
Clustered Grid Cell Data Structure for Isosurface Rendering

Fredrik Nysjö
Centre for Image Analysis, Dept. of Information Technology,

Uppsala University, Sweden
{fredrik.nysjo}@it.uu.se

ABSTRACT
Active grid cells in scalar volume data are typically identified by many isosurface rendering methods when ex-
tracting another representation of the data for rendering. However, the use of grid cells themselves as rendering
primitives is not extensively explored in the literature. In this paper, we propose a cluster-based data structure for
storing the data of active grid cells for fast cell rasterisation via billboard splatting. Compared to previous cell
rasterisation approaches, eight corner scalar values are stored with each active grid cell, so that the full volume
data is not required during rendering. The grid cells can be quickly extracted and use about 37 percent memory
compared to a typical efficient mesh-based representation, while supporting large grid sizes. We present further
improvements such as a visibility buffer for cluster culling and EWA-based interpolation of attributes such as nor-
mals. We also show that our data structure can be used for hybrid ray tracing or path tracing to compute global
illumination.

Keywords
Point-based rendering, Visibility, Ray tracing

1 INTRODUCTION
Isosurface rendering requires finding the intersections
of the isosurface for a particular isovalue in the data.
The scalar volume data, for example, a computed tomo-
graphy (CT) image, is typically sampled with tri-linear
interpolation when finding intersections and comput-
ing smooth normals for shading. If dynamic isovalue
is not required, indirect volume rendering techniques
generally provide fast rendering and good data reduc-
tion. Mesh-based methods such as Marching Cubes
(MC) [15] and dual contouring [11] find the active
grid cells (the grid cells containing isosurface intersec-
tions) of the data and extract a polygonal representa-
tion of the isosurface. Point-based methods such as
elliptical weighted-average (EWA)-based surface splat-
ting [22, 1] typically extract a point for each active grid
cell and render these points as small disks. Sparse stor-
age of larger voxel bricks and hierarchical data struc-
tures such as octrees can also be used to provide better
data reduction and faster traversal to direct volume ren-
dering techniques such as isosurface raycasting.

Compared to the previously mentioned techniques, the
use of grid cells themselves as rendering primitives is

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

not extensively explored in the literature. Parker et
al. [20] describe a method for analytically computing
ray-surface intersections for active grid cells during iso-
surface raycasting. Zhang et al. [21] propose storing
active edges instead of active grid cells, which are ren-
dered by disk splatting or expanded and rendered as
small point clouds. Cell rasterisation (CR) was pro-
posed by Liu et al. [13] as a fast method for rasteris-
ing the active grid cells of a volume. Active grid cells
are rasterised as point primitives via so-called billboard
splatting, and the original volume data is sampled in
the cells in the fragment shader to find intersections
and compute smooth normals. Compared to indirect
volume rendering techniques such as mesh- and point-
based methods, cell rasterisation provide the same iso-
surface as isosurface raycasting. Liu et al. also use a
data structure for fast sorting and traversal of the cells
in front-to-back order for proper transparency render-
ing. However, their method provide no data reduction,
since only grid positions are stored with the cells, and
therefore the original volume data needs to be available
in GPU memory for sampling during rendering.

In this paper, we propose a memory efficient data struc-
ture for storing the active grid cells of a volume. The
data structure is easy to implement, does not require
the original volume data to be available during render-
ing, and supports ray tracing in addition to rasterisation.
Our main contributions in the paper are:

• A clustered grid cell data structure (CGC) for storing
grid positions and corner scalar values of active grid
cells. The data structure supports large grid sizes

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

9

Vol.28, No.1-2, 2020

https://doi.org/10.24132/JWSCG.2020.28.2



Figure 1: Our proposed data structure for isosurface rendering: Left: 163 block volume with each block (blue
wireframe) storing a pointer to a list of clusters (pink wireframes) of active grid cells extracted from a voxelised
model; Middle-left: isosurface rasterised with cell rasterisation using scalar values stored with active grid cells
and visibility culling of individual clusters (indicated by colors); Middle-right: final shaded isosurface after EWA-
based normal interpolation and deferred normalized Blinn-Phong shading; Right: hybrid ray tracing using our data
structure with cell rasterisation for primary rays and path tracing with three bounces and an environment map for
secondary rays (after one frame, using 1 sample per pixel). Each cluster shown in the first two images consists of
up to 120 active grid cells and an axis-aligned bounding box. A lower resolution (2563 voxels) voxelisation of the
Buddha model was used to clearer show the clusters and the effect of the attribute interpolation.

(128K×128K×128K) and can be used for fast cell
rasterisation via billboard splatting.

• Improvements to the cell rasterisation including vis-
ibility culling of clusters and EWA-based interpo-
lation for smooth attribute interpolation of normals
and other attributes.

• Showing that the proposed data structure can be used
for hybrid ray tracing or path tracing to compute
global illumination.

2 RELATED WORK
For direct isosurface raycasting, larger bricks or tiles
are generally used instead of individual grid cells for
data reduction and empty space skipping, as in Had-
wiger et al. [7]. The voxel database (VDB) data struc-
ture by Museth [19] is commonly used in offline ren-
dering and uses a shallow tree of internal nodes and leaf
nodes to efficiently store volume data in tiles. Recently,
Hoetzlein [9] also introduced GVDB for real-time ren-
dering on the GPU. Our data structure shares some sim-
ilarities with the VDB data structure, but does not, for
example, provide random access to voxels, and is re-
stricted to isosurface rendering by using smaller tiles
grouped into clusters.
Sparse voxel octrees (SVOs) have been proposed for
storage and ray tracing of large voxel models [12]. The

SVO typically stores surface voxels in the leaf nodes of
the octree, and is traversed during ray tracing. Jablonski
et al. [10] propose an alternative method for rendering
SVOs via billboard splatting and a screen-space voxel
buffer. Large number of individual voxels can also
be efficiently rasterised as cubes via billboard splatting
and fast ray-box intersection tests [16]. However, for
high quality isosurface rendering, a drawback of tradi-
tional SVOs representing voxels as small cubes is the
limited contour information they provide, leading to a
blocky appearance unless each voxel is projected to less
than a few pixels. Efficient sparse voxel octrees (ES-
VOs) [12] improves this by storing additional contour
information in the octree and voxels. Heitz et al. [8]
use filtered signed distance fields and differential cone
tracing to render SVOs with accurate anti-aliased con-
tours. Marcus [17] proposes a SVO data structure stor-
ing scalar values (signed distances in their case) at the
corners of each voxel, which is similar to the corner val-
ues we store for cell rasterisation, but used during ray
tracing of the SVO.

Visibility culling can be important in rasterisation to
improve performance and reduce overdraw. Livnat et
al. [14] perform point-based view-dependent isosur-
face extraction from an octree, using a visibility frame-
buffer to prune non-visible regions. They further com-
pute surface normals in a post-processing step for far

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

10

Vol.28, No.1-2, 2020



Figure 2: Overview of the clustered grid cell (CGC) data structure for storing active grid cells. Each block in
the block volume (blue) stores a pointer to metacells (red) extracted in the block. The metacells are grouped into
clusters of 16 metacells, with each metacell storing a pointer to the corner values of up to eight grid cells. The
last metacell in each cluster stores a cluster bound instead of a pointer. Blocks, metacells, and grid cell corners are
stored in separate buffers on the GPU. The memory layout for blocks and metacells is further described in Table 1.

points (minified surfaces), while using MC triangle nor-
mals for near points (magnified surfaces). For gen-
eral occlusion culling of clustered geometry, a hierar-
chical Z-buffer [5] is often used in combination with
pre-computed cluster bounds for conservative culling
of clusters. For back-face culling, a normal cone can
similarly be pre-computed and stored with each clus-
ter. In deferred splatting [6] and the method for cluster
culling we use in this paper based on a visibility buffer,
the visibility culling is not conservative but does not re-
quire generating a hierarchical Z-buffer or storing clus-
ter bounds or normal cones.

Rasterisation of small primitives (small triangles and
points) can further lead to bad GPU utilisation when
each primitive only occupies a few pixels. Evans [4]
presents a point-based method replacing the standard
rasterisation pipeline with stochastic splatting in a com-
pute shader. Splatting is performed using 64-bit atomic
instructions, thereby avoiding executing GPU threads
for non-covered fragments in 2×2 pixel quads or frag-
ments with zero alpha value. A drawback of this ap-
proach is that 64-bit atomic instructions are only avail-
able and exposed to the programmer on game con-
soles (PlayStation 4) and on certain NVIDIA GPUs
(Maxwell and later generations).

3 METHODS
In Section 3.1, we describe the proposed CGC data
structure for storing clusters of active grid cells, and
the isosurface extraction. In Sections 3.2–3.4, we de-
scribe cell rasterisation using billboard splatting, and
present further improvements such as a visibility buffer
for back-face and occlusion culling and EWA-based at-
tribute interpolation of attributes such as normals. In
the final Sections 3.5 and 3.6, we discuss memory us-
age and hybrid ray tracing.

Block data Size Metacell data Size
Metacell count 32 bit Grid position (XYZ) 48 bit
Metacell pointer 32 bit Cell mask 16 bit
Min value 32 bit Cell pointer 32 bit
Max value 32 bit
Total: 128 bit Total: 96 bit

Table 1: Memory layout for blocks and metacells.
Blocks and metacells are stored in separate GPU buffer
textures, using 16 bytes per block and 12 bytes per
metacell. Corner scalar values for active grid cells are
stored in a separate buffer texture.

3.1 Data Structure

An overview of our proposed data structure is shown
in Figures 1–2. We store extracted grid cells in a lin-
ear buffer on the GPU. Eight corner values per cell are
stored as two RGBA values, with the component type
matching the scalar precision of the volume data. To
avoid storing a grid position with each cell, we group
up to eight neighboring cells into a 2× 2× 2 meta-
cell storing a pointer, a cell mask, and a cell pointer.
The metacells are stored in a second linear buffer, with
each segment of 16 consecutive metacells representing
a cluster.

For the isosurface extraction, we divide the volume data
into 16×16×16 number of blocks, and extract the ac-
tive grid cells of each block in Morton order. To pre-
vent metacells of the same cluster from spilling over
into different volume blocks, we pad the last cluster of
each block with empty metacells such that its size be-
come 16. We also use the last metacell of each cluster
to store a cluster bound instead of cell metadata. We
perform the isosurface extraction on the CPU, and up-
load extracted metacells and grid cells to separate GPU
buffer textures.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

11

Vol.28, No.1-2, 2020



Figure 3: Cell rasterisation using billboard splatting:
for each fragment rasterised for the billboard (gray line
intersecting the cell), a ray-box intersection test is per-
formed with the cell, and interpolated samples (indi-
cated in colors) computed along the ray to determine the
isosurface intersection. In our implementation, three
samples per ray is used, which was found sufficient.

The memory layout for blocks and metacells is shown
in Table 1. In our current implementation, grid posi-
tions are stored with 16 bit per component, allowing a
maximum grid size of 128K× 128K× 128K voxels to
be represented.

3.2 Cell Rasterisation
The basic idea of cell rasterisation using billboard splat-
ting is illustrated in Figure 3. In the original cell ras-
terisation paper [13], a vertex shader is used to render
active cells as a point sprites (GL_POINTS primitives).
For each rasterised fragment of a point sprite billboard,
a ray-box intersection test is performed with the cell,
and the original volume data is sampled along the ray
with tri-linear interpolation to find isosurface intersec-
tions. When an intersection is found, a normal gradient
is also computed from the volume data for shading.

For efficient rendering of the clusters of grid cells in
our data structure, we replace the vertex shader of pre-
vious approaches with a tesselation shader taking a sin-
gle patch (GL_PATCHES primitive) per cluster as input
and expands it into points for the cells in the cluster.
Clusters that were culled in the last frame (Section 3.3)
are rendered at 1/8 rate (with at most on point per meta-
cell per frame) until they become visible. Stored corner
values are interpolated with manual tri-linear interpo-
lation in the fragment shader. For the ray-box inter-
section test, we use the efficient slab test mentioned in
Majercik et al. [16], which also can be used to rasterise
cells as cubic voxels. To allow smooth interpolation of
normals and other attributes for shading, we rasterise
cells to a geometry buffer (G-buffer) and compute de-
ferred normalized Blinn-Phong shading in a separate
pass after attribute interpolation (further described in
Section 3.4). A cell normal is computed in the tesse-
lation shader from the corner values, and further used
for back-face culling.

3.3 Visibility Buffer
To further improve the rasterisation performance, we
introduce a visibility buffer to avoid performing full cell
rasterisation of clusters that are fully occluded or back-
facing. The visibility buffer stores a bit per cluster indi-
cating the visibility after each frame. An RG32UI tex-
ture is used during the cell rasterisation pass to capture
cluster IDs visible cells. After the cell rasterisation, we
clear the current visibility buffer bits and update the vis-
ibility buffer from the ID texture in a separate compute
shader pass. Similar to the disk-based deferred splatting
approach by Guennebaud et al. [6], we render cells of
non-visible clusters as single pixel splats for updating
the visibility buffer. During fast camera movements,
non-visible clusters becoming visible might result in
flickering artifacts. We therefore introduce a second
visibility buffer to record of new clusters becoming vis-
ible, and perform full cell rasterisation for those clusters
in a second pass. During fast camera movements, there
might still be some flickering artifacts, which can be
seen in the accompanying video.

3.4 EWA-based Attribute Interpolation
Normals and other attributes should be smoothly in-
terpolated before computing shading. However, our
data structure does not allow random access to neigh-
boring grid cells. For smooth interpolation of normals
and other attributes, we introduce a second EWA-based
attribute splatting pass in which cells are rendered as
round splats with a weighted footprint, and attributes
accumulated to the G-buffer. The results of the EWA-
based interpolation is shown in Figure 4.

Laine et al. [12] propose performing interpolation as a
post-processing step (after ESVO ray tracing) by com-
puting a weighted average of neighboring pixels in a
Poisson disk centered around each target pixel. The in-
terpolation can use a large number of samples (up to
96) per pixel, which may be expensive on GPUs with
low memory bandwidth. Specular surfaces are also
not handled correctly because the interpolation is per-
formed after shading. Jablonski et al. [10] propose a
smaller 3× 3 Gaussian filter for interpolating G-buffer
normals before shading. We investigated replacing the
post-processing in [12] with a stochastic interpolation
scheme using temporal anti-aliasing (TAA) and fewer
samples per frame. However, our EWA-based inter-
polation provided smoother normals and was possible
to use without TAA. Another option would be storing
additional corner values (for example, 32 instead of 8)
with each grid cell, at the cost of significantly increased
memory usage.

3.5 Memory Usage
Average memory usage per grid cell in our data struc-
tures, when including storage for metacells and the

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

12

Vol.28, No.1-2, 2020



(a) MC mesh (b) CR [13] (c) CGC (ours) (d) CGC+EWA (ours)

Figure 4: Isosurface comparison for voxelised Armadillo model: (a) MC mesh (without pre-computed normals);
(b) isosurface from cell rasterisation with sampling in the original volume data; (c)–(d) isosurface from cell raster-
isation of our CGC data structure, without and with EWA-based normal interpolation. For our method, the normal
gradient of each cell was computed in the vertex shader from the stored corner values. A lower resolution (2563

voxels) voxelisation of the Armadillo model was used to better show the effect of the normal interpolation.

block volume, is 11 bytes for 8-bit scalar data and 19
bytes for 16-bit scalar data. If 4-bit scalars provide suf-
ficient precision for the application, for example, when
scalars represent coverage values or truncated signed
distances such as in some sculpting applications, the av-
erage memory usage may be further reduced to 7 bytes
per cell. In addition to storage for the main data struc-
ture, we allocate 0.13 MB visibility buffers with capac-
ity for 1M unique clusters, which was found sufficient
even for the hairball dataset.

3.6 Hybrid Ray Tracing and Path Tracing
The data structure presented in this paper can also be
used directly for ray tracing or path tracing of the
extracted isosurface. Using the pre-computed cluster
bound stored in the last metacell of each cluster, inter-
sections with rays can be efficiently computed hierar-
chicaly by traversing and testing blocks, clusters, meta-
cells, and individual voxels with the same efficient slab
test used in the cell rasterisation. Shadow and ambi-
ent occlusion rays only need to fetch the metacell data,
whereas additional bounces for path tracing also need to
fetch grid cell data in order to compute a normal at each
intersection point. Primary rays can be either traced or
rasterised (hybrid ray tracing). Results from a path trac-
ing implementation using hybrid ray tracing are shown
in Figures 1 and 6.

4 EXPERIMENTS AND RESULTS
We implemented our method in OpenGL 4.5 and C++.
All experiments were performed on an AMD Ryzen 7
2700 with 32GB RAM and an NVIDIA GeForce GTX
1070, and on a separate laptop with an Intel Core i7-
6700HQ with 16GB RAM and an NVIDIA GeForce
GTX 965M to evaluate performance on a lower-end
GPU. Frame times were measured via OpenGL timer
queries (GL_ARB_timer_query) for the scenes in

Volume Resolution Type Size
(W ×H×D) (GB)

Dragon 512×512×512 8 bit 0.13
Plastic Skull 512×512×512 8 bit 0.13

Stag beetle CT 832×832×494 16 bit 0.68
Chameleon CT 1024×1024×1080 8 bit 1.13

Raptor 2048×1024×512 8 bit 1.07
Buddha 1024×2048×1024 8 bit 2.15
Hairball 1024×1024×1024 8 bit 1.07

Table 2: Volume datasets used for evaluation.

Figure 5 rendered at 1920×1080 resolution. To gener-
ate the non-CT volume datasets in Table 2 for the test
scenes, a CPU-based implementation of the slicemap-
based binary voxelisation method of Eisemann et al. [3]
was used. Each input mesh was voxelised to three times
a target resolution, followed by downsampling to gen-
erate a coverage representation.

A comparison of memory usage and extraction times
for our data structure (CGC) and a typical efficient
mesh-based representation extracted with MC is pre-
sented in Table 3. The size of the original volume data
is also presented in Table 2. For the MC implemen-
tation, we used the code from [2] after modifying it
to generate indexed meshes without duplicate vertices,
and store vertex positions in 16-bit signed normalized
format with a scaling factor. While the MC memory
usage could be further reduced using compression or
converting indexed meshes into triangle strips, such op-
timization would require further mesh processing and
increased extraction time. A performance comparison
of MC, original cell rasterisation (CR) [13] using sam-
pling in the original volume data, and our cell raster-
isation using the CGC data structure is presented in
Table 4. A corresponding isosurface comparison is also
shown in Figure 4.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

13

Vol.28, No.1-2, 2020



(a) Dragon 1 (b) Dragon 2 (c) Plastic skull 1 (d) Plastic skull 2

(e) Stag beetle 1 (f) Stag beetle 2 (g) Chameleon 1 (h) Chameleon 2

(i) Raptor 1 (j) Raptor 2 (k) Buddha 1 (l) Buddha 2

(m) Hairball 1 (n) Hairball 2

Figure 5: Test scenes for the datasets in Table 2.

5 DISCUSSION
In this paper, the clustered grid cell (CGC) data struc-
ture for isosurface rendering was proposed. We demon-
strated that this data structure can be used for fast cell
rasterisation via billboard splatting, as well as for hy-
brid ray tracing of isosurfaces extracted from large vol-
umes. The data structure does not require the original
volume data to be available during rendering, and uses

about 37% memory compared to a typical mesh-based
representation.

The cell rasterisation performance of our method was
comparable to mesh rendering, except for the larger
test scenes with high depth complexity, in which our
method was faster and benefited from the visibility
culling. Good use cases for our method would include
digital sculpting and visualization of data that need stor-

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

14

Vol.28, No.1-2, 2020



Figure 6: Hybrid ray tracing: Plastic skull dataset (5123 voxels) and Stag beetle CT dataset (834× 834× 494
voxels) rendered with our data structure using cell rasterisation for primary rays and path tracing with three bounces
and an HDR environment map for secondary rays (using 1 sample per pixel). Both scenes are rendered at interactive
rate (less than 16 milliseconds per frame) at 1920×1080 resolution, with images showing result after 100 frames.

CGC (ours) MC [15]
Volume Active cells Metacells Memory Extraction Vertices Triangles Memory Extraction

(count) (count) (MB) (time, s) (count) (count) (MB) (time, s)
Dragon 668,804 182,400 7.5 0.8 668,860 1,337,714 20.1 1.5

Plastic skull 2,107,816 569,888 23.7 0.9 2,108,153 4,216,444 63.2 1.7
Stag beetle CT 3,140,758 769,536 59.5 2.6* 3,045,308 6,099,032 91.5 4.1*
Chameleon CT 3,492,569 911,088 38.9 11.4 3,430,406 6,861,504 102.9 12.4

Raptor 2,864,152 765,136 32.1 10.7 2,864,515 5,729,028 85.9 11.1
Buddha 8,464,696 2,264,208 94.9 17.6 8,464,912 16,929,714 253.9 24.3
Hairball 36,034,268 8,952,736 395.7 8.3 36,585,310 73,442,740 1,100.8 16.8

Table 3: Memory usage and isosurface extraction times for the datasets in Table 2, for our CGC data structure
using the cell format in Table 1, and with corresponding MC indexed triangle meshes extracted and shown for
comparison. For MC meshes, memory usage is without vertex normals and with indices stored using 4 bytes per
index and vertex positions stored in 16-bit signed normalized format (with scaling factor computed from mesh
bounds) using 6 bytes per vertex. The same normalized isovalue 0.5 was used for all datasets.

ing additional attributes per voxel or cell. A limitation
of our method is the need to use deferred rendering
for the EWA-splatting of normals and other attributes.
However, as we demonstrate, the data structure can also
be used for cell rasterisation with sampling in the orig-
inal volume data.

It could be interesting to explore approaches using
compute-based rasterisation for far grid cells and
traditional rasterisation for near grid cells. We also
aim to investigate if clusters could be more efficiently
rendered with mesh shaders that were recently intro-
duced with the NVIDIA Turing GPU architecture.
Other future work could be improving ray tracing
performance by re-arranging the clusters of min-max
blocks into bounding volume hierarchies.

The source code for our implementation is available
at https://bitbucket.org/FredrikNysjo/
grid_cells.

ACKNOWLEDGEMENTS

The author would like to thank Filip Malmberg and
Ingela Nyström for valuable input on the manuscript
and the method. Further thanks to Johan Nysjö and
Ingrid Carlbom for comments and discussion, and
to the anonymous reviewers for their feedback. The
STL mesh for the plastic skull dataset was obtained
from a CT scan provided by Uppsala University
hospital. The Dragon, Buddha, and Hairball models
were downloaded from Morgan McGuire’s Com-
puter Graphics Archive [18], whereas the Raptor
model was downloaded from the AIM@Shape Shape
Repository (http://visionair.ge.imati.
cnr.it/ontologies/shapes). Remaining
datasets were obtained from https://www.cg.
tuwien.ac.at/research/publications/
2005/dataset-stagbeetle and the Digital
Morphology library (http://digimorph.org).

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

15

Vol.28, No.1-2, 2020



MC [15] CR [13] CGC (ours)
Scene GTX 1070 GTX 965M GTX 1070 GTX 965M GTX 1070 GTX 965M

(time, ms) (time, ms) (time, ms) (time, ms) (time, ms) (time, ms)
Dragon 1 0.3 0.8 0.4 1.2 0.6 (0.4) 1.9 (1.1)
Dragon 2 0.3 0.9 0.6 1.7 0.7 (0.5) 2.2 (1.3)

Plastic skull 1 0.9 2.5 0.7 1.9 1.0 (0.6) 2.8 (1.7)
Plastic skull 2 1.0 3.0 1.2 3.3 1.5 (0.9) 4.0 (2.5)
Stag beetle 1 1.4 3.9 0.9 2.5 1.2 (0.9) 3.5 (2.5)
Stag beetle 2 1.8 6.5 1.5 4.4 1.6 (1.1) 4.9 (3.3)
Chameleon 1 1.5 4.3 1.4 3.5 2.0 (1.4) 5.2 (3.6)
Chameleon 2 1.5 3.6 1.3 3.6 1.6 (1.0) 4.9 (3.0)

Raptor 1 1.2 3.6 1.4 4.1 2.1 (1.5) 6.3 (4.4)
Raptor 2 1.2 3.0 1.0 2.8 1.5 (0.9) 4.5 (2.7)

Buddha 1 3.9 11.3 4.5 12.1 7.0 (4.9) 17.9 (12.4)
Buddha 2 4.0 9.2 1.7 4.5 2.5 (1.7) 7.0 (4.6)
Hairball 1 25.9 61.5 6.3 18.4 8.5 (6.2) 24.3 (18.4)
Hairball 2 26.5 66.4 6.2 18.0 6.7 (5.1) 19.3 (15.4)

Table 4: Performance comparison when rendering the scenes in Figure 5 at 1920×1080 pixels render target res-
olution on two different GPUs (GTX 1070 and GTX 965M), using Marching Cubes (MC), cell rasterisation with
sampling in the original volume data (CR [13]), and cell rasterisation of our data structure (CGC). For the CR
implementation, the visibility buffer and cluster sorting of our method is used instead of the original data structure.
The times show GPU timings in milliseconds of the rasterisation time (depth and G-buffer pass). Rasterisation
time for our method without EWA-splatting is also presented in the parentheses.

6 REFERENCES

[1] BOTSCH, M., HORNUNG, A., ZWICKER, M.,
AND KOBBELT, L. High-Quality Surface Splat-
ting on Today’s GPUs. In Proceedings of the
Second Eurographics / IEEE VGTC Conference
on Point-Based Graphics (2005), SPBG’05, Eu-
rographics Association, pp. 17–24.

[2] BOURKE, P. Polygonising a scalar field.
http://paulbourke.net/geometry/
polygonise. Accessed on January 1, 2020.

[3] EISEMANN, E., AND DÉCORET, X. Single-Pass
GPU Solid Voxelization for Real-Time Applica-
tions. In Proceedings of Graphics Interface 2008
(2008), pp. 73–80.

[4] EVANS, A. Learning from Failure: a Survey
of Promising, Unconventional and Mostly Aban-
doned Renderers for ‘Dreams PS4’, a Geometri-
cally Dense, Painterly UGC Game. Presented at
the ‘Advances in Real-Time Rendering Course’ at
ACM SIGGRAPH ’15 (2015).

[5] GREENE, N., KASS, M., AND MILLER, G. Hier-
archical z-buffer visibility. In Proceedings of the
20th Annual Conference on Computer Graph-
ics and Interactive Techniques (1993), ACM,
pp. 231–238.

[6] GUENNEBAUD, G., BARTHE, L., AND PAULIN,
M. Deferred Splatting. Computer Graphics Fo-
rum 23, 3 (2004), 653–660.

[7] HADWIGER, M., SIGG, C., SCHARSACH, H.,

BÜHLER, K., AND GROSS, M. Real-Time Ray-
Casting and Advanced Shading of Discrete Iso-
surfaces. In Computer Graphics Forum (2005),
vol. 24, pp. 303–312.

[8] HEITZ, E., AND NEYRET, F. Representing
Appearance and Pre-Filtering Subpixel Data in
Sparse Voxel Octrees. In Proceedings of the
Fourth ACM SIGGRAPH/Eurographics Confer-
ence on High-Performance Graphics (2012),
pp. 125–134.

[9] HOETZLEIN, R. K. GVDB: Raytracing Sparse
Voxel Database Structures on the GPU. In Pro-
ceedings of High Performance Graphics (2016),
pp. 109–117.

[10] JABLONSKI, S., AND MARTYN, T. Real-Time
Voxel Rendering Algorithm based on Screen
Space Billboard Voxel Buffer with Sparse Lookup
Textures. In Proceedings of the 24th Int. Con-
ference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision (2016),
WSCG’2016, pp. 27–36.

[11] JU, T., LOSASSO, F., SCHAEFER, S., AND WAR-
REN, J. Dual Contouring of Hermite Data. In
ACM transactions on graphics (TOG) (2002),
vol. 21, pp. 339–346.

[12] LAINE, S., AND KARRAS, T. Efficient Sparse
Voxel Octrees - Analysis, Extensions, and Imple-
mentation. Tech. rep., NVIDIA Research, 2010.

[13] LIU, B., CLAPWORTHY, G. J., AND DONG,
F. Fast Isosurface Rendering on a GPU by Cell

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

16

Vol.28, No.1-2, 2020



Rasterization. Computer Graphics Forum 28, 8
(2009), 2151–2164.

[14] LIVNAT, Y., AND TRICOCHE, X. Interactive
Point-Based Isosurface Extraction. In Proceed-
ings of Visualization ’04 (2004), pp. 457–464.

[15] LORENSEN, W. E., AND CLINE, H. E. Marching
cubes: A high resolution 3D surface construction
algorithm. Computer Graphics 21, 4 (1987), 163–
169.

[16] MAJERCIK, A., CRASSIN, C., SHIRLEY, P.,
AND MCGUIRE, M. A Ray-Box Intersection
Algorithm and Efficient Dynamic Voxel Render-
ing. Journal of Computer Graphics Techniques
(JCGT) 7, 3 (2018), 66–81.

[17] MARCUS, R. Level-of-Detail Independent Voxel-
Based Surface Approximations. Tech. rep.,
Utrecht University, 2017.

[18] MCGUIRE, M. Computer graphics archive, July
2017. Accessed on January 1, 2020.

[19] MUSETH, K. VDB: High-Resolution Sparse Vol-
umes with Dynamic Topology. ACM Transactions
on Graphics (TOG) 32, 3 (2013), 27.

[20] PARKER, S., SHIRLEY, P., LIVNAT, Y.,
HANSEN, C., AND SLOAN, P.-P. Interactive
Ray Tracing for Isosurface Rendering. In Pro-
ceedings of the Conference on Visualization’98
(1998), pp. 233–238.

[21] ZHANG, H., AND KAUFMAN, A. Interactive
Point-based Isosurface Exploration and High-
quality Rendering. IEEE Transactions on Vi-
sualization and Computer Graphics 12, 5 (2006),
1267–1274.

[22] ZWICKER, M., PFISTER, H., VAN BAAR, J.,
AND GROSS, M. Surface Splatting. In Proceed-
ings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (2001),
ACM SIGGRAPH ’01, ACM, pp. 371–378.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

17

Vol.28, No.1-2, 2020




