. Thus, let
e & {f, fr,fo}. Let e € E(H) be the edge corresponding to €', and let 7" be an (hy,e)-
IDT in H. If hy € E(T), then necessarily v; € V(T) (otherwise f is not dominated),
and then 7" obtained from 7" by replacing hy, hy with A is an (h, €’)-IDT in H’. Similarly,
if hy ¢ E(T), then necessarily v € V(T') (otherwise hy is not dominated), and then T”
obtained from T" by replacing h; with h is a desired (h,€')-IDT in H'. [ |

Lemma 9. Let G be an SM-closed graph and let H = L~'(G). Then H does not
contain a subgraph H isomorphic to a cycle Cs with a vertex of degree 2 in H and with
a chord.

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is
not Hamilton-connected and let, to the contrary, H C H be a graph consisting of a
cycle C' = vyvyuzvgusv; with a chord e, and choose the notation such that dy(vs) = 2.
If e = w3vs, we have a contradiction with Lemma 8, hence without loss of generality
suppose that e = vqvs. First observe that e is the only chord of C' in H, for otherwise
H contains a diamond, a contradiction. Denote v;v;41 = hij11, i = 1,...,5 (indices mod
5) and set H; = H|,). Then L(H,) is not Hamilton-connected by Lemma J(iz). It is
straightforward to see that in L(H;), the neighborhood of the vertex L(e) is 2-connected.
By Proposition E, the graph (L(H1))} ., = L(Hile) is not Hamilton-connected. Set
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H, = Hi|. (denoting v, the vertex obtained by merging vs,v5 € V(H;p)). Now, the
subgraph of H, corresponding to H C H consists of three vertices vy, va, v3, a double edge
h1, ho joining v; and vy, a double edge hs, hy joining v, and vy, two pendant edges at v
and one pendant edge at vs.

Now we return back the suppressed vertex vy: let Hs be the graph obtained from H,
by subdividing the edge hy with a vertex vy (denoting hs = v4v9) and removing a pendant
edge from each of vy, v3. If L(Hj3) is Hamilton-connected, then Hy has, for e, e5 € E(Hs),
an (e, e2)-IDT for ey, e3 # hy by Lemma J(7), and for hy € {ey, e2} by Lemma J(4i7), hence
L(H,) is Hamilton-connected, a contradiction. Thus, L(Hj3) is not Hamilton-connected.
But Hj can be alternatively obtained from H by contracting the chord e, i.e., Hy = H|.,
or, equivalently, L(H3) = G7,). As L(Hs) is not Hamilton-connected and L(e) is eligible
in G (since e is in a triangle in H), we have a contradiction with the fact that G is
S M-closed. [

Lemma 10. Let G be an SM-closed graph and let H = L~*(G). Then H does not
contain a cycle C' of length 5 such that some two vertices of C' are of degree 2 in H and
some edge of C' is in a double edge or in a triangle in H.

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is
not Hamilton-connected, let C' = vivovzvzvsvy C H and let vj, vg, j < k, be of degree 2
in H. Set v;u;41 = hiy1, 1 = 1,...,5 (indices mod 5).

Suppose first that v;, v;, are consecutive on C, say, j = 1, k = 2. Then R = {hq, ho} is
an essential edge-cut separating hy from the rest of H. By the assumptions, some of hy,
hs (say, hy), is in a triangle or in a double edge, implying L(hy) is eligible in G. But R is
an essential edge-cut also in H|,, = L‘l(Gj‘:(m)), hence G, is not Hamilton-connected,
contradicting the definition of SM-closure. Thus, v;, v; are not consecutive on C'.

Choose the notation such that j = 3 and k = 5, i.e., dy(vs) = dy(vs) = 2. Then the
only possible chords of C' are the edges viv4 and vyvy, but if some of them is present, we
have a contradiction with Lemma 8. Thus, C' is chordless. This implies that either

(1) hg is in a double edge, or

(17) hs is in a triangle T' = v v9z with z € V(H) \ V(CO).

In case (i), we use h} to denote the edge parallel with hy and H to denote the graph with

V(H)=V(C)and E(H) = E(C) U {h}}; in case (i) we set hl = zvy, bl = zvy, V(H) =
V(CYU{z} and E(H) = E(C)U{h}, hy}. Recall that in both cases dy(vs) = dp(vs) = 2.

By the properties of the SM-closure, for each pair e, fE(H), for which there is no
(e, f)-IDT in H, we have {e, f} = {ha, h}} in case (i), or {e, f} N {ha, K}, hy} in case (i7),
respectively. Thus, by Lemma J(77), for the graph Hy = H]|(,,) (in which we denote vv, =
hy), L(H,) is not Hamilton-connected. Similarly, the graph L(H,), where Hy = Hi|(y,)
(in which we set vovy = hg) is also not Hamilton-connected. But now ({vi,va,v4})m,
is a triangle with a double edge ho, b}, in case (i), or ({vy,ve,v4,2})y, is a diamond in
case (ii). In both cases, it is straightforward to verify that, in L(Hs), the neighborhood
of the vertex xo = L(hg) is 2-connected. Thus, setting H3 = Hs|p,, we obviously have

L(H3) = (L(H3));, and, by Proposition E, L(Hs) is also not Hamilton-connected. Note
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that in Hj the subgraph corresponding to H consists of: in case (i) two vertices vy, vy
joined by h; and hg, 4 pendant edges at v; and 2 pendant edges at vy, or in case (ii) three
vertices z, vy, vy, where z, vy are joined by h}, hY and vy, vy are joined by hq, hs, and there
are 3 pendant edges at v; and 2 pendant edges at vy.

Now we return back the suppressed vertices of degree 2: H, is obtained from Hj by
subdividing hg with v (denoting vsvy = hy) and removing a pendant edge from each of
v1, vy, and, similarly, Hj is obtained from H, by subdividing h; with vs (denoting vyvs =
hs), and removing a pendant edge from each of vy, vy. If L(Hy) is Hamilton-connected,
then Hj has, for e, f € E(Hj3), an (e, f)-IDT for e, f # hsd by Lemma J(i), and for
hs € {e, f} by Lemma J(iii), hence L(Hj3) is Hamilton-connected, a contradiction. Thus,
L(H,) is not Hamilton-connected. By a similar argument, L(Hs) is also not Hamilton-
connected. But now we observe that Hs = H|y,, or, equivalently, L(Hs) = G},. As hy is
in a double edge or in a triangle, x5 is eligible in G and we have a contradiction with the
fact that G is SM-closed. [ ]

Lemma 11. Let G be an SM-closed graph, let H = L™(G) and let F be the graph
with V(F) = {v1,vq,v3, 04,05, 2} and E(F) = {v1vq, a3, U304, V4U5, UsV1, U3V5, 201, 2U2 }
(see Fig. 6). Then H does not contain a subgraph H isomorphic to the graph F such that

Ny ({v1,v2,v3,05}) C V(H).

U1 hl Vs
F h7 h5
~ hy he

hg h4
(%) hg V3

Uy

Figure 6

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is
not Hamilton-connected and let H be a subgraph of H with the properties given in the
lemma. Let hq,. .., hg denote the edges of H as shown in Fig. 6 and denote T} = viv220;
and T, = v3v4v505 the two triangles in H. Observe that H contains no multiple edge since
H already contains two triangles, and that neither of the vertices vy, vs, v3,v5 can have
another neighbor in H for otherwise H contains a diamond, a contradiction. Thus, H is
either induced, or (V(H))y = H+zvy. Moreover, if zvy ¢ E(H), then, by the connectivity
assumption, the graph H — {vy, va,v3,v5} contains a (z, v4)-path (since otherwise {hy, hs}
is an essential edge-cut of size 2 in H). Specifically, we have dy(z) > 3 and dg(v4) > 3.

Since hy is in a triangle, x; = L(hg) is eligible in G, implying G, = L(H|,) is
Hamilton-connected since G is SM-closed. Thus, the graph H; = H]|;, has an (eq, e3)-
IDT for any eq,e; € E(Hp). We will show that H has an (f1, f2)-IDT for any f; € E(T7)
and fo € E(T3), contradicting the fact that G = L(H) is SM-closed.

Thus, choose any ey, es € E(Hy), let 7" be an (e, e2)-IDT in Hy and let T' be the part
of T' that is outside H|p, (in the special case when V (H) dominates all edges of H and
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T' C H|p,, necessarily zvy, € E(H) or 2w, wvy € E(H) for some w € V(H) \ V(H), and
we choose T' = zvy or T = zwuy, respectively).

Then T is also a trail in H — H, with initial and terminal edges incident to z and/or
vy and dominating all edges in H — H. We distinguish two possibilities:

() both dr(z) and dp(vy) is odd,

(B) both dr(z) and dr(vs) is even (possibly zero).
In the case (8), only one of dr(z), dr(vs) can be zero and, by symmetry, we choose the
notation such that dr(z) # 0. Up to a symmetry, we have the following possibilities for
fi € E(Ty) and fy € E(T,). In each of them, we find an (f;, f2)-IDT in H for both
possibilities () and (5).

An (f1, f2)-IDT for the possibility
Case | f1 | fo (@) (8)
1 hy | hs | 2010921 0403050, V121 20901 U5V3V4 U5
2 hy | hy | 2010921 04050304 121 20901 U504 V3
3 hr | hg | 2010921040305 V12T 20901 V50403V5
4 ho | hy | Symmetric to 3(«) | vov12T 20903050403
5 hy | hg | vou12T V40305 Va1 21 209U304V5 V3

Proof of Proposition 1. Let G be a claw-free graph and = € V(Gy) such that Gy —
is not Hamilton-connected, and let (a:))x be a partial z-closure of Gy. In the rest of the
proof, we will simply denote G := (@vo)ac

Immediately by the construction of G, G is claw-free and G' — x is SM-closed. Thus,
it remains to show that G satisfies (7), (i7) or ().

We introduce the following notation:

Neg(z) ={z1,..., 24} (ie, dg(x) = d),

K — Krausz partition of G — x,

Ki,...,K; — all cliques in K with K/ N Ng(z) #0,i=1,...,k,

H =LYG —uz),

K, =K/NNg(x),i=1,..., k.

The cliques Ki,..., K, C (Ng(z))e satisfy the conditions of Theorem B (applied on
(Ng(x))g), and we use H to denote the intersection graph of the system {Kj, ..., Ky}.
Then we have H C H' and L(H) = (Ng(x))g. However, note that not necessarily
H = L '((Ng(x))g) (since the graph H can be another “preimage” of (Ng(z))q, see e.g.
the example in Fig. 1).

Using the correspondence between a line graph and its preimage, we will identify
Krausz cliques in G — = with the vertices of H' (the centers of the stars in H’ that
correspond to the cliques in K). Thus, {K7,..., K.} C V(H') and {K;,..., K} = V(H).

Note that if Ng(z) can be covered by two Krausz cliques, then at most two cliques
from K have at least two vertices in Ng(z) (hence at least one edge in (Ng(x))q), and
extending these cliques to x we get a Krausz partition of G. Thus, to show that G satisfies
(#4), it is sufficient to show that Ng(z) can be covered by two Krausz cliques.
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Suppose first that (Ng(x))¢ is disconnected, and let Fy, F, be its components. Then
both F} and F; are cliques since G is claw-free. If F}, F, are subcliques of Krausz cliques
in G — x, we are done; so, suppose that, say, F; is not. Then, as noted in Section 2,
L~Y(F) is a (multi)triangle or a multiedge in H' = L™(G — x); since G — z is SM-closed,
L~Y(Fy) is a triangle or a double edge.

If L7'(Fy) is a double edge, then L™(Fy) = ({K!, K})y for some a,b € {1,...,k},
and since Fy is a clique, one of K, K}, say, K}, has no neighbor w with L(Kjw) € Ng(x),
but then F} is a subclique of K/ € K, a contradiction. So, suppose that L~(F}) is a
triangle, set L™'(F) = {K., K], K.}y (where a,b,c € {1,...,k}), and let z € V(F3)
be arbitrary. By the properties of the preimage L™! (see Section 2), at least two of the
vertices K/, K}, K| have a neighbor outside { K/, K;, K'}. Let, say, Klwy, Kjw, € E(H'),
where wy, wy € V(H')\{K], K}, K!}. Then wy # wy (otherwise H’' contains a diamond),
both L(K!wy) ¢ Ng(z) and L(Kjws) ¢ Ng(x) (for if eg. L(K!w;) € Ng(z), then
({z, L(Klw,), L(K}K.),z})c is a claw), but then ({ L(K!Kj}), L(K.wy), L(Kjws), z})q is
a claw, a contradiction again.

Thus, we can suppose that (Ng(z))e (and therefore also H) is connected.

Claim 1.  If H contains a triangle and does not contain a Cs, then L(H) = (Ng(z))¢
can be covered by two Krausz cliques.

Proof.  Let, say, T = ({K!, K}, K}})g be a triangle in H and denote h; = K|Kj,
hey = KK}, hs = K)K.. By Lemma 8, dy/(K]) > 3,i=1,2,3. Let ¢, € E(H") \ E(T)
be an edge incident to K[, and set y; = L(e;) and x; = L(h;), ¢ = 1,2,3. Since H' does
not contain a diamond, the edges ey, 2, 3 have no vertex in common, i.e., {e1, ez, e3} is
a matching in H’. Hence the vertices y1, 2, y3 are independent in G — .

Now, if all y;, i = 1.2.3, are in Ng(x), then ({x,y1,92,y3})¢ is a claw in G, and
if, say, y1,y2 € V(G) \ Ng(x), then ({xe,y1,y2,2})¢ is a claw in G, a contradiction.
Hence exactly two x;’s are in Ng(x). Choose the notation such that x1, 29 € Ng(z) and
x3 € V(G) \ Ng(z). Then, since the edge e3 was chosen arbitrarily, we have dy(K}) = 2.

If all other edges of H are incident to K| or K, then E(H) can be covered by two
stars centered at K7, K}, hence (Ng(x))g can be covered by two cliques and we are done.
Hence suppose that there is an f € F(H) that is incident to none of K, K}, K. since
H is connected, we can choose f such that f has a common vertex with, say, e;. Set
L(f) = 2.

But now, if f has a common vertex with eg, then ey, hy, hs, es, f determine a Cs in H,
contradicting the assumption, and if f does not share a vertex with ey, then {f, hy, e} is
a matching in H, implying ({z, z, x1,y2})¢ is a claw in G, a contradiction again. O

We now distinguish two cases.

Case 1: (Ng(x))g does not contain an induced cycle of length 5.

Then, equivalently, H does not contain a cycle Cs (not necessarily induced).
First observe that a((Ng(x))q) = v(H) < 2, for otherwise x is a center of an induced
claw in G, This immediately implies that H does not contain a cycle Cy of length ¢ > 6,
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since such a cycle contains a matching of size 3. If H contains a triangle, then (Ng(z))g
can be covered by two cliques by Claim 1 and we are done. Thus, the only possible cycles
in H are of length 4.

Let C' = xyxox31471 be a cycle of length 4 in H. Since H is triangle-free, C' is chordless.
If V(H) =V(C), then H can be covered by two stars (hence (Ng(x))e can be covered by
two cliques) and we are done; if H contains an edge e = uv with {u,v} NV(C) = (), then
e together with two edges from E(C) form a matching of size 3 in H, a contradiction.
Hence every edge in E(H) \ E(C) has exactly one vertex in V(C).

Now, if some two consecutive vertices of C' have a neighbor outside C| say, x1y; € F(H)
and zay, € E(H) for some yy,y2 € V(H) \ V(C), then y; # y» (since H is triangle-free)
and {x1y1, Toye, 324} is a matching in H, a contradiction. Hence all edges in E(H )\ E(C)
are incident to some pair of nonconsecutive vertices of C, implying H can be covered by
two stars.

Thus, it remains to consider the case when H is a tree. Let D = {d;,...,d,} be a
minimum dominating set in H. By the minimality of D, for every ¢, 1 < i < ~, there
is a vertex w; € V(H) \ D such that d; is the only neighbor of w; in D. If v > 3, then
{dywy, dywsy, d3ws} is a matching in H, hence v < 2, implying {d;} (if vy = 1) or {dy,d>}
(if v = 2) are centers of stars covering all edges of H.

Case 2: (Ng(x))g contains an induced cycle of length 5.

Let C be an induced cycle of length 5 in (Ng(z))g. Then L71(C') is a Cs (not necessarily
induced) in H. If k > 6, then there is an edge e € E(H) \ E(C) with at least one vertex
outside C', but then e together with two edges of C' form a matching of size 3 in H, a
contradiction. Hence k = 5 and Ng(z) = V(C).

We choose the notation such that C' = zyzoxsasxszy and zx € E(K)) (ie.,
i1 € KiNK{ ), i=1,...,5 (indices mod 5). Then Cy = K{K;K;K,K{K] is the
corresponding 5-cycle in H' = L™Y(G — z), and we denote its edges h; = L™ (z;) (i.e.,
hiv1=K/K/ |),1=1,...,5 (indices mod 5).

Claim 2.  For anyy € Ng(x), y € K;N K, for some i,j =1,...,5, 1% j.

Proof. Ife.g. y€ K;\(U;_,K;) for some y € Ng(z), then y € K’ for some other K’ € K
(since every vertex is in 2 Krausz cliques), implying k > 6, a contradiction. O

We introduce the following notation:
K, ={Ki,...,KL},

K, = U?:le{v
R=V(G)\ ({z} UK,),
Kr=K\K,,

I(K]) = Ki\ (Ujeqr,..spiipK3), i =1,...,5.
The vertices in I(K]) will be referred to as the internal vertices of the clique K. Note
that, by Claim 2, I(K]) N Ng(z) =0,i=1,...,5.

Claim 3.  Ify € K, has a neighbor in R, then y € I(K]) for somei=1,...,5.
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Proof. By the properties of the Krausz cliques and by Claim 2, only vertices in I(K))
can have a neighbor in R, since if a vertex y € K N K} (for some 4,j € 4,...,5) has a
neighbor in R, then y is in three Krausz cliques, a contradiction. ]

Claim 4.  Ify, € I(K]) and y, € I(K],,) for somei=1,...,5, then
(i) yiy2 € E(G),
(17) y1y2 € E((K)q) for some K € Kg,
(44i) ({K}, K/ ,,K})¢ Is a traingle in H = L™Y(G — z),
() (K| = [1(Ki)| = 1.

Proof. Lete.g. y; € I(K7) and y, € I(K}).
(1) If 1hy2 ¢ E(G), then ({9, 2,y1,y2})¢ is a claw in G.
(17) If y1ye € E((K})g) for some i = 2,...,5, then y; € K| N K], contradicting the
assumption y; € I(K}). Hence y1y2 € F((K)¢) for some K € Kg,
(#7i) Follows immediately by the structure of K7, K} and K.
() Ifeg. y1,y; € I(K}), y1 # vy, then yy, ¢y € K;NK, implying H' contains a triangle
and a double edge, a contradiction. U

Claim 5.  There is no j, 1 < j <5, such that I(K]) # 0 fori=j,j+ 1,7+ 2.

Proof. Let e.g. I(K]) # () for i = 1,2,3. By Claim 4, the edge y;y» is in some clique
K' € Ky, and yyys3 is in some K? € Kg. Since ¢, cannot be in three Krausz cliques,
we have K' = K?, implying that yy3 € E(G) and yy3 is also in K!. Then we have
nwE€K'NK), yo€e K'NKYS, ys € K'N K}, 29 € K{ N K} and 23 € K, N K}, implying
that K, K|, K}, K} are vertices of a diamond in H’, a contradiction. O

Claim 6.  [{i] 1 <i <5, I(K]) # 0} <3.

Proof. Otherwise we have I(K) # () for some three consecutive cliques K}, contradicting
Claim 5. 0

Claim 7. |[KiNK |=1i=1,...,5.

Proof. Let, to the contrary, e.g. |K] N Kj| > 2. Then ({K7, K}})m is a multiedge,
implying |K{ N Kj| = 2 and |K; N K[, ;| = 1 for i = 2,3,4,5. Moreover, there is no 1,
1 < i < 5, such that both I(K}) # 0 and I(K! ;) # 0, for otherwise, by Claim 4, H’
contains a triangle, contradicting the fact that H' already contains a double edge. Hence
{i| 1 <@ < 5,I(K}) # 0}| <2, and the vertices K with [(K]) # () are nonconsecutive
on the 5-cycle Oy = K1 Ky K3 KKK in H'. Moreover, if I(K}) # ) and I(K}) # () for
some 4,7, then Kj N K} = ), for otherwise the edge K;K; € E(H') is a chord in Cp,
contradicting again the properties of SM-closed graphs.

This means that the 5-cycle Cy is chordless, ({ K7, K5}) g is the only double edge, at
most two vertices of Cy can have a neighbor outside Cy (namely, those for which the
corresponding clique in G — x has some internal vertices), and these verties are noncon-
secutive.
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Now, if I(K}) = I(K}) = 0, then {K; K}, K,K}} is an essential edge-cut in both H’
and H|g: gy, implying that neither G—x = L(H') nor (G—x)}, = L(H'|x/k;) is Hamilton-
connected, contradicting the fact that G — z is SM-closed (note that xs is eligible since
ry = LY KK}) and KK} is in a double edge). Thus, we can suppose I(K;) # (). But
then at least two vertices of Cy are of degree 2 in H' and we have a contradiction with
Lemma 10. U

Now we can finish the proof of Proposition 1. Clearly, I(K]) # §) for at least one i,
1 <i <5, for otherwise V(G) = Ng(z) and there is nothing to do. Thus, by Claim 6,
one, two or three cliques K| have I(K]) # (). We consider these possibilities separately.

Subcase 2.1: [{i] 1 <@ <5/ I(K]) # 0} = 3.

By Claim 5, we have I(K]) # () for at most two consecutive cliques K. Thus, with-
out loss of generality let I(K]) # () for i = 1,2,4 (ie., I(K}) = I(K}) = 0). By
Claim 4, there is a vertex y € V(H') \ V(H) such that ({K{, K}, y})m is a triangle.
If dy/(Kj) = dp(KL) = 2, we have a contradiction by Lemma 10. Thus we have,
say, dg(K%) > 3, ie., besides K} and Kj, K} has at least one more neighbor, say,
z. Then z € {K]|, K} K}, K.} since I(K}) = ), and the only possibility that does
not create a double edge or a diamond (recall that H' already contains a triangle) is
z = K} and dp (K%)= d(KL) = 3. Set H = ({K|, K, K}, K}, KL, y}) i and note that
T = (K|, Ky y}) g and Ty = ({K}, K}, KL}) are two triangles in H (hence also in
H') and, by Claim 4(iv), y and K are the only vertices of H that can have adjacencies
outside H. But then H (or possibly H — yK}, if yK} € E(H')), has the structure shown
in Fig. 6 and we have a contradiction by Lemma 11.

Subcase 2.2: [{i] 1 <i <5/ I(K])# 0} = 2.

By symmetry, we can choose the notation such that I(K7) # () and either I(K}) # ) or
I(KY) # 0.

Let first I(K7) # 0, I(K}) # 0. By Claim 4, there is a vertex y € V(H') \ V(H) such
that ({y, K, K5})y is a triangle and y is the only neighbor of K| and K} outside H. If
the cycle C'y is cordless, we have a contradiction by Lemma 10, and if C'y has a chord,
we have a contradiction by Lemma 8.

Thus, suppose that I(K}) # 0, I(K}) # 0. By Claim 7 and by the properties of SM-
closed graphs, C'y has no multiedge and at most one chord, but if Cy has a chord, we
have a contradiction with Lemma 9. Hence Cp is chordless. Then {hy, hy} is an essential
edge-cut in H', separating hy from the rest of H', hence {x1, x4} is a vertex-cut in G — z,
separating x5 from the rest of G — x. The graph (G — x) + x4 is SM-closed, since it
is the line graph of a graph obtained from H’ by contracting the edge hs and adding a
pendant edge to the contracted vertex, and this operation creates neither a triangle nor
a multiedge. Thus, the graph G — x satisfies all conditions of part (i) of Proposition 1.

Subcase 2.3: [{i] 1 <i <5, [(K]) # 0} = 1.
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If Cy has a chord, we have a contradiction with Lemma 9, hence C'y is chordless. But
then again, e.g. {hi,hs} is an edge-cut in H’ and we can add the edge z124 to G — z to
satisfy all conditions of part (i7) of Proposition 1. u
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