ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Studijní program: Studijní obor:

N2301 Strojní inženýrství Strojírenská technologie – technologie obrábění

DIPLOMOVÁ PRÁCE

Výroba formy pro kompozitní talířové pružiny

Autor: Bc. Martin Mrázek

Vedoucí práce: Ing. Josef Sklenička, Ph.D.

Akademický rok 2018/2019

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta strojní Akademický rok: 2018/2019

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Martin MRÁZEK
Osobní číslo:	S17N0045P
Studijní program:	N2301 Strojní inženýrství
Studijní obor:	Strojírenská technologie - technologie obrábění
Název tématu:	Výroba formy pro kompozitní talířové pružiny
Zadávající katedra:	Katedra technologie obrábění

Zásady pro vypracování:

1. Úvod

2. Rozbor stávajícího stavu - specifikace požadavků

- 3. Návrh formy
- 4. Technologie výroby
- 5. Technicko ekonomické hodnocení

6. Závěr

Rozsah grafických prací: dle potřeby

Rozsah kvalifikační práce: 50 - 70 stran

Forma zpracování diplomové práce: tištěná

Seznam odborné literatury:

- MAZUMDAR, Sanjay, 2001. Composites Manufacturing: Materials, Product, and Process Engineering. B.m.: CRC Press. ISBN 978-1-4200-4198-9
- BARBERO, Ever J., 2010. Introduction to Composite Materials Design, Second Edition. 2 edition. Boca Raton: CRC Press. ISBN 978-1-4200-7915-9
- STANĚK, Jiří a NĚMEJC, Jiří. Metodika zpracování a úprava diplomových (bakalářských) prací. 1. vyd. Plzeň: Západočeská univerzita, 2005. 58 s. ISBN 80-7043-363-9

Vedoucí diplomové práce:

Konzultant diplomové práce:

Ing. Josef Sklenička, Ph.D. Katedra technologie obrábění Ing. František Sedláček Regionální technologický institut

Datum zadání diplomové práce: Termín odevzdání diplomové práce:

16. října 2018 24. května 2019

Doc. Ing. Milan Edl, Ph.D. děkan

Doc. Ing. Jan Řehoř, Ph.D. vedoucí katedry

V Plzni dne 18. října 2018

PROHLÁŠENÍ

Prohlašuji, že svou diplomovou práci na téma "Výroba formy pro kompozitní talířové pružiny" jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení §11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Plzeň

podpis autora

ANOTAČNÍ LIST DIPLOMOVÉ PRÁCE

AUTOR	Příjmení Mrázek		Jméno Martin		
STUDIJNÍ OBOR	N2301 "Strojírenská technologie-technologie obrábění"				
VEDOUCÍ PRÁCE	Příjmení (včetně titulů)JménoSklenička, Ing. Ph.D.Josef			Jméno Josef	
PRACOVIŠTĚ	ZČU - FST - KKS				
DRUH PRÁCE	DIPLOMOVÁ	BAKALÁŘSKÁ		Nehodící se škrtněte	
NÁZEV PRÁCE	Výroba formy pro kompozitní talířové pružiny			ružiny	

FAKULTA strojní KATEDRA	КТО	ROK ODEVZD.	2019
-------------------------	-----	-------------	------

~

POCET STRA	IN (A4 a ekvivale	ntu A4)			
CELKEM	114	TEXTOVÁ ČÁST	72	GRAFICKÁ ČÁST	44
STRUČ (MAX 1 ZAMĚŘEN POZNATK	ČNÝ POPIS 10 ŘÁDEK) NÍ, TÉMA, CÍL Y A PŘÍNOSY	Diplomová práce se určenými pro systém o zaměřena na návrh současného stavu a da pružin je realizován za Následující část zabýv roční produkce, techno studentskému týmu při Třetí část je věnována testování prototypovýc	zabývá kom dpružení voz pružin sam t získaných v pomoci výpo rající se návr logii výroby ZČU. vlastní výrobě h pružin.	pozitními talířovými pru zu Formula Student. První notných a to včetně a v minulé závodní sezóně. nětů MKP a SW Matlab. hem formy, zohledňuje v pružin a strojní zázemí do ě formy, jejímu testování a	žinami část je nalýzy Návrh relikost ostupné
KLÍČO ZPR JEDNOSLO KTERÉ PODSTA	VÁ SLOVA AVIDLA DVNÉ POJMY, VYSTIHUJÍ ATU PRÁCE	technologie výroby, uhlík	cový kompozi Formula S	it, talířová pružina, odpruž Student	ení vozu,

SUMMARY OF DIPLOMA SHEET

AUTHOR		Surname Mrázek			Name Martin			
FIELD OF S	TUDY		B2301 "Dep	artment of M	lachir	ing Technol	ogy"	
SUPERVI	SOR	Surname (Inclusive of Degrees)NameSklenička, Ing. Ph.D.Josef						
INSTITUTION ZČU - FST - KKS								
TYPE OF V	VORK	DIPLOMA BACHELOR Delete when not applicable				'hen not cable		
TITLE OF THE WORK Manufacturing technology of mold for composite disc springs								
FACULTY	Mechar Enginee	nical ering	DEPARTMENT	Machining Technology SUBMITTED IN		2019		

NUMBER OF PAGES (A4 and eq. A4)

Г

TOTALLY	114	TEXT PART	72	GRAPHICAL PART	44
---------	-----	-----------	----	-------------------	----

BRIEF DESCRIPTION TOPIC, GOAL, RESULTS AND CONTRIBUTIONS	The diploma thesis deals with composite disc springs designed for Formula Student suspension system. The first part is focused on the design of the springs, including the data analysis obtained in the last racing season. The design of springs is realized by calculations of FEM and SW Matlab. The next part deals with the design of the mold. The last part deals with the production of molds, production of springs and testing
KEY WORDS	manufacturing technology, carbon fiber composite, disc springs, suspension, Formula Student

PODĚKOVÁNÍ

Rád bych poděkoval vedoucímu diplomové práce Ing. Josefu Skleničkovi, Ph.D., konzultantům Ing. Františku Sedláčkovia Ing. Michalu Skovajsovi za odborné vedení a podnětné návrhy k práci.

Plzeň

podpis autora

Obsah

Ú	vod	1
	1.1	Formula Student
	1.2	Plán řešení
2	Sta	v techniky 5
	2.1	Talířové pružiny 5
	2.2	Kompozitní materiály
		2.2.1 Druhy kompozitních materiálů
		2.2.2 Polymerní matrice
		2.2.3 Vlákna
		2.2.4 Pevnost rovinného ortotropního materiálu (ortotropní laminy) 11
	2.3	Technologie výroby kompozitních dílů
		2.3.1 Laminování do otevřené formy
		2.3.2 Laminování do uzavřené formy 12
3	Stá	vající stav 14
	3.1	Odpružení podvozku UWB05
	3.2	Analýza zatížení stávajících pružin
		3.2.1 Výpočtový algoritmus
		3.2.2 Vyhodnocení
4	Náv	rh pružin 24
	4.1	Specifikace požadavků
		4.1.1 Předběžný CAD návrh disků
	4.2	Návrh rozměrových parametrů
		4.2.1 MKP výpočet a regresivní funkce
		4.2.2 Návrh rozměrů v prostředí Matlab
		4.2.3 Finální CAD návrh disků
5	Náv	vrh technologie výroby 38
	5.1	Laminování
	5.2	Dohotovení
6	Náv	vrh formy a potřebných přípravků 41
	6.1	Návrh formy
		6.1.1 Materiál formy
		6.1.2 Základní koncepce formy
		6.1.3 Návrh prototypové formy

		6.1.4 Návrh finálních forem	45
	6.2	Návrh přípravku pro řezání vodním paprskem	47
7	Výr	oba prototypových forem	49
	7.1	Technologie výroby	49
	7.2	Rozměrová kontrola	50
8	Výr	oba prototypových disků a testování	53
	8.1	Laminace	53
	8.2	Dohotovení	59
	8.3	Testování	63
		8.3.1 Provedené testy	63
		8.3.2 Diskuze výsledků	66
9	Tech	nnicko - ekonomické hodnocení	70
10	Závě	ěr	72
Lit	terat	ura	73
Se	znan	n příloh	75

Seznam obrázků

Obr. 1	Vývojový diagram postupu práce	3
Obr. 2	Časový plán řešení	4
Obr. 3	Základní rozměry talířových pružin	5
Obr. 4	Charakteristika talířových pružin [1]	6
Obr. 5	Řazení pružin, paralelní vlevo, seriové uprostřed, kombinované	
vpra	avo [2]	6
Obr. 6	Příklad vrstvení laminátu[3]	10
Obr. 7	Materiálové směry v lamině [4]	11
Obr. 8	Otevřené laminování [5]	13
Obr. 9	Uzavřené laminování [6]	13
Obr. 10	Přední náprava vozu UWB05	14
Obr. 11	Zadní náprava vozu UWB05	15
Obr. 12	Umístění tlumičů na voze UWB05	15
Obr. 13	Tlumič vozu UWB05	16
Obr. 14	Profil trati, boční přetížení - Endurance FSG 2018	17
Obr. 15	Zámky pružiny	24
Obr. 16	Disk s vnějším zámkem - obecný tvar	25
Obr. 17	Disk s vnitřním zámkem - obecný tvar	25
Obr. 18	Model pro výpočet MKP	27
Obr. 19	Zasíťovaný model	27
Obr. 20	Okrajové podmínky	29
Obr. 21	Definice skladby materiálu	29
Obr. 22	Ukázka definice vstupních parametrů a okrajových podmínek	34
Obr. 23	Disk primární sady s vnějším zámkem	35
Obr. 24	Disk primární sady s vnitřním zámkem	35
Obr. 25	Disk sekundární sady s vnějším zámkem	36
Obr. 26	Disk sekundární sady s vnitřním zámkem	36
Obr. 27	Sestava s tlumičem	37
Obr. 28	Postup výroby pružiny	38
Obr. 29	Vylaminovaný díl vs. finální díl	39
Obr. 30	Perma-grit 19 mm $[7]$	39
Obr. 31	Problém delaminace při frézování [8]	40
Obr. 32	Schématické znázornění formy	43
Obr. 33	Schématické znázornění desky s více disky	43
Obr. 34	Výsledný návrh prototypové formy	44
Obr. 35	Navrtání důlku v prototypové formě pro přesné ustavení vyla-	
mine	ovaného dílu na řezacím stroji	45

Obr. 36 Výsledný návrh finální formy pro primární sadu 45 Obr. 37 Výsledný návrh finální formy pro sekundární sadu 46 Obr. 38 Výsledný návrh finální formy pro sekundární sadu 46 Obr. 39 Přípravek pro řezání vodním paprskem - primární sada 47 Obr. 40 Přípravek pro řezání vodním paprskem se založeným dílem - 48 Obr. 41 Detail čepu pro přesné uložení dílu v přípravku 48 Obr. 42 Umístění prvního nulového bodu 49 Obr. 43 Umístění druhého nulového bodu 50 Obr. 44 Obrobená forma upnutá v obráběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s 51 Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s 54 Obr. 48 Vývojový diagram laminace 54 Obr. 50 Výroba o-kroužku 54 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 56 Obr. 54 Kontroln			
Obr. 37 Výsledný návrh finální formy pro primární sadu 46 Obr. 38 Výsledný návrh finální formy pro sekundární sadu 46 Obr. 39 Přípravek pro řezání vodním paprskem - primární sada 47 Obr. 40 Přípravek pro řezání vodním paprskem se založeným dílem - primární sada 48 Obr. 41 Detail čepu pro přesné uložení dílu v přípravku 48 Obr. 42 Umístění prvního nulového bodu 49 Obr. 43 Umístění druhého nulového bodu 50 Obr. 44 Obrobená forma upnutá v obráběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-002) CAD modelem (CFDS06-01-01-002) 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002) 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002) 52 Obr. 48 Vývojový diagram laminace 54 Obr. 50 Výroba oktroužku 54 Obr. 50 Výroba nástřihů 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56	Obr. 36	Výsledný vylaminovaný díl	45
Obr. 38 Výsledný návrh finální formy pro sekundární sadu	Obr. 37	Výsledný návrh finální formy pro primární sadu	46
Obr. 39 Přípravek pro řezání vodním paprskem - primární sada 47 Obr. 40 Přípravek pro řezání vodním paprskem se založeným dílem - primární sada 48 Obr. 41 Detail čepu pro přesné uložení dílu v přípravku 48 Obr. 42 Umístění prvního nulového bodu 49 Obr. 43 Umístění druhého nulového bodu 50 Obr. 43 Umístění druhého nulového bodu 50 Obr. 44 Obrobená forma upnutá v obřaběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-002) 51 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002) 52 Obr. 48 Vývojový diagram laminace 54 Obr. 50 Výroba o-kroužku 54 Obr. 50 Výroba nástřihů 55 Obr. 51 Naseparované formy 56 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 59 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 59	Obr. 38	Výsledný návrh finální formy pro sekundární sadu \hdots	46
Obr. 40 Přípravek pro řezání vodním paprskem se založeným dílem - primární sada 48 Obr. 41 Detail čepu pro přesné uložení dílu v přípravku 48 Obr. 42 Umístění prvního nulového bodu 49 Obr. 43 Umístění druhého nulového bodu 50 Obr. 44 Obrobená forma upnutá v obráběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s 51 Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD 52 Obr. 48 Vývojový diagram laminace 54 Obr. 50 Výroba nástříhů 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 58 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 58 Polotovar pro disky primární sady zbavený přebytečné pryskyřice 60 Obr. 59 Polotovar pro disky sekundární sady 61 Obr. 60	Obr. 39	Přípravek pro řezání vodním paprskem - primární sada $\ .\ .\ .$	47
primární sada 48 Obr. 41 Detail čepu pro přesné uložení dílu v přípravku 48 Obr. 42 Umístění prvního nulového bodu 49 Obr. 43 Umístění druhého nulového bodu 50 Obr. 43 Umístění druhého nulového bodu 50 Obr. 44 Obrobená forma upnutá v obráběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s 51 Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s CAD 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD 52 Obr. 48 Vývojový diagram laminace 54 Obr. 50 Výroba o-kroužku 54 Obr. 50 Výroba o-kroužku 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 59 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 50 Vylaminovaný polotovar pro disky primární sady zbavený přeby	Obr. 40	Přípravek pro řezání vodním papr skem se založeným dílem - $$	
Obr. 41Detail čepu pro přesné uložení dílu v přípravku48Obr. 42Umístění prvního nulového bodu49Obr. 43Umístění druhého nulového bodu50Obr. 44Obrobená forma upnutá v obráběcím stroji50Obr. 45Porovnání vyrobené spodní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-001)51Obr. 46Porovnání vyrobené horní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-002)52Obr. 47Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002)52Obr. 48Vývojový diagram laminace54Obr. 50Výroba o-kroužku55Obr. 51Naseparované formy55Obr. 52Kladení jednotlivých vrstev prepregu56Obr. 53Formy umístěné v autoklávu57Obr. 54Kontrolní obrazovka autoklávu59Obr. 55Pohled na vytvrzený díl ve formě58Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky primární sady zbavený přebytečné pryskyřice61Obr. 61Vyřezané disky primární sady62Obr. 62Vyřezané disky primární sady63Obr. 63Body měření tlouštky63Obr. 64Měření thosti - disk s vnějším zámkem64Obr. 65Měření thosti - disk s vnějším zámkem64Obr. 64Měření tharakteristiky disků - detail64Obr. 65 </td <td>prin</td> <td>nární sada</td> <td>48</td>	prin	nární sada	48
Obr. 42 Umístění prvního nulového bodu 49 Obr. 43 Umístění druhého nulového bodu 50 Obr. 44 Obrobená forma upnutá v obráběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s 51 Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s 52 Obr. 47 Porovnání vyrobené horní části formy pro sekundární sadu s CAD 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba o-kroužku 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky primární sady 59 Obr. 57 Vylaminovaný polotovar pro disky zbavený přebytečné pryskyřice 60 Obr. 58 Polotovar pro disky umístěný v řezacím stroji 61 Obr. 60 Polotovar pro disky umístěný v řezacím stroji 61	Obr. 41	Detail čepu pro přesné uložení dílu v přípravku $\hfilom{\hfilom{.}}$	48
Obr. 43 Umístění druhého nulového bodu 50 Obr. 44 Obrobená forma upnutá v obráběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s 51 Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba o-kroužku 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky sekundární sady 59 Obr. 57 Vylaminovaný polotovar pro disky sekundární sady 59 Obr. 58 Polotovar pro disky umístěný v řezacím stroji 61 Obr. 59 Polotovar pro disky umístěný v řezacím stroji 61 Obr. 61 Vyřezané disky primární sady 62 <tr< td=""><td>Obr. 42</td><td>Umístění prvního nulového bodu</td><td>49</td></tr<>	Obr. 42	Umístění prvního nulového bodu	49
Obr. 44 Obrobená forma upnutá v obráběcím stroji 50 Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s 51 Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba o-kroužku 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky primární sady 59 Obr. 59 Polotovar pro disky primární sady zbavený přebytečné pryskyřice 60 Obr. 60 Polotovar pro disky sekundární sady 61 Obr. 62 Vyřezané disky primární sady 63 Obr. 63 Body měření tlouštky 63	Obr. 43	Umístění druhého nulového bodu	50
Obr. 45 Porovnání vyrobené spodní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-001) Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-002) modelem (CFDS06-01-01-002) 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002) 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba o-kroužku 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky primární sady 59 Obr. 58 Polotovar pro disky primární sady zbavený přebytečné pryskyřice 60 Obr. 60 Polotovar pro disky sekundární sady 61 Obr. 61 Vyřezané disky primární sady 62 Obr. 62 Vyřezané disky sekundární sady	Obr. 44	Obrobená forma upnutá v obráběcím stroji	50
CAD modelem (CFDS06-01-00-001) 51 Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-002) 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002) 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba nástřihů 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky primární sady 59 Obr. 57 Vylaminovaný polotovar pro disky zbavený přebytečné pryskyřice 60 Obr. 60 Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice 60 Obr. 61 Vyřezané disky primární sady 61 Obr. 62 Vyřezané disky primární sady 62 Obr. 63 Body měření tlouštky 63 Obr. 64 Měř	Obr. 45	Porovnání vyrobené spodní části formy pro sekundární sadu s	
Obr. 46 Porovnání vyrobené horní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-002) 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002) 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba nástřihů 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 56 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky primární sady 59 Obr. 57 Vylaminovaný polotovar pro disky sekundární sady 59 Obr. 58 Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice 60 Obr. 60 Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice 61 Obr. 61 Vyřezané disky primární sady 61 Obr. 62 Vyřezané disky primární sady 62 Obr. 63 Body měření tloušťky 63	CAI	$D \text{ modelem } (CFDS06-01-00-001) \dots \dots$	51
CAD modelem (CFDS06-01-00-002) 52 Obr. 47 Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002) 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba nástřihů 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 57 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky primární sady 59 Obr. 57 Vylaminovaný polotovar pro disky zbavený přebytečné pryskyřice 60 Obr. 59 Polotovar pro disky umístěný v řezacím stroji 61 Obr. 60 Polotovar pro disky umístěný v řezacím stroji 61 Obr. 61 Vyřezané disky primární sady 62 Obr. 62 Vyřezané disky sekundární sady 63 Obr. 63 Body měření tlouštky 63 Obr. 64 Měření tuhosti - disk s vnějším zámkem 64 Obr. 65 Měření thuosti - di	Obr. 46	Porovnání vyrobené horní části formy pro sekundární sadu s	
Obr. 47Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002)52Obr. 48Vývojový diagram laminace54Obr. 49Výroba o-kroužku54Obr. 50Výroba nástřihů55Obr. 51Naseparované formy55Obr. 52Kladení jednotlivých vrstev prepregu56Obr. 53Formy umístěné v autoklávu57Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky primární sady63Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem64Obr. 65Měření thuosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků64	CAI	$D \text{ modelem (CFDS06-01-00-002)} \dots \dots$	52
modelem (CFDS06-01-01-002) 52 Obr. 48 Vývojový diagram laminace 54 Obr. 49 Výroba o-kroužku 54 Obr. 50 Výroba nástřihů 55 Obr. 51 Naseparované formy 55 Obr. 52 Kladení jednotlivých vrstev prepregu 56 Obr. 53 Formy umístěné v autoklávu 56 Obr. 54 Kontrolní obrazovka autoklávu 57 Obr. 55 Pohled na vytvrzený díl ve formě 58 Obr. 56 Vylaminovaný polotovar pro disky primární sady 59 Obr. 57 Vylaminovaný polotovar pro disky sekundární sady 59 Obr. 58 Polotovar pro disky sekundární sady zbavený přebytečné prys- kyřice 60 Obr. 60 Polotovar pro disky sekundární sady zbavený přebytečné prys- kyřice 60 Obr. 61 Vyřezané disky primární sady 61 Obr. 62 Vyřezané disky primární sady 62 Obr. 63 Body měření tlouštky 63 Obr. 64 Měření tuhosti - disk s vnějším zámkem 63 Obr. 65 Měření tuhosti - disk s vnějším zámkem 64	Obr. 47	Porovnání vyrobené horní části formy pro primární sadu s CAD	
Obr. 48Vývojový diagram laminace54Obr. 49Výroba o-kroužku54Obr. 50Výroba nástřihů55Obr. 51Naseparované formy55Obr. 52Kladení jednotlivých vrstev prepregu56Obr. 53Formy umístěné v autoklávu56Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnějším zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65	mod	lelem (CFDS06-01-01-002)	52
Obr. 49Výroba o-kroužku54Obr. 50Výroba nástřihů55Obr. 51Naseparované formy55Obr. 52Kladení jednotlivých vrstev prepregu56Obr. 53Formy umístěné v autoklávu56Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnitřním zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků65Obr. 68Měření charakteristiky disků65	Obr. 48	Vývojový diagram laminace	54
Obr. 50Výroba nástřihů55Obr. 51Naseparované formy55Obr. 52Kladení jednotlivých vrstev prepregu56Obr. 53Formy umístěné v autoklávu56Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady62Obr. 63Body měření tloušťky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků65Obr. 68Měření charakteristiky disků - report68	Obr. 49	Výroba o-kroužku	54
Obr. 51Naseparované formy55Obr. 52Kladení jednotlivých vrstev prepregu56Obr. 53Formy umístěné v autoklávu56Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady62Obr. 62Vyřezané disky sekundární sady63Obr. 63Body měření tloušťky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vničjám zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků65Obr. 68Měření charakteristiky disků65	Obr. 50	Výroba nástřihů	55
Obr. 52Kladení jednotlivých vrstev prepregu56Obr. 53Formy umístěné v autoklávu56Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady62Obr. 62Vyřezané disky sekundární sady63Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření charakteristiky disků64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků65Obr. 68Měření charakteristiky disků65	Obr. 51	Naseparované formy	55
Obr. 53Formy umístěné v autoklávu56Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření charakteristiky disků64Obr. 66Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 52	Kladení jednotlivých vrstev prepregu	56
Obr. 54Kontrolní obrazovka autoklávu57Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné prys- kyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vniťním zámkem64Obr. 66Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 53	Formy umístěné v autoklávu	56
Obr. 55Pohled na vytvrzený díl ve formě58Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné prys- kyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tloušťky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků - detail65Obr. 67Měření charakteristiky disků - report68	Obr. 54	Kontrolní obrazovka autoklávu	57
Obr. 56Vylaminovaný polotovar pro disky primární sady59Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků - detail64Obr. 67Měření charakteristiky disků - report65	Obr. 55	Pohled na vytvrzený díl ve formě	58
Obr. 57Vylaminovaný polotovar pro disky sekundární sady59Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji60Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady61Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků - detail65Obr. 67Měření charakteristiky disků - report68	Obr. 56	Vylaminovaný polotovar pro disky primární sady	59
Obr. 58Polotovar pro disky primární sady zbavený přebytečné pryskyřice60Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tloušťky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků - detail65Obr. 67Měření charakteristiky disků - report68	Obr. 57	Vylaminovaný polotovar pro disky sekundární sady	59
Obr. 59Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tloušťky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnějším zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 58	Polotovar pro disky primární sady zbavený přebytečné pryskyřice	60
kyřice60Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tloušťky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 59	Polotovar pro disky sekundární sady zbavený přebytečné prys-	
Obr. 60Polotovar pro disky umístěný v řezacím stroji61Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnějším zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	kyři	ce	60
Obr. 61Vyřezané disky primární sady61Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnějším zámkem64Obr. 66Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 60	Polotovar pro disky umístěný v řezacím stroji	61
Obr. 62Vyřezané disky sekundární sady62Obr. 63Body měření tloušťky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 61	Vyřezané disky primární sady	61
Obr. 63Body měření tlouštky63Obr. 64Měření tuhosti - disk s vnějším zámkem63Obr. 65Měření tuhosti - disk s vnitřním zámkem64Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 62	Vyřezané disky sekundární sady	62
Obr. 64Měření tuhosti - disk s vnějším zámkem	Obr. 63	Body měření tlouštky	63
Obr. 65Měření tuhosti - disk s vnitřním zámkem	Obr. 64	Měření tuhosti - disk s vnějším zámkem	63
Obr. 66Měření charakteristiky disků64Obr. 67Měření charakteristiky disků - detail65Obr. 68Měření charakteristiky disků - report68	Obr. 65	Měření tuhosti - disk s vnitřním zámkem	64
Obr. 67Měření charakteristiky disků - detail	Obr. 66	Měření charakteristiky disků	64
Obr. 68 Měření charakteristiky disků - report	Obr. 67	Měření charakteristiky disků - detail	65
	Obr. 68	Měření charakteristiky disků - report	68

Seznam tabulek

Tab. 1	Doporučené rozměry pružiny [2]	5
Tab. 2	Vliv tření na zatížení pružiny [2]	6
Tab. 3	Mechanické vlastnosti polymerních matric [9]	8
Tab. 4	Mechanické vlastnosti vláken [10]	10
Tab. 5	Vývoj hmotnosti pružin	16
Tab. 6	Charakteristiky pružin	18
Tab. 7	Rozměry disků a naměřené hodnoty pro primární sadu $\ldots\ldots\ldots$	28
Tab. 8	Rozměry disků a naměřené hodnoty pro sekundární sadu $\ .\ .\ .$	28
Tab. 9	Hledané rozměrové parametry sady a disků	31
Tab. 10	Okrajové podmínky sekundární sady	31
Tab. 11	Okrajové podmínky primární sady	32
Tab. 12	Část vygenerovaných hodnot pro primární sadu	32
Tab. 13	Část vygenerovaných hodnot pro sekundární sadu $\ .\ .\ .\ .$	33
Tab. 14	Zvolené rozměry sad	33
Tab. 15	Srovnání vhodnosti metod dohotovení dílu	40
Tab. 16	Srovnání materiálů pro výrobu forem	42
Tab. 17	Měření tloušťky disků	67
Tab. 18	Hmotnost disků \ldots	67
Tab. 19	Označení vzorků	67
Tab. 20	Náklady na výrobu prototypových forem	70
Tab. 21	Náklady na výrobu prototypových disků	71

Seznam grafů

Graf 1	Rozdělení bodů disciplín v soutěži FSAE	2
Graf 2	Charakteristika sestavy pružin UWB05	16
Graf 3	Průběh stlačení tlumičů - Endurance FSG 2018	18
Graf 4	Průběh stlačení pružin, přední tlumič - Endurance FSG 2018	20
${\rm Graf}\; 5$	Průběh stlačení pružin, zadní tlumič - Endurance FSG 2018 $$	20
Graf 6	Průběh síly v pružině, přední tlumič - Endurance FSG 2018 $$	21
Graf 7	Průběh síly v pružině, zadní tlumič - Endurance FSG 2018 $\ .$	21
Graf 8	Kmity pružiny, přední tlumič, primární pružina, minimální am-	
plitu	da 0,5 mm, počet kmitů v grafu=29	22
Graf 9	Kmity pružiny, přední tlumič, sekundární pružina, minimální	
amp	lituda 1 mm, počet kmitů v grafu=48	22
Graf 10	Kmity pružiny, zadní tlumič, primární pružina, minimální am-	
plitu	da 0,5 mm, počet kmitů v grafu=16	23
Graf 11	Kmity pružiny, zadní tlumič, sekundární pružina, minimální am-	
plitu	da 1 mm, počet kmitů v grafu=44	23
Graf 12	Průběh tlaku a teploty v průběhu vytvrzení	57
Graf 13	Průběh stlačení sekundárního disku s vnějším zámkem	68
Graf 14	Průběh stlačení sekundárního disku s vnitřním zámkem	69
Graf 15	Průběh stlačení primárního disku s vnějším zámkem	69
Graf 16	Průběh stlačení primárního disku s vnitřním zámkem $\ .\ .\ .$.	69

Úvod

Cílem této Diplomové práce je realizovat návrh a výrobu talířových kompozitních pružin pro odpružení podvozku vozu Formula Student (dále jen "FSAE") za účelem snížení hmotnosti vozu. Výsledný návrh musí zcela splňovat pravidla stanovená soutěží FSAE. V technologii výroby musí být zohledněny výrobní možnosti týmu UWB Racing Team Pilsen (dále jen "RTP") a objem roční produkce.

V úvodu práce bude proveden rozbor stávajícího řešení odpružení a analýza jízdních dat naměřených v předešlé závodní sezóně. Tyto získané údaje a analýza budou hlavním východiskem pro návrh pružin. Následně bude proveden návrh forem, přípravků a technologie potřebných pro jejich výrobu. Dále bude realizována výroba forem a prototypových disků pružiny, na kterých budou provedeny testy. Na základě testů bude rozhodnuto, zda je možné přejít k výrobě finálních forem.

1.1 Formula Student

Formula SAE, v Evropě označovaná jako Formula Student, je mezinárodní konstruktérská univerzitní soutěž. Úkolem je navrhnout a postavit soutěžní monopost, který splňuje pravidla soutěže. Soutěž zahrnuje celkem tři kategorie. Kategorii pro vozy se spalovacím motorem, pro vozy s elektrickým motorem a pro bezpilotní vozy. Soutěž je hodnocena 1000 body, které může každý tým získat ze statických a dynamických disciplín (viz Graf 1). Mezi statické disciplíny se řadí Bussines Plan Presentation, Cost Analysis a Engineering design. Disciplíny Acceleration, Skid-Pad, Autocross, Endurance a Efficiency spadají do kategorie dynamické. Technická přejímka je rozdělena do několika fází. Během technické přejímky je detailně zkoumáno, zda je vůz postaven v souladu s pravidly soutěže, které mají rozsah přibližně 180 stran. Během Testu hluku (pro vozy se spalovacím motorem) se kontroluje, zda je provozní hluk ve stanovených limitech, a to jak při volnoběžných otáčkách motoru, tak v otáčkách provozních. Ty jsou definovány výpočtem na základě vrtání a zdvihu motoru. Při testu náklonu vozu je v první fázi (45°) kontrolován únik provozních kapalin. Druhá fáze (60°) simuluje boční přetížení vozu v zatáčce, přičemž nesmí dojít k odlehnutí pneumatiky vozu od testovací stolice. Během testu brzd se kontroluje schopnost vozu zablokovat všechna 4 kola a udržet při brzdění přímý směr jízdy. Bez úspěšného splnění technické přejímky není možné se s vozem účastnit dynamických disciplín.

Graf 1: Rozdělení bodů disciplín v soutěži FSAE

1.2 Plán řešení

Na počátku byl navržen postup řešení v podobě vývojového diagramu, který je zobrazen na Obr. 1.

Pro tento postup byl navržen časový plán, který byl v průběhu řešení práce aktualizován a doplňován. Konečný časový plán je znázorněn na Obr. 2.

Obr. 1: Vývojový diagram postupu práce

	2018					2019																							
	45	46	47	48	49	50	51	52	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Získání teoretického základu																													
Rešerše																													
Talířové pružiny																													
Kompozitní materiály																													
Technologie výroby kompozitních dílů																													
Formy pro výrobu kompozitních dílů																													
Stávající stav																													
Odpružení podvozku UWB05																													
Analýza zatížení stávajících pružin																													
Návrh Pružin																													
Specifikace požadavků																													
Předběžný návrh pružiny																													
Návrh rozměrovch paramertrů																													
Finální CAD návrh																													
Návrh technologie výroby																													
Laminování																													
Dohotovení																													
Návrh formy a potřebných přípravků																													
Návrh formy																													
Návrh přípravků																													
Výroba prototypové formy a přípravků																													
Výroba formy																													
Rozměrová kontrola																													
Výroba prototypových dílů a testování																													
Laminace																													
Dohotovení																													
Testování protypových pružin																													
Závěrečné úpravy a kontrola																													
Kontrola obsahu práce																													
Kontrola zdrojů a příloh																													
Korektura																													
Závěrečná kompletace																													
Plánovaná rezerva																													
Odevzdání DP																													

Obr. 2: Časový plán řešení

2 Stav techniky

2.1 Talířové pružiny

Mezikruhové prstence ve tvaru dutého komolého kužele, způsobilé přijímat vnější síly působící v jejich ose proti sobě. Průřez pružiny je zpravidla obdélníkový. Pružiny větších rozměrů (t > 6 mm) se někdy provádějí s obrobenými dosedacími plochami.

Talířové pružiny jsou určené pro velká zatížení při malých deformacích. Užívají se jednotlivě nebo v sadách. Při použití pružin v sadě je nutné vzít do úvahy vliv tření. Tření v sadě činí na každou vrstvu přibližně 3 až 5 % zatížení. O tuto sílu se pak musí zvýšit pracovní zatížení.

Napětí vznikající v talířové pružině je poměrně složité. Maximální napětí (tlakové) vzniká ve vnitřním horním okraji. Na vnější spodní hraně vzniká napětí tahové. Maximální tlakové napětí přitom slouží pro pevnostní kontrolu staticky zatížených pružin. U cyklicky (únavově) zatížených pružin se kontroluje průběh tahových napětí.[2].

Obr. 3: Základní rozměry talířových pružin

Základní rozměry jsou specifikovány na Obr. 3. Charakteristika talířových pružin je zobrazena na Obr. 4. Její průběh je výrazně závislý na poměru h_0/t . Pro malé hodnoty (přibližně do hodnoty 1) je charakteristika téměř lineární, se zvyšujícím poměrem se stává průběh degresivní. Při překročení poměru 1,4 se stává pružina nestabilní (při překročení deformace, při které je pružina schopna působit maximální silou, nabyde charakteristika negativní charakter, tj. při zvětšující se deformaci dochází ke snižování působící síly). [11]

Při návrhu pružin je doporučeno držet se rozměrů v mezích uvedených v Tab. 1.

Tab. 1: Doporučené rozměry pružiny [2]

Poměr průměrů D/d	1,75-2,5
Poměr výšky k tloušťce h_0/t	0, 4 - 1, 4
Poměr D/t	16 - 40

Funkci talířových pružin výrazně ovlivňuje tření, a to jak tření v dosedací ploše, tak tření na povrchu pružiny při paralelním řazení (Obr. 5). Důsledkem tření je

Disc Spring Load Curves Relative To h/t Ratio

Obr. 4: Charakteristika talířových pružin [1]

Obr. 5: Řazení pružin, paralelní vlevo, seriové uprostřed, kombinované vpravo [2]

hystereze výsledné síly pružiny. Velikost tření je závislá na mnoha faktorech a nelze jej teoreticky přesně stanovit. Přibližný vliv tření na výslednou sílu pružiny je uveden v Tab. 2 [2].

Tab. 2: Vliv tření na zatížení pružiny [2]

Samostatná pružina	$\pm 2 - 3\%$
2 Paralelně uložené pružiny	$\pm 4 - 6\%$
3 Paralelně uložené pružiny	$\pm 6 - 9\%$
4 Paralelně uložené pružiny	$\pm 8 - 12\%$
5 Paralelně uložených pružin	$\pm 10 - 15\%$

2.2 Kompozitní materiály

Kompozitní materiál je vytvořen smíšením dvou nebo více materiálů různých vlastností, jehož výsledné vlastnosti jsou lepší než u jednotlivých zdrojových složek.

Kompozitní materiál je zpravidla složen z matrice a výztuže. Výztuž, která je pevná/tuhá/tvrdá nespojitá složka, je spojena pomocí poddajné matrice.

Podle současného chápání pojmu kompozit musí být k zařazení vícefázového materiálu mezi kompozitní materiály splněny následující podmínky:

- podíl výztuže musí být větší než 5
- vlastnosti výztuže a matrice (mechanické, fyzikální i chemické) se liší, výztuž je významně pevnější v tahu a obvykle tužší než matrice,
- kompozit musí být připraven smícháním složek.

Podle těchto podmínek nelze za kompozit považovat plast, obsahující malá množství tuhých barviv, např. částic sazí (černý pigment) nebo oxidů (např. TiO2-bílý pigment) nebo částic (přidávaných pro zlepšení houževnatosti; nejde o výztuž, modul pružnosti materiálu se naopak zmenší), ani slitinu kovů, ve které během ochlazování nebo při tepelném zpracování došlo k vyloučení tvrdé fáze. [12]

2.2.1 Druhy kompozitních materiálů

Dle velikosti výztuže lze kompozitní materiály rozdělit na tři skupiny:

Nanokompozitní materiály

• Rozměr výztuže je v řádech nm.

Mikrokompozitní materiály

Maximální příčný rozměr výztuže je v řádech µm (sklolaminát, uhlíkový kompozit).

Makrokompozitní materiály

• Maximální příčný rozměr výztuže je v řádech mm až cm (železobeton, asfaltový povrch vozovky, polymerbeton).

Dále se v této práci budeme zabývat mikrokompozitními materiály, které lze rozdělit dle druhu matrice na:

- kompozity s polymerní matricí nejčastěji používané,
- kompozity s kovovou matricí,
- kompozity s keramickou matricí vysoká teplotní odolnost,
- kompozity s uhlíkovou, skleněnou matricí apod.

Dále se tato práce bude věnovat vláknovým kompozitům s polymerní matricí.

2.2.2 Polymerní matrice

Polymerní matrice je nejvíce používaným typem u vláknových kompozitních materiálů. Rozdělení polymerních matric a jejich vlastností je zobrazeno v Tab. 3.

Matrie	ce R _r	_n [MPa]	E [GPa]	A [%]	$\rho \left[\mathbf{g.}cm^{-3}\right]$
Beaktonlastová	Epoxidová Fonolická	50-95 40, 70	3,1	4,0	1,15
matrice	Polyimidová	40-70 55-180	8,4 4,0	0,4 1-60	1,43 1,40
	Bismaleimidová	45-90	4,0	1-25	1,30
Termoplastové	Polyamid (PA6/6	6) 97	$_{3,0}$	30	$1,\!18$
matrice	Polypropylen (PF	P) 24,8	1,1	200	0,91
mannee	Polystyren (PS)	23 - 70	$1,\!0-\!3,\!2$	2 - 50	$1,\!05$

Tab. 3: Mechanické vlastnosti polymerních matric [9]

Epoxidové pryskyřice Jedná se o nejrozšířenější druh matrice, mezi její výhody se řadí:

- dobrá voděvzdornost,
- dobré mechanické vlastnosti,
- dobré kohezní vlastnosti,
- malé smrštění v průběhu vytvrzení.

2.2.3 Vlákna

Nejpoužívanějším typem vláken v kombinaci s polymerní matricí jsou skelná, uhlíková a aramidová vlákna. Jejich průměr je v rozmezí $5 - 20 \ \mu\text{m}$. Vlákna se dále spojují do celků s větším počtem vláken:

- pramec svazek vzájemně nekroucených vláken,
- příze (yarn) svazek vzájemně zkroucených vláken nebo pramenců,
- roving soubor paralelních pramenců s malým nebo žádným zkroucením.

Vlákna je možné rozdělit podle délky na:

- dlouhá (označení C continous),
- krátká (označení D discontinous).

Podle uspořádání:

• uspořádaná jednosměrně,

• uspořádaná dvojsměrně v podobě tkaniny.

Tkanina je tvořena dvěma základními částmi:

- osnova (warp) osnova rovnoběžných nití, do kterých je zanášen útek,
- útek (weft) nit proplétaná osnovou ve směru příčném (nejčastěji. kolmém)

Tkaniny mohou mít různou vazbu nití:

- plátěnou,
- keprovou,
- saténovou.

Na vazbě je závislá tvarovatelnost tkaniny. [9]

Aramidová vlákna Aramidová vlákna (zkratka aramid z "aromatický polyamid") mají vysokou pevnost, vysokou teplotní odolnost, malou teplotní roztažnost a dobře tlumí vibrace. Jejich nevýhodou je nízká pevnost v tlaku a pohlcování vlhkosti. Aramidová vlákna jsou známá pod obchodními značkami **Kevlar** a **Twaron**. Lze je rozdělit dle velikosti modulu:

- aramid LM Low Modulus,
- aramid HM High Modulus,
- aramid UHM Ultra High Modulus.

Často se používají společně s uhlíkovými nebo skleněnými vlákny, která kompenzují nízkou tlakovou pevnost aramidových vláken.[9]

Skelná vlákna Mechanické vlastnosti skelných vláken jsou srovnatelné s kovy, jejichž hustota je však výrazně nižší. Chemická odolnost je přibližně do 400 °C. Pro jejich výrobu se používají následující druhy skla:

- sklo E nejčastěji využívané, nízká cena, horší mechanické vlastnosti v porovnání se sklem S,
- sklo
 S vhodné pro použití při vyšších nárocích na mechanické vlastnosti,
 $3 \ge 4 \ge 4$ z dražší než sklo E,
- sklo ${\bf D}$ borovité sklo má dobré dielektrické vlastnosti[9]

Uhlíková vlákna Uhlíková vlákna jsou nejvíce používaná v leteckém průmyslu. Charakterizuje je vysoká pevnost, nízká hustota, vysoká únavová pevnost, dobrá elektrická vodivost, křehkost a vysoká cena.

Uhlíková vlákna se vyrábí z ropných produktů nebo pyrolýzou organických vláken polyakrylonitrolu. Výhodou pyrolytického procesu je možnost jeho řízení a získání vláken s požadovanými vlastnostmi:

• **HT** (High Tenacity), **HS** (High Strength) vlákno - vysoká pevnost v tahu a tažnost, nižší modul pružnosti.

- IM (Intermediate Modulus) vlákno střední modul pružnosti, vysoká pevnost a dobrá tažnost.
- HM (High Modulus) vlákno vysoký modul pružnosti a nižší tažnost.
- UHM (Ultra High Modulus) vlákno velmi vysoký modul pružnosti a velmi nízká tažnost[9].

Typ vlákna	Sklo	Aramid	HS - uhlík	HM - uhlík		
Modul pružnosti v podélném směru E _{fL} (MPa)	74 000	130 000	230 000	390 000		
Modul pružnosti v příčném směru Ε _π (MPa)	74 000	5 400	15 000	6 000		
Modulu pružnosti ve smyku G_{fLT} (Mpa)	30 000	12 000	50 000	20 000		
Pevnost v tahu σ _{fL} (MPa)	2 100	3 000	5 000	3 800		
Hustota ρ (kgm ⁻³)	2 500	1 500	1 600	1 700		

Tab. 4: Mechanické vlastnosti vláken [10]

Lamináty Laminát je je druh kompozitního materiálu, který je tvořen nejméně dvěma vrstvami lamin. Tloušťka laminátu je vzhledem k ostatním rozměrům výrazně menší. Převážně se vyrábí kladením jednotlivých vrstev na sebe. Největší pevnost a tuhost vykazují vláknové kompozity s kontinuálními vlákny.

Obr. 6: Příklad vrstvení laminátu[3]

2.2.4 Pevnost rovinného ortotropního materiálu (ortotropní laminy)

Jelikož kompozitní materiál nemá izotropní vlastnosti, je potřeba definovat základní směry.

Směr vláken v lamině (podélný směr) je označován indexem 1, kolmý na vlákna a ležící v rovině vláken (příčný směr) indexem 2, směr kolmý na oba předešlé indexem 3 (Obr. 7) [4].

Obr. 7: Materiálové směry v lamině [4]

Existuje několik pevnostních kritérií, která jsou využívána v technické praxi.V této práci je detailně popsáno kritérium maximálních napětí, které se dle průzkumu provedeného AIAA řadí na druhé místo v četnosti používání.

Kritérium maximálního napětí Toto kritérium nezahrnuje vazbu mezi jednotlivými složkami napětí. V praxi se však jedná o jedno z nejpoužívanějších kritérii. A to z důvodu jeho snadného použití. Podle tohoto kritéria dojde k porušení v případě, kdy jedna ze složek dosáhne hodnoty meze pevnosti. Pro rovinou napjatost $(\sigma_1, \sigma_2, \sigma_{12})$.

Pro vyjádření podmínek pevnosti je potřeba definovat pět pevnostních materiálových konstant [13]:

- podélná mez pevnosti v tahu σ_{Pt1} ,
- podélná mez pevnosti v tlaku σ_{Pd1} ,
- příčná mez pevnosti v tahu σ_{Pt2} ,
- příčná mez pevnosti v tlaku $\sigma_{Pd2},$
- smyková mez pevnosti $\sigma_{P12}.$

Pevnostní podmínky jsou:

 $\sigma_1 \leq \sigma_{Pt1}$ $\sigma_2 \leq \sigma_{Pt2}$ $|\sigma_{12}| \leq \sigma_{P12}$

$$\sigma_1 \ge \sigma_{Pd1} \qquad \sigma_2 \ge \sigma_{Pd2} \tag{2.1}$$

K poruše dojde, jestliže dojde k porušení alespoň jedné rovnice, ta zároveň udává charakter porušení. Například při porušení první rovnice je charakter porušení podélný tahový [13].

2.3 Technologie výroby kompozitních dílů

Existuje velké množství metod výroby kompozitních dílů. Zde se budeme zabývat pouze výrobou z prepregů vytvrzovaných v autoklávu.

Prepreg - polotovary k výrobě vláknových kompozitů (z anglického *preimpreg-nated fibres*). Jedná se tkaninovou výztuž, která je nasycena určitým procentem nevytvrzené matrice.

Autokláv - zařízení schopné vytvrdit předpřipravený kompozitní díl. Nejprve se provede vakuování formy, následně je v autoklávu řízen tlak a teplota dle nastavené procedury (až 10 bar a 200 °C).

2.3.1 Laminování do otevřené formy

Na formu (negativní nebo pozitivní) je nanesena vrstva separátoru. Na separátor jsou nakladeny požadované vrstvy prepregu a další technologické vrstvy, které mají zajistit správné vakuování. Na závěr se na formu aplikuje vakuovací folie, která se pomocí těsnící pásky přilepí k formě, případně se celá forma umístí do vakuovacího pytle, díky němuž může být následně z formy odčerpán vzduch a tím zajištěn přítlak potřebný pro spojení jednotlivých vrstev. Tuto metodu lze použít pro malé až střední série, výsledný díl je ovšem hladký pouze ze strany přilehlé k formě.

2.3.2 Laminování do uzavřené formy

Při uzavřeném formování se forma skládá ze dvou dílů, které mají zajištěnou vzájemnou polohu (například pomocí vodících čepů). Obě části formy bývají utěsněné, aby bylo možné odčerpat z vnitřní části vzduch. Mezi oběma částmi formy je vytvořen tlak (za pomocí lisu, nebo okolního prostředí), který zajistí přítlak potřebný pro spojení jednotlivých vrstev. Takto vytvořený díl dosahuje vysoké rozměrové přesnosti a jakosti povrchu s obou stran zhotoveného dílu. Tento typ laminování se používá pro velké série, nebo tam, kde je kladen požadavek na vysokou jakost povrchu z obou stran dílu.

Obr. 8: Otevřené laminování [5]

Obr. 9: Uzavřené laminování [6]

3 Stávající stav

3.1 Odpružení podvozku UWB05

Na voze UWB05 bylo použito nezávislé zavěšení podvozku pomocí A-ramen a pushrodů (viz Obr. 10 a Obr. 11). Vzhledem k velké vzdálenosti tlumičů od vozovky a od těžiště vozu, (viz Obr. 12) je kladen zvýšený požadavek na minimalizaci hmotnosti a tím snížení nepříznivého momentu setrvačnosti, který snižuje ovladatelnost vozu při průjezdu zatáčkami a snížení celkového těžiště vozu.

Obr. 10: Přední náprava vozu UWB05

Pro správné fungování zavěšení vozu je nezbytné správně navrhnout tuhost pružin. Tuhost pružin je limitována pravidly. V pravidlech je definována vzdálenost 25.4 mm, o kterou musí zavěšení propružit vlastní vahou (vč. řidiče). Pro správné fungování podvozku vozu **UWB05!** je však vhodná tuhost pružin, která by nesplňovala výše uvedené pravidlo. Z toho důvodu byl navržen systém, který se skládá ze dvou vinutých pružin kruhového průřezu rozdílných tuhostí (Obr. 13). Pro splnění

Obr. 11: Zadní náprava vozu UWB05

Obr. 12: Umístění tlumičů na voze UWB05

pravidla jsou využité pružiny o nízké tuhosti, v tomto případě o tuhosti $18 \,\mathrm{N}\,\mathrm{mm}^{-1}$. Při vyčerpání maximální deformace pružiny (dosednutí jednotlivých závitů na sebe), začne fungovat pouze druhá pružina o tuhosti $98 \,\mathrm{N}\,\mathrm{mm}^{-1}$, která zajistí požadované

Tab. 5: Vývoj hmotnosti pružin

Vůz	UWB05	UWB04
Hmotnost pružin	476 g	$334 \mathrm{~g}$
Rozdíl	142	2 g

jízdní vlastnosti (viz Graf 2).

Systém dvou pružin s sebou přináší nepříznivé zvýšení hmotnosti o 142 g na každém tlumiči (Tab. 5).

Obr. 13: Tlumič vozu UWB05

Graf 2: Charakteristika sestavy pružin UWB05

3.2 Analýza zatížení stávajících pružin

Díky tomu, že na voze UWB05 je každý tlumič osazen snímačem polohy, je možné provést analýzu průběhu stlačení pružiny během jízdy. Jako referenční vzorek bylo vybráno nejrychleji zajeté kolo v závodě Formula Student Germany 2018 v disciplíně Endurance. Délka měřeného úseku je 1200 m, hmotnost vozu včetně řidiče 303 kg. Profil trati a dosahované boční přetížení vozu je zobrazené na Obr.14.

Obr. 14: Profil trati, boční přetížení - Endurance FSG 2018

Analýza byla provedena pro přední a zadní tlumič pravé strany vozu. Předpokládá se, že chování tlumičů na levé straně je obdobné. Záznam z průběhů stlačení tlumičů je zobrazen na Grafu 3. Analýza naměřených dat byla provedena v prostředí Matlab. V první fázi bylo z naměřených dat stlačení tlumiče vypočítáno separátní stlačení každé pružiny. Ve výpočtu bylo uvažováno předepnutí soustavy pružin, 5 mm pro přední i zadní (viz Tab. 6). Ve druhé fázi byl proveden výpočet počtů cyklů stlačení pružiny pro předem definovanou minimální amplitudu stlačení.

3.2.1 Výpočtový algoritmus

Nechť je stlačení tlumiče x, stlačení primární pružiny ΔL_1 , stlačení sekundární pružiny ΔL_2 , tuhost soustavy pružin K_c , síla v soustavě pružin F_c

Graf 3: Průběh stlačení tlumičů - Endurance FSG 2018

Tab. 6	3: (Chara	kteri	stiky	pružin
--------	------	-------	-------	-------	--------

	Přední	Přední	Zadní	Zadní
	pružina 1	pružina 2	pružina 1	pružina 2
Volná délka $L_0[\text{mm}]$	44	103	44	110
Max stlačení ΔL_{max} [mm]	18	-	18	-
Tuhost $K[N \text{ mm}^{-1}]$	12	98	12	98
Předpětí ΔL_0 [mm]	6	.5	6	.5

Díky známé tuhosti a maximálnímu stlačení primární pružiny (pružina 1 viz Tab. 6) je možné určit maximální sílu v pružině.

$$F_{1max} = K_1 \cdot \Delta L_{1max} \tag{3.1}$$

Stlačení sekundární pružiny při maximálním stlačení primární.

$$L_{2lim} = \frac{F_{1max}}{K_2} \tag{3.2}$$

Limitní stlačení tlumiče při maximálním stlačení primární pružiny, vč. uvažování předpětí soustavy.

$$x_{lim} = \Delta L_{1max} + L_{2lim} - \Delta L_0 \tag{3.3}$$

Pro primární pružinu za předpokladu $x < x_{lim}$ platí:

$$K_c = \frac{K_1 \cdot K_2}{K_1 + K_2} \tag{3.4}$$

$$F_c = K_c \cdot (x + \Delta L_0) \tag{3.5}$$

$$\Delta L_1 = \frac{F_c}{K_1} \tag{3.6}$$

Pro primární pružina za předpokladu $x \ge x_{lim}$ platí:

$$\Delta L_1 = \Delta L_{1max} \tag{3.7}$$

Pro sekundární pružinu za předpokladu $x < x_{lim}$ platí:

$$K_c = \frac{K_1 \cdot K_2}{K_1 + K_2} \tag{3.8}$$

$$F_c = K_c \cdot (x + \Delta L_0) \tag{3.9}$$

$$\Delta L_2 = \frac{F_c}{K_2} \tag{3.10}$$

Pro sekundární pružinu za předpokladu $x \ge x_{lim}$ platí:

$$K_c = K_2 \tag{3.11}$$

$$\Delta L_2 = x - x_{lim} + L_{2lim} \tag{3.12}$$

$$F_c = \Delta L_2 \cdot K_2 \tag{3.13}$$

Na základě výše uvedených rovnic je možné určit průběh stlačení jednotlivých pružin a silové účinky v soustavě pružin.

3.2.2 Vyhodnocení

Na Grafu 4 a Grafu 5, jsou zobrazeny vypočtené průběhy stlačení jednotlivých pružin. Dále je zde uveden medián a aritmetický průměr pro sledovaný úsek. graf 6 a graf 7 zobrazuje průběh silového účinky vyvozeného soustavou pružin. Grafické zobrazení výsledků druhé fáze je patrné na grafu 8 až grafu 11

Na základě uvedených grafů je možné konstatovat tyto závěry:

- Soustava pružin na předním tlumiči je výrazně více silově i cyklicky namáhána než soustava pružin na zadním tlumiči.
- Chod tlumiče (50 mm) není využíván v celém rozsahu, maximální naměřená výchylka byla přibližně 32 mm.
- Medián stlačení obou primárních pružin je roven jejich maximálnímu stlačení, lze tedy říci, že po většinu času závodu není pružina využívána a jednotlivé závity doléhají na sebe.
- U přední primární pružiny bylo naměřeno 29 kmitů o amplitudě 0.5 mm nebo vyšší. Při délce kola 1200 m to odpovídá 531 kmitů za závod a 24166 kmitů za závodní sezónu vč. testování (1000 km).

- U přední sekundární pružiny bylo naměřeno 48 kmitů o amplitudě 1 mm nebo vyšší. Při délce kola 1200 m to odpovídá 880 kmitů za závod a 40000 kmitů za závodní sezónu vč. testování (1000 km).
- Podle Schijve (2008) lze konstatovat, že počet cyklů odpovídá počáteční hranici vysokocyklické únavy.

Graf 4: Průběh stlačení pružin, přední tlumič - Endurance FSG 2018

Graf 5: Průběh stlačení pružin, zadní tlumič - Endurance FSG 2018

Graf 6: Průběh síly v pružině, přední tlumič - Endurance FSG 2018

Graf 7: Průběh síly v pružině, zadní tlumič - Endurance FSG 2018

Graf 8: Kmity pružiny, přední tlumič, primární pružina, minimální amplituda 0.5 mm, počet kmitů v grafu=29.

Graf 9: Kmity pružiny, přední tlumič, sekundární pružina, minimální amplituda 1 mm, počet kmitů v grafu=48.

Graf 10: Kmity pružiny, zadní tlumič, primární pružina, minimální amplituda 0,5 mm, počet kmitů v grafu=16.

Graf 11: Kmity pružiny, zadní tlumič, sekundární pružina, minimální amplituda 1 mm, počet kmitů v grafu=44.
4 Návrh pružin

Pro explicitní chápání následujících částí jsou definovány tyto pojmy:

- disk jeden talíř talířové pružiny,
- sada sestava více disků talířových pružin o stejných parametrech,
- **sestava** kompletní soustava disků a sad použita na tlumiči.

Návrh sad je vzhledem ke své komplexnosti rozdělen do několika etap. V první etapě je potřeba přesně specifikovat požadavky, následující etapa je zaměřena na předběžný návrh rozměrových parametrů sady a disků s cílem minimalizovat její hmotnost. Ve třetí etapě je proveden detailní návrh jednotlivých disků a v poslední etapě jsou jednotlivé disky ověřeny pomocí výpočtu MKP.

4.1 Specifikace požadavků

Na základě analýzy stávajících pružin a konzultací s týmem RTP byly definovány následující požadavky.

- 1. Návrh zaměřit na minimalizaci celkové hmotnosti.
- 2. Návrh sestavy musí zohledňovat použití spolu s tlumiči ZF Formula Studet Damper a jejich maximální vnější průměr nesmí z důvodu zástavbových problémů přesáhnout 80 mm.
- 3. Sestava bude složena z talířových pružin pouze dvou různých tuhostí tak, aby bylo splněno pravidlo, které definuje pokles vozu o 25.4 mm (viz str. 14).
- 4. Výchozí materiál pro výrobu disků bude použit **GG200T**, který je v RTP používán pro výrobu většiny kompozitních dílů, jsou známy jeho vlastnosti na základě provedených testů a je v zázemí RTP dobře dostupný.
- 5. Jednotlivé disky musí být opatřeny "zámky"(obr. 15), aby je bylo možné sériově řadit bez použití vedení.
- 6. Životnost disků je požadována na dvě závodní sezóny (2000 km).

Obr. 15: Zámky pružiny

4.1.1 Předběžný CAD návrh disků

Základní tvar disku byl doplněn o dosedací plochy a zámky. Bylo tedy nutné navrhnout dva tvary disků. První disk se zámkem umístěným na vnějším průměru a druhý disk se zámkem umístěným na vnitřním průměru.

Tvar zámků byl navržen s ohledem na budoucí výrobu. Hrany byly opatřeny rádiusy a technologickými úkosy, které mají za cíl zjednodušit následnou laminaci a vyjímání laminovaného dílu z formy. Na Obr. 16 a Obr. 16 jsou zobrazeny obecné tvary disků.

Obr. 16: Disk s vnějším zámkem - obecný tvar

Obr. 17: Disk s vnitřním zámkem - obecný tvar

4.2 Návrh rozměrových parametrů

Jelikož kompozitní materiál nemá izotropní vlastnosti, není možné pro rozměrový návrh disků použít dostupných vzorců pro výpočet disků z ocelových materiálů. Bylo tedy nutné zvolit jinou metodu návrhu. V počáteční fázi návrhu byla uvažována metoda konečných prvků v softwaru Siemens NX s použitím geometrické optimalizace s cílem minimalizovat hmotnost celé sady. Z důvodu složitosti popisu hledaného řešení ovšem nebylo možné použít modul geometrické optimalizace. Z tohoto důvodu bylo MKP metodou vyhodnoceno pouze několik rozměrových profilů disku pružiny, ze kterých byly sestaveny regresivní funkce pro reakční sílu a *index porušení*. V prostředí Matlab byl navržen algoritmus, který se na základě těchto zjištěných funkcí snažil vyhledat parametry sady a disků, které splňují okrajové podmínky.

Index porušení Index porušení je bezrozměrná veličina definovaná jako poměr napětí σ ku pevnosti materiálu v daném smyslu zatěžování F.

$$F_I = \frac{\sigma}{F} \tag{4.1}$$

Při dosažení $F_I = 1$ tedy dojde k porušení materiálu. Při vyhodnocování pomocí MKP byl vždy uvažován index porušení ve směru s nejvyšší hodnotou.

4.2.1 MKP výpočet a regresivní funkce

Pro výpočet byl použitý model disku s vnějším zámkem, jehož plocha byla zasíťována 2D sítí s typem elementů CQUAD8. Vnitřní hrana disku je spojena RBE3 růžicí do jejího středu. Okrajové podmínky výpočtu byly definovány na středový bod disku, do kterého byla svedena růžice, kde bylo odebráno posunutí ve směru osy x,y a zároveň zde bylo definováno zatížení ve formě počátečního posunutí v ose z. Dále bylo nutné definovat skladbu laminátu. Vzhledem k tomu, že je možné předpokládat největší napětí v okrajových vrstvách, byla skladba zjednodušena pouze na 4 vrstvy. Mimo dalších potřebných parametrů pro výpočet je potřeba definovat teorie porušení lamina. Ta byla definována podle teorie maximálního napětí viz Obr.21.

Obr. 19: Zasíťovaný model

Pro následný návrh bylo potřeba sestavit regresivní funkce pro reakční sílu F_z a maximální index porušení F_I . Tu bylo potřeba definovat pro primární i sekundární sadu zvlášť, s ohledem na jiné okrajové podmínky. Pro sestavení funkce bylo potřeba udělat vyhodnocení několika disků o různých rozměrech. Rozměrové parametry a výsledné naměřené hodnoty pro sekundární sadu jsou uvedené v Tab. 8, pro primární v Tab. 7.

Primární sada

Obecný tvar regresivní funkce pro reakční sílu ${\cal F}_z$ je:

$$F_z = b_0 \cdot D^{b_1} \cdot (h_0/t)^{b_2} \cdot t^{b_3}$$

	d[mm]	D[mm]	$h_0/t[-]$	t[mm]	$s_p[-]$	$F_{z}[N]$	$F_I[-]$
1	48	60	0,5	0,8	100	85	0,301
2	48	60	0,5	1,6	100	633	1,406
3	48	60	1	0,8	100	311	0,730
4	48	60	1	$1,\!6$	100	2322	3,409
5	48	70	0,5	0,8	100	27	0,061
6	48	70	0,5	1,6	100	200	0,283
7	48	70	1	0,8	100	98	0,147
8	48	70	1	1,6	100	734	0,687

Tab. 7: Rozměry disků a naměřené hodnoty pro primární sadu

dvnitřní průměr disku, Dvnější průměr disku, h_0/t poměr výšky disku ku tloušťce, ttloušťka disku, s_p procentuální stlačení pružiny vzhledem k h_0, F_z naměřená reakční síla, F_I naměřený maximální index porušení

rab.	8: ROZIII	ery disku	a namere.	ne noune	bty pro	sekunda	rm saut
	d[mm]	D[mm]	$h_0/t[-]$	t[mm]	$s_p[-]$	$F_{z}[N]$	$F_I[-]$
1	48	70	0,5	1,5	60	201	$0,\!155$
2	48	70	0,5	1,5	95	318	0,247
3	48	70	$0,\!5$	3	60	2990	0,592
4	48	70	0,5	3	95	4736	0,937
5	48	70	0,8	1,5	60	435	0,298
6	48	70	0,8	1,5	95	689	0,47
7	48	70	0,8	3	60	6311	1,129
8	48	70	0,8	3	95	9993	1,787
9	48	60	0,5	1,5	60	460	0,268
10	48	60	$0,\!5$	1,5	95	729	0,425
11	48	60	0,5	3	60	6332	0,98
12	48	60	0,5	3	95	10026	1,558
13	48	60	0,8	1,5	60	1027	0,516
14	48	60	0,8	1,5	95	1626	0,817
15	48	60	0,8	3	60	8281	1,235
16	48	60	0,8	3	95	13112	1,955

Tab. 8: Rozměry disků a naměřené hodnoty pro sekundární sadu

dvnitřní průměr disku, Dvnější průměr disku, h_0/t poměr výšky disku ku tloušťce, ttloušťka disku, s_p procentuální stlačení pružiny vzhledem k h_0, F_z naměřená reakční síla, F_I naměřený maximální index porušení

Laminate Modeler									৩ ১
Solver Properties		^	Ply Layup	Ply Sketche	r				
Physical Property Tab	le	^	View Explo	ded	▼ Zo	om			
Name	Laminate1								_
Label	2		ID			Material	Thickness	Primary Angle	Ξ
Properties		^	4			Twill Carbon - GG200T(Toray F	0.750	0.0	
Nonstructural Mass	0 kg/mm ²	• •	3			Twill Carbon - GG200T(Toray F	0.750	45.0	
Damping coefficient	0	•	2		7////	Twill Carbon - GG200T(Toray F	0.750	45.0	
Output Format	PCOMP	-	1			Twill Carbon - GG200T(Toray F	0.750	0.0	
Laminate Options	None	•							
Laminate Properties		^							
Stacking Recipe	Symmetric	•							
Reference Plane Locatio	on Bottom	-							
Reference Temperature	20 °(C••							
Ply Failure Theory	Maximum Stress	•							
Interlaminar Failure The	ory Tranverse Shear	•							
Interlaminar Allowables	Use Material Allowables	•							
Shear Stress for Bonding	g 52 MPa	• •							
Validation		^							
i 🛛 🕇	₹ 🕂								-
Optimization		v	Number of	Plies 4	Thickness	3.000e+00 mm			

Obr. 21: Definice skladby materiálu

Obecný tvar regresivní funkce pro index porušení ${\cal F}_I$ je obdobný,
s tím rozdílem,

že je nutné určit nové regresivní koeficienty:

$$F_I = c_0 \cdot D^{c_1} \cdot (h_0/t)^{c_2} \cdot t^{c_3}$$

Regresivní koeficienty byly určeny za pomocí online dostupného softwaru DESMOS.COM. Výsledná regresivní funkce pro reakční sílu je:

$$F_z = 1,1409 \cdot 10^{16} \cdot D^{-7,47004} \cdot (h_0/t)^{1,87382} \cdot t^{2,89853}$$

Výsledná regresivní funkce pro index porušení je:

$$F_I = 3,6412 \cdot 10^{18} \cdot D^{-10,3942} \cdot (h_0/t)^{1,27795} \cdot t^{2,22365}$$

Na základě výše uvedených rovnic lze konstatovat tato fakta:

- Reakční síla je výrazně negativně závislá na vnějším průměru disku.
- Reakční síla je výrazně závislá na tloušťce disku.
- Index porušení je výrazně negativně závislý na vnějším průměru disku.

Sekundární sada

Obecný tvar regresivní funkce pro reakční sílu F_z je:

$$F_z = b_0 \cdot (h_0/t)^{b_1} \cdot t^{b_2} \cdot s_n^{b_3} \cdot D^{b_4}$$

Obecný tvar regresivní funkce pro index porušení FI je obdobný, s tím rozdílem, že je nutné určit nové regresivní koeficienty:

$$F_{I} = c_{0} \cdot (h_{0}/t)^{c_{1}} \cdot t^{c_{2}} \cdot s_{p}^{c_{3}} \cdot D^{c_{4}}$$

Regresivní koeficienty byly určeny za pomocí online dostupného softwaru DESMOS.COM. Výsledná regresivní funkce pro reakční sílu je:

$$F_z = 240507 \cdot (h_0/t)^{0.868037} \cdot t^{3.39526} \cdot s_p^{1.00014} \cdot D^{-2.67542}$$

Výsledná regresivní funkce pro index porušení je:

$$F_I = 3,17252 \cdot (h_0/t)^{0,861713} \cdot t^{1,61125} \cdot s_p^{1,00126} \cdot D^{-1,59992}$$

Na základě výše uvedených rovnic lze konstatovat tato fakta.

- Reakční síla je nejvíce závislá na tloušťce disku.
- Reakční síla je téměř přímo úměrná na stlačení disku.
- Index porušení je téměř lineárně závislý na stlačení disku.
- Index porušení je negativně závislý na vnějším průměru disku.

Popis
vnitřní průměr disku
vnější průměr disku
výška disku
tloušťka disku
počet jednotlivých disků v sadě

Tah	Q٠	Hled	ané	rozměrové	narametry	sadv	ล	disků
rap.	9.	mea	ane	rozmerove	parametry	sauy	а	uisku

Platí pro primární i sekundární sadu

Parametr	Podmínka	Popis		
m[kg]	min	Hmontnost		
$F_I[-]$	< 0,90	Index porušení		
$k[N mm^{-1}]$	80 - 90	Tuhost sady		
d[mm]	48	Vnitřní průměr disku		
s[mm]	$s < h_0$	Stlačení		
n[-]	6 - 40	Počet jednotlivých disků v sadě		
t[mm]	1 - 3, 0	Tloušťka disku		
st[mm]	38, 5	Požadované stlačení sady		

Tab. 10: Okrajové podmínky sekundární sady

4.2.2 Návrh rozměrů v prostředí Matlab

Pro návrh primární i sekundární sady byl napsán algoritmus, který na základě podmínek (Tab.11 a Tab.10) hledá nejlehčí možné řešení. Algoritmus výpočtu projde veškeré možné variace zadaných rozměrů, spočte pro ně celkovou tuhost, index porušení a hmotnost. Dále je porovná se zadanými okrajovými podmínkami a hodnoty, které tyto podmínky splňují, zapíše do výsledného pole, které na závěr seřadí podle hmotnosti sady.

Algoritmus pro primární a sekundární sadu je mírně odlišný. Pro primární sadu musí při definovaném stlačení dosednout jednotlivé disky pružiny na sebe, kdežto u sekundární tato podmínka být splněna nemusí. Na Obr.22 je zobrazena úvodní část kódu pro návrh sekundární sady. Na základě vygenerovaných dat (Tab.12, Tab.13) byly zvoleny rozměry disků a sady, které jsou uvedené v Tab.14

Parametr	Podmínka	Popis		
m[kg]	min	Hmotnost		
$F_I[-]$	< 0,60	Index porušení		
$k[Nmm^{-1}]$	16 - 25	Tuhost sady		
d[mm]	48	Vnitřní průměr disku		
s[mm]	$s = h_0$	Stlačení		
n[-]	4 - 20	Počet jednotlivých disků v sadě		
t[mm]	0, 8 - 2, 0	Tloušťka disku		
st[mm]	18 - 20	Maximální stlačení sady		

Tab. 11: Okrajové podmínky primární sady

Tab. 12: Část vygenerovaných hodnot pro primární sadu

m	F_I	k	n	D	h_0	t	s_t
[kg]	[-]	$[\mathrm{Nmm^{-1}}]$	[-]	[mm]	[mm]	[mm]	[mm]
0,053	0,58	22,8	16	64	1,13	0,8	18,0
0,053	0,58	23,0	16	64	1,13	0,8	18,1
0,053	0,59	23,3	16	64	1,14	0,8	18,2
0,053	0,59	23,5	16	64	1,14	0,8	18,3
0,053	0,59	23,7	16	64	1,15	0,8	18,4
0,053	0,60	24,0	16	64	1,16	0,8	18,5
0,053	0,58	22,8	16	64	1,13	0,8	18,0
0,053	0,58	23,0	16	64	1,13	0,8	18,1
0,053	0,59	23,3	16	64	1,14	0,8	18,2
0,053	0,59	23,5	16	64	1,14	0,8	18,3
0,053	0,59	23,7	16	64	1,15	0,8	18,4
0,053	0,60	24,0	16	64	1,16	0,8	18,5
0,053	0,60	24,2	16	64	1,16	0,8	18,6

mhmotnost pružiny, F_I naměřený maximální index porušení, k tuhost pružiny, npočet disků v pružině, Dvnější průměr talíře, h_0 výška disku, t tloušťka talíře, s_t maximální stlačení pružiny

m	F_I	k	n	D	h_0	t
[kg]	[-]	$[\mathrm{Nmm^{-1}}]$	[-]	[mm]	[mm]	[mm]
0,273	0,87	79,1	32	64	1,21	2,2
0,273	0,87	79,0	32	64	1,23	2,2
0,273	0,86	$78,\!8$	32	64	1,25	2,2
0,273	0,86	$78,\! 6$	32	64	1,28	2,2
0,273	0,86	78,4	32	64	1,30	2,2
0,273	0,86	78,2	32	64	1,32	2,2
0,273	0,86	78,1	32	64	1,34	2,2
0,273	0,85	77,9	32	64	1,36	2,2
0,273	0,85	77,7	32	64	1,39	2,2
0,273	0,85	$77,\!6$	32	64	1,41	2,2
0,273	0,85	77,4	32	64	1,43	2,2
0,273	0,85	77,3	32	64	1,45	2,2
0,273	0,85	77,1	32	64	1,47	2,2
0,273	0,84	77,0	32	64	$1,\!50$	2,2
0,273	0,84	76,8	32	64	1,52	2,2
0,273	0,84	76,7	32	64	1,54	2,2
0,273	0,84	76,5	32	64	1,56	2,2

Tab. 13: Část vygenerovaných hodnot pro sekundární sadu

mhmotnost sady, F_I naměřený maximální index porušení, ktuhost sady, n počet disků v sadě, Dvnější průměr disku, h_0 výška disku, ttloušťka disku

Tab. 14: Zvolené rozměry sad

Sada	d	D	h_0	t	n
	[mm]	[mm]	[mm]	[mm]	[-]
primární	48	64	1,125	0,8	16
sekundární	48	64	1,3	2,2	32

dvnitřní průměr disku, Dvnější průměr disku, h_0 výška disku, ttloušťka disku, n počet disků v sadě

```
close all;
clear all;
clc;
%vstupni parametrv
rho=1750;
                  %hustota [kg/m^2] 1750 carbon
                  %vnitřní průměr pružiny [mm]
di=44;
do=60:1:70;
                 %rozmezí vnějšího průmeru (doporučené DO/DI 1.75-2.5)
n=6:2:50:
                   %počet pružin v serii [-]
hot=0.3:0.025:1.2;
                   %rozmezi poměru [ho/t]
t=1:0.2:3.5; %rozmezí tloušťka pružiny [mm]
st=25.4;
                     %požadované stlačení sady [mm]
%okrajové podmínky
fiLim=0.8 :
                      %limitní Failure index [/]
fiFilter=1:
                      읗
kmax=95;
                 %celková maximální tuhost pružiny [N/mm]
kmin=80;
                   %celková minimální tuhost pružiny [N/mm]
kFilterEnable=1;
                   %aktivace (1) způsobí záznam výsledků pouze ve zvoleném rozsahu tuhostí
                  %aktivace (1) vyfiltruje hodnoty kdy je požadované stlačení pružiny (st/n) vyšší něž (ho)
sFilterEnable=1:
```

Obr. 22: Ukázka definice vstupních parametrů a okrajových podmínek

4.2.3 Finální CAD návrh disků

Předběžný návrh disků byl vhodně doplněn o finální rozměry a tolerance. Tolerance rozměrů obou disků musí být navrženy tak, aby bylo možné disky složit do sady. Na Obr. 23 až Obr. 26 jsou zobrazeny rozměry disků. Kompletní výkresová dokumentace je přílohou této práce.

Vnitřní průměr disků byl navržen s ohledem na dostatečnou vůli s tělem tlumiče. Z tohoto důvodu by musel mít první a poslední disk umístěný na tlumiči atypický vnitřní průměr. Aby nebylo nutné vyrábět na každý tlumič dva disky se speciálními rozměry, byly do oblasti styku disků s tlumičem navrženy vymezovací kroužky z vysoce odolného technického plastu PA66~GF30 (Obr. 27).

Obr. 23: Disk primární sady s vnějším zámkem

Obr. 24: Disk primární sady s vnitřním zámkem

Obr. 25: Disk sekundární sady s vnějším zámkem

Obr. 26: Disk sekundární sady s vnitřním zámkem

5 Návrh technologie výroby

Výsledné talířové pružiny lze získat metodou laminování do formy, jejíž tvar odpovídá tvaru výsledného dílu. Z důvodu vysokého dynamického namáhání navržených pružin je vhodné volit metodu laminace v uzavřené formě, kde je výsledná kvalita (jak z pohledu mechanických vlastností, tak jakosti povrchu) dílu nejvyšší. Laminováním však není možné vyrobit finální díl bez nutnosti dalšího zásahu. Po laminaci je tedy nutné díl dohotovit (zbavit přídavků apod.). Celý výrobní proces je je znázorněn na Obr. 28.

Obr. 28: Postup výroby pružiny

5.1 Laminování

Obecně je laminování v RTP jednou z kritických fází výroby vozu. Na voze je více než 40 laminovaných součástí. Časově náročná je jak příprava a laminování dílů, tak samotný proces laminace v autoklávu, který trvá více než 4 hodiny. V případě laminace více součástí zároveň a poškození vakuovacího pytle jedné součásti, dojde k úniku podtlaku ze všech ostatních součástí, tudíž k jejich zničení a nemalé časové a finanční ztrátě. Se vzrůstajícím počtem forem paralelně umístěných do autoklávu se toto riziko nepřijatelně zvyšuje. Z tohoto důvodu je v RTP pravidlo, které definuje maximální počet dílů 3 na jeden cyklus laminace.

V případě, že by byla pro každou talířovou pružinu vyrobena separátní forma a při uvažování realistického scénáře 1 cyklus laminace denně a zohlednění výše uvedených pravidel, trvala by výroba všech talířových pružin potřebných pro vůz 64 dnů. To je nepřijatelně dlouhá doba a je tedy nutné navrhnout formu ve které bude zhotoven větší počet pružin současně.

5.2 Dohotovení

Pro přeměnu laminovaného dílu do finálního je potřeba odstranit přídavky, které vzniknou procesem laminace (Obr. 29). Tyto přídavky se nejčastěji odstraňují třís-

kovým obráběním, případně řezáním vodním paprskem. V prototypové výrobě, jakou se zabývá RTP, se přídavky odstraňují ručně pomocí modelářské brusky a řezných kotoučů přímo určených pro řezání uhlíkového kompozitu (výrobce *Perma-Grit* Obr. 30). Tento dosud používaný postup ovšem není vhodný pro výrobu většího množství kusů a to zejména pro svoji časovou náročnost a nízkou přesnost.

Frézování je hojně používanou metodou. Při této metodě je však výrazné riziko delaminace jednotlivých vrstev kompozitního materiálu (viz Obr. 31) a je tedy vhodné zvolit nástroje s optimalizovanou geometrií, (např. *SECO Jabro-Composite* která má tento problém eliminovat. Je nutné také zmínit že RTP nemá dosud žádnou zkušenost s frézováním kompozitních materiálů.

Řezání pomocí vodního paprsku je rychlá metoda, při které je možné vhodnými podmínkami eliminovat problém delaminace. Tato metoda je velkou mírou používána RTP pro výrobu deskových dílů z kompozitních materiálů. Jedná se tedy o ověřený postup.

Všechny zmíněné metody a jejich vlastnosti jsou uvedeny v Tab. 15.

Obr. 29: Vylaminovaný díl vs. finální díl

Obr. 30: Perma-grit 19 mm [7]

Na základě výše řečeného se jeví jako nejvhodnější metoda pro dokončení řezání vodním paprskem.

Obr. 31: Problém delaminace při frézování [8]

Metoda	Vysoký	Dosahovaná	Kvalita	RTP
	počet dílů	přesnost	obrobeného	zkušenosti
			povrchu	
Modelářská bruska	3	3	2	1

1

2

1

1

2

1

2

1

Tab. 15: Srovnání vhodnosti metod dohotovení dílu

Nižší číslo značí větší vhodnost použití

CNC Frézování Řezání vodním paprskem

6 Návrh formy a potřebných přípravků

Cílem bylo navrhnout veškeré díly potřebné pro výrobu pružin, tak aby mohla být výroba uskutečněna v zázemí RTP v maximální možné míře, případně pomocí technologií dostupných na ZČU a u spřízněných firem. Důraz byl tedy kladen na minimalizování nutnosti kooperace.

Strojní vybavení dostupné v zázemí RTP:

- sloupová vrtačka,
- soustruh hrotový SU32,
- frézka TOS FN 40,
- CNC frézka DMU 35 M,
- CNC obráběcí centrum MCV 750 A,
- robot Staubli RX130 osazen frézovacím vřetenem.

Ostatní dostupné technologie:

- galvanické povrchové úpravy (zinkování, eloxování),
- řezání vodním paprskem,
- řezání laserovým paprskem.

6.1 Návrh formy

6.1.1 Materiál formy

Vhodnými materiály pro výrobu forem jsou například dřevo, MDF desky, PUR pěny, laminát, umělé dřevo, ocel, hliníkové slitiny. Volba materiálu je závislá na počtu vyráběných dílů a typu technologie. Z důvodu nízké teplotní odolnosti dřeva a nízké pevnosti PUR pěny nelze tyto dva materiály použít pro laminaci v autoklávech. MDF desky a umělé dřevo jsou vhodné pro výrobu forem jednoduchých tvarů s počtem řádově jednotek kusů. Ocelové a hliníkové slitiny jsou vhodné pro velké serie a složité tvary.

Jako materiál pro výrobu formy byla zvolena hliníková slitina EN AW 6082, která disponuje dobrou obrobitelností, je vhodná k eloxování a v případě nutnosti opravy je tento materiál velmi dobře svařitelný. Srovnání materiálů pro výrobu formy je uvedeno v Tab. 16.

6.1.2 Základní koncepce formy

Pro urychlení výroby je vhodné navrhnout formu, pomocí které bude možné vyrobit více disků současně, v ideálním případě celou jednu potřebnou sadu. Finální forma musí být kompromisem mezi co možná největším počtem disků obsažených

Materiál	Možnost	Opracování	Náročnost	Životnost	RTP
	použití v		přípravy		zkušenosti
	autoklávu				
Dřevo	Ne	Snadné	Vysoká	Neznámá*	Ne
MDF	Ano	Snadné	Vysoká	Nízká	Ano
PUR pěna	Ne	Snadné	Vysoká	Neznámá*	Ne
Laminát	Ano	Obtížné	Střední	Vysoká	Ano
Umělé dřevo	Ano	Snadné	Střední	Nízká	Ano
Ocel	Ano	Obtížné	Střední	Vysoká	Ano
Hliníkové slitiny	Ano	Středně	Nízká	Vysoká	Ano
		obtížné			

Tab. 16: Srovnání materiálů pro výrobu forem

Náročností přípravy se rozumí dohotovení po obrábění: broušení, lakování apod.

* Vzhledem k nulovým zkušenostem s materiálem není známá jeho životnost při použití pro výrobu kompozitních dílů

ve formě, přiměřenou cenou polotovaru a přiměřenou časovou náročností výroby formy. Limitou rozměru formy se v tomto případě jeví pracovní rozměr obráběcího stroje na kterém bude výroba formy probíhat. CNC frézka DMU 35 M disponuje maximálním rozjezdem os x/y 350 mm/240 mm, CNC obráběcí centrum MCV 70 A disponuje rozjezdem os x/y 750 mm/500 mm. Pro výrobu je tedy vhodné použít MCV 750 A a pro bezproblémové obrobení celé formy je nutné zvolit maximální rozměr formy menší než jsou maximální rozjezdy os obráběcího stroje. Maximální rozměry formy tedy byly omezeny na 400 mm x 600 mm.

Schématická koncepce formy je znázorněna na Obr. 32. Forma se skládá ze dvou částí, které jsou od okolního prostředí utěsněny vhodným těsnícím elementem. Jako nejvhodnější těsnící element se jeví použití těsnění typu o-kroužek. Dutina formy, do které se vkládají vrstvy tkaniny je dokola oddělena kanálkem, který má funkci akumulace přebytečné pryskyřice, která se tlakem vytlačí z preimpregnované tkaniny. Tento kanálek je pomocí adaptéru a flexibilní hadice připojen k vývěvě. Vývěva je součástí autoklávu a má za cíl zajistit podtlak uvnitř formy.

Aby bylo možné zhotovit více disků naráz a bylo usnadněno dohotovení dílů, je vhodné zhotovit dutinu formy jako "plato". Tj. výsledným laminovaným dílem bude deska, která bude obsahovat množství oblastí, ze kterých se následně pomocí vodního paprsku vyřežou disky pružiny o finálních rozměrech. Na desce musí vzniknout tvary, za které bude možné upnout desku do pracovního prostoru řezacího stroje a zároveň je potřeba zajistit požadovanou polohu desky Obr. 33.

Obr. 32: Schématické znázornění formy

Obr. 33: Schématické znázornění desky s více disky

6.1.3 Návrh prototypové formy

Celkem byly navrženy dvě prototypové formy pro primární disky a sekundární disky. Formy se od sebe liší pouze tvarem vnitřní dutiny pro laminovaný díl. Základní tvary a rozměry byly navrženy totožné. Výsledný návrh prototypové formy je zobrazen na Obr. 34.

Každá forma se skládá ze dvou částí o základních rozměrech $210 \,\mathrm{mm} \ge 130 \,\mathrm{mm}$. Po obvodu formy jsou umístěny šrouby pro vyvození předběžného zatížení a zajištění přitlačení těsnících ploch k o-kroužku. Pro zajištění vzájemné polohy obou částí jsou použity dva válcové kolíky DIN 6325 8 x 16.

Kanálek a dutina pro přebytečnou pryskyřici jsou navrženy tak, že jejich objem je alespoň 40 % z objemu vylaminované desky. Tento objem je navržen s velkou bezpečností. V případě, že by unikla pryskyřice z formy, došlo by s velkou pravdě-podobností ke zničení ventilů, vedení a vývěvy umístěných na autoklávu.

O-kroužek pro těsnění byl zvolen z materiálu NBR70 o průměru 5 mm. Drážka pro o-kroužek byla rozměrově navržena dle doporučených rozměrů v katalogu výrobce [15].

Adaptér pro připojení k vývěvě je vyroben s vnitřním závitem 1/4 NPT pro jeho připojení k formě je použita redukce. Ve formě je tedy zhotoven vnitřní závit M14x1,5.

Ve spodní části formy, ve středu každého disku je navrtán důlek, do kterého zateče přebytečná pryskyřice. Vzniklý výstupek by měl sloužit pro ustavení vylaminovaného dílu na řezacím stroji (Obr. 34). Vzniklý vylaminovaný díl je zobrazen na Obr. 36.

Výrobní výkresy prototypových forem jsou přílohou této práce.

Obr. 34: Výsledný návrh prototypové formy

Obr. 35: Navrtání důlku v prototypové formě pro přesné ustavení vylaminovaného dílu na řezacím stroji

Obr. 36: Výsledný vylaminovaný díl

6.1.4 Návrh finálních forem

Návrh finálních forem vychází z návrhu forem prototypových. Zachovány byly všechny zásadní konstrukční prvky ať už se jedná o průměr a materiál zvoleného těsnícího okroužku, tvar drážky pro odvod přebytečné pryskyřice, připojovací rozměry k vývěvě autoklávu, minimální objem kanálku a dutiny na zadržení přebytečné pryskyřice a pod.

Při návrhu byl zohledněn počet disků potřebných pro jednu sadu pružiny (viz str. 33, Tab. 14). Forma pro disky primární sady je tedy navržena na celkový počet disků 19. Forma pro disky sekundární sady na počet 33 disků. Vnější rozměry formy pro primární sadu jsou 400 mm x 364 mm, pro sekundární 400 mm x 600 mm a splňují tedy požadavky specifikované v kapitole 6.1.2.

V dutině formy jsou vytvořeny dva prolisy, které mají zajistit přesné uložení vylaminovaného dílu do přípravku v řezacím stroji. První prolis je kruhového tvaru a má zajistit přesné ustavení v nulovém bodě přípravku. Druhý prolis má tvar zaoblené drážky, ta již plní pouze funkci správného natočení na přípravku a zajišťuje možnost tepelné dilatace vylaminovaného dílu oproti upínacímu přípravku. Vizualizaci forem

je možné vidět na Obr. 37.

Obr. 38: Výsledný návrh finální formy pro sekundární sadu

Prolis pro správné natočení v přípravku

6.2 Návrh přípravku pro řezání vodním paprskem

Do řezacího stroje se běžné polotovary upínají na ocelový rošt pomocí upínek. Tímto způsobem by bylo možné upnout i vylaminovaný díl, avšak při založení nového dílu by bylo nutné znovu seřídit jeho polohu, což při řezání většího počtu dílů přináší nemalou časovou zátěž. Z tohoto důvodu byl navržen upínací přípravek, který zajistí při vložení nového dílu jeho přesnou polohu (Obr. 39 a Obr. 40).

Základna přípravku je navržena jako výpalek z ocelového plechu tl. 8 mm, ve kterém jsou zhotoveny závitové otvory pro upínky a otvory do kterých se vloží čepy, které přesně zapadnou do prolisu vytvořeného v dílu, a tím zajistí jeho přesnou polohu. V základně jsou pod místem řezu vodního paprsku vytvořeny dutiny, tak, aby jimi mohl vodní paprsek volně projít a nedocházelo tak k řezání do přípravku.

Seřizování polohy a orientace dílu na stroji probíhá pomocí kužele, který se nasadí na řezací trysku a najede se s ním na místo pomyslného nulového bodu dílu. Z tohoto důvodu je možné do přípravku vložit kuželový čep, proti kterému se najede kuželem umístěným ve stroji (Obr. 41).

Na obrázcích níže je vyobrazen přípravek pro primární sadu disků. Přípravek pro sekundární sadu je obdobné konstrukce, přičemž zohledňuje tvar a rozmístění disků ve formě pro sekundární sadu.

Obr. 39: Přípravek pro řezání vodním paprskem - primární sada

Obr. 40: Přípravek pro řezání vodním paprskem se založeným dílem - primární sada

Obr. 41: Detail čepu pro přesné uložení dílu v přípravku

7 Výroba prototypových forem

7.1 Technologie výroby

Výroba prototypových forem probíhala kompletně na obráběcím centru MCV 750A (Obr. 44). Obrábění všech forem probíhalo dle obdobného postupu.

První strana:

- Polotovar upnutý do svěráku za 3 mm, nulový bod umístěný na horním rohu polotovaru (Obr. 42).
- Obrobena kompletně 1. strana, mimo obvodu. Obvod obrobený do hloubky, při které nedojde ke kolizi se svěrákem.

Druhá strana:

- Polotovar upnutý do svěráku za 3 mm, nulový bod umístěný na horním rohu polotovaru (Obr. 43).
- Obroben obvod.
- Sražení všech hran.
- Díl značen dle požadavcích na výkresu.

Obráběcí program byl vytvořen v CAM softwaru SolidCAM. Seřizovací listy pro formu pro primární disky jsou přílohou této práce. Seřizovací listy pro formu pro sekundární disky jsou totožné se seřizovacími listy pro primární disky. Simulovaný čas obrábění pro horní část formy (CFDS06-01-01-002) byl 49 min. Simulovaný čas obrábění pro spodní část formy (CFDS06-01-01-001) byl 57 min.

Obr. 42: Umístění prvního nulového bodu

Obr. 43: Umístění druhého nulového bodu

Obr. 44: Obrobená forma upnutá v obráběcím stroji

7.2 Rozměrová kontrola

Rozměrová kontrola vyrobených forem byla zaměřena na kontrolu tvarů, které mají přímý vliv na finální tvar disku pružiny. Jedná se tedy o střední část forem, tato část byla naskenována pomocí 3D skeneru ATOS Triple Scan. Formy bylo nutné před samotným skenováním opatřit nástřikem oxidu titanu. Ten zajišťuje zmatnění skenovaného dílu a zároveň poskytuje ze všech ostatních možných nástřiků nejmenší tloušťku vrstvy (0.010 mm až 0.013 mm) a dosahuje nejkonstantnější tloušťky [16].

Porovnání naskenovaných forem s navrženým modelem formy bylo provedeno v softwaru GOM Inspect. Výsledné porovnání je zobrazeno na Obr. 45 až Obr. 47. Při

porovnání nebyla zohledněna vrstva nástřiku oxidu titanu.

Při vlastním skenování došlo k poškození skenu u spodní části formy pro primární pružinu (CFDS06-01-01-001). Z časových důvodů již nebylo možné skenování opakovat, a tak zde porovnání této části formy není uvedeno.

Při porovnání naměřených odchylek a předepsaných dovolených odchylek na výrobních výkresech lze konstatovat, že všechny posuzované vyrobené části jsou vyrobené v předepsané odchylce tvaru plochy 0.05 mm (viz výkresy v příloze práce).

Obr. 45: Porovnání vyrobené spodní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-001)

Obr. 46: Porovnání vyrobené horní části formy pro sekundární sadu s CAD modelem (CFDS06-01-00-002)

Obr. 47: Porovnání vyrobené horní části formy pro primární sadu s CAD modelem (CFDS06-01-01-002)

8 Výroba prototypových disků a testování

Výroba dílů je složena ze dvou dílčích částí. První část je výroba laminátového polotovaru ze kterého jsou následně vyřezány prototypové disky. Ty byly následně podrobeny testům za účelem zjištění jejich charakteristiky.

8.1 Laminace

Samotný proces laminace nejlépe vystihuje vývojový diagram zobrazený na Obr. 48. Aplikace separačního přípravku *LOCTITE 770-NC Frekote* se provádí proto, aby nedošlo ke spojení pryskyřice se samotnou formou. Bez použití separátoru by tedy nebylo možné vyjmout díl z formy. Celkem se provádí 7 nátěrů separátoru s časovým odstupem 7 min.

Po nanesení separátoru (Obr. 51) a zhotovení nástřihů (Obr. 50) bylo možné do formy vložit prepregové (Obr. 52) nástřihy v přesně definovaném pořadí (viz přiložený výkres CFDS06-02-03-000). Po vložení prepregu následovalo vložení filcu do dutiny v horní části formy, který zadržuje přebytečnou pryskyřici.

Dále bylo nutné zhotovit těsnící o-kroužek, v tomto rozměru není běžně dostupný. Polotovar o-kroužku je nejdříve zaříznut na požadovanou délku a následně slepen pomocí lepidla *LOCTITE 4850* (Obr. 49). Po vložení o-kroužku do formy a její kompletaci je nutné ověřit její těsnost. To je provede po vložení a připojení forem do autoklávu (Obr. 53). V manuálním režimu se provede spuštění vývěvy a sleduje se vytvořený podtlak uvnitř forem. Po této zkoušce je možné spustit vytvrzovací proces dle stanovené receptury. Průběh během vytvrzení je možné sledovat na kontrolní obrazovce (Obr. 54). Záznam z celého procesu je zobrazen ve Grafu. 12.

Obr. 48: Vývojový diagram laminace

Obr. 49: Výroba o-kroužku

Obr. 50: Výroba nástřihů

Obr. 51: Naseparované formy

Obr. 52: Kladení jednotlivých vrstev prepregu

Obr. 53: Formy umístěné v autoklávu

Obr. 54: Kontrolní obrazovka autoklávu

Graf 12: Průběh tlaku a teploty v průběhu vytvrzení

Obr. 55: Pohled na vytvrzený díl ve formě

8.2 Dohotovení

Po vyndání dílů z forem na jejich okrajích zůstala vytvrzená přebytečná pryskyřice (Obr. 56, Obr. 57). Tu bylo nutné před řezáním vodním paprskem odstranit, neboť by způsobovala problémy s upínáním do pracovního prostoru řezacího stroje. Odstranění bylo provedeno pomocí úhlové brusky (Obr. 58, Obr. 59).

Upnutí do pracovního prostoru bylo provedeno pomocí upínek (Obr. 60). Vyřezané disky jsou zobrazeny na Obr. 61 a Obr. 62.

Obr. 56: Vylaminovaný polotovar pro disky primární sady

Obr. 57: Vylaminovaný polotovar pro disky sekundární sady

Obr. 58: Polotovar pro disky primární sady zbavený přebytečné pryskyřice

Obr. 59: Polotovar pro disky sekundární sady zbavený přebytečné pryskyřice

Obr. 60: Polotovar pro disky umístěný v řezacím stroji

Obr. 61: Vyřezané disky primární sady

Obr. 62: Vyřezané disky sekundární sady

8.3 Testování

8.3.1 Provedené testy

Na zhotovených discích bylo provedeno měření jejich tloušťky, měření jejich charakteristiky a byla vážena jejich hmotnost.

Měření tloušťky bylo provedeno na rovinné ploše laminovaného polotvaru (Obr. 63) pomocí třmenového mikrometru. Výsledné naměřené hodnoty jsou uvedeny v Tab. 17.

Měření charakteristiky bylo provedeno na stroji Zwick/Roell Z250 s laserovým extenzometrem. Umístění disků do stroje a okrajové podmínky měření jsou patrné na Obr. 65 - Obr. 67 a na přiloženém výkrese CFDS06-02-01-000. Pro vyloučení chyby měření bylo každé měření charakteristiky bylo provedeno celkem 2x.

Vážení bylo provedeno na analytických váhách s přesností měření 0.0001 g. Naměřené hodnoty jsou uvedeny v Tabulce 18.

Obr. 63: Body měření tloušťky

Obr. 64: Měření tuhosti - disk s vnějším zámkem

Obr. 65: Měření tuhosti - disk s vnitřním zámkem

Obr. 66: Měření charakteristiky disků

Obr. 67: Měření charakteristiky disků - detail

8.3.2 Diskuze výsledků

Při porovnání naměřené tloušťky disků s navrženou lze konstatovat, že odchylka tloušťky u všech vyrobených disků nepřesahuje 0.05 mm. Tuto odchylku lze považovat za přijatelnou.

Na základě zvážených hmotností disků lze predikovat hmotnost primární sady 55 g a hmotnost sekundární sady 264 g. Tyto hmotnosti odpovídají vypočteným hmotnostem při rozměrovém návrhu (Tabulka. 12 a Tabulka. 13).

Z reportu měření charakteristik disků (Obr. 68) a grafů 13 až 16 jsou jasně patrné tyto závěry:

- žádný z měřených vzorků nesplňuje minimální stlačení specifikované v kapitole 4.2.2 (str. 31),
- disky primární sady vykazují rozdílnou tuhost (v lineární oblasti) o více než 12%, a rozdíl v reakční síle při maximálním stlačení je přibližně 33%,
- charakteristika disků primární sady je výrazně degresivní,
- po přepočtu naměřené tuhosti sekundárního disku s vnějším zámkem na tuhost celé sady ($89 \,\mathrm{N}\,\mathrm{mm}^{-1}$) tato hodnota odpovídá požadované tuhosti $80-90 \,\mathrm{N}\,\mathrm{mm}^{-1}$ specifikované v kapitole 4.2.2 (str. 31),
- po přepočtu naměřené tuhosti sekundárního disku s vnitřním zámkem na tuhost celé sady $(93 \,\mathrm{N}\,\mathrm{mm}^{-1})$ tato hodnota neodpovídá požadované tuhosti 80– $90 \,\mathrm{N}\,\mathrm{mm}^{-1}$ specifikované v kapitole 4.2.2 (str. 31).

Při podrobnějším zkoumání bylo zjištěno několik pochybení během návrhu disků a forem.

Při CAD návrhu disků s vnitřním zámkem bylo využito provázání s modelem disku s vnějším zámkem za pomoci *Interpart Expressions*. V průběhu návrhu ovšem došlo ke změně jedné proměnné, která již nebyla navázána. U výroby obou forem je z toho důvodu disk s vnitřním zámkem vyroben se špatnou výškou h_0 . Primární disk byl vyroben s výškou 1.05 mm místo navržených 1.125 mm, Sekundární disk byl vyroben s výškou 1.05 mm místo navržených 1.3 mm.

Navržené disky primární sady mají poměr $h_0/t = 1, 41$, tento poměr vede k velmi degresivní charakteristice a může způsobit nestabilitu pružiny (viz str. 5).

Disk	t_1	t_2	t_3	\overline{t}	σ_t
	[mm]	[mm]	[mm]	[mm]	[mm]
Sekundární s vnějším zámkem	2,27	$2,\!25$	2,22	2,247	0,021
Sekundární s vnitřním zámkem	2,27	2,25	2,25	2,257	0,009
Primární s vnějším zámkem	0,75	0,76	0,78	0,763	0,012
Primární s vnitřním zámkem	0,75	0,75	0,76	0,753	0,005

Tab. 17: Měření tloušťky disků

 \overline{t} aritmetický průměr, σ_t směrodatná odchylka

Tab. 18: Hmotnost disků

Vzorek	Hmotnost [g]
01	8,585
02	7,947
03	3,565
04	3,299

Tab. 19: Označení vzorků

Disk	Označení vzorku
Sekundární s vnějším zámkem	01
Sekundární s vnitřním zámkem	02
Primární s vnějším zámkem	03
Primární s vnitřním zámkem	04

Test report

Customer : Type and designation :	С	arbo	n Spring	Tester Machine data	:	Z250
Pre-load Speed, Youngs Modulus Test speed		50 1 1	N mm/min mm/min			

Test results:

	Specimen ID	Emod	F _{max}	dL at F _{max}	Notes
No.		N/mm	N	mm	
1	01+extens.	2850	2630	1,1	E(300-2000N)
2	01+extens.	2850	2620	1,1	E(300-2000N)
3	02+extens.	2980	2370	0,8	E(300-2000N)
4	02+extens.	2980	2350	0,8	E(300-2000N)
5	03+extens.	463	237	0,8	E(60-160N)
6	03+extens.	473	237	0,7	E(60-160N)
7	04+extens.	408	357	0,8	E(60-160N)
8	04+extens.	405	356	0,8	E(60-160N)

Obr. 68: Měření charakteristiky disků - report

Graf 13: Průběh stlačení sekundárního disku s vnějším zámkem

Graf 14: Průběh stlačení sekundárního disku s vnitřním zámkem

Graf 15: Průběh stlačení primárního disku s vnějším zámkem

Graf 16: Průběh stlačení primárního disku s vnitřním zámkem

9 Technicko - ekonomické hodnocení

Provedené ekonomické hodnocení vyčísluje pouze přibližné vlastní náklady na výrobu prototypových forem a testovaných dílů. V kalkulaci nejsou zahrnuty náklady na vlastní návrh forem a dílu a náklady na provedené testy. Dále kalkulace neobsahuje správní a odbytovou režii.

Ceny jednotlivých nakupovaných položek byly zjištěny na základě reálných nákupů dílů. Časy jednotlivých operací byli měřeny při výrobě. Hodinové sazby jednotlivých operací byly pouze odhadnuty na základě průzkumu ceny u dodavatelů této služby na trhu. V Tabulce 20 jsou uvedeny jednotlivé položky a operace potřebné pro výrobu prototypových forem. V Tabulce 21 jsou uvedeny všechny operace a materiál spojený se samotnou laminací a dohotovením prototypových disků.

Celkové náklady na výrobu prototypových forem byly stanoveny na 9181,52 Kč. Je třeba brát v potaz, že formy je možné použít opakovaně, jedná se tedy o náklady fixní. Zatímco náklady spojené s výrobou disků jsou variabilní a v případě opakované výroby úměrně narůstají s počtem vyráběných kusů (za předpokladu výroby stejné dávky). Vypočtené náklady na výrobu disků se vztahují k dávce 4 ks.

Operace/ Nakupovaná položka	ks	hod/ks	Cena	Cena $[K\check{c}]/k\epsilon$	Cena $[K\check{c}]$	
Delete EN					Dez DI II	
Polotovar EN	2	-	_	157	314	
AW 6082 140x220x15						
Polotovar EN	0			962	526	
AW 6082 140x220x25		-	-	205	J20	
Šroub M10x25	8	-	-	2,44	19,52	
O-kroužek	2	-	-	45	90	
Válcový kolík	4	-	-	2,5	10	
Redukce M14x1,5 - $1/4$ NPT	2	-	-	45	90	
Obrábění forem	4	1,5	800	-	4800	
Tvorba programu obrábění	4	1,35	680	-	3672	
Ruční dohotovení	1	1	500	-	500	
Celkové náklady	-	-	-	-	$9181,\!52$	

Tab. 20: Náklady na výrobu prototypových forem

On one og /Matariál	Množatví	had	Cena	Jednotková cena	Cena $[K\check{c}]$
Operace/Material	MHOZSUVI	noa	$[K\check{c}]/hod$	$[K\check{\mathrm{c}}]$	bez DPH
Nástřihy	$0.25\mathrm{m}^2$	-	-	729	$182,\!25$
Filc	$0.02\mathrm{m}^2$	-	-	21,2	0,424
Separátor	0.051	-	-	1513	$75,\!65$
Laminace	-	2	500	-	1000
Vytvrzení v autoklávu	-	5,7	4000	-	22800
Příprava dílů pro řezání		0.5	500		250
vodním paprskem		0,5	500	-	200
Řezání vodním paprskem	-	$0,\!5$	1200	-	600
Celkové náklady	-	-	-	-	24908,32

Tab. 21: Náklady na výrobu prototypových disků

Ceny se vztahují k výrobě celkem 4 prototypových disků

V této fázi bohužel není možné stanovit náklady na výrobu kompletních sad disků pro jeden tlumič a porovnat je s cenou dosavadního řešení odpružení podvozku.

Lze ale předpokládat, že náklady na výrobu finálních forem budou vzhledem k jejich rozměrům několikanásobně vyšší než náklady na výrobu prototypových. Dále by bylo nutné stanovit náklady na výrobu upínacího přípravku. Náklady na výrobu disků z majoritní části představují náklady spojené s provozem autoklávu. Zde lze tedy očekávat snížení nákladů na výrobu jednoho kusu disku a to z důvodu výroby většího počtu disků na jeden cyklus vytvrzení v autoklávu.

10 Závěr

Cílem práce bylo navrhnout kompozitní talířovou pružinu, kterou by bylo možné použít pro odpružení podvozku studentské formule včetně forem, přípravků a technologie pro její následnou výrobu. Důraz byl kladen na minimalizaci hmotnosti tohoto řešení.

Teoretická část práce se zabývá rozborem, charakteristikou talířových pružin a kompozitních dílů.

Před vlastním návrhem pružin byl proveden rozbor stavu odpružení podvozku vozu UWB05 a analýza jízdních dat získaných v průběhu minulé závodní sezóny. Zjištěné údaje byly hlavním východiskem pro specifikaci okrajových podmínek potřebných pro samotný návrh pružiny.

Na základě definovaných okrajových podmínek byl proveden návrh rozměrových parametrů za pomoci numerických simulací a programu napsaného v prostředí Matlab. Podle navržených rozměrů jednotlivých disků byly vytvořeny CAD modely forem a potřebných přípravků pro jejich následnou výrobu.

Pro navržené prototypové formy byla stanovena technologie výroby, následně byla výroba realizována a to včetně výroby prototypových disků pružiny. Vyrobené formy byly podrobeny rozměrové kontrole a na vyrobených discích byly zkoumány jejich základní charakteristiky, a ty následně porovnány s okrajovými podmínkami specifikovanými před samotným návrhem.

Závěrečná část práce byla věnována technicko-ekonomickému hodnocení. Byla zde provedena kalkulace nákladů spojených s výrobou prototypových forem a výrobou prototypových disků.

Při analýze naměřených charakteristik byla zjištěna pochybení při návrhu forem a disků, která by měla přímý vliv na funkčnost výsledné pružiny. Z tohoto důvodu je potřeba před výrobou finálních forem, která již není předmětem této práce, provést korekci rozměrových parametrů disků a případně provést výrobu prototypových disků na základě navržených korekcí.

Literatura

- [1] Josh Winkler. Composite Spring Capabilities, 2018. URL: https://www. mw-ind.com/composite-spring-capabilities/.
- [2] Mitcalc Pružiny vzorce, December 2018. URL: http://www.mitcalc.com/doc/ springs/help/cz/springstxt.htm.
- [3] Pre-consolidated, multiaxial, thermoplastic composite structures, 2018. URL: https://www.compositesworld.com/.
- [4] Ing Jan Krystek. PEVNOSTNÍ KRITÉRIA PRO KOMPOZITNÍ MATERI-ÁLY, 2012.
- Havel Composites technologie jejich popis a schémata, 2018.
 URL: https://www.havel-composites.com/clanky/4-Technologie/ 76-Technologie-jejich-popis-a-schemata.html.
- [6] Sanjay Mazumdar. Composites Manufacturing: Materials, Product, and Process Engineering. CRC Press, December 2001. Google-Books-ID: UfrO7pIo3H0C.
- [7] Perma-Grit 19mm rotary tungsten carbide cutting disc with arbor Easy Composites. URL: https://www.easycomposites.co.uk/#!/tools-equipment-and-supplies/perma-grit-tools/19mm-rotary-disc-with-arbor.html.
- [8] delamination-end-mill.jpg (480×480). URL: https://
 www.harveyperformance.com/wp-content/uploads/2017/09/
 delamination-end-mill.jpg.
- [9] Dalibor Vlček. Technická dokumentace částí vyrobených z kompozitních materiálů. Bakalářská práce, VUT, BRNO, 2011.
- [10] Vladislav Laš. Mechanika kompozitních materiálů 1 Úvod do modelován v mechanice, 2006.
- [11] C. K. H. Dharan and Jesse A. Bauman. Composite disc springs. Composites Part A: Applied Science and Manufacturing, 38(12):2511-2516, December 2007. URL: http://www.sciencedirect.com/science/article/pii/ S1359835X07001406, doi:10.1016/j.compositesa.2007.08.008.
- [12] Zdeněk Kořínek. Kompozity, 2018. URL: https://kompozity.webnode.cz/.
- [13] Jan Vrbka. Mechanika kompozitů, 2008. URL: https://www.vutbr.cz/www_ base/priloha.php?dpid=83340.

- [14] J. Schijve. Fatigue of Structures and Materials. Springer Science & Business Media, December 2008. Google-Books-ID: PFsJhYgvOG8C.
- [15] Rubena. Těsnící prvky, 2015. URL: https://www.rubena.eu/underwood/ download/files/tesnici-prvky_2015.pdf.
- [16] Barbora Levínská. Vliv zmatňujících nástřiků na přesnost optické 3D digitalizace. Diplomová práce, Technická univerzita v Liberci, Liberce, 2017.
- [17] VUT v Brně, Brno. Úprava, odevzdáváníííí a zveřejňování vysokoškolských kvalifikačních prací na VUT v Brně, 2009. Směrnice rektora č.2/2009. URL: https://www.vutbr.cz/uredni-deska/ vnitrni-predpisy-a-dokumenty/smernice-rektora-f34920/.
- [18] P. Boldiš. Bibliografické citace dokumentů podle ČSN ISO 690 a ČSN iso 690-2.
 [online], 11 2004. URL: http://www.boldis.cz/citace/citace.html.
- [19] Zdeněk Smékal. Aktuální trendy architektury signálových procesorů. Sdělovací technika, 2002(4,5):3–6,16–18, 2002.
- [20] J. Uhlíř and P. Sovka. Číslicové zpracování signálů. Vydavatelství ČVUT, Praha, 1 edition, 1995.
- [21] J. Psutka, L. Müller, J. Matoušek, and V. Radová. *Mluvíme s počítačem česky*. Academia, Praha, 1 edition, 2006.
- [22] Martin Plšek. Extrakce řečového signálu z hluku pozadí ve spektrální oblasti. PhD thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2004.
- [23] Pavel Rajmic. Method for real-time signal processing via wavelet transform. In Proceedings of the 3th International Conference on Non-Linear Speech Processing, pages 214–223, Barcelona, 2005. Escola Universitaria Politecnica de Mataró.
- [24] Spectrum Digital. TMS320C6416T DSK: Technical Reference, November 2004. URL: http://c6000.spectrumdigital.com/dsk6416/V3/docs/ dsk6416_TechRef.pdf.
- [25] Texas Instruments Inc. TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide, November 2006. spru234c.
- [26] A. J. Coulson and R. G. Vaughan. Improvement in microphone performance through using a microphone array. Technical report, Industrial Research Ltd, June 1993.

Seznam příloh

Příloha č. 1 - Seřizovací list pro CFDS06-01-00-001 a CFDS06-01-01-001 Příloha č. 2 - Seřizovací list pro CFDS06-01-00-002 a CFDS06-01-01-002 Příloha č. 3 - Výkresová dokumentace

PŘÍLOHA č. 1

Seřizovací list pro CFDS06-01-00-001 a CFDS06-01-01-001

A			Nastavení pro	ojektu pro:			
Solid The Loaders in In			M0!	5			
Jednotky	mm						
Typ obrobku	Frézování						
CNC-řízení	MCV_750_ZC	.U					
Čísla programu	1						
Subroutine number	1						
Adaptér nástroje	ISO40						
Obráběný materiál	EN AW 6082						
Operace	34					\mathbf{O}	
číslo výkresu	CFDS06-01-00)-001 / C	FDS06-01-01-001				
						\checkmark	
	<u> </u>						
Velikost polotovaru	X·220 V·1/10 7	··15					
Model	N.220 1.140 2				Λςνη		
Adrosář	D. (SynologyD			105 (1005.5LD)	43101		
Auresui Doznámky k obrohku		יהעון שעווי					
Νάτον ητοίρκτα	M05						
X min		/	Y min	V ma	v	7 min	7 max
-55	245		-131 5	149 1	98	-23	10 201
	2.5		191.9	1 17.1	Celkový čas	:	0:30:00

T1	Popis nástroje:	fr50			
Čelní fréza - ID:	1		D=50 AD=32 OHL=40 TD=50 SL=30 CL=20 TL=60	R=0 A=0 H=100	Počet zubů: 4 Cutting time: 0:02:35 mm
T3-Spindle-1A	Popis nástroje:	vrt_m10			
Vrták - ID:			D=8.5 AD=8.5 OHL=60 SL=30 CL=24 TL=80	A=118 H=100	Počet zubů: 1 Cutting time: 0:00:00 mm
T4-Spindle-1A	Popis nástroje:	sr6			
Srážeč - ID.			D=6 AD=10 OHL=40 SL=20 CL=10 TL=60	A=90 H=100	Počet zubů: 1 Cutting time: 0:05:17 mm

T5-Spindle-1B	Popis nástroje:	fr6			
			D=6 AD=6 OHL=60 SL=30	SD=6	SA=0 Počet zubů: 3
Válcová fréza - ID:			TL=80	H=100	mm
T6-Spindle-1B	Popis nástroje:	fr4			
Válcová fréza - ID:			D=4 AD=4 OHL=60 SL=30 CL=24 TL=80	SD=4 H=100	SA=0 Počet zubů: 3 Cutting time: 0:04:33 mm
T7-Spindle-1B	Popis nástroje:	fr6_05r			
Toroidní fréza - JD:			D=6 AD=6 OHL=60 SL=30 CL=24 TL=80	R=0.5 SD=6 H=100	SA=0 Počet zubů: 3 Cutting time: 0:01:32
T8-Spindle-1B	Popis nástroje:	fr5r			
Kulová fréza - JD:			D=5 AD=5 OHL=60 SL=30 CL=24 TL=80	R=2.5	SA=0 Počet zubů: 2 Cutting time: 0:00:00 mm
T9-Spindle-1B	Popis nástroje:	fr4r			
		SD SA SL SL CL	D=4 AD=4 OHL=60 SL=30 CL=24	R=2 SD=4	SA=0 Počet zubů: 2 Cutting time: 0:08:01
Kulová fréza - ID:			TL=80	H=100	mm
T11-Spindle-1B	Popis nástroje:	vrt_8H7	-		
Vrták - ID:			D=7.8 AD=7.8 OHL=60 SL=30 CL=24 TL=80	A=118 H=100	Počet zubů: 1 Cutting time: 0:00:24 mm

T12-Spir	ndle-1B	Popis	s nástroje:	8H7						
				л Г С		D=8 AD=8 OHL=55 TD=2 CL=25	5	F ChL=2 Cu	Počet zubů	0:00:18
Výstružník	:- ID:			+		TL=75	H=10	0		mm
T13-Spir	ndle-1B	Popis	s nástroje:	M10						
						D=10 AD=8 OHL=40 TD=8 CL=17)	F ChL=2 Cu	Počet zubů Stoupá Itting time:	: 1 ní=1.5 mm 0:01:01
Závitník -	ID:				D	TL=60	H=10	0		mm
T20-Spir	ndle-1A	Popis	s nástroje:	navr	10					
				TL SL	AD D OHL	D=10 AD=10 OHL=40	A=90)	F	Počet zubů	: 1
Středící vrták - ID:				SL=30 CL=5 TL=60	H=10	Cu 0	tting time:	0:00:12 mm		
T22-Spir	ndle-1A	Popis	s nástroje:	fr16						
Válcová fro	éza - ID:			TL SA		D=16 AD=16 OHL=60 SL=30 CL=24 TL=80) SD=1 H=10	SA=0 F 6 Cu 0	Počet zubů Itting time:	: 4 0:02:27 <i>mm</i>
					Nézavian	(T				
Index	Čís	Nul. Boo lo nástr	d oje	Otá	čky Dok.	Posuv >	(Y/Posuv Chlazení r	Posuv Z/Posuv p iástroje	oro Do	Čas
	X mi	in	X ma	ix	Y min		Y max	Z min		Z max
	Celo - (Č	elní fréz	zování) :	A-	74 220		05	0.025		0.02.25
1	NUIOVY	000 1 (1	- Polona)	47	/1.239	0	.05	0.025		0:02:35
	-55		245		28.75		125	0		3
2	obrys_hrubuje - (iMachining) Nulový bod 1 (1- Poloha) 2		g) : Ehlazení	8000 vřetene/hlav	2! /y:Kapalina	581	6000		0:01:11	
	-5 98	39	226 3	33	-6 215	<u> </u>	149,198	-9 7	<u> </u>	2
	obrys_d	okoncuj	e - (Kontura) :	0.210					-
3	Nulový l	ood 1 (1	- Poloha)	ہ Chlazení	8000 vřetene/hlav	64 vy:Kapalina	400	300		0:01:16
	17	6	220	2	_17.6		1/18	-10		2

	drazka tesneni hrubuje - (Kontura) :										
	Nulový bod 1 (1		150.796 1000 300 0:03:2								
4	5-Spindle-1B	Chlazer	Chlazení vřetene/hlavy:Kapalina								
					1 - 1-	-					
	12.65	207.	35	12.65		127.35	-4	2			
	drazka_tesneni	dokoncuje	_levy_bo	ok - (Kontura)	:						
	Nulový bod 1 (1	- Poloha)	Γ	8000		0.042	0.013	0:00:51			
5	7-Spindle-1B		Chlazer	Chlazení vřetene/hlavy:Kapalina							
	12.3	207	.7	12.3		127.7	-4	2			
	drazka_tesneni	_dokoncuje	e_pravy_bok - (Kontura) :) :						
	Nulový bod 1 (1	- Poloha)		8000		0.042	0.013	0:00:41			
6	7-Spindle-1B		Chlazer	ní vřetene/hlav	у:Кара	alina					
		1		1			-				
	13 20		7	13		127	-4	2			
	Hrubuje bok dra	azky - (Rovn	oběžně	s křívkou) :	1		1000				
-	Nulový bod 1 (1	- Poloha)		8000		300	1000	0:04:33			
/	6-Spindle-1B		Chiazer	ii vretene/hlav	у:кара	aiina					
	21 267	100 -	722	21 267	Ī	110 700	1 / E	10 201			
	Er Ar brubuio zu	198.7 rezv drazku	- (Kontu	21.207		116./33	-1.45	10.201			
	Nulový bod 1 (1	- Poloha)	- (Kontu I	8000		1000	300	0.01.20			
Q	Nulovy bod 1 (1- Polona)		Chlazer	o vřetene /hlav	WKan:	alina	300	0.01.29			
0	5-5pindle-10	Cillazei	ii vietene/iiav	у.кара	anna						
	21	19	9	21		119	-2	2			
	HSS dokoncuie	drazku - (R	ovnoběž	ně s křivkou)	:	115	-	-			
	Nulový bod 1 (1	- Poloha)		8000	r.	600	1600	0:06:32			
9	9-Spindle-1B	,	Chlazer	ní vřetene/hlav	y:Kapa	alina					
_				•	<u>, .</u>						
	21.177	198.8	323	21.177		118.823	-2.995	1.996			
	Fr 4r dokoncuje	drazku - (K	ontura)	:							
	Nulový bod 1 (1	- Poloha)		8000		1000	300				
10	9-Spindle-1B		Chlazení vřetene/hlavy:Kap		у:Кара	alina					
				1			-				
	0	0		0		0	0	0			
	hrubuje_prvni_	kapsu - (3D	iMachin	ing) :	-						
	Nulový bod 1 (1	- Poloha)		6650		3282	6000				
11	22-Spindle-1B		Chlazer	n vretene/hlav	у:Кара	aiina					
						0	0				
	U dokoncujo dno		wnohăă	U Děskřivkou)		U	U	U			
	Nulový bod 1 (1	- Poloha)			•	0.013	0.042				
12	7-Snindle-1R	i olonaj	Chlazer	jí vřetene/hlav	l wKana	alina	0.042	I			
14	/ Spinde-10		Cinazel	ii victene/iidv	y.napa	2					
	0	0		0		0	0	0			
	dokoncuie kuze	el kapsv - (F	Rovnohě	žně s křivkou)	:	0	L V				
	Nulový bod 1 (1	- Poloha)		8000		0.019	0.1				
13	8-Spindle-1B	- /	Chlazer	ní vřetene/hlav	y:Kapa	alina					
	·		•		<u>, 187</u>						
	0	0		0		0	0	0			
	dokoncuje_vne	jsi_radius_k	apsy - (F	Rovnoběžně řez	zy: Koi	nstantní Z) :					
	Nulový bod 1 (1	- Poloha)		8000		0.013	0.042				
14	7-Spindle-1B		Chlazer	ní vřetene/hlav	у:Кара	alina					
	0	0		0		0	0	0			

	hrubuje_druhou_kapsu - (3D iMachining) :									
	Nulový bod 1 (1	- Poloha)		6650		3282	6000			
15	22-Spindle-1B		Chlazen	í vřetene/hlav	y:Kap	alina		•		
	-									
	0	0		0		0	0	0		
	dokoncuje_vnit	rnii_radius_	kapsy - (Rovnoběžně ř	ezy: K	onstantní Z) :				
	Nulový bod 1 (1	- Poloha)	8000 0.013 0.042							
16	7-Spindle-1B		Chlazen	ií vřetene/hlav	у:Кар	alina				
	0	0	0		0	0	0			
	dokoncuje_dose	edaci_ploch	u_kapsy - (Kontura) :							
	Nulový bod 1 (1	- Poloha)	8000			0.042	0.013			
17	7-Spindle-1B		Chlazen	ií vřetene/hlav	у:Кар	alina				
	0	0		0		0	0	0		
	dokoncuje_dno	_kapsy_2 -	(Rovnob	ěžně s křivkou) :					
	Nulový bod 1 (1	- Poloha)		8000		0.013	0.042			
18	7-Spindle-1B		Chlazení vřetene/hlavy:Kapa			alina				
		-				-	-			
	0	0	(5	0	,	0	0	0		
	dokoncuje_kuze	el_kapsy_2	- (Rovnol	bezne s krivko	u) :	0.010	0.1			
10	Nulový bod 1 (1- Poloha)		8000 Chlazení vřetene /hlavy:Kan		0.019	0.1				
19	o-spinule-1B		Chiazen	ii vretene/mav	у:кар	alina				
	0	0		0		0	0	0		
	vratani nod Mi	0 10 - (Vrtání)	•	0		0	0	0		
	Nulový bod 1 (1)	- Poloha)	2	621 38		300.001	300.001			
20	3-Spindle-1B	i olollaj	Chlazen	í vřetene/hlav	v:Kap	alina	500.001			
20			0		7					
	0	0		0		0	0	0		
	vrta pod H7 - (V	rtání) :								
	Nulový bod 1 (1	- Poloha)		50		375	375	0:00:24		
21	11-Spindle-1B		Chlazen	ií vřetene/hlav	у:Кар	alina				
								-		
	27	193	3	15		125	-18.343	2		
	srazeni_8H7 - (k	(ontura) :								
	Nulový bod 1 (1	- Poloha)	8000			800	300	0:00:16		
22	4-Spindle-1B		Chlazení vřetene/hlavy:Ka		у:Кар	alina				
	247	10	-	10.7		4.2.7		2		
	24./	19. (Vrtání)		12./		127	-2	2		
		- Poloha)	7	95 775		300	300	0.00.18		
22	12-Spindle-18	i olollaj	/ Chlazen	ú vřetene /hlav	V Kan	alina	500	0.00.10		
23	TE Shurde-TD		CINAZEII	in victerie/mav	y.ixap	unnu				
	27	19	3	15		125	-13	2		
	srazeni M10 - (Kontura)	:							
	Nulový bod 1 (1	- Poloha)		8000		800	300	0:00:25		
24	4-Spindle-1B	,	Chlazen	í vřetene/hlav	y:Kap	alina				
	-		-	-						
	14	20	6	24		116	-2	2		
	srazeni_ostatni	- (Kontura)	:							
	Nulový bod 1 (1	- Poloha)		8000		800	300	0:02:28		
25	4-Spindle-1B		Chlazen	í vřetene/hlav	у:Кар	alina				
	11.1	208	.9	11.1		128.9	-2	2		

	srazeni_vnejsi_	obvod - (Ko	ntura)	:								
	Nulový bod 1 (1	- Poloha)		8000		800	300					
26	4-Spindle-1B		Chlazer	Chlazení vřetene/hlavy:Kapalina								
	0	0	0			0	0	0				
	navrtani_dulek	- (Vrtání)	:									
	Nulový bod 1 (1	- Poloha)	3	3500.01		300	300	0:00:12				
27	20-Spindle-1B		Chlazení vřetene/hlavy:Kap		у:Кара	alina						
			-									
	70	15	0	70		70	-3.017	0.083				
	zavit M10 - (Vrt	anı) :	1	200		200	200	0.01.01				
20	Nulový bod 1 (1- Poloha)		Chlazor	200		300	300	0:01:01				
28	13-Spindle-18		Chlazeni vřetene/hlavy:Kap		у:кара	lina						
	17 20		2	27	I	112	_22	2				
	hrubuje obrvs 2 - (iMachir		ning) ·	27		115	-23	2				
	Nulový bod 1 (2	- Poloha)	8000			2581	6000					
29	22-Spindle-1B		Chlazení vřetene/hlavy:Kapa			alina	0000	1				
23	22-3011018-18					·····•						
	0	0		0		0	0	0				
	dokoncuje_obrys_2 - (Kontu		ura) :									
30	Nulový bod 1 (2- Poloha)			8000		6400	300					
	22-Spindle-1B		Chlazer	ní vřetene/hlavy	у:Кара	alina						
	0	0		0		0	0	0				
	srazeni_M10_1 - (Kontura)		:									
	Nulový bod 1 (2- Poloha)			8000		800	300	0:00:25				
31	4-Spindle-1B		Chlazeni vretene/hlavy:Kap		у:Кара	alina						
	10.2		405.0			110	1 12					
	10.2	20	0	-106.8		116	-12	2				
	Srazeni_obvod	- (Kontura)	:	8000		800	200	0.01.02				
22	A-Spindle-18	- P01011a)	8000 Chlazení vřetene /blavy: Kanal			olina	500	0.01.05				
52	4-2hillai6-18		Chiazeni vretene/hlavy:Kap			a						
	-3.3	216	.5	-131.5		136.5	-11.5	2				
	srazeni 8H7 1	- (Kontura)	:	101.0				-				
	Nulový bod 1 (2	- Poloha)		8000		800	300	0:00:06				
33	4-Spindle-1B	- 1	Chlazer	ní vřetene/hlavy	у:Кара	alina						
	-		•		•							
	20.2	194	.9	-119.9		126.9	-11.7	2				
	znaceni - (Konti	ura) :										
	Nulový bod 1 (2	- Poloha)		8000		800	300	0:00:34				
34	4-Spindle-1B		Chlazer	ní vřetene/hlavy	у:Кара	alina						
				1								
	55.527	100.3	305	-60.914		65.914	-13.8	2				

PŘÍLOHA č. 2

Seřizovací list pro CFDS06-01-00-002 a CFDS06-01-01-002

			Nastavení pro	iektu i	oro:	I		
solid0	AM		MO					
The Leaders in Inte	grated CAM)				
Jednotky	mm							
Typ obrobku	Frézování							
CNC-řízení	MCV_750_ZC	U						
Čísla programu	1							
Subroutine number	1					\wedge		
Adaptér nástroje	ISO40				2	00		
Obráběný materiál	EN AW 6082							
Operace	36					\bigcirc		
číslo výkresu	CFDS06-01-00)-002 / C	FDS06-01-01-002					
Velikost polotovaru	X:220 Y:140 Z	:25						
Model	D:\SynologyD	rive\NA	VRH_CAM\UWB06\N	/06\M	06.SLDASM			
Adresář	D:\SynologyD	rive\NA	VRH_CAM\UWB06\N	/06\M	06.prz			
Poznámky k obrobku								
Název projektu	M06							
X min	X max	1	Y min		Y max	Z min		Z max
-221.286	226.20	8	-14.198		146.158	-30		2
					Celkový ča	s:		0:10:39

T1-Spindle-1A	Popis nástroje:	fr50			
Čelní fréza - ID:	4		D=50 AD=32 OHL=40 TD=50 SL=30 CL=20 TL=60	R=0 A=0 H=100	Počet zubů: 4 Cutting time: 0:00:00 mm
T4-Spindle-1A	Popis nástroje:	sr6			
			D=6 AD=10 OHL=40 SL=20 CL=10 TL=60	A=90 H=100	Počet zubů: 1 Cutting time: 0:05:09 mm
T6-Spindle-1B	Popis nástroje:	fr4			
T6-Spindle-1B Popis nástroje:			D=4 AD=4 OHL=60 SL=30 CL=24 TL=80	SD=4 H=100	SA=0 Počet zubů: 3 Cutting time: 0:00:00 mm

T7-Spindle-1B	Popis nástroje:	fr6_05r			
			D=6 AD=6 OHL=60	R=0.5	SA=0 Počet zubů: 3
			SL=30 CL=24	SD=6	Cutting time: 0:00:00
Toroidní fréza - ID:	1		TL=80	H=100	mm
T8-Spindle-1B	Popis nástroje:	fr5r			
			D=5 AD=5 OHL=60	R=2.5	SA=0 Počet zubů: 2
		SL OHL	SL=30	SD=5	
Kulová fréza - ID:			CL=24 TL=80	H=100	Cutting time: 0:00:00 mm
T9-Spindle-1B	Popis nástroje:	fr4r			
19-Spindle-1B Popis nastroje:			D=4 AD=4 OHL=60	R=2	SA=0 Počet zubů: 2
Kulová fréza - ID:			SL=30 CL=24 TL=80	SD=4 H=100	Cutting time: 0:00:00 mm
T11-Spindle-1B	Popis nástroje:	vrt_8H7			
			D=7.8 AD=7.8 OHL=60	A=118	Počet zubů: 1
Vrták - ID·			SL=30 CL=24 TL=80	H=100	Cutting time: 0:00:24
T12-Spindle-1B	Popis nástroje:	8H7		11 100	
T12-Spindle-1B Popis nástroje:			D=8 AD=8 OHL=55 TD=2		Počet zubů: 1 ChL=2
Výstružník - ID:			CL=25 TL=75	H=100	Cutting time: 0:00:26 mm
T14-Spindle-1A	Popis nástroje:	vrt M14			
Vitak - ID. T12-Spindle-1B Popis nástroje: Výstružník - ID: T14-Spindle-1A Popis nástroje:		AD	D=12.5 AD=12.5	A=118	Počet zubů: 1
			OHL=60 SL=30 CL=24		Cutting time: 0:00:00

T15-Spindle-1A	Popis nástroje:	fr12			
			D=12 AD=10 OHL=60		SA=0 Počet zubů: 4
		SL CL OHL	SL=30	SD=10	Cutting time: 0.00.00
Válcová fréza - ID:			TL=80	H=100	mm
T17-Spindle-1A	Popis nástroje:	vr10.5			
			D=10.5 AD=6 OHL=60	A=118	Počet zubů: 1
Vrták - ID:			SL=30 CL=24 TL=80	H=100	Cutting time: 0:00:00 mm
T22-Spindle-1A	Popis nástroje:	fr16			
			D=16 AD=16 OHL=60		SA=0 Počet zubů: 4
		l lî v ît	SL=30 CL=24	SD=16	Cutting time: 0:04:33
Válcová fréza - ID:			TL=80	H=100	

				Název operace - (Typ Operace)								
	Nul. Boo	1	Ota	áčky Dok.	Ро	suv XY/Posuv	Pos	suv Z/Posuv pro Do	Čas			
Index	Číslo nástr	oje	Chlazení nástroje									
			Popis									
	X min	X m	ax Y min			Y max		Z min	Z max			
	Celo - (Čelní fréz	ování) :										
	Nulový bod 1 (1-	- Poloha)	4	71.239		0.05		0.025				
1	1-Spindle-1A											
	0	0		0		0		0	0			
	celo_obvod - (Kontura) :						-					
	Nulový bod 1 (1- Poloha)		4	71.239		0.05		0.025				
2	1-Spindle-1A		Chlazení vřetene/hlavy:Kapalina									
	0	0		0		0		0	0			
	obrys - (iMachin	ing) :	•									
	Nulový bod 1 (1- Poloha)			8000		2581		6000	0:01:11			
3	22-Spindle-1A		Chlazen	ií vřetene/hlav	у:Кар	alina						
	-6.242	225.8	364 -9.143			146.112		-19.7	2			
	obrys_hotove -	(Kontura)	:									
	Nulový bod 1 (1-	- Poloha)		8000		6400		300				
4	22-Spindle-1A		Chlazení vřetene/hlavy:Kapalina									
				•								
	0	0		0		0		0	0			
	vrta_10.5 - (Vrtá	ání) :	T.		-							
	Nulový bod 1 (1-	- Poloha)	1	1515.76		300.001		300.001				
5	17-Spindle-1A		Chlazen	ií vřetene/hlav	у:Кар	alina						
		1										
	0	0		0		0		0	0			

	Vrtta_pod_M14 - (Vrtání) :											
	Nulový bod 1 (1	- Poloha)		40		0.295	0.295					
6	14-Spindle-1A	,	Chlazen	ní vřetene/hlav	y:Kapa	alina						
Ū.												
	0	0		0		0	0	0				
	hrubuje odtah -	(Kontura)	:									
	Nulový bod 1 (1- Poloha) 8000 0.2 0.009 0:01:01											
7	22-Spindle-1A		Chlazen	ní vřetene/hlav	у:Кара	alina						
	105.6	114	.4 27.1			35.9	-10.5	1.049				
	hrubuje odtah0	1 - (Kontura	a) :									
	Nulový bod 1 (1	- Poloha)	8000			0.2	0.009	0:00:09				
8	22-Spindle-1A		Chlazen	ní vřetene/hlav	у:Кара	alina						
		<u> </u>										
	108	11	2	29.5		33.5	-13	-0.5				
	vnitrni_celo - (K	ontura) :	1	0000	1	4.600	200					
0	Nulovy bod 1 (1	- Poloha)	Chieren	8000		1600	300					
9	15-Spindle-1A		Chiazeni vretene/hiavy:Kap			alina						
	0	0		0		0	0	0				
	vnitrni celo1 - ((Kontura)	•	0		0	0	0				
	Nulový bod 1 (1)	- Poloha)	•	8000	1	1600	300					
10	15-Spindle-1A	Chlazen	300 300 Chlazení vřetene/hlavy:Kapalina									
10			emazen	in victoric/indv	ymapt							
	0	0		0		0	0	0				
	vnitrni celo2 - (Kontura)	:			-		-				
	Nulový bod 1 (1	- Poloha)		8000		1600	300					
11	15-Spindle-1A	,	Chlazen	ní vřetene/hlav	y:Kapa	alina						
	-											
	0	0		0		0	0	0				
	hrubuje_bok_di	razky - (Rov	noběžně	s křivkou) :								
	Nulový bod 1 (1	- Poloha)		8000		300	1000					
12	6-Spindle-1B		Chlazen	ní vřetene/hlav	у:Кара	alina						
				T			-					
	0	0		0		0	0	0				
	hrubuje_bok_d	razky2 - (Ko	ntura)	:	1	1000						
10	Nulový bod 1 (1	- Poloha)		8000		1000	300					
13	9-Spindle-1B		Chiazen	ii vretene/hlav	у:кара	alina						
	0	0		0	Ī	0	0	0				
	dokoncuje draz	U ku - (Rovinc	hěžně c	křivkou) ·		U	0	0				
	Nulový bod 1 (1	- Poloha)		8000		600	1600					
14	9-Spindle-1B	i oloriaj	Chlazen	ú vřetene/hlav	v:Kana	alina	1000					
14			onnazen	in the center mat	Jinapo							
	0	0		0	1	0	0	0				
	dokoncuje draz	ku2 - (Kont	ura) :									
	Nulový bod 1 (1	- Poloha)		8000		1000	300					
15	9-Spindle-1B	,	Chlazen	ní vřetene/hlav	у:Кара	alina	-					
			-	-	·							
	0	0		0		0	0	0				
	dkoncuje_bok_o	odtahu - (Ko	ontura)	•								
	Nulový bod 1 (1	- Poloha)		8000		0.05	0.019					
16	8-Spindle-1B		Chlazen	ní vřetene/hlav	у:Кара	alina						
	0	0		0		0	0	0				

	dkoncuje_zaobleni_odtahu - (Rovnoběžně řezy: Konstantní Z) :								
	Nulový hod 1 (1.	- Poloha)		8000	500	1500			
17	9-Snindlo-18	i olonaj	Chlazon	jí vřetene /hlava	<i>I</i> :Kanalina	1300	1		
1/	J-Spinule-1D		CHIazell	in vietene/ilidv	y.napanna				
	0	0		0	0	Λ	0		
	colo 1 dick (Čo	U Jpí frózová	οί) ·	0	0	0	0		
	Nulový bod 1 (1		11) . I	8000	1600	200			
10		- P01011a)	8000		1000	500			
18	15-Spindle-1A		4						
	0	0				0	0		
	U dakanguja unaj	ci radius 1	, John Jake - (Boynoběžně řezv: Kr			U	0		
	Nulouí bod 1 (1	SI_raulus_1	.uisk - (h	2000	0.012	0.042			
10	7-Spindle-1B		Chlazon	0000	0.015	0.042			
19			Chiazen	ii vietene/iiav	у.карашта				
						0	0		
	dokocuje plochu 1 disk - (0	0		
		u_1.uisk - (. 0.010	0.1			
20	NUIOVY DOG 1 (1- POIOha)		Chlazon	ouuu	U.UI9	0.1	I		
20	8-Spinale-18		Cinazen	in vietene/fildv	y.napalilla				
	0	0		0		0	0		
	u celo 2 dick (Čo	U Jní frázová:	ní) ·	U	U	0	0		
	Nulový bod 1 (1	- Polobal	···) .	8000	1600	200			
21		- P01011a)		8000	1000	500			
	15-Spinule-1A								
	0	0		0		0	0		
	U dkoncuja plach	U Ddick (F	ovnohč	j žpě c křivkou)		0	0		
		u_zuisk - (F	l lownobez		. 0.010	0.1			
22	9 Spindle 1P	- FOIOIIa)	Chlazon	0000	0.015	0.1			
22	o-spinule-1B		Chiazen	ii vietene/iiav	у.карашта				
	0	0		0	0	0	0		
	dokocuje radisu	us 2 disk - (1	Rovnohě	žně řezv: Konst	$\frac{1}{2}$	0	0		
		- Poloha)		2000	0.013	0.042			
23	7-Snindle-1B	Tototiaj	Chlazen	ví vřetene /hlav	/:Kanalina	0.042			
25	7 Spinale 15		Cindzen	in victoric/mav	y.Rapalina				
	0	0		0	0	0	0		
	dokoncuje dose	edaci nloch	u 2disk	- (Kontura) ·	0	0	Ŭ		
	Nulový hod 1 (1.	- Poloha)	<u>~_2015K</u>	8000	0.042	0.013			
24	7-Spindle-1R	, olonaj	Chlazen	jí vřetene/hlav	/:Kapalina	0.013	1		
27			0.1142.01						
	0	Λ		0	0	0	0		
	vrta pod H7 - (V	rtání) ·					v v		
	Nulový bod 1 (1-	- Poloha)		50	375	375	0:00:24		
25	11-Spindle-1B		Chlazen	<u> </u>	/:Kapalina	5,5	0.00127		
25	11 0011010 10		511142.01						
	27	19	3	15	125	-18,343	2		
	srazeni 8H7 - (K	ontura) ·	-	15	125	10.545	<u> </u>		
	Nulový bod 1 (1	- Poloha)		8000	800	300	0:00:31		
26	4-Spindle-1A		Chlazen	ní vřetene/hlav	v:Kapalina				
20					,				
	14.25	205	75	13 5	126 5	-5 2	-0.4		
	vystruzeni 8H7 -	(Vrtání)		10.0	1 120.5	5.2			
	Nulový bod 1 (1-	- Poloha)	7	795.775	300	300	0:00:26		
27	12-Spindle-1B		, Chlazen	jí vřetene/hlav	/:Kapalina	500	0.00.20		
21			0.1142.01						
	27	19	3	15	125	-30	2		
							_		

	srazeni_ostatni - (Kontura) :											
	Nulový bod 1 (1	- Poloha)		8000		800	300	0:00:56				
28	4-Spindle-1A		Chlazen	Chlazení vřetene/hlavy:Kapalina								
		•										
	21.5	198	.5 21.5			118.5	-5.1	-0.4				
	srazeni_vnejsi -	(Kontura)	:									
•••	Nulový bod 1 (1	- Poloha)		8000		800	300	0:01:03				
29	4-Spindle-1A		Chlazen	ii vretene/hlav	у:кар	alina						
	2	21	0	2		107	47	0.4				
	obrys 1 - (iMac	hining) ·	0	5		157	-4./	-0.4				
	Nulový bod 1 (2	- Poloha)	1	8000	1	2581	6000	0.05.15				
30	22-Spindle-1A	i loionaj	Chlazen	vřetene/hlav	v Kan	alina	0000	0.02.12				
50			Cinazeni vretene/mavy:Kap		ynap							
	-221.286 226.2		208	-14.198		146.158	-19.08	2				
	dokoncuje obr	a) :										
	Nulový bod 1 (2	- Poloha)	I	8000		6400	300					
31	22-Spindle-1A		Chlazení vřetene/hlavy:Kapa			alina						
	0	0		0		0	0	0				
	zahloubeni_pro M10 - (Kon		tura) :									
	Nulový bod 1 (2	- Poloha)		8000		500	300					
32	22-Spindle-1A		Chlazen	ií vřetene/hlav	у:Кар	alina						
								0				
	U	0		0		0	0	0				
	srazeni_obvod - (Kontura)		:	8000	1	800	200	0.01.12				
22		- P01011a)	Chlazon	ouuu	V'Kan	alina	500	0.01.15				
55	4-Spindle-1A				у.кар	anna						
	-211.75	216.	75 -3.55			136.75	-22.25	2				
	srazeni 8H7 1	- (Kontura)	:	0.00		1000.0		-				
	Nulový bod 1 (2	- Poloha)	8000			800	300	0:00:29				
34	4-Spindle-1A		Chlazení vřetene/hlavy:Kar			alina						
	-198	209	.5	9.4		126.5	-22.2	2				
	srazeni_M14 - (Kontura)	:									
a =	Nulový bod 1 (2	- Poloha)		8000		800	300	0:00:04				
35	4-Spindle-1A		Chlazen	ií vřetene/hlav	у:Кар	alina						
	405.0		25			25 55		-				
	-106.8	114. (ra)	25	27.25		35./5	-22.2	2				
	Nulový bod 1 (2	na) : - Polobal	1	8000	1	800	300	0.00.23				
36	4-Snindle-1A	- ruiullaj	Chlazen	ú vřetene /hlav	V·Kan	alina	500	0.00.35				
50			Cinazei	in vietene/iidv	y.nap	uma						
	-158.654	163.6	554	73.505		82.683	-24.9	2				
	100.004 100.004 70.000 02.000 24.0											

PŘÍLOHA č. 3

Výkresová dokumentace

г		4		<u> </u>				<u> </u>							
D			E		E				Ø	<u>69</u> 14,7	+0,2 0				D
С		5		R0,3		2		Ø	967 +(0 Ø64 ⊄	D,1 .,4 047,7		1,3			С
В		R2,5		R2	R2,5				Ø48, Ø64 Ø66,	.3 I.,1 5	SEC ⁻		E-E 5:1		B
	Pocet ks.	Nazev - rozmer Title - size		Polo	ovar	GG 200 Material	T	T.O. C.W.	C.hmot. Weight	Hr.hmot.	Cislo v	ykresu sestav	/y o.	Poz. Pos.	
	CAD 1 Kreslil / Drawn by Prezkousel / Checked by Schvalil / Approved by Index zmeny	Datum / Date 25.5.2019 Popis zmeny / change desc	Schval. / APP	Jmeno / Nan MM Datum / Date	Podpis / Signat	ure	Poznamka	/ Note:	RSITY St Bohemia		Sechna prava vyhra	zena / All rights re	eserved		
Α	ISO 128 Nazev / Title	Tolerance / Tolerovani ISO 8015 ISO 2768mK	odel / ASM-file	CF_spring_r	naster_DRW		Rev.	Projekt / Project: C.sestavy / Assembly N Cislo vykre		FS -	UWB06	004	Meritko / 1: Form	Scale 1 nat	A
	SECC	$\frac{1}{4}$	C SPF	KING - 3	UUIE			List / sheet	no. 1	Pocet lis	tu / sheets	2 2 1		4	1

										С
eoretické naximální stlačení nm]					Předpokládaná maximální síla při max stlačení [N]					
,3					2893					
,3					2893					в
,125					518					
,125					518					
Material Material		т.о. с.w.	C.hmot. Weight	H R	r.hmot. . weight	4	Cislo vykresu sesta	vy no.	Poz. Pos.	_
pis / Signature Poznamka / Note:									reserved	
Projekt / Project:							Meritko	/ Scale	A	
C.sestavy / Assembly No.							1:	1:1		
Rev								Format		
List / sheet no. 1 Pocet listu / sheets 1							A	A3		
I	-13	2					1	4		L

D

