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Abstract

This paper describes an analytical approach for analysing of longitudinal fracture in beam structures which exhibit
smooth material inhomogeneity along the height and length. A solution to the strain energy release rate is derived
for a general loading scheme assuming non-linear mechanical behaviour of the material. The Ramberg-Osgood
stress-strain relation is used to model the material non-linearity. It is assumed that the three material properties
which are involved in the Ramberg-Osgood stress-strain relation vary continuously along the height and length
of the beam (exponential laws are applied for describing the distribution of these properties along the height and
length of the beam). The solution derived is valid for a longitudinal crack located arbitrary along the beam height.
It is shown that the approach developed can be applied for evaluating the effects of material inhomogeneity along
the height and length of the beam, non-linear mechanical behaviour of the material, crack location along the beam
height and the crack length on the longitudinal fracture.
c© 2020 University of West Bohemia. All rights reserved.
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1. Introduction

The properties of the inhomogeneous materials are functions of coordinates. This fact com-
plicates significantly the fracture analysis of structural members and components made of
inhomogeneous materials. Typical examples for inhomogeneous materials are the functionally
graded materials which are used as advanced structural materials in various engineering ap-
plications mainly because the spatial variation of their properties can be tailored to meet the
requirements for different parts of a structural member [1, 4, 7, 8]. Fracture of inhomogeneous
materials is an important subject [2, 3, 6, 9, 10, 16, 17]. Since some inhomogeneous materials,
such as functionally graded materials, can be built up layer by layer [1], there is a high proba-
bility of appearance of longitudinal cracks between layers. Thus, longitudinal fracture analysis
of inhomogeneous materials and structures is an important task of the present-day fracture
mechanics. Beside the material inhomogeneity, another characteristic feature which should be
taken into account in longitudinal fracture analyses is the non-linear mechanical behaviour of
inhomogeneous materials.

Recently, various analyses of longitudinal cracks in inhomogeneous (functionally graded)
beam structures have been developed by the author assuming non-linear mechanical behaviour
of the material [11–14]. The fracture behaviour has been studied in terms of the strain energy
release rate. It has been assumed that only one material property (usually, the modulus of
elasticity) varies continuously in the beam cross-section.
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The basic aim of the present paper is to peform an analytical investigation of longitudinal
fracture of inhomogeneous beams under a genearl loading scheme by applying the Ramberg-
Osgood constitutive law for modelling non-linear elastic mechanical behaviour of the material
assuming that the three material properties which are involved in the constitutive law vary
smoothly along the thickness and longitudinal directions of the beam. Exponential laws are
used for describing the continuous variation of the material properties in height and length
directions. An analytical solution to the strain energy release rate is derived by analyzing the
energy balance. The beams are subjected to static loading. It should be noted that the present
analysis is based on the small strains assumption. The Euler-Bernoulli beam theory is applied.
The beams under consideration have rectangular cross-section. The solution derived is used to
investigate the effect of various geometrical and material parameters on the longitudinal fracture
behaviour.

2. Analysis of general loading scheme

An inhomogeneous beam with a longitudinal crack of length, a, is shown in Fig. 1.

Fig. 1. Inhomogeneous beam containing a longitudinal crack under general loading

The two crack arms have different heights denoted by h1 and h2 for the lower and upper
crack arms, respectively. The width and height of the beam cross-section are b and 2h. The beam
is in equilibrium under system of transversal forces Fi. General solution to the strain energy
release rate G is derived by considering the balance of the energy. For this purpose, the balance
of the energy is written as [10]

s1∑
i=1

Fiδwi =
s2∑

j=1

∂Uj

∂a
δa+Gbδa, (1)

where s1 is the number of forces, δa is a virtual change of the crack length, δwi is the increase
of the vertical displacement of the application point of Fi, s2 is the number of portions of the
beam, Uj is the strain energy cumulated in the j-th beam portion. From (1), the strain energy
release rate is expressed as

G =
s1∑

i=1

Fi

b

∂wi

∂a
− 1

b

s2∑
j=1

∂Uj

∂a
. (2)
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By applying the integrals of Maxwell-Mohr [15], the vertical displacement of the application
pint of Fi is written as

wi =
s2∑

j=1

∫
κjMj dx, (3)

where κj is the curvature of the j-th beam portion, Mj is the bending moment in the j-th portion
of the beam induced by the unit loading, x is the longitudinal centroidal axis of the beam.

The strain energy cumulated in the beam is found as

U =
s2∑

j=1

Uj, (4)

where strain energy Uj in the j-th portion of the beam is obtained as

Uj = b

∫ lj

0

∫ h

−h

u0j dxj dzj . (5)

In formula (5), lj is the length of the j-th portion of the beam (Fig. 1), xj and zj are the
longitudinal and the vertical centroidal axes in the j-th portion of the beam, u0j is the strain
energy density in the same beam portion. The cross-section of the j-th portion of the beam is
shown in Fig. 2.

Fig. 2. Cross-section of the of j-th portion of the beam (the position of the neutral axis is denoted by
nj − nj)

By substituting of (3)–(5) in (2), one obtains the following expression for the strain energy
release rate:

G =
1
b

s1∑
i=1

Fi
∂

∂a

(
s2∑

j=1

∫
κiMj dx

)
−

s2∑
j=1

∂

∂a

(∫ lj

0

∫ h

−h

u0j dx dzj

)
. (6)

The non-linear elastic behaviour of the material is treated by using the Ramberg-Osgood
stress-strain relation [5]

εj =
σj

Ej
+

(
σj

Hj

) 1
nj

, (7)
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where εj is the distribution of the lengthwise strains, σj is the distribution of the normal stresses,
Ej is the modulus of elasticity, Hj and nj are material properties in the j-th portion of the beam.

The strain energy density that is involved in (6) is calculated by the following formula [9]:

u0j =
σ2j
2Ej

+
σ

1+nj
nj

j

(1 + nj)H
1

nj

j

. (8)

In order to carry-out the integration in (6), the normal stress σj that is involved in the
expression for the strain energy density (8) has to be presented as a function of zj . It is obvious
that σj can not be determined explicitly from the Ramberg-Osgood equation (7). Therefore, σj

is expanded in series of Maclaurin by keeping the first three members

σj(zj) ≈ σj(0) +
σ′

j(0)

1!
zj +

σ′′
j (0)

2!
z2j . (9)

Formula (9) is rewritten as
σj(zj) ≈ ϕ0 + ϕ1zj + ϕ2z

2
j , (10)

where the coefficients ϕ0, ϕ1 and ϕ2 are derived in the following manner. First, the distribution
of ε along the height of the lower crack arm is written as

εj = κj(zj − zjnj
), (11)

where zjnj
is the coordinate of the neutral axis (Fig. 2). It should be noted that the neutral

axis shifts from the centroid since the material exhibits inhomogeneity along the beam height.
Formula (11) follows from the fact that validity of the Bernoulli’s hypothesis for plane sections
is assumed in the present paper.

Further, by substituting of (10) and (11) in (7), one obtains

κj(zj − z1nj
) =

ϕ0 + ϕ1zj + ϕ2z
2
j

Ej

+

(
ϕ0 + ϕ1zj + ϕ2z

2
j

Hj

) 1
nj

. (12)

By substituting of zj = 0 in (12), one derives

− zjnj
κj =

ϕ0
Ej

+
ϕ
1

nj

0

H
1

nj

j

. (13)

By differentiating of (12) with respect to zj and substituting of z1 = 0, one obtains

κj =
ϕ1Ej − ϕ0E

′
j

E2j
+

ϕ
mj

0

H
mj

j

[
m′

j(lnϕ0 − lnHj) +mj

(
ϕ1
ϕ0

−
H ′

j

Hj

)]
. (14)

By substituting of zj = 0 in the second derivative of (12) with respect to z1, one arrives at

0 =
2ϕ2Ej − ϕ0E

′′
j

E2j
−
(ϕ1Ej − ϕ0E

′
j)2E

′
j

E3
+

ϕ
mj

0

H
mj

j

[
m′

j(lnϕ0 − lnHj) +mj

(
ϕ1
ϕ0

−
H ′

j

Hj

)]2
+ (15)

ϕ
mj

0

E
mj

j

{
m′′

j (lnϕ0 − lnHj) + 2m
′
j

(
ϕ1
ϕ0

−
H ′

j

Hj

)
+mj

[
−ϕ21

ϕ20
+
2ϕ2
ϕ0
+
(H ′

j)
2

H2j
−

H ′′
j

Hj

]}
,
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where

m =
1
n

, (16)

m′ =

(
1
n

)′
, (17)

m′′ =

(
1
n

)′′

. (18)

It should be noted that E ′, E ′′, H ′, H ′′, m′ and m′′ are the first and second derivatives of E, H
and m with respect to z1 at z1 = 0.

In equations (13)–(15) there are five unknowns ϕ0, ϕ1, ϕ2, κj and zjnj
. Two other equations

are constructed by considering the equilibrium of the elementary forces in the cross-section of
the j-th portion of the beam

Nj = b

∫ h

−h

σj dzj , (19)

Mj = b

∫ h

−h

σjzj dzj , (20)

where Nj and Mj are the axial force and the bending moment, respectively.
By substituting of (10) in (19) and (20), one derives

Nj = b

(
2ϕ0h+ ϕ2

2h3

3

)
, (21)

Mj = bϕ1
2h3

3
. (22)

Equations (13)–(15) and (21)–(22) can be solved with respect to ϕ0, ϕ1, ϕ2, κj and zjnj
for each

portion of the beam.

3. Example

Fig. 3 shows an inhomogeneous beam having a longitudinal crack of length a. The crack
is located arbitrary along the beam height. The heights of the lower and upper crack arms
are denoted by h1 and h2, respectively. The beam is supported by a roller at point III and a
Q-apparatus in the free end of the lower crack arm.

Fig. 3. Geometry and loading of inhomogeneous beam containing a longitudinal crack
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A vertical force F is applied at the right-hand end of the beam. It should be mentioned that
the crack is located in beam portion I–II that is loaded in pure bending (Fig. 3). The width and
height of the beam are denoted by b and 2h, respectively. The length of the beam is l1 + l2. The
lower crack arm has the following boundaries: x1 = 0, x1 = a, z1 = −h1/2 and z1 = h1/2.
The boundaries of beam portion II–III are x2 = 0, x2 = l1 − a, z2 = −h/2 and z2 = h/2.
The beam portion III–IV has the following boundaries: x3 = 0, x3 = l2, z3 = −h/2 and
z3 = h/2. The coordinate systems x1z1, x2z2 and x3z3 are shown in Fig. 3. It is assumed
that the beam exhibits smooth material inhomogeneity along the thickness and longitudinal
directions (the three material properties which are involved in the Ramberg-Osgood equation
vary continuously along the thickness and longitudinal directions of the beam). The strain energy
release rate is obtained by using the solution (6) for the general loading scheme developed in
the prevoius section of the paper. By applying (3), the vertical displacement of the right-hand
end of the beam is written as

w =
∫ a

0
κ1l2 dx+

∫ l1

a

κ2l2 dx+
∫ l1+l2

l1

κ3(l1 + l2 − x4) dx, (23)

where κ1, κ2 and κ3 are the curvatures of the lower crack arm and beam portions II–III and
III–IV, respectively. The x-axis is defined in Fig. 3.

The continuous variation of E, H and n along the thickness direction is expressed by the
following exponential laws:

E = E0e
f1

z+h
2h , (24)

H = H0e
f2

z+h
2h , (25)

n = n0e
f3

z+h
2h , (26)

where
− h ≤ z ≤ h. (27)

In (24)–(26) E0, H0 and n0 are the values, respectively, of E, H and n at the upper surface of
the beam, f1, f2 and f3 are material properties which control the material gradient along the
thickness. The z-axis is defined in Fig. 3.

The continuous variations of E0, H0 and n0 along the beam length are written as

E0 = E0Le
r1

x
l1+l2 , (28)

H0 = H0Le
r2

x
l1+l2 , (29)

n0 = n0Le
r3

x
l1+l2 , (30)

where
0 ≤ x ≤ l1 + l2. (31)

In (28)–(30) E0L, H0L and n0L are the values, respectively, of E0, H0 and n0 at the left-hand
end of the beam, r1, r2 and r3 are material properties which control the material gradient along
the longitudinal direction.

In order to describe the distributions of E, H and n along the thickness direction of the
lower crack arm, formulae (24)–(26) are re-written as

E = E0e
g1z1+q1, (32)

H = H0e
g2z1+q2, (33)

n = n0e
g3z1+q3, (34)
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where

− h1
2

≤ z1 ≤
h1
2

, (35)

g1 =
f1
2h

, (36)

q1 = g1

(
h − h1

2

)
+

f1
2

, (37)

g2 =
f2
2h

, (38)

q2 = g2

(
h − h1

2

)
+

f2
2

, (39)

g3 =
f3
2h

, (40)

q3 = g3

(
h − h1

2

)
+

f3
2

. (41)

The coordinate system x1z1 in the lower crack arm is shown in Fig. 3. The values of E, H and
n and their derivatives involved in (13)–(15) are found as

E = E0e
q1 , (42)

E ′ = E0e
q1g1, (43)

E ′′ = E0e
q1g21, (44)

H = H0e
q2, (45)

H ′ = H0e
q2g2, (46)

H ′′ = H0e
q2g22, (47)

m =
1

n0eq3
, (48)

m′ = − g3
n0eq3

, (49)

m′′ =
g23

n0eq3
. (50)

The axial force N1 and the bending moment M1 in the lower crack arm are determined in
the following way. First, by using the equations for equlibrium of the beam∑

Fzi = 0, (51)∑
MIII = 0, (52)

the vertical reaction VIII in the roller at point III and the bending moment ML in the Q-aparatus
at the free end of the lower crack arm are found as

VIII = F, (53)
ML = F l2. (54)

Therefore, the axial force and the bending moment in the lower crack arm are written as

N1 = 0, (55)
M1 = F l2. (56)
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Equations (13)–(15) and (21)–(22) are solved with respect to ϕ0, ϕ1, ϕ2, κ1 and z1n1 . It should
be mentioned that these equations can be applied to determine ϕ0, ϕ1, ϕ2, κ1 and z1n1 in any
cross-section of the lower crack arm. For this purpose, E0, H0 and n0 have to be calculated by
(28)–(30) for the abscissa x of the cross-section under consideration. The normal stress in the
lower crack arm is obtained by (10). The normal stresses in the beam portions II–III and III–IV
are found analogically.

The strain energies in the lower crack arm and beam portions II–III and III–IV are written as

U1 = b

∫ a

0

∫ h1
2

−h1
2

u01 dx dz1, (57)

U2 = b

∫ l1

a

∫ h

−h

u02 dx dz2, (58)

U3 = b

∫ l1+l2

l1

∫ h

−h

u03 dx dz3, (59)

respectively.
By substituting of (23), (57), (58) and (59) in (6), one obtains the following solution to the

strain energy releaese rate for the longitudinal crack in the beam configuration shown in Fig. 3:

G =
F

b
l2(κ1 − κ2)−

(∫ h1
2

−h1
2

u01 dz1 −
∫ h

−h

u02 dz2

)
, (60)

where κ1, κ2, u01 and u02 are obtained by (13)–(15) and (21)–(22) at x = a.
It should be noted that the strain energy releae rate is analyzed also by keeping more than

three members in the series of Maclaurin (9). The results obtained are very close to these derived
by keeping three members (the difference is less than 2%).

4. Parametric study

The solution to the strain energy release rate (60) is applied to perform a parametric study of
longitudinal fracture in the inhomogeneous beam shown in Fig. 3.

Fig. 4. The strain energy release rate in non-dimensional form presented as a function of f1 (curve 1 – at
h1/2h = 0.25, curve 2 – at h1/2h = 0.50 and curve 3 – at h1/2h = 0.75)
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The results obtained are presented in non-dimensional form by using the formula GN =
G/(E0Lb). The influences of material inhomogeneity along the height and length of the beam,
non-linear mechanical behaviour of the material, crack location along the beam height and
the crack length on the fracture are analyzed. The crack location along the beam height is
characterized by h1/2h ratio. The crack length is characterized by a/l1 ratio. It is assumed that
b = 0.007 m, h = 0.001 m, l1 = 0.045 m, l2 = 0.005 m and F = 15 N.

The strain energy release rate in non-dimensional form is presented as a function of f1
in Fig. 4 at three h1/2h ratios. It is assumed that H0L/E0L = 0.6, n0L = 0.5, f2/f1 = 0.6,
f3/f1 = 0.2, r1/f1 = 0.7, r2/f1 = 0.6, r3/f1 = 0.1 and a/l1 = 0.25. The curves in Fig. 4.
indicate that the strain energy release rate decreases with increasing of f1. Fig. 4 shows also that
increase of h1/2h ratio leads to decrease of the strain energy release rate (this behaviour is due
to increase of the stiffness of the lower crack arm).

Fig. 5 shows the strain energy release rate in non-dimensional form as a function of H0L/E0L
ratio at h1/2h = 0.25 for three values of r1. One can observe in Fig. 5 that the strain energy
release rate decreases with increasing of H/E0L ratio. It can also be observed that increase of
r1 leads to decrease of the strain energy release rate (Fig. 5).

Fig. 5. The strain energy release rate in non-dimensional form presented as a function of H0L/E0L ratio
(curve 1 – at r1 = 0.5, curve 2 – at r1 = 1.0 and curve 3 — at r1 = 2.00)

The strain energy release rate in non-dimensional form is presented as a function of a/l1
ratio in Fig. 6 at h1/2h = 0.25. It can be observed in Fig. 6 that the strain energy release rate
decreases with increasing of a/l1 ratio.

This founding is attributed to the fact that the modulus of elasticity in the beam cross-section
in which the crack tip is located increases with increasing the crack length. The strain energy
release rate derived assuming linear-elastic behaviour of the material is also presented in Fig. 6.
The linear-elastic elastic solution to the strain energy release rate is obtained by substituting of
Hj → ∞ in (60) since at Hj → ∞ the Ramberg-Osgood stress-strain relation (7) transforms in
the Hooke’s law. One can observe in Fig. 6 that the material non-linearity leads to increase of
the strain energy release rate.

The effect of f2 is also investigated. For this purpose, the strain energy release rate in non-
dimensional form is presented as a function of f2 in Fig. 7 at three values of f3 assuming that
h1/2h = 0.25 and a/l1 = 0.25.
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Fig. 6. The strain energy release rate in non-dimensional form presented as a function of a/l1 ratio
(curve 1 – at non-linear elastic mechanical behaviour of the material and curve 2 – at linear-elastic
behaviour)

Fig. 7. The strain energy release rate in non-dimensional form presented as a function f2 (curve 1 – at
f3 = 0.1, curve 2 – at f3 = 0.3 and curve 3 – at f3 = 0.5)

Fig. 7 shows that the strain energy release rate decreases with increasing of f2 and f3.
The influence of r2 and r3 on the longitudinal fracture is elucidated in Fig. 8 where the strain

energy release rate in non-dimensional form is presented as a function of r2 at three values of
r3. The curves in Fig. 8 indicate that the strain energy release rate decreases with increasing of
r2 and r3.

5. Conclusion

An analytical approach for analyzing longitudinal fracture in beams which exhibit material
inhomogeneity along the thickness and longitudinal directions is developed. It is assumed that
the material has non-linear mechanical behaviour which is modelled by the Ramberg-Osgood
stress-strain relation. It is assumed also that the three material properties which are involved in
the Ramberg-Osgood relation vary continuously in thickness and longitudinal directions of the
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Fig. 8. The strain energy release rate in non-dimensional form presented as a function of r2 (curve 1 – at
r3 = 0.2, curve 2 – at r3 = 0.3 and curve 3 – at r3 = 0.4)

beam (exponential laws are used for describing the variation of the properties). A solution to the
strain energy release rate is derived by analyzing the balance of the energy for general loading
scheme. The solution is applicable for a longitudinal crack located arbitrary along the beam
height. The strain energy release rate is obtained also by differentiating the complementary
strain energy with respect to the crack area for verification. Parametric investigations of the
longitudinal fracture are performed. Effects of material inhomogeneity in height and length
directions of the beam, non-linear mechanical behaviour of the material, crack location along
the beam height and crack length on the longitudinal fracture are elucidated. It is found that the
strain energy release rate decreases with increasing of f1, f2, f3, r1, r2 and r3 (these material
properties control the material gradient in the thickness and longitudinal directions). The analysis
reveals that the strain energy release rate decreases with increasing of the height of the lower
crack arm. It is found also that the strain energy release rate decreases with increasing of the
crack length (this founding is attributed to the fact that the modulus of elasticity in the cross-
section in which the crack tip is located increases with increasing of the crack length). The strain
energy release rate calculated by the solution derived in the present paper has to be compared
with the critical value of the strain energy release rate, Gc, known as fracture toughness in
order to check for crack growth. However, it should be mentioned that Gc is a function of x
and z coordinates since the material under consideration is continuously inhomogeneous along
the thickness and longitudinal directions of the beam. Therefore, Gc has to be measured by
performing experimental testing of beam specimens with longitudinal crack of different lengths
located at various positions along the thickness of the beam.
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Appendix

In order to verify (60), the strain energy release rate is derived also by using the following
formula [12]:

G =
dU∗

bda
, (61)

where dU∗ is the change of the complementary strain energy, da is an infinitesimal increase of
the crack length.

The complementary strain energy is written as

U∗ = U∗
1 + U∗

2 + U∗
3 , (62)

where U∗
1 , U∗

2 and U∗
3 are the complementary strain energies cumulated in the lower crack arm

and portions II–III and III–IV of the beam, respectively.
The complementary strain energy in the lower crack arm is derived as

U∗
1 = b

∫ a

0

∫ h1
2

−h1
2

u∗
01 dx dz1, (63)
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where the complementary strain energy density in the lower crack arm u∗
01 is calculated by the

formula [14]

u∗
01 =

σ2

2E
+

nσ
1+n

n

(1 + n)H
1
n

. (64)

The complementary strain energies in portions II–III and III–IV of the beam are expressed
as

U∗
2 = b

∫ l1

a

∫ h

−h

u∗
02 dx dz2, (65)

U∗
3 = b

∫ l1+l2

l1

∫ h

−h

u∗
03 dx dz3, (66)

respectively.
By substituting of (62), (63), (65) and (66) in (61), one derives

G =
∫ h1

2

−h1
2

u∗
01 dz1 −

∫ h

−h

u∗
02 dz2, (67)

where u∗
01 and u∗

02 are found at x = a. The strain energy release rate calculated by (67) is exact
match of that found by (60) which verifies the present analysis. Also, an analytical proof that
(67) is identical with (60) is presented. For this purpose, u∗

01 is written as

u∗
01 = σε − u01. (68)

Formula (68) follows from the fact that the complementary strain energy density is equal to the
area that supplements the area enclosed by the stress-strain curve to a rectangle. By using (68),
the first term of the right-hand side of (67) is expressed as

∫ h1
2

−h1
2

u∗
01 dz1 =

∫ h1
2

−h1
2

σε dz1 −
∫ h1

2

−h1
2

u01 dz1. (69)

Since the strain is distributed linearly along the thickness, the first integral in the right-hand side
of (69) can be trasformed as

∫ h1
2

−h1
2

σκ1z1 dz1 =
κ1
b

b

∫ h1
2

−h1
2

σz1 dz1. (70)

The stress σ is connected to the bending moment F l2 in the lower crack arm by the following
equation for equilibrium:

F l2 = b

∫ h1
2

−h1
2

σz1 dz1. (71)

By combining of (70) and (71), formula (69) is rewritten as

∫ h1
2

−h1
2

u∗
01 dz1 =

κ1
b

F l2 −
∫ h1

2

−h1
2

u01 dz1. (72)
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Analogically, the second integral in (67) is transformed as∫ h

−h

u∗
02 dz2 =

κ2
b

F l2 −
∫ h

−h

u02 dz1. (73)

By substituting of (72) and (73) in (67), one obtains expression for the strain energy release rate
that is exact match of (60). This fact is also a verification of the solution to the strain energy
release rate derived in the present paper.
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